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ARTICLE INFO ABSTRACT

Keywords: Sequential drying provides opportunities to achieve quality by combining individual drying modes. Many process

Sequéﬂtial _drying ) and product parameters affecting multiple drying modes make it complex. We studied quality evolution in a

;/Iultl-phism's modeling sequence of microwave, impingement, and hot air drying of the mashed vegetable chip using a poromechanics
'oromechanics

and transport model with volumetric evaporation, moisture-based microwave absorption, pressure-driven
expansion, moisture loss-driven shrinkage and glass transition. It was validated for temperature, moisture, size
and porosity obtained in an industrial setting. Gas porosity is higher at the center during microwave and at the
surface during impingement drying. Moisture loss-driven shrinkage was more dominant than pressure-driven
expansion. Shrinkage followed the moisture loss when the chip was rubbery, but shrinkage reduced after the
glass transition occurred. Sequential drying was able to achieve a quality that would be hard to achieve using
a single drying method. The mechanistic framework, successful for three drying modes and their sequence, is

Quality evolution

useful to understand drying-like processes.

1. Introduction

There are many drying methods and their final effects on quality
are quite different. Hot air convective drying is the most commonly
used drying method. However, it removes water from the outer parts
of the food more effectively than the internal parts and creates non-
uniform moisture distribution. It progressively hinders the advancement
of the drying front into the food as resistance to moisture removal in-
creases with drying. Continued drying might impart undesired color,
texture and loss of nutritional value due to various chemical reactions
and physical changes taking place in the food. Impingement drying is a
fast and efficient drying method for thin materials. It heats the materi-
als effectively with high velocity and high air temperature by reducing
the thermal boundary layer (Moreira, 2001). Higher drying rates of im-
pingement change the internal structure to the greatest extent (Nowak
and Lewicki, 2005) and generate a crispy texture due to faster sur-
face heating (Geedipalli et al., 2008). Microwave drying has also been
used as it is more energy efficient (Qing-Guo et al., 2006; Zhang et al.,
2017). It can also introduce expansion in the food (Witrowa-Rajchert
and Rzaca, 2009; Kowalski et al., 2010). This helps create a structure
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similar to crispy and fried foods yet results in low-fat content mak-
ing the foods healthier (Moraru and Kokini, 2003; Gulati et al., 2016;
Pompe et al., 2020). It may also result in extremely high temperatures
at the corners (Cohen and Yang, 1995), burning (Nijhuis et al., 1998)
and undesired color and/or flavor (Khraisheh et al., 2004).

Reliance on a single drying method has been challenging to meet
the desired nutrient and flavor retention, browning, uniformity of dry-
ing and texture of dried foods (Zhang et al., 2017). Recently, emerging
combinations (two or more drying methods used simultaneously) and
sequential drying methods have been more useful as they are energy
efficient and provide reduced quality degradation (Hnin et al., 2018).
Although the simultaneous application of conventional hot air drying
with microwave, infrared, ultraviolet, radio frequency, vacuum, freeze
or pulsed electric drying is shown to be effective in maintaining product
quality and reducing operational costs, the capital cost of the special-
ized equipment and problems in the scale-up necessary for industrial
usage hinder the commercialization of such drying methods (Supmoon
and Noomhorm, 2013; Onwude et al., 2019; Zhou and Wang, 2019;
Zhang et al., 2017; Hnin et al., 2018; Yin et al., 2019).
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Nomenclature

ay, Water activity

¢ Concentration of species i ..................uenn. kg/m?3
(o Specific heat capacity of speciesi.............. J/ (kg -K)
c Molar density ..........c.ovvviiieeieieeaaaaa.... kmol/m?
C Right Cauchy-Green deformation tensor

D Stiffness tensor..........ocoviiiiiiiiiii i Pa
D, Binary diffusivity of vapor and air mixture......... m?/s
D, Capillary diffusivity....................cooiiiinnan. m?/s
E Elastic modulus . .. ...vvvereeieeeieeieeieeeenennnn. N/m?
E Green-Lagrange strain tensor

F Deformation gradient tensor

G Shearmodulus .........ccoviiiiiiiiiiiiii i

h, Heat transfer coefficient

h,, Mass transfer coefficient

1 Rate of evaporation..........................

I Identity tensor

J Jacobian

K Bulk modulus ........c.ovviiiiiiiiiiiiiiiiiiii Pa
k; Thermal conductivity of species i............. W/ (m-K)
Kini Intrinsic permeability of species i .................... m?
k. Relative permeability of species i

