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Abstract—Planning robot dexterity is challenging due to the non-
smoothness introduced by contacts, intricate fine motions, and ever-
changing scenarios. We present a hierarchical planning framework
for dexterous robotic manipulation (HiDex). This framework ex-
plores in-hand and extrinsic dexterity by leveraging contacts. It
generates rigid-body motions and complex contact sequences. Our
framework is based on Monte-Carlo Tree Search (MCTS) and has
three levels: 1) planning object motions and environment contact
modes; 2) planning robot contacts; 3) path evaluation and control
optimization. This framework offers two main advantages. First,
it allows efficient global reasoning over high-dimensional complex
space created by contacts. It solves a diverse set of manipulation
tasks that require dexterity, both intrinsic (using the fingers) and
extrinsic (also using the environment), mostly in seconds. Sec-
ond, our framework allows the incorporation of expert knowledge
and customizable setups in task mechanics and models. It re-
quires minor modifications to accommodate different scenarios and
robots. Hence, it provides a flexible and generalizable solution for
various manipulation tasks. As examples, we analyze the results on
7 hand configurations and 15 scenarios. We demonstrate 8 tasks on
two robot platforms.

Index Terms—Dexterous manipulation, manipulation planning,
in-hand manipulation, contact modeling.

I. INTRODUCTION

ROBOTS need dexterity for complex manipulation tasks.
Consider taking a book from the bookshelf. The robot

should consider the occlusion of the bookshelf and other books,
even use them, to get the book out. The robot needs to not
only use its own fingers dexterously, but also be smart about
exploiting its surroundings, as “external” fingers to support the
movements of the object.

Planning for dexterity remains challenging. First, planning
through contacts, which involves changes in system dynam-
ics and non-smoothness, is particularly difficult [1], especially
considering both robot and environment contacts. Second, due
to the diverse nature of manipulation, robots need to discover
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Fig. 1. Overview of our framework, with an example of picking up a card. The
following processes run iteratively. Level 1 plans object trajectories, interleaving
searches over contact modes ( nodes) and continuous object poses (
nodes). An object trajectory is passed to Level 2 ( ) to plan robot contacts on
the object ( nodes). The full trajectory of object motions and robot contacts is
passed to Level 3 ( ) for evaluation and control optimization. After evaluation,
Level 3 passes the reward back to the upper levels ( ). The reward is updated
for every node in the path (bold nodes). In the example, the robot pulls the card
to the edge of the table and then grasps it.

various fine motions, making it hard to simplify problems with
predefined primitives. Third, current manipulation planners are
tailored for specific tasks. An in-hand manipulation policy [2]
cannot solve object reorientation in [3], and neither of them
can be directly applied to planar pushing [4]. As real-world
manipulation is a mix of various manipulation problems, it is
important for a general manipulation planner to cover different
tasks.
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We propose a hierarchical framework, as shown in Fig. 1,
aiming to address the challenges mentioned above. In Level
1, we perform object trajectory and environment contact mode
planning. Contact modes of object-environment contacts guide
the generation of object motions — as the active exploration
of extrinsic dexterity. In Level 2, given an object trajectory, the
intrinsic dexterity is planned by optimizing for robot contact
sequences on the object surface. In Level 3, more details of the
plans are computed and rewards are backpropagated.

Our contributions are in three aspects: framework, method-
ology, and experiment. Framework: Our framework adapts
with minor adjustments to various tasks. It easily encodes ex-
pert knowledge and priors through the MCTS action policies,
value estimations, and rewards. This is the first framework that
achieves manipulation tasks of such complexity and variety. For
future development, it can directly integrate new components
like trajectory optimization and learning. Methodology: We
demonstrate the efficacy of three novel ideas with potential bene-
fits for contact-rich robotic research: 1) an efficient hierarchical
structure that decomposes the search of environment contact
modes, object trajectory, and robot contacts; 2) replacing Monte-
Carlo rollout with a rapidly exploring random tree (RRT) based
method, leveraging its effectiveness in goal-oriented exploration
without losing the Monte-Carlo spirit; 3) a novel representation
that plans contact changes rather than contacts for each step,
which greatly speeds up robot contact planning. Experiments:
We instantiate and demonstrate a variety of dexterous manip-
ulation tasks, including pick up a card, book-out-of-bookshelf,
peg-out-of-hole, block flipping, muti-robot planar manipulation,
and in-hand reorientation. Some tasks were never explored in
previous works, including occluded grasp, upward peg-in-hole,
and sideway peg-in-hole. As a contribution to the community, we
open-sourced our code for these tasks. It is also easy to configure
new scenarios and adjust parameters with one setup.yaml file.

