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Abstract—The multi-agent reinforcement learning systems
(MARL) based on the Markov decision process (MDP) have
emerged in many critical applications. To improve the robust-
ness/defense of MARL systems against adversarial attacks, the
study of various adversarial attacks on reinforcement learning
systems is very important. Previous works on adversarial attacks
considered some possible features to attack in MDP, such as the
action poisoning attacks, the reward poisoning attacks, and the
state perception attacks. In this paper, we propose a brand-new
form of attack called the camouflage attack in the MARL systems.
In the camouflage attack, the attackers change the appearances
of some objects without changing the actual objects themselves;
and the camouflaged appearances may look the same to all the
targeted recipient (victim) agents. The camouflaged appearances
can mislead the recipient agents to misguided actions. We design
algorithms that give the optimal camouflage attacks minimizing
the rewards of recipient agents. Our numerical and theoretical
results show that camouflage attacks can rival the more con-
ventional, but likely more difficult state perception attacks. We
also investigate cost-constrained camouflage attacks and showed
numerically how cost budgets affect the attack performance.

I. INTRODUCTION
1 Single-agent and multiple-agent reinforcement learning

(RL) algorithms are used in many safety or security related
applications, such as autonomous driving [1], financial deci-
sions [2], recommendation systems [3], and also in drones’
and robots’ algorithms [4]. It is thus essential to develop trust-
worthy systems before their real-world deployment. Studying
the potential adversarial attacks on RL systems and evaluating
the worst-case performances of RL agents under these attacks
can help us limit the damage imposed by adversarial parties,
defend against adversarial attacks, and therefore build more
robust and secure RL systems.

Adversarial attacks and defenses against these attacks for
single-agent RL systems have been relatively well studied so
far [5]–[13], but adversarial attacks on multi-agent learning
are still not well understood. In MARL, the model can still be
based on the Markov Decision Process (MDP), but multiple
players are playing in the Markov game (MG), interacting with
the environment, and the environment dynamics change by the
joint action of all agents. The increasing complexity of settings
potentially makes MARL systems more fragile or makes it
harder to analyze their robustness. New methods are intro-
duced especially for improving/evaluating the performance of

1This research is supported by NSF ECCS-2000425 and ECCS-2133205.

MARL systems and evaluating worst-case adversarial attacks
on MARL systems [14]–[16]. For example, [14] proposed a
decentralized algorithm: V-learning that only scales with the
maximum number of actions of one agent. In [15], the authors
used reward loss and cost functions to evaluate the efficacy of
adversarial attacks on MARL systems.

In terms of the types of adversarial attacks on MARL, most
proposed adversarial attacks only consider recipient (victim)
agents’ properties to attack, for example, the action poisoning
attacks, the reward poisoning attacks, the state poisoning at-
tacks, the environmental attacks, or the mixed attacks [5], [15],
[17]–[23]. These attacks either directly change the features
of agents, i.e., actions, rewards, or states of the MDP, or
perturb the interactions between the agents’ actions and the
environments. In [24], [25], the authors proposed a form of
state perception (observation) attack in deep reinforcement
learning, in which attackers confuse agents with delusional
states instead of changing their actual states during the game.
In [26], the authors addressed the state perception attacks with
cost constraints in a multi-agent system.

In this paper, we propose a new form of adversarial attack on
MARL system: the camouflage attack. During the camouflage
attack, instead of directly changing recipients’ properties, the
attackers change the appearances of some objects they can
control or even the appearances of attackers themselves. After
the camouflage attack, all the recipient agents potentially
observe the same camouflaged objects’ features so that they
are misled to misguided decisions in the MG. The camouflage
attacks are different from the state perception attacks in two
ways: 1) the camouflage attack does not directly change the
measurements of each recipient agents, but instead change
the appearances of the objects the attackers can control thus
changing the measurements of the victim agents indirectly; 2)
in the camouflage attack, the perceptions of different recipient
agents cannot be freely manipulated as in state perception
attacks: the confusions of the recipient agents come from
observing the same camouflaged objects and thus are the
same or correlated. In addition, in camouflage attacks, the
underlying true states of the camouflaged objects are not
changed, and what are changed are only the appearances
of the camouflaged objects. For example, camouflaged robot
examples include stealthy invisible airplanes that can evade the
detection of regular radars: they are actually in the air but are
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“camouflaged” to be invisible. As another example, one can
camouflage unimportant objects into fake “valuable” targets
so that enemy robots spend precious resources on attacking
these fake targets.

