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Abstract

Identifying clades with numerous and noticeable changes in chromosome counts is an important
step in unraveling the evolutionary mechanisms that shape cytogenetic processes. Here, we
describe low chromosome counts in a group of teleost fishes delimited by their unique spiral egg
structure and with a species with a known low chromosome count within the labyrinthine clade
(Osphronemidae). We sampled seven of nine known species within this spiral egg clade,
reporting novel chromosome counts for five species and confirming two others. Overall, we find
high variability in both chromosome count and arm number, which suggests a rapid loss of
chromosomes during the emergence of the clade and numerous large-scale mutations
occurring across evolutionary time. Lastly, we offer some possible explanations for these
changes based on current and ongoing empirical and theoretical research. These data provide
important information in cataloguing rapid chromosomal shifts in teleost fishes and highlights
this group for further study in chromosomal and genomic evolution due to their karyotypic

heterogeneity.
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Introduction

Variability of chromosome numbers across vertebrates and the evolutionary mechanisms that
create it is an active point of inquiry for evolutionary biologists (Martinez et al. 2015). Finding
clades with high variance or rapid changes presents valuable data points in resolving the
various hypotheses on how karyotypes change over time. Some patterns can include changes
due to long stretches of repeat content creating opportunities for mismatched recombination
(Amores et al. 2014) such as found in mammals which range in chromosome counts from 2N=6
in the female muntjac deer (Muntiacus muntjac) (Wurster and Benirschke 1970; Graphodatsky
et al. 2020) to 2N=102 in the plains viscacha rat (Tympanoctomys barrerae) (Gallardo et al.
2006; Stanyon and Graphodatsky 2012; Lebeda et al. 2020). Other patterns can involve
microchromosomes as typically seen in birds which have a range from 2N=40 in Ceratogymna
bucinator to 2N=136-142 in Corythaixoides concolor (Christidis 1990; Kretschmer et al. 2018).
Conversely, non-avian reptiles are karyologically heterogeneous and exhibit distinct
evolutionary trends between lineages (Deakin and Ezaz 2019) and have a narrower range of
been found to have notable karyotype evolution patterns, particularly with regard to extreme
chromosome counts, rapid cytogenetic changes, or both (e.g. Nothobranchius 2N=16—

the widest 2N range of all vertebrates, ranging from 2N=12 in the marine species Gonostoma
bathyphilum to 2N=446 in the freshwater species Ptychobarbus dipogon (Lebeda et al. 2020).
Paradoxically, teleost fishes have a strong trend of conserved karyotypes (Galetti et al. 2000;

Mank and Avise 2006; Nakatani et al. 2007) with over half of all karyotyped fish species having
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diploid chromosome counts of 48 or 50 (Mank and Avise 2006; Arai 2011), which has changed
2007). With such diverse patterns across vertebrates, finding clades with unusual changes in

chromosome counts is valuable to understanding chromosome evolution as whole.

An intriguing group of fishes with apparent chromosomal variance is within the family
Osphronemidae, commonly called gouramis. The chocolate gourami, Sphaerichthys
osphromenoides, has the lowest recorded chromosome count among freshwater fishes

genus, the pikehead gourami, Luciocephalus pulcher, was reported to have 2n=20 (Arai 2011).
Chromosome counts this low are exceedingly rare in fishes, as there are only thirteen fish
species with a diploid chromosome count lower than 2N=22 (Lehmann et al. 2021).
Furthermore, these counts are highly derived from the other Osphronemidae species, which

generally have 2N values between 46 and 48 (Supplemental Table 1).