II. RELATED WORK

A. Dexterous Manipulation Planning

In dexterous manipulation, potential contact changes intro-
duce a high dimensional, non-convex, discrete and continuous
space to plan through. Contact-implicit trajectory optimiza-
tion [1] performs local optimization in the complex space, which
can be intractable without good initialization, and currently only
works for 2D problems with shape simplifications [5], [6]. Alter-
natively, contact kinematics [7], [8], [9], [10] can be leveraged to
generate motions between two rigid bodies [11], within a robot
hand [12], dexterous pregrasps [13], under environment con-
tacts [14], [15], [16], [17], and with trajectory optimization [18].
We build upon [16], which incorporates contact modes into an
RRT to guide node expansion. We introduce a more optimized
search structure, addressing three key issues: no mechanism to
optimize for any reward, random sampling for robot contact
planning, and an entangled configuration space of the object and
the robot that results in many redundant searches. We introduce
hierarchical search to decompose the space of object motion
and robot contacts [19], [20]. Unlike previous approaches using
contact states, which can have the combinatoric explosion for 3D

Fig. 2. Four steps run iteratively in GROW-TREE in MCTS [26]. Selection: start
from the root node and select successive nodes. Expansion: Create a new node
from unexplored children of the last selected node. Rollout: evaluate the new
node by simulating to the end with random sampling. Backpropagation: Update
the tree using rollout rewards.

cases, our method leverages contact modes and efficient robot
contact search, extending the application from 2D polyhedrons
to 3D meshes.

Reinforcement learning (RL) can discover skills like in-hand
manipulation [2], dexterous grasping [21], and object reorienta-
tion [22]. RL faces the same challenges from high-dimensional
complex spaces, leading to sample efficiency problems. Our
framework’s advantage lies in adapting to new tasks and discov-
ering new skills through contact exploration, without the need
for training or reward shaping.

B. Monte-Carlo Tree Search

MCTS is a heuristic search algorithm that uses random sam-
pling for efficient exploration. AlphaGo [23] combines MCTS
with deep neural networks, achieving superhuman performance
in board games like Go. MCTS has shown potential in contact
planning, including gait planning for legged robots [24] and
robot contact sequence planning given object trajectories [25].
Our work plans not only robot contacts but also object motions
and interactions with environment contacts. MCTS offers bene-
fits like efficient search through vast complex space, continuous
improvement through learning and self-exploration, and paral-
lelizability.

III. PRELIMINARIES

A. MCTS

Level 1 and 2 use the MCTS skeleton in Algorithm 1. A search
tree T = (V, E) contains a set of nodes V and edges E . A node
is associated with a visited state s. An edge is associated with a
state transition s

a−→ s′ through action a.
GROW-TREE expands the tree by iteratively running four steps

in Fig. 2: selection, expansion, rollout, and backpropagation.
We employ the idea in AlphaGo [23] — use value estimation
and action probability to prioritize empirically good directions.
Each node maintains a value estimation vest(s), obtained value
v(s), and the number of visits N(s). For s a−→ s′, we define the
action probabilityp(s, a), the number of visitsN(s, a) = N(s′),
and the state-action value Q(s, a) = λv(s′) + (1− λ)vest(s′),
where an adaptive parameter λ ∈ [0, 1] balances ratios of the
obtained value and the value estimation. λ increases as the search
goes on.

setup.yaml
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Algorithm 1: MCTS Skeleton.
1: procedure Search
2: T ← new-tree()
3: n← root-node(T )
4: while n is not a terminal node do
5: grow-tree(T , n)
6: n← best-child(n)
7: end while
8: end procedure

