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Fig. 1: T̂ilde: T eleoperation for Dexterous In-Hand Manipulation Learning with a DeltaHand. We introduce an imitation learning-
based in-hand manipulation system with a dexterous DeltaHand. We present a kinematic twin teleoperation interface, TeleHand, to collect
demonstrations on seven dexterous manipulation tasks, such as shape insertion shown above. By using vision-conditioned diffusion policies,
the DeltaHand can autonomously complete the tasks.

Abstract—Dexterous robotic manipulation remains a
challenging domain due to its strict demands for precision and
robustness on both hardware and software. While dexterous
robotic hands have demonstrated remarkable capabilities in
complex tasks, efficiently learning adaptive control policies
for hands still presents a significant hurdle given the high
dimensionalities of hands and tasks. To bridge this gap, we
propose Tilde, an imitation learning-based in-hand manipulation
system on a dexterous DeltaHand. It leverages 1) a low-cost,
configurable, simple-to-control, soft dexterous robotic hand,
DeltaHand, 2) a user-friendly, precise, real-time teleoperation
interface, TeleHand, and 3) an efficient and generalizable
imitation learning approach with diffusion policies. Our
proposed TeleHand has a kinematic twin design to the
DeltaHand that enables precise one-to-one joint control of
the DeltaHand during teleoperation. This facilitates efficient
high-quality data collection of human demonstrations in the
real world. To evaluate the effectiveness of our system, we
demonstrate the fully autonomous closed-loop deployment of
diffusion policies learned from demonstrations across seven
dexterous manipulation tasks with an average 90% success rate.

I. INTRODUCTION

Dexterous manipulation is essential for a wide range of
real-world tasks such as inserting small components precisely
for manufacturing, administering medicine in hospitals, and
handling delicate ingredients while cooking. However, a
significant skill gap exists between human and robotic

proficiency due to the demands for precision, robustness,
and rapid adaptation to unstructured environments on both
the hardware and software. Take the in-hand shape insertion
task (Fig. 1) as an example. The robotic hand has to adjust
its control policy based on real-time sensory feedback, such
as visual observations of the object, and seamlessly switch
between skills like translation, rotation, and finger gaiting to
align and insert the block into the template. Completing such
high-dimensional and long-horizon tasks requires precise and
dexterous manipulators as well as adaptable and robust policies
that can handle diverse scenarios. Thus, integrated systems are
necessary to address the challenges of dexterous manipulation
and advance the field.

Recent advances in imitation learning have shown great
advantages in utilizing diffusion models [9, 34, 42] for
efficient manipulation policy learning, as compared to deep
reinforcement learning [1, 5] which is computationally
expensive and data-hungry, or motion planning [8, 21,
27] which relies on accurate modeling. However, imitation
learning methods require high-quality demonstrations, which
are challenging to collect quickly and reliably for dexterous
manipulations. To leverage imitation learning, we need
highly precise and easy-to-use teleoperation interfaces for
dexterous robotic hands that will allow us to collect diverse
demonstrations.

Although anthropomorphic hands [10, 31, 35, 37] have
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already shown their ability to perform various manipulation
tasks through teleoperation, these hands are designed to be
general-purpose replacements for human hands which may
be unnecessarily complex for certain domains. By contrast,
non-anthropomorphic hands [22, 26, 38], with their lower
control complexity and higher design flexibility, can be
better tailored to tasks such as precise peg insertion or in-
hand manipulation. However, these designs present additional
challenges for imitation learning given the human-to-robot
hand correspondence problem. DELTAHANDS [38], as shown
in Fig. 1, are soft, compact, easy to customize, and possess
high degrees-of-freedom (3-DoF per finger) that are simple
to control, which makes them a great fit for dexterous in-
hand manipulation. However, we need an intuitive and precise
teleoperation interface to enable efficient imitation learning
for DELTAHANDS.

In this work, we present Tilde, an imitation learning-
based dexterous in-hand manipulation system built upon
DELTAHANDS [38] (Fig. 1). We first introduce a customized
DeltaHand with an integrated in-hand camera for visual
feedback and a novel 3D-printed finger design with hybrid
soft and rigid materials that is capable of exerting on average
40% more force than the original design with pure soft
material. We then present a kinematic twin teleoperation
interface named TeleHand, which has the same kinematics
as the DeltaHand to enable a one-to-one mapping between
joint states from the TeleHand to the DeltaHand. This
direct mapping allows for real-time, precise control of the
DeltaHand. The TeleHand’s user-friendly design simplifies
human operation, making it an efficient tool for collecting
high-quality human demonstration data. Finally, by leveraging
diffusion policies [9], we demonstrate the fully autonomous
closed-loop deployment of our system on seven dexterous
manipulation tasks including grasping, in-hand object rotations
and translations using finger gaiting, precise shape insertion,
and syringe pushing, all with an average success rate of
90%. We believe that our low-cost and user-friendly integrated
system can serve as a useful research platform for learning
data-efficient dexterous in-hand manipulation policies.

II. RELATED WORK

A. Robotic Hands for Robot Learning
Robot learning with robotic hands has been broadly studied

for robotic manipulation [19]. Anthropomorphic hands such as
the commercialized Shadow Hand [10] and Allegro Hand [35]
have been wildly used for manipulation learning [6, 15,
33], but they are intended for more general purpose usage
and being close-sourced makes it difficult to adapt them
to specific requirements. Open-sourced research hands such
as the Leap Hand [37] provide research opportunities on
robot learning with low-cost hardware. Alternatively, non-
anthropomorphic hands have advantages in design and control
simplicity. The Yale OpenHand project [22] includes a series
of hand designs that allow for fast prototyping and easy
modifications, but they were optimized for simpler control
with lower dexterity. ROBEL [1] was introduced as a platform

for reinforcement learning benchmarks. DELTAHANDS [38]
strike a good balance between cost, high dexterity, flexible
design, and accurate yet simple kinematics which we adapt
and customize in our integrated system.

B. Teleoperation Systems for Dexterous Manipulation

Teleoperation for robots enables efficient data collection
of human demonstrations for robot learning. Kinesthetic
teaching [2, 28] has been widely used to directly manipulate
robots that have backdrivable motors and record the robot’s
joint positions. However, the human may occlude portions of
the view when they move the robot, which is unsuitable for
training control policies using visual feedback. In addition,
kinesthetic teaching on soft robots may introduce motions
from undesired and unrepeatable bending or buckling due to
their compliant structure, instead of reflecting changes in the
actuator’s joint positions. Visual tracking has predominantly
been used to collect low-cost demonstrations directly from
human hand motions [6, 15, 33]. However, unstable, noisy
visual tracking may require additional data smoothing
processing or lead to more difficult policy training. This
approach is also largely limited to anthropomorphic hands.
Touch screen [41], and virtual reality (VR) setups [25, 45]
were proposed in recent years, but they suffer from human-
to-robot hand correspondence issues. Custom teleoperation
interfaces such as tactile gloves [4] for anthropomorphic hands
and twin robot hardware [43, 46] for robot arms with parallel-
jaw grippers were presented as precise, intuitive, yet low-cost
hardware. Similarly, we develop TeleHand, a kinematic twin
teleoperation interface for a dexterous DeltaHand that is easy
and intuitive to use.

C. Learning for Dexterous Manipulation

Reinforcement-learning in both simulation [5, 7, 20, 32]
and the real-world [1, 18] have shown promising results in
dexterous manipulation tasks such as solving in-hand Rubik’s
cubes and in-hand reorientation of novel objects. However,
the huge exploration space results in heavy computation and
data-generation costs which may be unsuitable for scaling
up dexterous manipulation. Imitation learning, alternatively,
has shown better sample efficiency while still possessing
high performance [12, 13, 17], but it requires high-quality
expert demonstrations. We utilize imitation learning to train
policies from real-world human demonstrations. Specifically,
we employ Diffusion Policy [9], which leverages diffusion
models to handle the high dimensional task spaces and multi-
modal action sequences of dexterous manipulation tasks.
While most imitation learning suffers from domain shifts in
data distribution, DAgger [36] was proposed to overcome this
issue by using additional on-policy interactions and expert
corrections. We incorporate this approach into our system to
improve performance.