We design between-step dynamic programming to achieve
the optimal camouflage attack in multiple agent systems.
Our numerical results showed that the camouflage attack can
significantly reduce the total reward gained by the recipient
agents. We also numerically showed similar or comparable
performances between the new, cheaper camouflage attack
and the conventional but likely more difficult-to-achieve state
perception attack. We proved that, under certain conditions,
the camouflage attack can achieve a similar goal as the state
perception attack.

There have been only very limited ideas of camouflage
attacks studied from the perspective of dynamic systems,
except for [27] which discussed essentially state perception at-
tack for single-victim-agent dynamic systems even though the
terminology “camouflage” is used. For non-dynamic systems,
some works discussed improving the detection of camouflaged
attacks in deep learning models [28], [29].

The rest of the paper is organized as follows. In Section
II, we introduce the camouflage attack model. In Section
III, we consider the budget-constrained scenarios with the
camouflage attacks. In Section III, we analyze the performance
of camouflage attacks and compare that with the performance
of state perception attacks. In section IV, we numerically
evaluate the performance of the proposed attack algorithms.

II. PROBLEM FORMULATION

In the considered MDP environment, all the agents are
divided into two opposite groups, the attacker group M , and
the recipient agent group N , with |M | = m, |N | = n.

The MDP environment for the recipient agents can
be described by the 5-element tuple: ({Si}ni=1, {Ai}ni=1,
T, P, {Ri}ni=1), where Si is the state space of the i-th recipient
agent with |Si| = Si, Ai is the action space for the i-th
recipient agent with |Ai| = Ai, T is the number of time steps
in MARL and T is finite. Our time index t starts from 0 to T .
We refer to time step t as the time interval starting from time
index t− 1 and ending at time index t, where 1 ≤ t ≤ T . We
let Pi,t : Si ×Ai × Si → [0, 1] be the transitional probability
of the i-th recipient agent at time index t, and Ri,t represents
the reward function of the i-th recipient agent at time index t.
We let at := (a1, a2, . . . , an) denote the joint action of all the
n recipient agents at time step t, and let st := (s1, s2, . . . , sn)
denote the joint state of all the n recipient agents at a time
index t. We define the optimal policy of the i-th recipient agent
at time index t as π⋆

i,t(si,t) = a⋆i,t. For simplicity, we assume
that all the recipient agents share the same state space and the
same action space. We assume that the optimal policy π⋆

i (si,t)
is the same for every agent i, denoted as π⋆

t (st).
We assume both the attack and recipient agent groups can

monitor the underlying MARL algorithms of the recipient
agents, and therefore both groups know the optimal policies
π⋆
i,t of every recipient agent i at time step t. However, the

recipient agents are unaware of the existence of attackers or
their attacks. The m attackers perform state perception attacks
by disturbing recipient agents’ observations of their true states.
For a recipient agent i at time index t, we let sa,t,i denote the
true state the agent i is actually in and let sd,t,i denote the
delusional state that the agent i thinks it is in.

The recipient agents are selfish in the game, aiming to
maximize their own rewards obtained during the T time steps.
The attackers instead aim to minimize the total expected
rewards of all the recipient agents during the T time steps.

There are two phases of play during one time step t. In the
first phase, from time index t−1 to t−0.5, the attackers attack
to make each recipient agent i (1 ≤ i ≤ n) think it is in a
delusional state sd,t−0.5,i. In the 2nd phase, after the attack,
from the time index t− 0.5 to t, each recipient agent i moves
to sa,t,i according to its optimal policy π⋆

i,t−0.5(sd,t−0.5,i) =
π⋆
i,t−1(sd,t−0.5,i), in which sd,t−0.5,i is agent i’s delusional

state at time index t−0.5, and obtains its corresponding reward
Ri,t(sa,t−1,i, sa,t,i).

We are interested in finding the optimal attack strategy of
attackers for each time step t (1 ≤ t ≤ T ).