Selection determines search directions by balancing explo-
ration and exploitation. Among the set of feasible actions A(s),
we select the next action a∗ ← argmina∈A(s)U(s, a) with η
controlling the degree of exploration:

U(s, a) = Q(s, a) + ηp(s, a)

√
N(s)

1 +N(s, a)
(1)

In backpropagation, every node on the evaluated path is
updated with the reward r:

v(s) =
N(s)v(s) + r

N(s) + 1
(2)

N(s) = N(s) + 1 (3)

B. Contact Modes

Collision detection obtains the contact points between the
object and the environment. Contact modes describe the possible
evolution of these contact points. In this letter, for N contacts,
a contact mode is m = [sign(vi

c,n)] ∈ {0,+}N , where vi
c,n is

the contact normal velocity for the ith contact. 0 means a contact
maintained. + means a contact separate. A more comprehensive
description can be found in [9].

Contact modes offer an efficient way to generate object mo-
tions in lower-dimensional manifolds that have zero probability
to be generated through random sampling. In addition, each
contact mode corresponds to one set of continuous contact
dynamics. By choosing among contact modes, discreteness in
dynamics is efficiently captured.

IV. HIERARCHICAL PLANNING FRAMEWORK

A. Task Description

This letter focuses on one rigid body in a non-movable rigid
environment or no environment component.

A planner designed under this framework takes in:
1) The object: a rigid body O with known center of mass and

inertia matrix, and friction coefficients with environment
µenv and with the manipulator µmnp. The object geome-
try, used for collision check and surface point sampling,
should be provided as a mesh model or a primitive shape
like a cuboid.

2) Environment with known geometries, as primitive shapes
or mesh models.

3) Robot model: The robot manipulates the object through
Nmnp predefined fingertip contacts. The collision models,
forward and inverse kinematics, and finger contact models

Algorithm 2: Level 1: Search Object Motion.
1: procedure Grow-tree-level-1(T , startnode)
2: while resources left do
3: n← startnode
4: ! Interleaved selection over pose and mode
5: while n is not terminal do
6: if nodetype(n) is pose then
7: ! [Selection] next contact mode
8: A(n)← feasible contact modes of n
9: a← select(A(n))

10: n← mode− node(a)
11: end if
12: if nodetype(n) is mode then
13: ! [Selection] next pose
14: A(n)← children− of(n) ∪ explore − new
15: a← select(A(n))
16: if a is explore-new then ![Expansion]
17: path← RRT-explore(n) ![Rollout]
18: attach(T , path)
19: r ← evaluate-reward(path) !To Level 2
20: back-propagate(r, T ) ![Backpropagation]
21: break loop
22: else
23: n← to− next− node(a)
24: end if
25: end if
26: end while
27: r ← evaluate-reward(n) !To Level 2
28: back-propagate(r, T ) ![Backpropagation]
29: end while
30: end procedure

are known. We assume the robot makes non-sliding and
non-rolling contacts.

4) Start specification: object start pose xstart ∈ SE(3).
5) Goal specification: object goal region Xgoal ⊂ SE(3).
It outputs an object configuration trajectory x(t) and a robot

control trajectory u(t).

B. Level 1: Planning Environment Contact Modes and Object
Trajectories

Level 1 is summarized in Algorithm 2, and visualized in
Fig. 3. It plans trajectories of environment contact modes and
object configurations. The search process is as follows. In the
existing tree, it first performs the selection phase to choose a
node to grow a new branch. We interleave the selection over
environment contact modes and object configurations. When a
node is selected for expansion and rollout, an RRT-based rollout
replaces random rollouts to improve exploration efficiency. The
RRT rollout grows a new branch for the MCTS and then passes
to Level 2. During the process, environment contact modes are
generated through a contact mode enumeration algorithm [9].
Object configurations are generated through the projected for-
ward integration in the RRT rollout (details in Section IV-B3).