Keyp Eaporation rate constant....................cooeean. 1/s
Le Lewis number

m Overall mass fraction

M Moisture content (dry basis) ....... kg water /kg dry solid
M; Molecular weight of species i ................... kg/gmol
il Unit normal

ii; FIUX Of SPECI@S i +vvveeeeeeiiiiieeeeennnnnnns kg/ (m?-s)
Nu Nusselt number

p Pressure. ... ..ot e Pa
Pe Capillary pressure of water ............couveueeunnenn. Pa
Pr Prandtl number

7 Heat fluX . ....vvveeeiiiieeeeeeeeeeeee . W /m?
(0] Microwave SOUICe term.......o.oeueuenenenenenen.. W/m?
r RadiliS .. ovveie e m
R Universal gas constant .............c.c..e.... J/ (mol - K)
Re Reynolds number

S; Saturation of a fluid phase i

S Second Piola-Kirchhoff stress tensor.................. Pa
t TIMe. .ot s
T Temperature ........oovueieiiiin i °C
i DiSplacement . ......ovuueneine et iie e, m
] VeloCity ..o oenee e m/s
X; Mole fraction of species i in gas phase

Vv Y 0) LE T

w Strain energy density...............ooiiiiiiiinn

X Coordinates in spatial frame

X Coordinates in material frame......................... m
Greek symbols

i Coefficient of shrinkage .......................... m? /kg
€ Strain

p DENSIEY « vttt eeeeeaaaann kg/m3
A Latent heat of vaporization......................... J/kg
® Mass fraction in the gas phase

[ Porosity in Lagrangian frame

¢ Porosity in Eulerian frame

u Shearmodulus .........covviiiiii i Pa
H; Dynamic viscosity of phase i .................coout. Pa-s
v Poisson’s ratio

G SHTESS. ettt Pa
X Transformation of reference frames

Subscripts and superscripts

0 At timer=0

a Air

amb Ambient

b Binary

c Capillary

eff Effective

el Elastic

eq Equilibrium

evp Evaporation

f Fluid

G Ground (stationary observer)
g Gas

i i"" Phase

in Intrinsic property

M Moisture

m Mechanical

oven At ambient conditions of the oven
r Relative property, r-coordinate
s Solid

sat Saturation

surf Surface

symm Symmetry

T Transpose of a tensor

t Thermal

v Water vapor

w Water

X Coordinate in spatial frame
X Coordinate in material frame
z z-coordinate

Sequential drying, on the other hand, uses commercially available
dryers in sequence to effectively drive the moisture out of foods. There-
fore, sequential drying is more suitable for commercial applications. In
this study, the sequence of microwave drying, followed by impingement
drying, and lastly hot air drying is considered (Fig. 1). The inclusion of
microwave drying as a part of the drying sequence is very important
and the use of microwave drying as the first stage has been suggested
by Kostaropoulos and Saravacos (1995), and Orkan-Karabacak et al.
(2020). In the first stage, microwave energy is used to evaporate the
water. This controls temperature from reaching a very high value and
burning the food. The physics of sequential drying includes quantifica-
tion of heat and mass transport, fluid flow, evaporation and deformation
of a porous material, including simultaneous pressure-driven expansion
and moisture loss-driven shrinkage. Additionally, the material prop-

erties undergo a large change due to the glass transition. There are
multiple variables in each drying stage that affect the quality. There-
fore, it is important to study the underlying mechanism affecting each
drying stage.

1.1. Previous attempts of modeling the quality evolution

Prior studies of combination drying mainly have been focused on
the experimental observation of quality and energy consumption. There
have been attempts to calculate the material properties required for
Fick’s law-based diffusion and Newton’s law-based cooling (Estiirk,
2010; Zhao et al., 2014; Argyropoulos et al., 2011). Such regression
analysis-based attempts may be simple to use but they have limited ap-
plicability. Other attempts of modeling microwave-assisted convective
drying include single phase diffusion, convection of water (Yang and
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Fig. 1. The sequential drying process for a mashed vegetable chip.