Both S. osphromenoides and L. pulcher are members of the “spiral egg” clade, a monophyletic
group within the family Osphronemidae that includes the genera Sphaerichthys, Luciocephalus,
Parasphaerichthys, and Ctenops. The monophyly was proposed based on the unique
morphology of their eggs, which are covered in projections arranged in a spiral pattern, and later
confirmed and refined with molecular evidence (Britz et al. 1995; Ruber et al. 2006). Another
differentiating feature of the spiral egg clade is an angular jaw shape, which is taken to the
extreme in the highly derived pike-like morphology of the piscivorous genus Luciocephalus. The
spiral egg clade is also notable for having the only species, S. osphromenoides and S.
selatanensis, in the family Osphronemidae with female broodcare via mouthbrooding compared
to the overwhelmingly male mouthbrooders or bubble nesters in the family (Riber et al. 2006),

although recent evidence has called into question the sex of caring parent in S.
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osphromenoides (Zworykin et al. 2024). Chromosomes of the spiral egg clade remain largely
uninvestigated; besides S. osphromenoides and L. pulcher, only one other species has been
counts of S. osphromenoides and L. pulcher and the large 2N decrease relative to the wider
family, we aim to characterize the karyotypes of additional members within the spiral egg clade.
With this information we will describe the karyotypic diversity and evolutionary history for this
remarkable group of fishes, thereby adding an extraordinary example to the chromosome count

diversity in fishes specifically and animals in general.

Methods

Fishes were sourced from the aquarium trade (Wet Spot Tropical Fish, Portland, Oregon, USA;
Nationwide Aquatics, Tinley Park, lllinois, USA; Aqua Imports, Boulder, Colorado, USA), then
held in species-specific tanks (110 liters) on a shared flow-through system (pH 7.0, GH 30 ppm,
KH 40 ppm) with a 12/12 hour light/dark cycle with 30 minutes of dim light to simulate dawn and
dusk. Specimens were housed for a minimum of one week before sampling to ensure good

health for optimal cell proliferation.

modifications. Specimens were incubated in 0.005% colchicine solution for 6-7 hours, then
euthanized and dissected to remove gill arches. Sex determination was conducted by gross
examination of gonads with pictures taken throughout. Dissected specimens were stored in -80
°C for future molecular analyses. Gill arches were incubated in 0.4% KCI solution for 20-30
minutes, then fixed in two changes of 3:1 ethanol:acetic acid fixative for at least 30 minutes
each, followed by an overnight fixation period at 4 °C. To prepare slides, tissue was

homogenized into suspension by mincing in 50% acetic acid, then dropped onto a slide warmed
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to 30-40 °C and air dried. Slides were examined under phase contrast microscopy for quality
control, then aged for at least one day at room temperature before being stained for 10 minutes

in 10% Giemsa in pH 6.8 phosphate buffer (Gibco™ Gurr Buffer Tablets) and air-dried.

Chromosomes were examined under a Nikon Eclipse Ti-E microscope driven by Nikon NIS
Elements AR software, then photographed with an oil immersion objective at 100x magnification
and green color filtering using a Hamatsu ORCA-Flash4.0 camera. Digital images were
optimized, then homologous chromosomes were paired by size and morphology and arranged
in decreasing order of size using Imaged v1.52v and Adobe Photoshop 24.3.0. At least 35
complete metaphase spreads were photographed from each specimen with completeness
defined as the highest consistently observed chromosome count. Chromosomes were classified
as metacentric (m), submetacentric (sm), subtelocentric (st), or acrocentric (a) according to their
arm ratios (Levan et al. 1964). Chromosome arm number (Fundamental Number, FN) was
calculated by considering metacentric and submetacentric chromosomes as biarmed and

subtelocentric and acrocentric chromosomes as uniarmed.

Results

We describe karyotypes for the first time in six species (Fig 1): S. selatanensis, S. vaillanti, S.
acrostoma, L. aura, and P. ocellatus. We also confirmed the karyotypes of an additional two
species (S. osphromenoides, L. pulcher) which matched those established in the literature
(Calton and Denton 1974; Arai 2011). All species in the genus Sphaerichthys had different
chromosome counts, with 2N ranging from 16-28 (Table 1). The number of chromosome arms
(fundamental number, FN) showed less variation, with a range of 30-38. Notably, the sister
species S. osphromenoides and S. selatanensis had a primarily biarmed and primarily uniarmed

karyotype respectively, resulting in a nearly identical FN despite a 2N difference of 12. The



122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

other two sister species in the genus (S. acrostoma and S. vaillanti) had karyotypes that were a
mix of biarmed and uniarmed chromosomes and had different values for both 2N and FN. We
confirmed that L. pulcher had an entirely uniarmed karyotype of 20 acrocentric chromosomes.
Luciocephalus aura had a primarily biarmed karyotype with six fewer chromosomes and eight
more chromosome arms. Parasphaerichthys ocellatus had a primarily uniarmed karyotype with
higher 2N and FN that were higher than any Sphaerichthys or Luciocephalus species, but lower

than was reported for C. nobilis in the literature (Arai 2011).