1) Selection — Interleaved Search Over Discrete and
Continuous Space: We define Level 1 state as s1 = (x ∈
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Fig. 3. Level 1 search visualized with a block reorientation example. In the selection phase, the block is selected to follow contact mode 00++, leading to a
90-degree rotation at contact 1 and 2 and the separation of 3 and 4. In the new node, contact mode 0000, indicating contact 1, 2, 5, 6 are maintained, is then selected
for the RRT rollout. The RRT generates an object configuration trajectory where the block is first pushed and then rotated 90 on the edge of contact 2 and 5. New
nodes from the RRT solution path are added to the MCTS after reward evaluation.

SE(3),nodetype ∈ {mode, pose}), where x is an object pose
and nodetype stores the type of the node. The interleaved selec-
tion process is demonstrated in line 6-25 in Algorithm 2 and in
Fig. 3. For a pose node, the action is to select a contact mode
for it. The feasible actions are A

(
s1 = (x, pose)

)
= M(x),

where M(x) is the set of kinematically feasible contact modes
enumerated for an object pose x using the algorithm in [9]. A
mode node is a pose node assigned with a contact mode. For a
mode node, the action is to select the next object pose moving
from the current object pose following the contact mode. The
available actions A

(
s1 = (x,mode)

)
comprise choosing from

its child nodes (explored object poses) or explore-new, which
triggers the rollout phase to explore new object poses.

The selection policy follows (1). Action probabilities p(s, a)
reflect preferences of modes or poses. For example, if we pre-
fer to exploit environment constraints to reduce uncertainties
as in [27]), we could have high probabilities for modes that
maintain more contacts.

2) Expansion: The expansion phase equals to explore-new
being selected for a mode node. It is a variant of the progressive
widening technique in MCTS for continuous space [28], where
we control the expansion rate with the action probability of
explore-new.

3) RRT as Rollout: Contact-rich solutions live sparsely on
lower-dimensional manifolds of the search space. It is unlikely
to get any useful results from random trajectory rollouts as most
traditional MCTS do. We replace the random rollout with an
RRT search guided by contact modes (line 17, Algorithm 2),
modified based on [16].

The RRT begins with an object pose xcurrent and a selected
contact mode mselected. The RRT tries to reach xgoal. It outputs a
trajectory where each point is an object pose associated with

a contact mode. In each iteration, we first sample an object
pose xextend ∈ SE(3) and find its nearest neighbor xnear. We
then extend xnear towards xextend. Each extension is guided by
a contact mode. If xnear is xcurrent, the contact mode should be
mselected. Otherwise, we enumerate all contact modes and filter
them using feasibility checks. New object poses are generated
by projected forward integration that follows each contact mode
towards xextend as close as possible. If the RRT finds a solution
to xgoal within the maximum number of iterations, we add the
solution path after the expansion node in the Level 1 search
tree and proceed to Level 2 (line 19, Algorithm 2) to obtain a
reward. Otherwise, this process backpropagates a zero reward
and no new node is added. The RRT is reused throughout the
entire lifespan of the MCTS. More details about the RRT-based
rollout can be found in appendices.

One difference to [16] is that we can choose whether to plan
robot contacts or not in the RRT. We can turn on the option to
relax a contact mode to be feasible if there “exists any feasible
robot contact”, while previously the RRT needs to plan and store
robot contacts, searching in a higher-dimensional space. This
relaxation could improve the planning speed for some tasks as
discussed in Section V.

C. Level 2: Planning Robot Contacts

Level 2 initiates in EVALUATE-REWARD in Level 1 (line 19 and
27, Algorithm 2). Level 2 takes in the object configuration tra-
jectory, and outputs the best robot contact sequence. Algorithm 3
summarizes the GROW-TREE process in Level 2 MCTS.

1) State and Action Representation: Each node is as-
sociated with a robot contact state s2 =

(
t, {(i,pi)|i ∈

active fingers at t}
)
. A robot contact state specifies active
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Fig. 4. Manipulation with extrinsic dexterity. From left to right: Scenario 1,
pick up a card: pick up a thin card that cannot be directly grasped using two
available fingertips. Scenario 2, bookshelf: get a book among other books out
of a bookshelf using three available fingertips. Scenario 3, peg-out-of-hole: get
a peg out of a tight hole using three robot contacts (narrow gaps prevent direct
grasps). Scenario 4, block flipping using two available fingertips.