III. METHODOLOGY

We present a dexterous manipulation learning system
from three aspects: a dexterous robotic hand adapted



Fig. 3: (a) A DeltaHand with an in-hand RGB camera. A kinematic twin teleoperation interface including (b) a DeltaHand and (e) a TeleHand.
The TeleHand uses linear sliders with potentiometers to record the joint states of each finger. The DeltaHand will reproduce the motions of a
TeleHand by using the Telehand’s potentiometer readings as desired joint positions for its linear actuators. (c) The DeltaHand’s fingers have
3D-printed rigid-core embedded links and edged joints, which increase the stiffness of each finger and enable them to exert more force. (d)
The TeleHand’s fingers have 3D-printed soft links and curved joints, which induce more compliance in each finger. Therefore less force is
required for users to teleoperate the robot, which makes teleoperation easier. (f)-(i) In-hand camera images that capture the object and the
DeltaHand’s fingers. (j) The TeleHand’s joint states indicate the movement of each finger during a demonstration.

from DELTAHANDS, a kinematic twin teleoperation interface,
and imitation learning with diffusion policies. We demonstrate
key features of our system including 1) the high dexterity and
precision of the DeltaHand, 2) the low latency, ease-of-use,
and precision of the teleoperation interface, TeleHand, and 3)
the efficiency and generalizability of the policy learning for
dexterous manipulation.

A. Dexterous Hand Design

a) Finger Design: DELTAHANDS [38] is a configurable,
highly dexterous, low-cost robotic hand framework based on
Delta robots. The original DeltaHand’s fingers were configured
with 3D-printed soft TPU links (Fig. 3(d)) for compliant and
safe interactions. However, to benefit from the DeltaHand’s

compliance and extend its capabilities to manipulation tasks
that require more forces such as pushing the plunger of a
syringe, we modify the design of the Delta finger’s links and
joints as shown in Fig. 3(c). To improve the force profile
of the Delta finger, we 3D-print hybrid TPU and PLA links
where we embed rigid PLA material (red) inside a thin
outer shell of TPU (white). This strengthens the whole finger
structure and enables fingers to apply more force while still
preserving enough compliance to safely handle collisions.
To improve kinematic precision, we use edged joints with
smaller joint lengths instead of the original curved joints
to reduce undesired buckling and deformations during finger
motions. We conduct similar kinematics and force profile
characterizations as [38] and observe that with the new design,



the Delta finger’s averaged kinematics error is reduced from
0.65 mm to 0.53 mm in position and 3.33 degrees to 2.50
degrees in orientation. In addition, the averaged lateral force
profile is increased from 3.16 N to 4.51 N with 10 mm
actuation. These modifications can be easily incorporated by
just swapping out the Delta fingers from the linear actuators,
showcasing the flexibility of the DELTAHANDS framework.

b) In-hand Camera: Sensors are key components for
closed-loop control by providing real-time feedback. In
particular, local visual sensing is crucial for dexterous
manipulation by capturing detailed geometric features [39].
Therefore, we integrate a mini Arducam camera module1 into
the hand for in-hand visual sensing as shown in Fig. 3(a).
The camera can stream 640 ⇥ 480 resolution RGB images
at 30 fps over Wi-Fi using a Raspberry Pi 4. The camera
is located at the center of the hand and on the same level
as the Delta finger bases without taking extra space. It has
symmetric observations to provide useful inductive bias [16].
We manually tune and fix the camera’s focal length to focus
on the area around the fingertips. The DeltaHand’s kinematics
permit a mostly unobstructed view of the fingertips which
benefits visual servoing.

c) Fingertip Design: To increase the contact friction and
enable soft contact for more secure grasps, we first 3D print
the "bone" of the fingertip with TPU material, and then cast an
additional layer of silicon rubber using Ecoflex 00-20 FAST2.

d) Hand Configurations: An overview picture of the
DeltaHand can be seen in Fig. 3(a). We arrange four 3-DoF
Delta fingers in a circular layout with a 40 mm radius from
the hand center to each Delta finger center. Each finger has a
40 mm link length and 20 mm base radius, and is individually
actuated by three linear motors with 20 mm stroke length. This
gives a total of 12 DoF and a 110 mm × 110 mm × 30 mm
workspace for the DeltaHand.

B. Teleoperation Interface
Previous work on DELTAHANDS [38] utilizes a Leap

Motion camera for teleoperation. When we conducted
preliminary experiments with it, we found the visual tracking
to be noisy and unstable, especially when fingertips are
close together due to potential occlusions. In addition, since
the Leap Motion was placed on the table surface and
teleoperators held their hands in the air, the operators’ hands
would unavoidably drift over time because of fatigue which
would inject additional noise into demonstrations. Given these
reasons, we develop a kinematic twin teleoperation system for
the DeltaHand to get precise and high-quality demonstrations.
The system includes a TeleHand (Fig. 3(e)) manipulated by a
human teleoperator, and a DeltaHand (Fig. 3(b)) to reproduce
the TeleHand’s finger motions in real-time.

The TeleHand has the same configurations including
the hand size, finger arrangement, and finger size, as the
DeltaHand to enable direct one-to-one joint position mapping.

1https://www.arducam.com/product/arducam-raspberry-pi-5mp-spy-
camera-b0066/

2https://www.smooth-on.com/products/ecoflex-00-20-fast/

The DeltaHand’s fingers are actuated by linear motors with
20 mm stroke length and each finger’s link bases move
prismatically. Similarly, the TeleHand consists of linear sliders
with a 20 mm motion range to create the same linear mobility
for each finger as the DeltaHand except they move passively.
Teleoperators can easily drag and move the finger end-
effectors of the TeleHand which will lead to joint position
changes in the sliders. The joint positions of TeleHand’s
fingers will be recorded by each sliders’ potentiometers and
then directly mapped to the DeltaHand as the linear motors’
desired positions. For the TeleHand, we use the original Delta
finger design (Fig. 3(d)) which is more compliant and easier
for humans to manipulate.

To enable real-time interfacing, we use Robot Operating
System (ROS) for communication. Both the TeleHand and the
DeltaHand use Arduino microcontrollers to directly publish
and receive ROS topics via a control PC. This also allows our
teleoperation system to be easily integrated with other robotic
arms. Our teleoperation system including the DeltaHand and
the TeleHand can be manufactured in a day with off-the-shelf
materials, 3D printing, and laser cutting, and costs around
$1000. From Fig. 3(j), we show that the joint states read from
the TeleHand are continuous and smooth which improves the
training stability and efficiency.

C. Learning with Diffusion Policies
Diffusion models have shown their advantages while

being used for policy learning from demonstrations [9,
34, 42] compared to behavior cloning [12, 30]. They can
greatly improve performance by capturing multimodal action
distributions, and high-dimensional action spaces, which are
key challenges for dexterous manipulation tasks. Therefore,
we adapt the CNN-based Diffusion Policy [9] to our system
for dexterous in-hand manipulation policy learning with a
DeltaHand. We condition the diffusion policies on visual
observations from the in-hand camera and joint states of
the DeltaHand (Fig. 3(f)-(j)) and predict action sequences.
Both the joint states and actions are represented as the
12-dimensional absolute actuator joint positions. We trained
policies using either actuator joint positions or end-effector
positions derived from forward kinematics as inputs, and we
experimentally found that using joint positions resulted in
better performance.