Camouflage attack: The m attackers can change the ap-
pearances of some objects that they control during the game
at every time step t. Mathematically, suppose that we have
a random variable Xt−0.5 which represents the true status of
an object at time index (t − 0.5). If it is not camouflaged,
the appearance, denoted by Yt−0.5, of this object is just
equal to Xt−0.5, namely Yt−0.5 = Xt−0.5. The camouflage
attack changes the appearance Yt−0.5 to some other value,
for example, Yt−0.5 = g(Xt−0.5) where g(·) is a camouflage
function. Then the observation of Xt−0.5 at time index (t−0.5)
from the perspective of agent i is given by sd,t−0.5,i =
hi(g(Xt−0.5)) = hi(Yt−0.5), where Yt−0.5 is the changed
appearance of the object, and hi is the observation function
of recipient agent i (hi can be a function giving random
outcomes, for example, due to noises).

These camouflaged objects will fool the recipient agents
into delusional state sd,t−0.5,i for each agent i. Different from
the state perception attacks, these delusional states sd,t−0.5,i

have to be correlated or even exactly the same across different
recipient agents: this is because camouflage attacks make the
recipient agents observe the same camouflaged objects. In state
perception attacks [24], [25], the attackers can instead fool
different recipients into very different delusional states.

III. COST CONSTRAINED CAMOUFLAGE ATTACKS

In practice, sometimes the attackers have attack budgets that
must be spent by the end of each time step. For example,
the resources used by attackers are provided by constantly-
energy-harvesting systems over time steps, and the budget
for each time step is constrained by the battery volume. We
call this scenario an “instant cost constrained case”. Within
each time step t (namely between time index t − 1 and t),
all attackers share a budget B, and this budget B can only
be spent during that single time step: the leftover resources
cannot be carried over to the next time step t+ 1 or there is
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no need to carry over the leftover resources to the next time
step because of budget refill. Once we get to time step t+ 1,
the shared budget B will be refilled (say, to B). We would
like to find out how to optimally allocate the total resources
to each attacker j for performing the camouflage attack in
each time step, while satisfying the instant cost constraint and
minimizing the recipient agents’ total rewards. To simplify our
presentations, we consider the budgets are used to camouflage
the attackers themselves.

We design an integration of between-step dynamic pro-
gramming and within-step static constrained optimizations to
compute the optimal attack strategy. During each time step t,
for each possible actual state vector sa,t−1, we use a static
standalone optimization program to determine the optimal
allocation of attackers’ budgets on camouflages. Between
different time steps, we use dynamic programming to account
for the state transitions and expected rewards.

We work backward from time index t = T and initialize
value function V ⋆

T (σT ) = 0 for each dynamic programming
state (DPS) σT (a DPS state includes all recipient and attacker
agents’ actual conditions, and also the conditions of camou-
flaged objects), and the subscript represents time index. Sup-
pose that we have already computed V ⋆

t+0.5(σt+0.5) for every
DPS state σt+0.5. We then proceed to compute the optimal
attack policy during time step t (essentially from t to t+0.5)
and also V ⋆

t (σt) for every DPS state σt. During time step t,
we let bj ∈ R be the amount of resources attacker j spends on
its camouflage attack. The constraints on bj are such that the
total spending of all attackers cannot exceed B. To represent
formulas concisely, we stack the bj’s to form a m-dimensional
vector b called the attack allocation vector. Under the attack
allocation vector b, we denote the probability that the recipient
agents’ state will transit to σt+0.5 as P (b, sa,t, σt+0.5), where
sa,t is the true states of all the recipient agents at time index
t. This probability must be between 0 and 1. Based on the
principles of dynamic programming, we want to optimize bj’s
to minimize the total expected rewards received by the agents
from time step t to T . Thus, under a specific true state vector
sa,t, the objective function for attackers to minimize is the
expected total reward of all the recipient agents from step t
onward to step T .