Fig. 5. Planning time (in log scale) with respect to search space size
for planning robot contacts for cube sliding. We have search space size =
candidate contactstrajectory size .

fingers, fingers that are in contact with the object, and
their corresponding contact locations {pi ∈ R3} on the ob-
ject surface at timestep t. An action a =

(
tc, {(j,pj)|j ∈

relocating fingers at tc}
)

represents robot contact relocations,
specified by relocating timestep tc, relocating fingers, and the
object surface points they are relocating to {pj}.

For example, consider 5 available robot fingertips. Grasping
an object at timestep 0 with the first and third finger at
locations (1, 0, 0) and (−1, 0, 0) corresponds to the state(
t = 0, (finger1 ,p1 = (1, 0, 0)), (finger3 ,p3 = (−1, 0, 0))

)
.

If we choose to maintain the grasp until timestep 4, and
then move the third finger to (0,0,1) and add the fifth
finger at (−1, 0, 0.5), the action is

(
tc = 4, (finger3 ,p3 =

(0, 0, 1)), (finger5 ,p5 = (−1, 0, 0.5))
)
. The new state

is
(
t = 4, (finger1 ,p1 = (1, 0, 0)), (finger3 ,p3 =

(0, 0, 1)), (finger5 ,p5 = (−1, 0, 0.5))
)
.

Compared to the common practice of planning contacts for
every timestep [6], [25], we plan for contact relocations. While
the complexity of the search space does not change, empirically
in most tasks, this modification significantly reduces the depth
of the search tree and speeds up the discovery of a solution
(experiments in Section V, Fig. 5).

2) Sampling and Pruning for Action Selection: Consider 100
object surface points, 4 fingers, and 10 steps. The action space
is (1004)10 = 1e80. It is not practical to evaluate all actions.
To mitigate this, we adopt action sampling techniques for non-
enumerable action space [29]. In Equation (1), we use a subset
of all actions Asp(s2) ⊂ A(s2). Asp(s2) includes previously
explored actions and newly sampled actions. Newly sampled
actions are generated as follows: 1) The relocating timestep tc is

Algorithm 3: Level 2: Search Robot Contacts.
1: procedure Grow-tree-level-2(T , startnode)
2: while resources left do
3: n← startnode
4: while n is not terminal do
5: Asp(n)← sample-feasible-actions(n)
6: a← select(Asp(n))
7: n← next− node(n, a)
8: end while
9: r ← evaluate-reward(n) !To Level 3

10: back-propagate(r, T )
11: end while
12: end procedure

sampled in (t, tmax], where tmax is the maximum timestep the
current set of contacts can proceed to under the feasibility check
in Section IV-C3. 2) After tc is sampled, we sample robot contact
relocation through rejection sampling. We first find relocatable
robot contacts by checking if the remaining fingers satisfy the
force conditions. Then we sample new feasible contact locations
on the object surface.

We mix the selection, expansion, and rollout using the same
heuristic function. If the selected action is explored before, it
is the selection phase. If the selected action is new, it is the
expansion and rollout phase.

3) Feasibility Check: To prune fruitless search directions, we
enforce Level 2 nodes and Level 1 RRT rollout nodes to pass
the feasibility check, including:! Kinematic feasibility: whether there exist inverse kinemat-

ics solutions for the robot contact points! Collision-free: whether the robot links are collision-free
with the environment and the object! Relocation feasibility: whether there exists a plan to relo-
cate from previous robot contacts to new contacts! Force conditions: whether the chosen contact points can
fulfill the task dynamics, like quasistatic, quasidynamic,
force balance, or force closure conditions.! Other task-specific requirements may also be added.

D. Level 3: Path Evaluation and Control Optimization

Level 3 (line 9, Algorithm 3) computes feasibility, robot
controls u(t), rewards for full trajectories from Level 2.

If the task mechanics are quasi-static or force-closure, we
individually solve for each step t to check whether quasi-static
or force-closure solutions exist and output the robot positions
and optimal contact forces as the control u(t). If full dynamics
is required, the framework can potentially use the path as a warm-
start for trajectory optimization.