Imitation learning methods for long-horizon tasks are known
to suffer from covariate shift [36]. To avoid this issue, we use
DAgger [36] to add on-policy interactions if the policy fails
during the inference, and refine the policy with these DAgger
demonstrations. In addition, data augmentation has been
broadly used to improve the generalization and robustness of
learning, especially for dexterous manipulation tasks with high
dimensional state and action spaces. Through experimentation,
we found that using various data augmentation techniques
on observations greatly improved task performance. We
leveraged 1) random image cropping and rotation to improve
the rotational and translational invariance of fingers’ visual
servoing to the objects, and 2) Gaussian noise to joint

https://www.arducam.com/product/arducam-raspberry-pi-5mp-spy-camera-b0066/
https://www.arducam.com/product/arducam-raspberry-pi-5mp-spy-camera-b0066/
https://www.smooth-on.com/products/ecoflex-00-20-fast/


state observations to guide the policy in learning funneling
behaviors that can make the policy more robust when
encountering unseen joint states. Specifically, we randomly
cropped the images from their original size of (240, 320) to
(216, 288) and rotated the images within 30 degrees. We added
Gaussian noise with a standard deviation of 3.16 mm to each
joint state. However, we found that random resized cropping
does not improve performance because the camera is fixed
w.r.t. the hand. In addition, some tasks are directional and
the fingers’ movements are reflected in the in-hand view, so
directional invariance created by image flipping is therefore
detrimental.

IV. EXPERIMENTAL SETUP

We evaluate our proposed system on seven dexterous
manipulation tasks as shown in Fig. 5: Grasp, Block Slide,
Block Lift, Ball Roll, Cap Twist, Syringe Push, and Shape
Insert. Grasp is a fundamental skill for most manipulation
tasks. The second to fifth tasks focus on different in-
hand object repositioning skills: Block Slide corresponds to
horizontal XY translations, Block Lift corresponds to vertical
Z translations, Ball Roll corresponds to rotations around the X
and Y axes, and Cap Twist corresponds to rotations around the
Z axis. The above tasks mostly require repeated motions, while
the last two tasks consist of multi-modal action sequences
and longer time-horizons. Syringe Push requires fingers to
precisely align the syringe before pushing the plunger, while
Shape Insert requires the fingers to translate, rotate, and
transport the object to the final goal pose. Through our
experiments, we show the capability of our proposed system
to handle these dexterous manipulation tasks.

A. Data Collection

We mount a DeltaHand on a Franka robot arm as
shown in Fig. 4. For most tasks, we keep the robot arm
static while the DeltaHand uses its in-hand capabilities to
manipulate the objects. An external RGB camera3 is placed
in front of the experiment workspace. For each task, we
manually preset the height and the location of the arm
to approximately align the DeltaHand’s workspace with the
object. To collect demonstrations, we first define the goal for
each task which can be verified from the visual observations.
If we reach the goal, we end the demonstration, or we run
until we reach 5000 time steps which roughly equates to
250 seconds (data collection runs at 20fps speed). To collect
DAgger demonstrations during inference, we first deploy the
learned policy and let the DeltaHand manipulate an object
autonomously while a human monitors. When the human
decides that the policy has failed or is unlikely to finish the
task, such as when the fingers stop or oscillate between similar
states repeatedly, the human will pause the policy deployment.
When the policy is paused, the human teleoperator first
manually moves the fingers of TeleHand to match the
current DeltaHand’s finger positions to reproduce the failure

3https://www.amazon.com/gp/product/B0C289GYVZ/

Fig. 4: Experimental setup. We mount a DeltaHand on a Franka robot
arm. We pre-set the height and location of the Franka arm on top of
the experiment workspace. An external RGB camera is mounted in
front of the experiment workspace.

configuration and then takes over the control of the DeltaHand
with the Telehand to finish the task with teleoperation. We
use these teleoperated DAgger demonstrations from the failure
point to fine-tune the policy.

B. Training Details
We train CNN-based Diffusion Policies [9] for all tasks. For

visual features, we use ResNet18 as the visual encoder for
both in-hand and external observations and then concatenate
the 512-dimensional visual features with the 12-dimensional
joint state vector. Actions are represented as the next timestep’s
joint state. We fix the observation horizon, action prediction
horizon, and action execution horizon to 2, 16, and 8 for all
tasks, respectively. We train each policy model for 100 epochs
with the AdamW optimizer using learning rate=1e � 4 and
weight decay=1e� 6.

To improve the training stability, we normalize all the
joint states and actions to the range [�1, 1], and images to
[0, 1]. In-hand images, external images, and joint states from
demonstrations are synchronized to 20 fps. However, we found
that down-sampling the data by a factor of 3 reduces the effect
of the idle actions from demonstrations.

C. Tasks
An overview of all tasks is shown in Fig. 5. We aim to use

these tasks to evaluate the policies’ capabilities, efficiency, and
generalizability. For tasks (a) - (d), we evaluate the policies
with additional unseen test objects as displayed on the right
side of the object sets. For tasks (f) and (g), we randomly
initialize the objects within the experiment workspace.

https://www.amazon.com/gp/product/B0C289GYVZ/


Fig. 5: Task gallery. We evaluate our system on seven dexterous manipulation tasks: (a) Grasp (b) Block Slide (c) Block Lift (d) Ball Roll
(e) Cap Twist (f) Syringe Push (g) Shape Insert. The goals of tasks are indicated by blue arrows in the initial images of task trajectories.
For tasks (a)- (d), we separate the training and additional unseen testing objects with white dashed lines.



Task Grasp Block Slide Block Lift Cap Twist Ball Roll Syringe Push
# demos 45 40 20 30 20 50
# DAgger demos 10 0 10 10 5 20
# Success / # tests before DAgger 17/20 10/10 7/10 8/10 7/10 6/10
# Success / # tests after DAgger 20/20 10/10 8/10 10/10 10/10 8/10

TABLE I: Experimental results on six tasks. We show that with less than 50 demos, we can achieve success rates over 60% on all tasks
before DAgger. With additional DAgger demonstrations, all tasks have improved results and achieved success rates over 80%.

Grasp We grasp a set of objects with various shapes, colors,
and weights. We first teleoperate the DeltaHand to center the
object and then grasp the object using all fingers. Afterwards,
we lift the robot arm 10 cm to check whether the grasp is
stable.

Block Slide We slide rectangular blocks of different sizes
and colors horizontally from right to left. We tape the
center of the blocks to provide distinctive features and allow
for consistent human resets. During the demonstrations, we
teleoperate the right set of fingers to move the object while
we position the left set of fingers to form a funnel to stabilize
the block. We end the demonstration once the right end of the
block is located in the center of the in-hand view.

Block Lift We lift blocks of differing sizes, shapes, and
colors up from the table by alternating grasps on the block
with the right and left set of fingers.

Ball Roll We roll the ball between the fingers. We use two
opposing fingers to loosely hold the ball while the other two
fingers roll the ball around the axis defined by the virtual
connecting line of the two holding fingers.

Cap Twist We rotate the cap of bottles 360 degrees. The
bottom parts of the bottles are fixed to the table and the cap
is twisted by two fingers. A full rotation is indicated by the
bee sticker on the cap.

Syringe Push We push the plunger to close the syringe.
We place the left set of fingers on the syringe barrel while we
position the right set of fingers at the end of the plunger. The
right and left sets of fingers have to align with the syringe
and then push together. Any misalignment during the push
will block and jam the pushing which requires repositioning
fingers. During initialization, the syringe is randomly placed
between the fingers on the table and the plunger is opened to
a random length. We removed the rubber tip of the plunger
which usually seals in liquid to reduce the friction and forces
for this set of experiments. We further evaluated the forceful
syringe push with the rubber tip on the plunger in Section. V-G
as a challenging task.

Shape Insert We move and match a flower-shaped block to
its corresponding template hole on a board. Both the board and
the object are initialized randomly and the DeltaHand needs to
translate, rotate, and transport the object to match the template
hole.