The two S. selatanensis that we sampled had different karyotypes (Supplemental Table 2). One
had 28 uniarmed chromosomes (2N=28, karyotype 2st+26a), while the other had 26 uniarmed
chromosomes and an unpaired metacentric chromosome (2N=27, karyotype 1m+2st+24a). The
unpaired metacentric chromosome was approximately twice the size of the largest acrocentric
chromosomes and may have been caused by a fused acrocentric pair. We cannot say whether
this is a sex chromosome because we could not confidently determine the sex of either

individual.
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Figure 1. Selected anabantoid karyotypes. Phylogenetic relationships are from Ruber et al. (2006) and are shown to scale for the
spiral egg clade (red) but not the selected species in the family Osphronemidae (black) or the outgroup (Helostomatidae, grey).
Values for 2N, FN, and Karyotype for four species not generated in this study can be found in Arai (2011) and Grazyna et al. (2008).
Karyotype formula describes number of metacentric (m), submetacentric (sm), subtelocentric (st), and acrocentric (a) chromosomes.
Note that chromosome sizes vary widely between spreads and are thus not directly comparable except within the same spread. Live
specimens were photographed with iPhone 13.

Discussion

We found that the genera Sphaerichthys, Luciocephalus, and Parasphaerichthys have low
chromosome counts (2N<34) with high intra-genus variation in both 2N and FN. These trends
are not observed in the karyotypes of the broader family Osphronemidae, which mostly have
karyotypes similar to the hypothesized ancestral state for all teleost fishes (2N=52, Nakatani et
al. 2007), thereby suggesting that rapid karyotype evolution occurred since the divergence of
the spiral egg clade about 25 million years ago (Ruber et al. 2006). Karyotype evolution of this
rate and magnitude has not been reported in teleost fishes. The drastic differences between
karyotypes within the Sphaerichthys and Luciocephalus genera suggests that karyotype
evolution may have played a role in speciation process by creating post-zygotic isolation (Canitz
et al. 2016; Jackson et al. 2016; Mezzasalma et al. 2017; Romanenko et al. 2018), but it is also
possible that the observed karyotype diversity happened alongside the speciation process
instead of driving it (Krysanov et al. 2023). The observed karyotype pattern could have been
created by the influence of genetic drift or other forms of neutral selection, extremely strong
meiotic drive, the evolution of a trait that stimulates chromosome evolution, or a combination of

these factors.

Genetic drift has been proposed to be the driving force behind the fixation of highly
differentiated karyotypes in some clades of freshwater fishes, including the annual killifishes in
the genera Nothobranchius (2N=16-50) (Krysanov et al. 2016, 2023; Krysanov and Demidova
2018) and Aphyosemion (2N=20-40) (Volker et al. 2005, 2007, 2008). These species tend to

live in small, biogeographically isolated populations and frequently experience genetic
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bottlenecks and founder effects due to the ephemeral nature of their habitats (Volker et al. 2006;
Krysanov and Demidova 2018; Krysanov et al. 2023), which may have sped up the
accumulation of both intra-and inter-chromosomal mutations, with centric fusions being
responsible for most decreases in chromosome count (Volker et al. 2005, 2008; Krysanov et al.
2016). Sphaerichthys and Luciocephalus species have very limited geographical ranges and,
given that most of them are threatened or endangered according to the IUCN Red List, these
populations are likely small; however, it is difficult to precisely estimate the strength of genetic
drift on the evolution of the karyotypes in our study group because there is little information

about their distribution and population structure.