For the control trajectory u(t), we compute the reward r and
the estimations vest or rest. There are two rules for defining
a reward function: 1) A feasible path should have a positive
reward. A non-feasible path should have a zero or negative
reward. It is preferred that reward values in [0, 1]. 2) There should
be a term that regularizes the length of the path. Otherwise, the
search might never end.
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V. EXAMPLES AND EXPERIMENTS

A. Implementation

We implemented two task types: manipulation with extrinsic
dexterity and in-hand manipulation.1 We use Dart [30] for visu-
alization and Bullet [31] for collision detection. New scenario
setup requirements and more implementation details can be
found in appendices.

1) Robot Model: We implemented two robot types.
Sphere fingertips: Each fingertip is a sphere with workspace

limits as kinematic feasibility checks. Collision is checked with
the environment. We use three vertices of an equilateral triangle
on the sphere perpendicular to the contact normal to approximate
a patch contact.

Dexterous Direct-drive Hand: (DDHand) A DDHand has two
fingers. Each fingertip has two degrees of freedom for planar
translation and is equipped with a horizontal rod [32], [33]. We
provide an analytical inverse kinematics model and use the line
contact model as the fingertip contact model.

2) Task Mechanics: quasi-static, quasi-dynamic, and force
closure models (details in appendices).

3) Feasibility Checks: include task mechanics check, finger
relocation force check (during relocation, it needs to satisfy
the task mechanics assuming the object is static), kinematic
feasibility check, and collision check.

4) Features and Rewards: We use features including travel
distance ratio (total object travel distance divided by the start
to goal distance), path size, robot contact change ratio (number
of finger contact changes divided by the path length), and grasp
centroid distance [34]. Given some feature values as data points,
we manually label the reward values, favoring smaller object
traveling distance, less number of contact changes, and better
grasp measures. Given the labeled data, we fit a logistic function
as the reward function.

5) Action Probability: In Level 1, in choosing the next con-
tact mode, the action probability prioritizes the same contact
mode as before:

p
(
s1 = (x,mode), a

)
=

{
0.5 if a = previous mode

0.5
number of modes−1 else

(4)
In choosing the next configuration, we use a uniform distribution
among all the children plus the expansion action.

In Level 2, in choosing a timestep to relocate and the contact
points to relocate to, the action probability is calculated using a
weight function w(s2, a)

p(s2, a) =
w(s2, a)∑

a′∈Asp(s2)
w(s2, a′)

(5)

w(s2, a) encourages previous robot contacts to stay until tmax:

w(s2, a) =

{
0.5 + 0.5

tmax−tc+1 if tc = tmax
0.5

tmax−tc+1 else
(6)

1Supplementary materials: video (https://youtu.be/fScfat1Ys6U), code
(https://github.com/XianyiCheng/HiDex), and website (https://xianyicheng.
github.io/HiDex-Website).

TABLE I
PLANNING STATISTICS FOR MANIPULATION WITH EXTRINSIC DEXTERITY: OUR

METHOD (LEFT, BOLD), CMGMP (RIGHT)

6) Value Estimation: We only use value estimation in Level
1. Each node has vest = 0.1 if any Level 2 search can find a
valid robot contact sequence for it.

7) Search Parameters: We let η = 0.1 for both levels. We set
λ to 1 if a positive reward is found, otherwise 0.

B. Manipulation With Extrinsic Dexterity

We evaluate four examples in Fig. 4. Each scenario is im-
plemented with sphere fingertips without workspace limit and
quasi-static mechanics. Additional scenarios are demonstrated
in the real robot experiments in Section V-D.

Table I shows the planning statistics from 100 runs for
each scenario, using a desktop with the Intel Core i9-10900 K
3.70 GHz CPU (also for all other statistics in this letter). As our
algorithm is anytime, we let the planner stop after 10 seconds
and collect the results. The search process is fast. Similar to
CMGMP [16], about 80% of the computation is on the projected
forward integration of the RRT.