V. EXPERIMENTAL EVALUATIONS

We experimentally evaluate the performance of our
proposed system on the aforementioned tasks, and we aim
to answer the following questions:

1) How practical is our system at performing dexterous
manipulation tasks?

2) How effective are the in-hand observations on the task
performance?

3) How efficiently can our system learn robust policies with
a limited number of demonstrations?

A. Experimental results
The number of demonstration data for the first six tasks

can be seen in the first and second rows of Table I. They vary
depending on the task difficulty and the number of objects we
use. After the initial policy training, we run 10 test trials on
both the train and additional test objects. If the policy fails
during the evaluation, we collect new demonstrations starting
from the failure configuration and teleoperate the DeltaHand
until success is achieved. These DAgger demonstrations are
then used to refine the policy. The success rates before and
after DAgger are shown in the third and fourth rows of Table. I.
We use joint states and in-hand images as observations for
all tasks. We observe that for most tasks, with less than 50
demonstrations, we can achieve a success rate of over 60%,
and even a 100% success rate on the Block Slide task. For
other tasks, DAgger demonstrations can improve the success
rates to over 80% and recover from previously encountered
failure cases.

B. Failure Analysis
Fig. 6 shows some common failure cases during the initial

tests and how DAgger improves the performance on these.
In the initial Syringe Push evaluations, the left two fingers
occasionally incorrectly grasped the plunger when the syringe
was placed more to the left. This showed that the policy did
not know to position the left two fingers onto the barrel of the
syringe. With additional DAgger demonstrations, the policy
was able to move the left two fingers further to the left when
necessary to hold onto the barrel of the syringe while the right
two fingers pushed the plunger. Another common failure case
was that the right two fingers occasionally grasped onto the
plunger instead of positioning themselves behind the end of
the plunger because the syringe was initialized too far to the
right. With DAgger, the policy was able to either make the
two left fingers pull the syringe more to the left before the
right two fingers started pushing on the plunger, or make the
right two fingers first push the plunger as much as they could
and then reposition themselves behind the end of the plunger
and push the rest of the way in. These additional demos from
the failure cases enabled the diffusion policies to learn more
robust recovery behaviors.



Fig. 6: Qualitative comparisons between task executions from policies trained before and after DAgger demonstrations. By refining the
policies with corrective demonstrations from failure cases, the policies can handle these challenging scenarios.

Fig. 7: Qualitative comparisons between task policies conditioned on observations with joint states only versus joint states with in-hand
images. We observe that visual observations improve the generalizability of the policies by adapting the contact points of the fingers to the
objects’ shapes, sizes, and locations.

In the Ball Roll task, the balls occasionally rolled out from
the grasp of the two opposing fingers when pushed. By using
additional DAgger examples, the DeltaHand was able to adapt
to different sizes of balls and also stop rotating the ball when
the policy determined the ball was not positioned correctly
and reposition the ball before restarting to rotate it.

Finally, in the Grasp examples, the DeltaHand was unable
to grasp some unseen objects that were of differing heights
and shapes such as flat blocks versus tall blocks and semicircle
blocks. With additional DAgger examples on these objects, the
policy was able to successfully adapt to the new objects. We
conclude that with more diverse data, the domain shifts from
the training data distributions were reduced and the policies
became more robust to different scenarios.

C. Effect of using visual observations
We have two types of observations: DeltaHand’s joint states

from motor encoders as proprioception, and in-hand images or
external images as exteroception. We evaluate how sensitive
the tasks are to different kinds of observations. As shown in

Fig. 8, we train the policies with observations as 1) joint
states only, 2) joint states and in-hand images, and 3) joint
states, in-hand images, and external images. We show that
most tasks achieve better performance with in-hand images
compared to using joint states only. However, with additional
external images, the performance does not differ much from
solely using in-hand images with joint states. We noticed that
in most failure cases, the objects are hard to see from the
external camera due to their small size and occlusions from
the fingers, thus the external images are not as informative as
the in-hand images. But for the Block Lift task, the policy with
external images gets better results because the external camera
can capture the object’s state better such as the height of
lifting, which is more informative. For the Grasp task, all three
policies achieved a 100% success rate and we give significant
credit to the compliance of the DeltaHand which can passively
adapt to most objects even without in-hand visual observations.

Some examples for comparison can be seen in Fig. 7. By
using joint states only, common failure cases were that fingers



Fig. 8: Effect of using visual observations. We evaluate the policies
trained with observations as 1) joint states only, 2) joint states with
in-hand images, and 3) joint states with in-hand and external images.
The results show performance improvement with visual observations
compared to only using joint states as observations.

Fig. 9: Data efficiency evaluation. We evaluate policies trained with
20, 40, 60, 80, and 100 demonstrations of the Shape Insert task and
average the performances over five models using different random
seeds. The success rates increased with more training data.

would not contact the object and were unable to move or
secure the object, they over-gripped the object which restricts
movement, or were unable to detect failure and recover. By
leveraging in-hand visual observations, the fingers can visual
servo to adaptively make contact with objects based on their
shapes, sizes, and locations.

D. Data Efficiency Evaluation

From Table. I, we see that most tasks can achieve 100%
success rates with less than 50 demonstrations. These tasks
such as Block Slide, Block Lift, Cap Twist, and Ball Roll,
use repeated motion patterns. For long-horizon tasks, multi-
modal actions are required to complete the tasks. For instance,
in Shape Insert, the fingers need to rotate, translate, or transfer
objects between different sets of fingers as shown in Fig. 3 (f)-

Fig. 10: Examples for comparison between policies trained with
20, 60, and 100 demonstrations. Shape Insert requires the hand to
transport and reposition objects to align with the template hole. With
less training data, the task mostly failed at the early transportation
stage. When the training data size increased, the policies often failed
during the final fine orientation alignment stage where most cases are
visually ambiguous.

Task Observations BC [24] IBC [12] Diffusion Policy [9]
Cap State 0/10 0/10 3/10
Twist State + In-Hand 4/10 0/10 10/10
Shape
Insert

State 0/10 3/10 2/10
State + In-Hand 2/10 3/10 7/10

TABLE II: We evaluate the performance of three Imitation
Learning methods: Behavior Cloning (BC) (Robotmimic [24]),
Implicit Behavior Cloning (IBC) [12], and Diffusion Policy [9] on
two tasks, Cap Twist and Shape Insert, either with joint states
only or with joint states and in-hand visual observations. We show
Diffusion Policy achieves the best performance.

(i). To evaluate data efficiency on the Shape Insert task, we
randomly sample five sets of 20, 40, 60, and 80 demonstrations
from the dataset of 100 demonstrations and train policies with
these data subsets respectively. The evaluation results in Fig. 9
show an increase in success rate when policies are trained on
more data, indicating that the policy has better generalizability
given more data.

We visualize common failure cases from policies trained
with 20, 60, and 100 demonstrations in Fig. 10. We observe
that with less training data, the task failed mainly at the early
transportation stage where the fingers are unable to move the
object closer to the template hole. With more training data, the
failures occurred closer to the final orientation alignment stage.
We conclude that diffusion policies can learn more complex
and finer manipulation skills with more data.

E. Comparison of Different Imitation Learning Methods
To support our design choice of using diffusion policies,

we comparably evaluate three Imitation Learning methods:
Behavior Cloning (BC) (Robotmimic [24]), Implicit Behavior
Cloning (IBC) [12], and Diffusion Policy [9] either with joint
states only or with joint states and in-hand visual observations
on two tasks: Cap Twist and Shape Insert. We report the
performance of each method in Table. II. We show that the



Fig. 11: We evaluate the generalization of policies with additional
unseen irregular-shaped objects used on the Block Slide task.