1) Within-step static constrained optimization problem:
Suppose that the DPS has Q possible values at time index
t + 0.5 conditioned on the true states are sa,t, the optimal
attack under the “instant cost constrained” case at a single
time step t can be formulated as the following within-step
static constrained optimization problem:

min

Q∑
k=1

P (b, sa,t, σ
k
t+0.5)V

⋆
t+0.5(σ

k
t+0.5) (1)

subject to
m∑
j=1

bj ≤ B,

P (b, sa,t, σ
k
t+0.5) ≤ 1, ∀k

− P (b, sa,t, σ
k
t+0.5) ≤ 0, ∀k

bj ≥ 0, j = 1, . . . ,m,

where σk
t+0.5 is the k-th DPS at time index t+ 0.5.

Depending on the physical nature of the attacks, we can
model the probability P (b, sa,t, σ

k
t+0.5) as a function of b. In

one particular model considered in the paper, for each attacker
j, the probability that it can change the appearance of the
object it controls is max{bj/Ct(xj , yj), 1}, where Ct(xj , yj)
are constants representing how hard it is for the attacker j
to camouflage the appearance of xj as yj . In our numerical
results, we take Ct(xj , yj) = d(s†a,j , s

†
d,j) + ϵ where ϵ is

a positive constant and d(s†a,j , s
†
d,j) is the distance between

the real position of the attacker j and the target camouflaged
position the attacker j chooses. Namely, if we assign more
budget to attacker j, and if the target camouflage position is
closer to its actual position, it is more likely that attacker j
can change the objects to the targeted appearances.

2) Between-step dynamic programming: After solving (1),
we take the optimal value of its objective function as V ⋆

t (σ),
using which we continue to calculate V ⋆

t−0.5(·) as follows. For
each DPS σt−0.5, we update V ⋆

t−0.5(σt−0.5) as∑
σt

P (σt|σt−0.5, a⋆t−0.5)(V
⋆
t (σt) +R(σt−0.5, σt)).

After updating V ⋆
t−0.5(·), again we will use another static

optimization formulation in Section III-1 to calculate V ⋆
t−1(·).

In this way, we perform this static optimization-dynamic
programming cycle recursively until we calculate all the V ⋆

t (·)
backward from t = T until t = 0.

IV. PERFORMANCE ANALYSIS OF CAMOUFLAGE ATTACKS

Camouflage attack is arguably a more practical form of
adversarial attacks since it only requires the attackers change
the appearances of the objects the attackers directly control. So
different victims will have correlated or the same observations
of these camouflaged objects. In contrast, the optimal state
perception attacks would require the attackers to change the
observations of different victims to possibly different delu-
sions. The following analytical results bound the gaps between
the camouflage attacks and the state perception attacks. In
this section, we assume that different victims have the same
observations of the camouflaged objects and we do not impose
cost constraints on the attacks. We start with a lemma about
imposing an equality constraint on the optimization variables.

Lemma IV.1. Consider n functions {fi}ni=1, where i =
1, 2, ..., n, and the following two optimization problems:

min
x1,x2,...,xn

n∑
i=1

fi(xi) (2)

subject to x1 = x2 = · · · = xn;

and

min
x1,x2,...,xn

n∑
i=1

fi(xi). (3)
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Let x∗∗ be the optimal solution of (2) and o1 be the optimal
objective value of (2). Let (x∗

1, x
∗
2, . . . , x

∗
n) be the optimal

solution of (3) and o2 be the optimal objective value of (3).
Assume that there exist constants Cj’s, j = 1, 2, ..., n, such
that for every j,

n∑
i=1,i ̸=j

(fi(x
∗
j )− fi(x

∗
i )) ≤ Cj .

Then we have o2 ≤ o1 ≤ o2 +minj {Cj}.

Proof. : Because (2) has one additional constraint, o2 ≤ o1.
Given an arbitrary index j, j = 1 . . . n, we have:

o1 =
n∑

i=1

fi(x
∗∗) ≤

n∑
i=1

fi(x
∗
j ).

So for every j, we have

o1 − o2 ≤
n∑

i=1

fi(x
∗
j )−

n∑
i=1

fi(x
∗
i )

=
n∑

i=1,i ̸=j

(fi(x
∗
j )− fi(x

∗
i )) ≤ Cj .

Therefore o2 ≤ o1 ≤ o2 +minj{Cj}.