- Solid (deformation due to moisture loss and pressure gradient)
— D Liquid: Water (bulk flow, capillary pressure, phase change)

_— I:‘ Gas: Water vapor, air (bulk flow, binary diffusion, phase change)

Fig. 2. Representative elementary volume showing multiple phases and underlying physics affecting them during sequential drying.

Gunasekaran, 2001) with the conductive heat transfer, either constant
(Workneh and Oke, 2013; Darvishi et al., 2013) or Lambert’s law-based
(Souraki and Mowla, 2008; McMinn et al., 2003; Kumar et al., 2015)
microwave power absorption and vapor-liquid equilibrium.

Although these models include the flow of water in the food, they
lack the fundamental understanding of pressure-driven flow in porous
media such as food. Malafronte et al. (2012) studied the vapor diffusion,
convective transport and evaporation of water without the effect of wa-
ter activity. In addition to the above-mentioned physics, multi-phase
porous media-based approaches, including a distributed microwave
power absorption and water activity-dependent non-equilibrium evap-
oration approach have been combined with expansion (Rakesh and
Datta, 2012; Ressing et al., 2007; Kumar and Karim, 2019) and shrink-
age (Sanga et al., 2002). More comprehensive studies have included
a complex three-dimensional analysis of microwave power absorp-
tion using Maxwell equations with (Gulati et al., 2016) and without
(Malafronte et al., 2012; Rakesh et al., 2012) the detailed mechanisms
of deformation and change in the properties that affect deformation.

1.2. Novelty of the work

We developed a first principle-based mechanistic framework to pre-
dict the evolution of quality parameters for a novel mashed vegetable
chip dried sequentially using the microwave, impingement and hot air
drying. Effects of various product and process parameters were studied
for the chip quality as characterized by bulk density, gas porosity, size
change and shear modulus. We validated the multiphase, multicompo-
nent transport and poromechanics model that included simultaneous
pressure gradient-driven expansion and moisture loss-driven shrink-
age, and material transformation using temperature, moisture, size and
porosity data from an industrial setting. We extracted the contributions
of individual drying methods, their synergistic effect, and the contri-
bution of material transition toward quality development in sequential
drying.

1.3. Objectives and overview

Our objectives are (1) to develop a mechanistic framework for the
prediction of quality (bulk density, gas porosity and size change) in a
sequential drying process where volume expansion and shrinkage both
occur simultaneously, (2) to validate the model for an industrial scale
process and, (3) to develop insight into the combination of each drying
method and the sequence into the quality development. The manuscript

is organized as follows: Section 2 describes the multi-component and
multi-phase transport and large deformation model formulation, includ-
ing the pressure gradient and moisture loss-driven deformation and the
effect of glass transition; Section 3 includes the experimental procedures
and model implementation details; and Section 4 reports the model val-
idation and insights used to understand the effect of each drying step in
the sequence on the quality evolution.

2. Model development
2.1. Qualitative description of the modeling process

This section mechanistically describes the sequential drying of a
mashed vegetable chip. Assumptions in the mechanistic description,
the multi-phase and multi-component transport as well as the defor-
mation of the chip, along with boundary and initial conditions, are also
described. The chip, treated as a porous material (Fig. 2), undergoes
microwave drying, followed by impingement drying, followed by hot
air drying. The distribution of temperature and moisture during drying
changes the dielectric, thermophysical and mechanical properties of the
chip, which affect the microwave power absorption, transport processes
and deformation. The physics of drying, in turn, affect the moisture and
temperature distribution. Therefore, this is a two-way coupled problem
(Fig. 3).

Microwave drying: The absorption of microwave radiation energy
by the chip causes its temperature to rise. This results in internal vol-
umetric evaporation of water. The vapor generated from evaporation
inside the chip develops gas pressure. The gas pressure drives the wa-
ter and gas toward the outer surface of the chip. When the surface gets
saturated, water is expelled from the surface as drip loss. Simultane-
ously, moisture is also lost from the surface of the chip due to hot and
dry air flowing over it. Both the internal pressure generation leading to
expansion and the moisture loss leading to shrinkage result in the de-
formation of the chip. This changes the porosity of the material, which
in turn affects the transport of water and gases, evaporation and heat
transfer in the chip.