Diffusion Policy achieved the best performance. We observe
that 1) BC can predict smooth trajectories due to the continuity
of the MLP network and has a fast inference speed (60 FPS)
with its small model scale. However, it fails to reason about
the multi-modal actions necessary to complete more complex
tasks such as Shape Insert. For the Shape Insert task, it
often fails at the final fine orientation alignment stage. On
the other hand, actions predicted from 2) IBC contain a lot
of noise due to the sampling process, which is unsuitable
for dexterous manipulation tasks that require high precision.
The successful trials on the Shape Insert task resulted from
random interactions with the block that did not reflect clear
intentional trajectory motions. Finally, 3) Diffusion Policy can
handle multi-modal actions while also being able to predict
relatively smooth trajectories at a real-time inference speed
(20 FPS). We include more implementation details of these
three methods in Section VI-D.

F. Evaluation on Robustness and Generalization of Policies

The robustness and generalizability of policies to
unstructured environments is crucial for real-world
deployment. Along with the evaluation on unseen objects,
we further evaluate the robustness of the learned policies to
randomly initialized hand poses on the Block Slide task. For
each trial, we first generate a random relative transformation
consisting of a z-axis translation, and rotations around the
x and y axes based on the original pre-defined fixed hand
pose. The sampling range of the z-axis translation is between
(�5, 5) mm and (�10, 10) degrees in both the x-axis and
y-axis orientations. We then move the DeltaHand to this
randomly initialized pose and begin policy inference. The
policy is still able to succeed in 17 of 20 trials. In addition,
we include several unseen irregularly-shaped objects in these
20 tests, as shown in Fig. 11, and the learned policy can
still succeed without any additional training. We observe that
the compliance of the fingers can help with misalignments

between the hand and the object and compensate for policy
errors. Most failure cases occurred when the object shifted
outside the hand’s workspace due to the random initialization,
and the fingers were no longer able to reach the object. This
issue can be potentially addressed by integrating robot arm
motions to adjust the hand pose in future work.

G. Performance on Challenging Tasks
a) Diamond-shaped Block Insert: The flower-shaped

block is radially symmetric and can be aligned with less
than a 45-degree rotation. We further tested our system with
a diamond-shaped block that requires up to 180 degrees of
orientation alignment. The demonstration trajectory length
of the diamond-shaped block insertion is on average 23.65
seconds compared to 18.08 seconds for the flower-shaped
block insertion. We show that with 80 demonstrations, the
learned policy can still handle this long-horizon task with
5 successful runs out of 10 trials. A test example can be
seen in Fig 12. We show that the policy learns to coordinate
movements among fingers to re-orient the object over 90
degrees. Most failures are due to unseen object poses, which
we believe can be resolved with more data.

b) Forceful Syringe Push: We further evaluate a forceful
syringe push task by adding the rubber seal to the tip of the
plunger where the friction between the plunger and the syringe
barrel demands around 4.0 N to push the syringe. With 40
demonstrations, we can get 8 successful runs out of 10 tests. A
test example can be seen in Fig 12. We observe that the policy
can detect the misalignment caused by the pushing force in
the third plot of Fig 12 and realign the fingers with the syringe
to complete the task.

c) Finger Gaiting in the Air: In all the aforementioned
tasks, objects are mainly supported on the table and can
be recovered if the policies perform incorrect actions. We
further evaluate two challenging finger-gaiting-in-the-air tasks
including Ball Roll and Block Slide which have non-
recoverable failure risks. Examples can be seen in Fig. 12
where the fingers hold and rotate a ball upright for Ball Roll
and pinch and slide a block upward for Block Slide. We
quantitatively evaluated these two tasks and obtained 9 and
6 successful runs out of 10 tests respectively. The singular
failure case for Ball Roll occurred when the ball fell down
between fingers. This resulted in a large visual occlusion from
the in-hand camera view which lead the policy to fail. Most
failure cases for Block Slide resulted when one pair of fingers
pinched too tightly and the other pair could not move the block
any further. This demonstrates the importance of incorporating
tactile sensors in the fingers which we plan to explore in future
work.

H. Limitations and Discussions
From the experimental results, we demonstrate our system’s

capability on a varied set of grasping and in-hand translation
and rotation manipulation tasks. Through our extensive
evaluations, we observe the limitations of our system as
follows:



Fig. 12: Test examples of four challenging tasks: diamond-shaped block insertion, forceful syringe push, ball roll in the air, and block slide
in the air over time. Diamond-shaped block insertion requires orientation alignment of more than 90 degrees. Forceful syringe push requires
higher alignment precision to succeed. Both ball roll and block slide in the air have non-recoverable failure risks.

1) Lack of Tactile Sensing: We show that in-hand visual
observations have greatly improved the performance of the
learned policy from our ablation study. However, tactile
sensing is crucial in providing direct force feedback for
delicate object manipulation which have non-recoverable
failure modes. Although we can still achieve many tasks by
solely using visual feedback, the policy needs to learn more
robust behaviors and relies on repeated attempts to achieve the
target goal. Tactile feedback could lead to more intentional and
controlled interactions with objects in highly-dexterous tasks.

2) Generalization to Unstructured Environments: We show
that the learned policies can adapt to unseen objects in a
top-down tabletop environment. However, we observe failure
cases with environments out of the training distribution such as
different backgrounds or large disturbances in the hand poses.
To improve the robustness of in-hand tasks, we plan to explore
object-centric learning approaches such as conditioning the
diffusion policy on object segmentation masks to better handle
unseen environments and allow for explicit reasoning about

objects in clutter near or in the hand.
3) Lack of Robot Arm Motion: We emphasize the in-

hand manipulation capabilities of our proposed system
in this work, and our evaluations focus on finger-based
manipulations. However, integrating robot arm motions can
improve robustness and extend the capabilities of our system
beyond in-hand manipulation. For example, when randomly
disturbing the hand pose, we observe failure cases of objects
being outside of the fingers’ workspace. Leveraging the robot
arm’s movement could address such limitations by properly
initializing and aligning the hand’s pose with the target object.
This can also enable extrinsic dexterous manipulation.

VI. CONCLUSIONS

We present Tilde, an imitation learning-based in-hand
manipulation system with a dexterous DeltaHand. We
introduce a kinematic twin teleoperation interface for low-
cost data collection of high-quality human demonstrations
and efficient end-to-end real-world policy learning by using



diffusion policies. We show that with our system, we can
perform a variety of dexterous manipulations and achieve
an average success rate of 90% across our evaluation tasks.
These tasks include grasping, in-hand object re-positioning and
re-orientation, and finger gaiting. Our experiments show the
capability of the system to learn robust vision-based dexterous
manipulation policies from demonstrations that were acquired
with our easy-to-use and precise teleoperation interface.

In the future, we would like to improve the generalizability
of our system for broader dexterous manipulation tasks in
unstructured environments. Therefore, we plan to augment
sensing modalities with tactile sensing by incorporating
fingertip tactile sensors for more delicate tasks, integrate arm
motions into our teleoperation system to achieve intrinsic
and extrinsic dexterity [14, 47], and explore object-centric
approaches to improve the policies’ robustness to unseen
scenarios.

ACKNOWLEDGMENTS

The authors would like to thank Sha Yi, Shashwat Singh,
Jennifer Yang, Moonyoung (Mark) Lee, Mohit Sharma,
Saumya Saxena, and Haomin Shi for the their help in
discussions, experiments, and with manuscript revisions. This
work was supported by the National Science Foundation under
grant No. CMMI-2024794 and Google.

REFERENCES

[1] Michael Ahn, Henry Zhu, Kristian Hartikainen, Hugo
Ponte, Abhishek Gupta, Sergey Levine, and Vikash
Kumar. Robel: Robotics benchmarks for learning with
low-cost robots. In Conference on robot learning, pages
1300–1313. PMLR, 2020.

[2] Baris Akgun, Maya Cakmak, Karl Jiang, and Andrea L
Thomaz. Keyframe-based learning from demonstration:
Method and evaluation. International Journal of Social
Robotics, 4:343–355, 2012.