An alternative explanation to genetic drift is meiotic drive. Species evolving under the influence
of strong meiotic drive will tend to reach karyotypes of predominantly biarmed or uniarmed
chromosomes (de Villena and Sapienza 2001; Molina et al. 2014). This has been observed in
fishes and mammals, with the note that groups with high rates of mismatched karyotypes
tended to have higher rates of chromosome evolution (Blackmon et al. 2019). The decrease in
chromosome number in our study group relative to the rest of the family may have been caused
by a meiotic drive toward biarmed chromosomes that rapidly fixed fusion mutations.
Additionally, the near-complete inversions in biarmed proportion between sister species (S.
osphromenoides and S. selatanensis, L. aura and L. pulcher) are consistent with an inversion in
the directionality of meiotic drive after or during the divergence of these species from their
common ancestor, such that either fusions or fissions were preferentially fixed in one species
but not the other. The karyotypes of S. vaillanti and acrostoma, which have a mix of biarmed
and uniarmed chromosomes, may be partway through a shift to a completely biarmed or
uniarmed karyotype. Additionally, changes in the arm number may have been caused by
pericentric inversions, which may also be subject to the force of meiotic drive (Molina et al.

2014). The large differences in karyotype between recently diverged species indicates that the
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karyotypes were fixed extremely quickly, suggesting that meiotic drive would have to have been
extremely strong if it was driving these changes. There are several counterbalancing forces that
we would expect to weaken the strength of meiotic drive, including the relatively stronger force
of genetic drift, as well as the general trend of changes in chromosome count tending to be

slightly deleterious (King 1995).

Chromosomal rearrangements can have phenotypic impacts, particularly inversions, which can
suppress recombination by capturing multiple locally adapted alleles (Kirkpatrick and Barton
2006; Berg et al. 2016; da Silva et al. 2021). Additionally, low chromosome number has been
found to have correlations with phenotypic effects related to genome size (Gold 1979), including
specialization (defined as being highly phenotypically derived from their close evolutionary
relatives), tightening linkage groups, and occupying a narrower ecological niche (Gold 1979;
Hardie and Hebert 2004). The observed rearrangements and reductions in the spiral egg clade
may have played a role in acquiring highly specialized adaptations such as the ability of
Sphaerichtys and Luciocephalus to live in peat swamp forests and the associated blackwater
habitats, which are oligotrophic, sparsely inhabited, and highly acidic (pH < 4) (Polgar and
Jaafar 2018). By contrast, P. ocellatus and C. nobilis are not adapted to such harsh conditions
and are typically found in small muddy streams and pools. Additionally, it is possible that the
rapid genomic rearrangements observed in this group may have contributed to the observed
phenotypic differences in this subfamily, such as the highly derived morphology in

Luciocephalus.

The spiral egg clade presents an excellent opportunity to understand how these exceptionally
differentiated karyotypes arose and could give insight into larger patterns of chromosomal
evolution. Advanced cytogenetic techniques could help clarify which types of chromosomal

rearrangements occurred (ex. Ag-NOR staining, c-banding, FISH, etc.) as has been done in
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allow testing for non-conservative mechanisms of chromosome evolution. To test the influence
of meiotic drive, work could be done to examine kinetochore protein levels during meiosis
(Chmatal et al. 2014), as well as the amount of minor satellite DNA repeats on the centromere ,
which have been associated with the action of meiotic drive in the western house mouse (Ilwata-
Otsubo et al. 2017; Dudka and Lampson 2022). Other factors could be investigated that are
known to stimulate chromosomal rearrangements such as repetitive DNA content (King 1995;
Martinez et al. 2017) which was also implicated in the high incidence of chromosomal mutations
in Nothobranchius (Krysanov et al. 2023). There are other monophyletic clades in the family
Osphronemidae that have unusually differentiated chromosomes (Srisamoot et al. 2021),
suggesting that the underlying mechanism driving karyotypic change in the spiral egg clade may
be a shared ancestral trait and allowing for comparative genomic studies between the spiral egg
clade and closely related groups. Finally, it is also worth noting that most Osphronemidae
species have not been examined cytogenetically, hence karyotyping more species in the family
Osphronemidae could reveal more clades with high karyotype differentiation. Further attention
should be pair to this cytogenetically diverse group, as they could help resolve outstanding

evolutionary questions of chromosomal rearrangements and diversity.
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