Impingement and hot air drying: During convective drying, hot,
dry air flows over the chip (at a very high velocity in the case of im-
pingement drying). This causes a higher temperature at the chip surface
than inside. When the internal temperature increases, the water evap-
orates and develops internal pressure. The pressure drives the flow of
water and gas similar to microwave drying. Simultaneously, the mois-
ture is lost at the boundary. However, there is no drip loss of water as
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Fig. 3. Flowchart showing the physics formulation and the coupling between multi-phase and multi-physics transport and the deformation during drying.
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Current configuration

Fig. 4. The initial (reference) and current (deformed) configuration of the representative elementary volume during sequential drying.

the chip surface remains unsaturated. The chip undergoes glass transi-
tion and becomes hard and rigid due to a large change in the mechanical
properties from the moisture loss and temperature increase. The chip
deformation is affected by moisture loss, gas pressure gradient and the
glass transition.

Assumptions: The following assumptions were made while formu-
lating the model. (1) The water in the chip pores is at equilibrium with
the vapor phase initially. (2) The local thermal equilibrium is assumed
at all times. (3) The effects of gravity are neglected. (4) The effect of
temperature on the diffusivity of water is neglected. (5) The material is
assumed to be nearly incompressible.

2.2. Continuum description

The chip is assumed to be a multi-phase porous medium consisting
of solid, liquid (water) and gas (water vapor and air) (Fig. 2). It deforms
due to pressure generated by water evaporation and moisture loss. The
deformation formulation is based on the poromechanics approach de-
scribed by Dhall and Datta (2011) and Datta et al. (2012). The total
volume of the material is split into solid and fluid phases and is mathe-
matically written as follows.

AV = AV, + AV, (€Y

where subscripts s and f denote solid and fluid phases, respectively,
and V is the volume of the porous material confined to a representa-
tive element. Hereafter, all quantities are written for the representative
elementary volume (REV) and homogenized over the entire porous
material. The fluid phase consists of water (denoted by w) and gases
(denoted by g). The pore volume is assumed to be occupied by the fluid.
Hence, the porosity, ¢, is defined as

AV, + AV,
TAV

Saturation, S;, of the fluid phase, i, is defined as the ratio of the
volume of phase, i, to the pore volume. Therefore,

(2)

AV, A,

S =—"t=—"L i=w, 3
NG =8 ®

where w represents the water phase and g represents the gas phase.

The chip deforms during the sequential drying process. Assuming
the mass of the solid is conserved, porosity (¢) at a time (r) can be
calculated as followed.

PV (1)1 = $1) = p, Vo1 — ) @
L d-¢y | 1-g
O= = em, = T )

where J(t) is the ratio of the current volume to the initial volume of the
chip and is called the Jacobian. Further discussion about obtaining the
Jacobian can be found in Section 2.3.

2.3. Solid mechanics

Deformation during drying of the chip is caused by the internal
evaporation of water that results in the pressure gradient and the mois-
ture loss. The Jacobian (J(t)) is obtained as the determinant of the
deformation gradient tensor, F, which maps the displacement by com-
paring the geometry of the chip in the deformed (current or the spatial
frame) to the undeformed (reference or the material frame). In the La-
grangian description of the motion, the spatial frame coordinates x are
described as a function of the material frame coordinates X and time )
with transformation, y, (Fig. 4) as follows.

X=z (i,;) ©)

The displacement of a point X in the material frame to the point X
in the spatial frame is denoted by u and is defined as:

ﬁ:i—i:;{(it)—i )

Therefore, the deformation gradient (F) and the Jacobian (J()) can
be obtained from the coordinates as follows:

F=V,X=V, (;{(X,z)) ®)
J(t) = det (F) ©)

2.3.1. Deformation gradient tensor split

In the deformation analysis, the deformation gradient (F) can be
used to separate the volume change caused by moisture loss from the
volume change that is caused by mechanical effects by splitting F. For
small deformation, the split can be additive, whereas, for large deforma-
tion, the multiplicative split should be used (Dhall and Datta, 2011; Ecsi
et al., 2017; VujoS$evi¢ and Lubarda, 2002). During microwave and con-
vective drying, the chip deforms more than 10%. Therefore, it will be
necessary to consider a large deformation and, hence, the multiplicative
split of the deformation gradient tensor. During the large deformation,
the material is assumed to first undergo stress-free deformation from



M.S. Ukidwe, A.K. Datta, C. Koh et al.

moisture loss, and then the mechanical stresses deform the material
further. This is represented mathematically, using the deformation gra-
dient from moisture loss (Fyy), and that due to the mechanical stresses
(Fep-

F=F, Fy (10)

2.3.2. Conservation of linear momentum

Using Tarzaghi’s effective stress principle, we can write the stress on
the REV, 5, as a total of the stress on the solid skeleton, ', and the fluid
pressure (p f) in pores (Dhall and Datta, 2011).