[3] Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej,
Mateusz Litwin, Bob McGrew, Arthur Petron, Alex
Paino, Matthias Plappert, Glenn Powell, Raphael Ribas,
et al. Solving rubik’s cube with a robot hand. arXiv
preprint arXiv:1910.07113, 2019.

[4] Heni Ben Amor, Oliver Kroemer, Ulrich Hillenbrand,
Gerhard Neumann, and Jan Peters. Generalization of
human grasping for multi-fingered robot hands. In 2012
IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 2043–2050. IEEE, 2012.

[5] OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek
Chociej, Rafal Jozefowicz, Bob McGrew, Jakub
Pachocki, Arthur Petron, Matthias Plappert, Glenn
Powell, Alex Ray, et al. Learning dexterous in-hand
manipulation. The International Journal of Robotics
Research, 39(1):3–20, 2020.

[6] Sridhar Pandian Arunachalam, Sneha Silwal, Ben Evans,
and Lerrel Pinto. Dexterous imitation made easy:
A learning-based framework for efficient dexterous
manipulation. In 2023 ieee international conference on

robotics and automation (icra), pages 5954–5961. IEEE,
2023.

[7] Tao Chen, Megha Tippur, Siyang Wu, Vikash Kumar,
Edward Adelson, and Pulkit Agrawal. Visual dexterity:
In-hand reorientation of novel and complex object
shapes. Science Robotics, 8(84):eadc9244, 2023. doi:
10.1126/scirobotics.adc9244. URL https://www.science.
org/doi/abs/10.1126/scirobotics.adc9244.

[8] Xianyi Cheng, Sarvesh Patil, Zeynep Temel, Oliver
Kroemer, and Matthew T Mason. Enhancing dexterity in
robotic manipulation via hierarchical contact exploration.
IEEE Robotics and Automation Letters, 9(1):390–397,
2023.

[9] Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu,
Eric Cousineau, Benjamin Burchfiel, and Shuran Song.
Diffusion policy: Visuomotor policy learning via action
diffusion. arXiv preprint arXiv:2303.04137, 2023.

[10] Shadow Robot Company. Shadow dexterous hand. https:
//www.shadowrobot.com/dexterous-hand-series/, 2023.

[11] Raphael Deimel, Marcel Radke, and Oliver Brock. Mass
control of pneumatic soft continuum actuators with
commodity components. In 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
pages 774–779. IEEE, 2016.

[12] Pete Florence, Corey Lynch, Andy Zeng, Oscar A
Ramirez, Ayzaan Wahid, Laura Downs, Adrian Wong,
Johnny Lee, Igor Mordatch, and Jonathan Tompson.
Implicit behavioral cloning. In Conference on Robot
Learning, pages 158–168. PMLR, 2022.

[13] Abhishek Gupta, Clemens Eppner, Sergey Levine, and
Pieter Abbeel. Learning dexterous manipulation for a
soft robotic hand from human demonstrations. In 2016
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 3786–3793. IEEE, 2016.

[14] Arnav Gupta, Yuemin Mao, Ankit Bhatia, Xianyi Cheng,
Jonathan King, Yifan Hou, and Matthew T Mason.
Extrinsic dexterous manipulation with a direct-drive
hand: A case study. In 2022 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
pages 4660–4667. IEEE, 2022.

[15] Ankur Handa, Karl Van Wyk, Wei Yang, Jacky Liang,
Yu-Wei Chao, Qian Wan, Stan Birchfield, Nathan Ratliff,
and Dieter Fox. Dexpilot: Vision-based teleoperation
of dexterous robotic hand-arm system. In 2020 IEEE
International Conference on Robotics and Automation
(ICRA), pages 9164–9170. IEEE, 2020.

[16] Kyle Hsu, Moo Jin Kim, Rafael Rafailov, Jiajun Wu, and
Chelsea Finn. Vision-based manipulators need to also
see from their hands. arXiv preprint arXiv:2203.12677,
2022.

[17] Divye Jain, Andrew Li, Shivam Singhal, Aravind
Rajeswaran, Vikash Kumar, and Emanuel Todorov.
Learning deep visuomotor policies for dexterous hand
manipulation. In 2019 international conference on
robotics and automation (ICRA), pages 3636–3643.
IEEE, 2019.

https://www.science.org/doi/abs/10.1126/scirobotics.adc9244
https://www.science.org/doi/abs/10.1126/scirobotics.adc9244
https://www.shadowrobot.com/dexterous-hand-series/
https://www.shadowrobot.com/dexterous-hand-series/


[18] Aditya Kannan, Kenneth Shaw, Shikhar Bahl, Pragna
Mannam, and Deepak Pathak. Deft: Dexterous fine-
tuning for hand policies. In Conference on Robot
Learning, pages 928–942. PMLR, 2023.

[19] Oliver Kroemer, Scott Niekum, and George Konidaris.
A review of robot learning for manipulation: Challenges,
representations, and algorithms. The Journal of Machine
Learning Research, 22(1):1395–1476, 2021.

[20] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter
Abbeel. End-to-end training of deep visuomotor policies.
The Journal of Machine Learning Research, 17(1):1334–
1373, 2016.

[21] Jacky Liang, Xianyi Cheng, and Oliver Kroemer.
Learning preconditions of hybrid force-velocity
controllers for contact-rich manipulation. In Conference
on Robot Learning, pages 679–689. PMLR, 2023.

[22] Raymond Ma and Aaron Dollar. Yale openhand
project: Optimizing open-source hand designs for ease of
fabrication and adoption. IEEE Robotics & Automation
Magazine, 24(1):32–40, 2017.

[23] Raymond R. Ma and Aaron M. Dollar. An
underactuated hand for efficient finger-gaiting-based
dexterous manipulation. In 2014 IEEE International
Conference on Robotics and Biomimetics (ROBIO 2014),
pages 2214–2219, 2014. doi: 10.1109/ROBIO.2014.
7090666.

[24] Ajay Mandlekar, Danfei Xu, Josiah Wong, Soroush
Nasiriany, Chen Wang, Rohun Kulkarni, Li Fei-Fei,
Silvio Savarese, Yuke Zhu, and Roberto Martín-
Martín. What matters in learning from offline human
demonstrations for robot manipulation. In Conference
on Robot Learning, pages 1678–1690. PMLR, 2022.

[25] Pragna Mannam, Kenneth Shaw, Dominik Bauer, Jean
Oh, Deepak Pathak, and Nancy Pollard. A framework
for designing anthropomorphic soft hands through
interaction. arXiv preprint arXiv:2306.04784, 2023.

[26] Connor McCann, Vatsal Patel, and Aaron Dollar. The
stewart hand: A highly dexterous, six-degrees-of-freedom
manipulator based on the stewart-gough platform. IEEE
Robotics & Automation Magazine, 28(2):23–36, 2021.

[27] Andrew S Morgan, Kaiyu Hang, Bowen Wen, Kostas
Bekris, and Aaron M Dollar. Complex in-hand
manipulation via compliance-enabled finger gaiting and
multi-modal planning. IEEE Robotics and Automation
Letters, 7(2):4821–4828, 2022.

[28] Katharina Mülling, Jens Kober, Oliver Kroemer, and
Jan Peters. Learning to select and generalize striking
movements in robot table tennis. The International
Journal of Robotics Research, 32(3):263–279, 2013.

[29] Sumit Patidar, Adrian Sieler, and Oliver Brock. In-
hand cube reconfiguration: Simplified. In 2023 IEEE/RSJ
International Conference on Intelligent Robots and
Systems (IROS), pages 8751–8756. IEEE, 2023.

[30] Dean A Pomerleau. Alvinn: An autonomous land vehicle
in a neural network. Advances in neural information
processing systems, 1, 1988.

[31] Steffen Puhlmann, Jason Harris, and Oliver Brock. Rbo
hand 3: A platform for soft dexterous manipulation. IEEE
Transactions on Robotics, 38(6):3434–3449, 2022.