1) Ablation of Hierarchical Structure and MCTS: We com-
pare with CMGMP [16], which uses an RRT in searching object
motions and robot contacts. For all scenarios, our method has a
faster “solution found time”. The hierarchical structure speeds
up solution discovery by decoupling the object pose and robot
contact space. Our method continuously improves the solution
by searching more space, whereas CMGMP can only stop upon
initial solution discovery, resulting in our method generating
more “nodes in the tree”. Guided by the MCTS rewards, our
method also finds solutions with a smaller “travel distance ratio”,
less “finger relocation” and “environment contact changes”,
and smaller “grasp centroid distance”, while CMGMP cannot
optimize for any reward.

2) Efficient Robot Contact Planning: We compare the plan-
ning of contact relocations in Level 2 with the common practice
that explicitly plans contacts for each timestep [6], [25] (w/o
relocation selection). We run the robot contact planning for a
straight-line cube sliding trajectory with one allowable robot
contact, with varying numbers of total timesteps in the trajectory
and object surface points. As shown in Fig. 5, the search space
size grows exponentially for both methods. The planning time
of the common practice also grows exponentially. Our modi-
fication uses drastically less time. Our assumption is that this
modification aligns better with the fact that contact relocations
are sparse compared to discretization of the entire trajectory.

https://youtu.be/fScfat1Ys6U
https://github.com/XianyiCheng/HiDex
https://xianyicheng.github.io/HiDex-Website
https://xianyicheng.github.io/HiDex-Website
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TABLE II
PLANNING STATISTICS IN THE FORMAT OF (AVERAGE ± STANDARD DEVIATION) FOR IN-HAND MANIPULATION FOR DIFFERENT FINGER ARRANGEMENTS

(WORKSPACES SHOWN BY COLORED BOXES) AND OBJECTS (IMAGES FROM YCB DATASET [35], EXCEPT FOR THE CYLINDER)

C. In-Hand Manipulation

In-hand manipulation demonstrates intrinsic dexterity. For
inherently safer motions, we require every motion to have force
balance or force closure solutions.

1) Different Hand Configurations: Table II shows the statis-
tics for YCB dataset objects [35] with 100 runs of randomized
start and goal poses on three workspace configurations. Without
any training or tuning, our framework achieves a high planning
success rate within seconds. Point sampling on object surfaces
ensures consistent performance for complex shapes, enabling
planning contacts inside concave objects, like the mug and the
power drill in the video.

2) Add Auxiliary References: While our framework is de-
signed to achieve object goal poses, we can incorporate auxiliary
references, like goal fingertip locations, by modifying the reward
function and the action probability. We define dc, the average
robot contact distance to the reference fingertip locations divided
by an empirical characteristic length (like the object length). We
fit a new reward function that prefers small dc. We bias the action
probability to sample contact locations that are closer to the goal
through w(s2, a):

w(s2, a) =

{
0.5 + 0.5

tmax−tc+1pr(d) if tc = tmax
0.5

tmax−tc+1pr(d) else
(7)

We compare planners with and without additional goal fin-
gertip location for 100 reorientation trials with a hammer and
a mug using a 5-finger hand. Each trial has a randomized start
pose, goal pose, and reference fingertip locations. As Table III
shows, the new planner results in smaller “Final finger distance”
to the reference fingertip locations, but more finger relocations
are needed. Note that due to potential conflicts from the primary
goal of object pose and trade-offs from other reward terms, there
is no guarantee to achieve good alignment with the auxiliary
goal.

D. Robot Experiments

We test 8 new scenarios on the DDHand (12 kHz bandwidth)
and a configurable array of soft delta robots (delta array, 500 Hz
control frequency) [36]. We perform open-loop trajectory exe-
cution (no object pose or contact estimation). Given a planned

TABLE III
PLANNING STATISTICS FOR A 5-FINGER HAND REORIENTING A HAMMER AND

A MUG WITH AND WITHOUT ADDITIONAL GOAL SPECIFICATION OF ROBOT
CONTACT LOCATIONS

Fig. 6. Keyframes of DDHand experiments. From top to bottom: cube re-
orientation, occluded grasp, sideway peg-in-hole, upward peg-in-hole. Object
motions, fingertip locations, and fingertip relocations are respectively marked
in yellow, red, and blue.

fingertip trajectory, we compute the robot joint trajectory using
inverse kinematics and execute it with joint position control. The
object start position errors are within 1 mm for the DDHand and
2 cm for the delta array.