=5 —p,I (1n

The fluid pressure (p,) can be expressed as volume averaged pres-
sure exerted by liquid and gas phases as follows:

Py = Subu+ Sepy (12)

Assuming the quasi-steady state deformation, the solid momentum
balance results in a zero divergence state.

V-6=0 13)

Hence, from Egs. (11) and (13), the divergence of the stress on the
solid can be written as

Vx T =Vxp,=Vx(Suby+Sep) =0 a4

The pressure of the water is considered to be the result of pressure
from the opposing action of the gas pressure and the capillary action
(Datta et al., 2012).

Py =Pg —Pc (15)

From Egs. (14) and (15), we can write,

Vx @ +S,p.D=Vyp, (16)

With the effect of moisture loss accounted for as the deformation
gradient Fy;, the linear momentum balance equation can be re-written
in terms of the stress from the mechanical load only, 5", i.e., the effec-
tive stress on the solid skeleton, &, plus the volume averaged capillary
pressure, p,.

Vx @ +S,p.D)=Vy 5 =Vp, a7

The effective stress on the solid skeleton 5 is defined in the La-

grangian coordinate system in terms of the second Piola—Kirchhoff
stress, S, and the deformation gradient tensor (F) due to mechanical
strain.

o'=J'F-S - F' (18)

The second Piola-Kirchhoff stress tensor S characterizes the material
behavior and is related to the strain energy density function, W. It can
be derived using the Green-Lagrange tensor for elastic strains, E, with
the second law of thermodynamics.
oW,

- aEel

S (19)

The strain energy density function, W;, depends on the chosen ma-
terial model. The details about the strain energy density function are
described in Section 2.3.3. The Green-Lagrange elastic strain tensor,

E,, is given by
1
Ey= 5(FEIFel ) (20)

2.3.3. Constitutive law
The constitutive behavior of the material is characterized by the
strain energy density function W, as mentioned in Section 2.3.2. It is
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important to assess the effect of glass transition, the contribution of vis-
cous effects and the Deborah number (calculated as the ratio of stress
relaxation time and the processing time) to understand the appropri-
ate material model (Singh et al., 2004; Gulati and Datta, 2015). In the
rubbery state, the primary rotational oscillatory tests suggest the re-
laxation time of the order of 10~3 to 10~* s. With the processing time
being of the order of 10! to 10? s, the low Deborah number (10~* to
1075) suggests that the viscous contributions are important. In the glassy
state, the relaxation time is very large suggesting the time-independent
viscous contribution. Hence, the elastic material behavior will be appli-
cable. The contribution of the viscous terms could also be significant in
the glass transition zone (Singh et al., 2004). Due to a very thin cross-
section of the chip, the moisture and temperature distributions exhibit
sharp changes at the edges. This maintains most of the chip in the glassy
or rubbery region, leaving very little room for the transition zone. Sec-
ondly, because of the lack of precise information regarding the size of
the transition zone in the literature, it is not possible to incorporate vis-
cous contributions in the transition zone. Thirdly, the force-deformation
curves for the steam-cooked sweet potato (Gallego-Castillo and Ayala-
Aponte, 2018; Truong et al., 1998) and the stress-strain curves for
mashed potato (Krokida and Maroulis, 2000; Gulati and Datta, 2015),
two major components of the chip, suggest non-linear elastic or hypere-
lastic behavior (Belytschko et al., 2013; Dhall and Datta, 2011; Gulati et
al., 2016; Krokida et al., 1999; Rakesh and Datta, 2011, 2012). Prelim-
inary simulation of the process with a linear elastic, linear viscoelastic
and a neo-Hookean material model showed little difference (see Sec-
tion 4.4 for details) in the model predictions. Hence, the linear elastic
material model Eq. (21) was chosen to avoid further computational
complexity.