[32] Haozhi Qi, Ashish Kumar, Roberto Calandra, Yi Ma, and
Jitendra Malik. In-hand object rotation via rapid motor
adaptation. In Conference on Robot Learning, pages
1722–1732. PMLR, 2023.

[33] Yuzhe Qin, Hao Su, and Xiaolong Wang. From one
hand to multiple hands: Imitation learning for dexterous
manipulation from single-camera teleoperation. IEEE
Robotics and Automation Letters, 7(4):10873–10881,
2022.

[34] Moritz Reuss, Maximilian Li, Xiaogang Jia, and
Rudolf Lioutikov. Goal-conditioned imitation learning
using score-based diffusion policies. arXiv preprint
arXiv:2304.02532, 2023.

[35] Wonik Robotics. Allegro hand. http:
//wiki.wonikrobotics.com/AllegroHandWiki/index.
php/Allegro_Hand_v4.0, 2023.

[36] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A
reduction of imitation learning and structured prediction
to no-regret online learning. In Proceedings of
the fourteenth international conference on artificial
intelligence and statistics, pages 627–635. JMLR
Workshop and Conference Proceedings, 2011.

[37] Kenneth Shaw, Ananye Agarwal, and Deepak
Pathak. Leap hand: Low-cost, efficient, and
anthropomorphic hand for robot learning. arXiv
preprint arXiv:2309.06440, 2023.

[38] Zilin Si, Kevin Zhang, Oliver Kroemer, and F Zeynep
Temel. Deltahands: A synergistic dexterous hand
framework based on delta robots. IEEE Robotics and
Automation Letters, 2024.

[39] Oren Spector and Dotan Di Castro. Insertionnet-a
scalable solution for insertion. IEEE Robotics and
Automation Letters, 6(3):5509–5516, 2021.

[40] Friederike Thonagel. Vision-based teleoperation
of the compliant rbo hand 3. Master’s thesis,
Technische Universität Berlin, Berlin, Germany,
May 2022. Available at https://www.tu.berlin/
en/robotics/teaching/theses/completed-theses/
vision-based-teleoperation-of-the-compliant-rbo-hand-3.

[41] Yue Peng Toh, Shan Huang, Joy Lin, Maria Bajzek, Garth
Zeglin, and Nancy S Pollard. Dexterous telemanipulation
with a multi-touch interface. In 2012 12th IEEE-
RAS International Conference on Humanoid Robots
(Humanoids 2012), pages 270–277. IEEE, 2012.

[42] Zhendong Wang, Jonathan J Hunt, and Mingyuan
Zhou. Diffusion policies as an expressive policy
class for offline reinforcement learning. arXiv preprint
arXiv:2208.06193, 2022.

[43] Philipp Wu, Yide Shentu, Zhongke Yi, Xingyu Lin, and
Pieter Abbeel. Gello: A general, low-cost, and intuitive
teleoperation framework for robot manipulators. arXiv
preprint arXiv:2309.13037, 2023.

[44] Kevin Zakka. A PyTorch Implementation of Implicit

http://wiki.wonikrobotics.com/AllegroHandWiki/index.php/Allegro_Hand_v4.0
http://wiki.wonikrobotics.com/AllegroHandWiki/index.php/Allegro_Hand_v4.0
http://wiki.wonikrobotics.com/AllegroHandWiki/index.php/Allegro_Hand_v4.0
https://www.tu.berlin/en/robotics/teaching/theses/completed-theses/vision-based-teleoperation-of-the-compliant-rbo-hand-3
https://www.tu.berlin/en/robotics/teaching/theses/completed-theses/vision-based-teleoperation-of-the-compliant-rbo-hand-3
https://www.tu.berlin/en/robotics/teaching/theses/completed-theses/vision-based-teleoperation-of-the-compliant-rbo-hand-3


Behavioral Cloning, 10 2021. URL https://github.com/
kevinzakka/ibc.

[45] Tianhao Zhang, Zoe McCarthy, Owen Jow, Dennis Lee,
Xi Chen, Ken Goldberg, and Pieter Abbeel. Deep
imitation learning for complex manipulation tasks from
virtual reality teleoperation. In 2018 IEEE International
Conference on Robotics and Automation (ICRA), pages
5628–5635. IEEE, 2018.

[46] Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea
Finn. Learning fine-grained bimanual manipulation with
low-cost hardware. arXiv preprint arXiv:2304.13705,
2023.

[47] Wenxuan Zhou and David Held. Learning to grasp
the ungraspable with emergent extrinsic dexterity. In
Conference on Robot Learning, pages 150–160. PMLR,
2023.

Fig. 13: Comparisons between (a) the hand from DELTAHANDS
[38] and (b) our adapted hand. We customize 1) the fingertips to
an omnidirectional design for larger contact area with a soft coating
elastomer layer for increased friction, 2) the finger links to a rigid
core-embedded multi-material design and the finger joints to a better
defined shape for reducing kinematics error and increasing force
profile, 3) an in-hand camera to provide clear visual observations
for closed-loop policy learning.

APPENDIX

A. DeltaHand Comparison
We compare between the adapted hand design for this work

and the original design from DELTAHANDS [38] as shown
in Fig. 13. In this work, we decoupled the center actuator and
changed 1) the fingertip design, 2) the finger links and joints
design, and 3) added an in-hand camera. The new fingertip
has an omnidirectional design and an additional soft elastomer
coating layer to increase the contact area and contact friction.
This has greatly improved grasp stability during experiments.
The finger links have embedded rigid PLA cores and the finger
joints have smaller gaps to improve the kinematics accuracy
and force profile. We observe that the hand can exert stronger
forces to manipulate daily objects such as pushing to close a
syringe plunger while the original design from DELTAHANDS
[38] can only manipulate lighter objects such as clothes or
cables. The decoupled actuators give independent 3 DoF
control for each finger to increase dexterity. The inclusion of
an in-hand camera provides clear in-hand visual observations
for closed-loop policy learning.

B. Teleoperation Interface Details
a) Communication and Control from TeleHand to

DeltaHand : The overview of the teleoperation system can
be seen in Fig. 14. The whole system can be modularized into
the Control PC, DeltaHand, TeleHand and external sensors.
The Control PC sends and receives all control and sensor
signals from the other modules as well as serves as the
main computing source for policy inference. The DeltaHand
module includes the hand and the in-hand RGB Camera. A
microcontroller (Adafruit Feather M0) is used to send and
receive the current and desired joint states of the actuators
and run a PID control loop. The in-hand camera is connected
to a Raspberry Pi which sends images to the Control PC.

https://github.com/kevinzakka/ibc
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Fig. 14: Overview of the teleoperation system. The system can be
modularized to the control PC, DeltaHand, TeleHand, and external
sensors. The Control PC receives and sends all sensor and control
signals as ROS topics. It also serves as the main computing source
for policy execution. The DeltaHand has its own microcontrollers for
the actuators and sensors. The TeleHand is used to interface with a
human to get control signals from the slider potentiometers. All other
sensors belong to the external sensors module.