Theorem IV.2. Consider m attacker and n recipient agents,
for one single time step t (from time index t− 1 to time index
t). Assume the recipients share the same state space S , the
same action space A, the same probability transition matrices
P : S × A × S → [0, 1], and the same reward function R :
S × S → R. Let the observation functions hi be identical for
every agent i, so that the camouflaged observations are the
same for every recipient agent i, i.e. sd,t−0.5,i’s are equal. We
assume that the optimal policy for each recipient agent is the
same and the recipients work independently from each other.
We use π∗

t : S → A to denote the shared optimal policy of a
recipient agent at time step t. Within time step t, let the total
rewards of all recipients gained under the optimal camouflaged
attack be TRca

t and the total reward gained under the optimal
state-perception attack be TRspa

t .
Assume that for every pair of two different recipient

agents (i, j), i, j = 1 . . . n, for every pair of actual states
(sa,t−1,i, sa,t−1,j) of recipient i and recipient j, the rewards
gained for agent i under delusional state perceptions at time
step t satisfy

ER(sa,t−1,i, π
∗
t (s

∗
d,t−0.5,j))− ER(sa,t−1,i, π

∗
t (s

∗
d,t−0.5,i)) ≤ Cij ,

for some small constant Cij , where s∗d,t−0.5,j and s∗d,t−0.5,j

are the most-damaging delusional state perceptions that
minimize the reward for agent j and i respectively, and
ER(sa,t−1,i, π

∗
t (sd,t−0.5,·)) is the expected reward recipient

agent i will get using the policy corresponding to a delusional
state perception sd,t−0.5,·. Then

TRspa
t ≤ TRca

t ≤ TRspa
t +min

j

n∑
i=1,i ̸=j

{Cij}.

Proof. : We use Lemma IV.1 to prove Theorem IV.2. For each
recipient agent i, we let the function {fi}ni=1 be the expected
reward recipient agent i gets under its true states sa,t−1,i and
agent i’s delusional observation sd,t−0.5,i.

In this setting, the variable xi in the optimization problems
(2) and (3) is the delusional observation sd,t−0.5,i of the
i-th recipient. In (2) which corresponds to the camouflage
attack, fi(xi) = ER(sa,t−1,i, π

∗
t (sd,t−0.5,i)) and we require

sd,t−0.5,i to be equal across different agents i’s. In (3) which
corresponds to a “free” state perception attack, fi(xi) =
ER(sa,t−1,i, π

∗
t (sd,t−0.5,i)), but we will not require sd,t−0.5,i

to be the same across different agents i’s. Because

ER((sa,t−1,i, π
∗
t (s

∗
d,t−0.5,j))− ER(sa,t−1,i, π

∗
t (s

∗
d,t−0.5,i)) ≤ Cij ,

by applying Lemma IV.1, we have TRspa
t ≤ TRca

t ≤ TRspa
t +

minj
∑n

i=1,i ̸=j{Cij}.

V. NUMERICAL RESULTS

We perform numerical results under various game settings
with T = 5. In each setting, we compared the total rewards
of all recipients without attack, with the camouflage attack,
and with the state perception attack. Results indicate that
recipients gain significantly smaller rewards under the cam-
ouflage attacks compared to the case with no attacks. The
reward gained under the state perception attacks is smaller, but
not significantly, than the more practical camouflage attack.
For cost-constrained camouflage attacks, as the attack budget
increases, the gained reward becomes smaller. Our framework
works for general m-attacker-n-recipient scenarios.

A. Camouflage orientations

In the first experiment, there are 2 recipients and 2 attackers
playing in the MG. The recipients share the same state space
S , which is a ring containing 3 different states: 0, 1, and
2. They also share the same action space A, the probability
transition P , and the same reward function R. The action
space A is composed of three actions: go left, go right, and
stay. For actions left and right, the recipient agent has a 0.8
probability of moving in the intended direction and a 0.2
probability of moving in the opposite direction. For stay, the
recipient agent has a 0.8 probability of staying at the current
state and a 0.1 possibility of moving to the right or left. The
reward function R(st−1, st) assigns a fixed positive reward
to the recipient agents, which is displayed in the table below:

t-1 →
t ↓ s0 s1 s2

s0 3.0 10.6 1.0
s1 10.0 1.0 0.0
s2 1.0 0.0 11.6

The attacks camouflage the orientation of the ring by
rotating it counter-clockwisely for respectively 1 step, 2 steps,
and 3 steps. The camouflaged orientation after a 3-step ro-
tation is the same as the true orientation. For every attack,
recipients’ perceptions of their real positions are based on the
camouflaged ring, as described in Figure 1. In Figure 2, we
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compared the expected global rewards of recipients for time
index from 0 to 5, under camouflage attacks, state perception
attacks, and without attacks. In this figure, the x-axis is the

Figure 1. Illustration: camouflage
attacks on a ring.