1) DDhand: The planner enables the DDHand to use intrin-
sic and extrinsic dexterity, as shown in Fig, 6 and the video.
For example, in occluded grasp, the fixed green block and the
table prevent a direct grasp. The DDHand uses three steps: pivot
the object on the corner; use one finger to hold the object; and
move the other finger to the other side to form a grasp. In upward
peg-in-hole, the hole prevents the fingers from getting in while
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Fig. 7. Keyframes of the delta array experiments. Object motions are marked
with yellow arrows. From top to bottom: 2-finger and 6-finger planar block
passing, 6-finger and 5-finger planar reorientation.

grasping the object, but without a grasp, gravity will cause the
peg to fall. The DDHand uses one finger to press the peg against
the hole — using the wall as an external finger to grasp. The
other robot finger then relocates and pushes the peg from the
bottom.

2) Delta Array: As shown in Fig. 7 and the video, due to
the small workspace of a delta robot (a cylinder with a 2 cm
radius and 6 cm height), many contact changes are required to
accomplish the tasks.

VI. DISCUSSION

This letter proposes a hierarchical framework for planning
dexterous robotic manipulation. It facilitates efficient searches
across complex spaces, the generation of diverse manipulation
skills, and adaptability for various scenarios. This method can
potentially automate wide-ranging manipulation applications,
such as functional grasps, caging, forceful manipulation, and
mobile and aerial manipulation. For future development, this
framework is compatible with direct integration of trajectory
optimization, learning, complex robot contact strategies like
sliding and rolling.
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Carlo tree search: A review of recent modifications and applications,”
Artif. Intell. Rev., vol. 56, pp. 2497–2562, 2023.

[27] C. Eppner, R. Deimel, J. Alvarez-Ruiz, M. Maertens, and O. Brock, “Ex-
ploitation of environmental constraints in human and robotic grasping,”
Int. J. Robot. Res., vol. 34, no. 7, pp. 1021–1038, 2015.

[28] J. Lee, W. Jeon, G.-H. Kim, and K.-E. Kim, “Monte-Carlo tree search in
continuous action spaces with value gradients,” in Proc. AAAI Conf. Artif.
Intell., 2020, pp. 4561–4568.

[29] T. Hubert, J. Schrittwieser, I. Antonoglou, M. Barekatain, S. Schmitt, and
D. Silver, “Learning and planning in complex action spaces,” in Proc. 38th
Int. Conf. Mach. Learn., 2021, pp. 4476–4486.

[30] J. Lee et al., “DART: Dynamic animation and robotics toolkit,” J. Open
Source Softw., vol. 3, no. 22, 2018, Art. no. 500.

[31] E. Coumans and Y. Bai, “Pybullet, a python module for physics simulation
for games, robotics and machine learning,” 2016. [Online]. Available: http:
//pybullet.org

[32] A. Gupta et al., “Extrinsic dexterous manipulation with a direct-drive hand:
A case study,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2022,
pp. 4660–4667.

[33] A. Bhatia, A. M. Johnson, and M. T. Mason, “Direct drive hands: Force-
motion transparency in gripper design,” in Proc. Robot.: Sci. Syst., 2019.

[34] M. A. Roa and R. Suárez, “Grasp quality measures: Review and perfor-
mance,” Auton. Robots, vol. 38, no. 1, pp. 65–88, 2015.

[35] B. Calli et al., “Yale-CMU-Berkeley dataset for robotic manipulation
research,” Int. J. Robot. Res., vol. 36, no. 3, pp. 261–268, 2017.

[36] S. Patil, T. Tao, T. Hellebrekers, O. Kroemer, and F. Z. Temel,
“Linear delta arrays for dexterous distributed manipulation,” in Proc.
IEEE Int. Conf. Robot. Automat. (ICRA), 2023, pp. 10324–10330,
doi: 10.1109/ICRA48891.2023.10160578.

http://pybullet.org
http://pybullet.org
https://dx.doi.org/10.1109/ICRA48891.2023.10160578