The TeleHand uses a microcontroller (Arduino Mega) to read
and send the sliders’ positions when it is teleoperated by a
human. Other sensors such as the external RGB camera can
be connected directly to the Control PC. All sensor and control
signals are published as ROS topics and their frequencies are
listed in Table. III. As a data pre-processing step for policy
learning, we synchronize all the streaming data to the joint
states’ frequency (20 FPS) by using their ROS timestamps.

b) TeleHand Customization: As the DeltaHand’s
kinematic twin, TeleHand is also modularized and its
fingertips can be customized in different ways as shown in
Fig. 15. The human user can directly manipulate the TeleHand
by grabbing its links or tips. Alternatively, the human’s fingers
can be more firmly attached to the TeleHand’s end-effectors
by adding customized tips such as rings or finger gloves.
With direct manipulation, it is easy to attach and detach
the human fingers from the TeleHand while keeping the
end-effectors of the TeleHand in the same position due to
friction from the sliders. In this manner, human teleoperators
can easily reposition their hands on the TeleHand for different
motions, or even regrasp the TeleHand to only manipulate
a subset of fingers while the others remain stationary. With

Fig. 15: The TeleHand can be teleoperated differently depending
on the human’s preference. The human can a) directly manipulate
the TeleHand by grabbing the links or tips or b) attach and use a
customized end-effector such as a ring to constrain their finger to the
TeleHand’s end-effectors.

additional customized fingertips, there’s a clear human finger
to TeleHand finger to DeltaHand finger motion mapping.
Through our experiments, we found that directly manipulating
TeleHand is the easiest and most stable way for collecting
demonstrations because humans are good at using hand
synergies such as squeezing or spreading the four fingers
along a desired axis using two hands.

c) Teleoperation Interface Comparison: Visual
tracking [15, 6, 37] has broadly been used for teleoperating
anthropomorphic robotic hands. We characterize and compare
two teleoperation interfaces: the TeleHand and visual
tracking by using a Leap Motion camera as presented
in DELTAHANDS [38] on three metrics: communication
efficiency, human demonstration collection time, and mapping
errors from the teleoperation inputs to the robotic hand
motions. We evaluate these metrics using three tasks: Block
Slide, Cap Twist, and Shape Insert. For each task, we collect
three demonstrations until task completion. We calculate the
average performance over these three runs and report the
results in the Table IV.

From the results, we observe that our proposed teleoperation
interface, TeleHand, has better performance on all metrics. In
addition, we visualize desired joint states and joint states from
a demonstration of Block Slide in Fig. 16. We observe that by
using the TeleHand, the signals are less noisy and the motions
are simpler which helps policy learning. We also observe
saturated joint states during teleoperation using the Leap
Motion camera. This is because the human teleoperator may
move their fingers outside the workspace of the DeltaHand
which leads to an invalid inverse kinematics solution and a
noisy trajectory as the human needs time to move their finger
back within the workspace. Our TeleHand has one-to-one joint
mapping and does not experience this issue.

C. Comparison with Existing Work
We compare our proposed system with state-of-the-art work

from two aspects: a teleoperation system based on hardware
development (Table. V) and a learning system based on
policy learning for dexterous robotic hands (Table. VI). For



Joint State Control (Desired Joint Sate) Linear Slider In-hand Camera External Camera
Frequency (Hz) 20 33 133 30 10

TABLE III: Frequency of sensor and control signals on ROS.

Teleoperation Communication Demonstration Collecting Time (seconds)# Mapping Error (mm)#

Interfaces Frequency (Hz)" Block Slide Cap Twist Shape Insert Block Slide Cap Twist Shape Insert
Visual
Tracking

10 54.05 81.51 14.47 0.60 0.34 0.31

Ours 133 16.99 31.11 11.81 0.23 0.23 0.20

TABLE IV: Teleoperation interface characterization and comparison with visual tracking by using a Leap Motion camera. Our proposed
TeleHand has better performance on all metrics when evaluating communication efficiency, demonstration collection time, and mapping
errors.

Fig. 16: Visualization of the desired joint states and joint states of the DeltaHand when being teleoperated with a Leap Motion camera
or TeleHand. We observe less noise and simpler motions from teleoperation with the TeleHand. With direct one-to-one joint mapping, the
TeleHand does not suffer from kinematics constraints, which are shown as saturated joint states when teleoperating using the Leap Motion.

teleoperation system comparison, we show that our system
has a relatively low cost while preserving high dexterity.
The compliance of the soft links and fingertips of the
DeltaHand also provides higher tolerance for policy deviations
as compared to rigid hands. We plan to open-source our system
to provide accessibility to potential users. For policy learning
comparison, we show that our system has demonstrated
capabilities on various tasks including grasping, translational,
and rotational tasks. By leveraging end-to-end real-world
imitation learning, policy learning is more data efficient and
has less data distribution shifts. Our system also provides
proprioceptive and visual feedback for closed-loop control.

D. Learning Policy Implementation Details

For an ablation study on using different imitation learning
methods, we adapted the implementation of Behavior Cloning
(BC), Implicit Behavior Cloning (IBC), and Diffusion
Policy from [9, 44]. For fair comparison, we use the
same ResNet18 image encoder adapted from Diffusion
Policy [9] for all three methods. For BC and IBC, we
use the same 5-layer MLP network architecture consisting
of {Ninput,1024,1024,512,256,Noutput} perceptrons, where
Ninput and Noutput are the number of input and output
channels. For BC, Ninput = (512 + 12) ⇤ 2, where 512 is
the dimension of the image feature, 12 is dimension of the



Teleoperation Robotic Cost # DoF Hand Hand Teleoperation Availability
System Hand Type Material Interface

DexPilot [15] Allegro $15,000 16 Anthropomorphic Rigid Vision Off-the-shelf
(RealSense)

DIME [6] Allegro $15,000 16 Anthropomorphic Rigid Vision Off-the-shelf
(RealSense)

LEAP
Hand [37]

LEAP Hand $2,000 16 Anthropomorphic Rigid Vision (RGB Camera) Open-sourced
Manus Meta Glove

Stewart
Hand [26]

Stewart Hand $600 6 Underactuated Rigid Space Mouse Open-sourced

[25] DASH Hand $1500 16 Anthropomorphic Soft Manus Meta Glove Open-sourced
[40] RBO Hand 3 $2350* 16 Anthropomorphic Soft Vision (Webcam) Open-sourced

Ours DeltaHand $1,000 12 Exactly Constrained Soft Kinematic Twin Open-sourced

TABLE V: Comparison with other state-of-the-art teleoperation systems for dexterous robotic hands. We show that our system has a relatively
lower cost while still preserving high dexterity. The DeltaHand has soft fingertips and a compliant finger structure which assists with adapting
to different objects and environments and tolerating deviations from learned policies. *The estimated cost of the RBO Hand 3 is $250 for
manufacturing the hand, $480 for 16 Freescale MPX4250 pressure sensors, and $1600 for 16 pneumatic Matrix Series 320 valve controllers
based on [11, 31].

Learning Robotic Task Types Policy Learning Feedback

System Hand Grasping Translational Rotational Method Environment Proprioception Vision
DIME [6] Allegro X IL Sim & Real X X
LEAP
Hand [37]

LEAP Hand X X RL Sim-to-Real X

Visual
Dexterity [7]

D’Claw [1] X RL Sim-to-Real X X

DEFT [18] DASH Hand [25] X X RL Real X

[29] RBO Hand 3 [31] X X Motion Real
Planning

[3] Shadow Hand [10] X RL Sim-to-Real X

[27] Yale Model Q [23] X X X Motion Real X
Planning

Ours DeltaHand [38] X X X IL Real X X
TABLE VI: Comparison with other state-of-the-art policy learning systems for dexterous robotic hands. We show that our system is evaluated
on a variety of tasks including grasping, in-hand translation and rotation tasks. Leveraging end-to-end real-world imitation learning has the
benefits of data efficiency and less data distribution shift.

joint state, and 2 is the observation horizon; Noutput = 12⇤8,
where 12 is the action dimension, and 8 is the execution
horizon. For IBC, Ninput = (512 + 12) ⇤ 2 + 12 ⇤ 8, where
512 and 12 are again the dimensions of the image feature
and joint state respectively, 2 is the observation horizon,
and 8 is the execution horizon; Noutput = 1, is the energy
of the observation-action pair. We use the same dataset,
data normalization, data augmentation, training configurations
including optimizer configuration, and number of training
epochs for BC and IBC that we used to train the diffusion
policy. For IBC training, we sample 256 random actions for
each observation input; and during inference, we iteratively
sample 1024 random actions 3 times with a noise scale starting
from 0.33 and then reducing it by a factor of 0.5 in each
iteration.
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