Figure 2. Ring topology. Comparison
of expected global rewards between
free state perception attacks and cam-
ouflage attacks.

time index, and the y-axis is the total expected rewards the
recipient agents gained from t = 0 to the current time index.
With camouflage attacks, the reward gained is 34.4% of that
achieved without attack. With state perception attacks (where
attackers can freely fool each recipient into desired delusional
states), the reward is about 33.1% of that without attack.

B. Camouflage attackers’ real positions

In this case, the recipients and the attackers move on a
square q × q chessboard. The position of either a recipient or
an attacker can be denoted as (i, j), where i (0 ≤ i ≤ q − 1)
records the row index, and j (0 ≤ j ≤ q − 1) records the
column index on the chessboard. We made 2 experiments
with a square chessboard: the first one has q = 3, and the
second one has q = 2. For each attacker, its position is
fixed and it can only attack if any recipient moves to its
location. Neither attackers nor recipients can move beyond
the boundaries of the chessboard. The recipients have the
same state space S , the same action space A, and the same
reward function R. Recipients can move up, down, right, or
left. The attackers’ positions cannot move during the game.
For simplicity, the probability of recipients moving along
the indicated direction of an action a ∈ A is set to be 1.
The reward R(st−1, st) for entering all possible chessboard
positions is set to be 5.0 except for (0, 1), whose reward is
10.0. If any recipient enters any of the attacker’s positions,
the reward is set to 1.0. For example, with q = 3, if the fixed
positions of the attackers are at (1, 1) and (2, 1), then the
reward function can be displayed in the following table. The i,
j here means the indices of the square the recipient is entering:

i →
j ↓ 0 1 2

0 5.0 10.0 5.0
1 5.0 1.0 5.0
2 5.0 1.0 5.0

In the first experiment, 3 recipients and 2 attackers played on
a 3×3 chessboard, and in the second experiment, 2 recipients

and 1 attacker played on a 2×2 chessboard. In Figures 3 and
4, we compared the expected global rewards of recipients
for time index from 0 to 5, under camouflage attacks, state
perception attacks, and without attacks.

Figure 3. 3×3 chessboard. Compar-
ison between state perception attack
and camouflage attack, with fixed at-
tackers at (1,1) and (2,1), 3 recipients
and 2 attackers.

Figure 4. 2×2 chessboard. Compar-
ison between state perception attack
and camouflage attack, 2 recipients
and 1 attacker.

In Figure 3, with the fixed attackers at (1,1) and (2,1) on the
chessboard, the global reward gain achieved under camouflage
attacks is 39.0% of the reward achieved without attack. The
reward gain under state perception attacks is roughly 16.7%.
In Figure 4, the expected global gained reward over all real
attackers’ positions after 5 camouflage attacks is 47.3% of the
case without attack, and the expected gained reward after 5
state perception attacks is 43.6% of the case without attack.

C. Cost constrained camouflage attacks
With 3 recipients and 2 attackers in the same 3× 3 chess-

board setting as V-B, we add the cost constraint to attackers at
every time step when they perform a camouflage attack. The
cost of every attacker is the distance between its real position
and the target camouflage position. We define the distance
between two positions as the sum of their row and column
index absolute differences. Within every time step t, the shared
budget is refilled to a fixed budget. We choose the following
sequence of fixed budgets {1, 2, 3, 4, 6, 12} for tests. In Figure
5, we compare the expected global reward gain under different
budgets. It turns out that the higher the budget, the fewer the
reward gains. When the budget reaches 6, the performance
of the cost constrained camouflage attack is the same as the
optimal camouflage attack.

Figure 5. Comparison between camouflage attacks with different budgets.
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