1
W,=3Eq:C:Eq (21)

where C is the right Cauchy-Green deformation tensor (= FT - F)

2.3.4. Volume change from moisture loss

Under stress-free conditions (Fig. 5), the change in the volume of the
REV is due to the changes in the moisture content. The moisture content
changes because of the loss of liquid water and vapor at the boundary.
Since the density of water is three orders of magnitude higher than
that of vapor, the volume change due to the loss of vapor is negligible
compared to the loss of liquid water. Therefore, for a REV, the change in
volume because of moisture loss can be calculated based on the initial
volume, V|, and the current volume, V,,, as:

c, V() —c,oVo
VM —VO: w w,0"0
Pw

VM 1 _¢0Sw,0
L =Jy=—
" 1-¢S,

(22)

(23)

The deformation gradient from moisture loss, Fy, is expressed in
terms of the water concentration difference and an isotropic coefficient,
B, that represents the change in volume with a unit change in concen-
tration of water.

Fy=JyI=1+p(c, —¢))1 (©2))

From Eq. (24), it can be seen that the coefficient #=1/p,, and c(’)
refers to the concentration at the stress-free (initial) conditions.

2.3.5. Structural velocity

The description of multiphase and multicomponent transport differs
for the deforming solid and a stationary observer at the ground. To
calculate the effect of the deforming solid for an observer stationary on
the ground, we need to consider the additional velocity arising from
solid deformation as follows:
. _du

=2 25)
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M, o’
Total . Puffing due to
deformation
pressure (Fy)
(F)
M,, 0'=0 > M, o’=0

Shrinkage due to
moisture loss (Fy,)

Fig. 5. Multiplicative split of the deformation tensor showing independent de-
formation due to moisture loss and the mechanical effects contribute to the total
deformation.

2.4. Multi-phase and multi-component transport (momentum, mass, and
energy conservation)

The multiphase and multicomponent transport in this section has
been formulated with respect to an observer stationary at the ground as
described in the following expression:

Hig = hg o+ ¢;U; (26)

Additional flux due
to solid movement

Flux relative to
deforming solid

Flux relative to
ground frame

where ¢; is the concentration of the species ‘i’ in the porous media.

2.4.1. Momentum conservation
The flow of fluids in porous media is described by Darcy’s law. The
velocity of the fluid i, in relation to the deforming solid, 7, ; is given by,

k. k..
= ini™ri V)(Pi 27)

A—

i

The velocity of water is calculated by considering the water pres-
sure, p,, which depends on the total gas pressure and the capillary
pressure. The velocity of water vapor and the air are similarly calcu-
lated as driven by the total gas pressure. It should be noted that when
the multi-phase and multi-component transport equations are formu-
lated with respect to the ground, the pressure gradient in the above
equation should be calculated in the spatial coordinates.

2.4.2. Mass conservation

The mass conservation equations of water (Eq. (28)), vapor (Eq. (29)),
and gas (water vapor + air) (Eq. (30)) with I as evaporation rate, as
follows.

a .

&_{.Vx.;iwc:—l (28)
ot ’

dc N .

a_t” +V, d,g=1 (29)
% vy =i 30)
ot RS

2.4.3. Mass fluxes

The mass fluxes, 7; g, in Egs. (28), (29) and (30) are calculated based
on the fluid pressure, intrinsic permeability, &;, ;, relative permeability
k,; and viscosity of the fluid y; of fluid i. The function f(¢) accounts
for the porosity-based changes in the intrinsic permeability with defor-
mation (see Section 2.5.4 for details).

Liquid water flux: The flux of water in Eq. (28) is calculated by
considering the pressure of water in the porous medium that drives the
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flow. The pressure of water is determined from the gas pressure and the
capillary pressure as described by Eq. (15). The flux of water can be
calculated as

. Kinwf (DK,

NG = —Pw T prw (31)
.

. Kinwf (DK,

TG = =PV (g = Pc) (32)
w

k. f( k.. k, . f(d)k

zw,G:_prvxl,g oo Kinaf Dl g (33)

Hy Hw

The first term on the right-hand side of the above equation can be
simplified as the Darcy velocity of water from Eq. (27). The second term
can also be simplified by considering the capillary pressure as a func-
tion of moisture content and temperature. Ignoring the dependence of
the capillary pressure on the temperature, the gradient of the capillary
pressure can be expressed in terms of the gradient of moisture content
alone as follows:

Kipwf @)k, 1 Op, v

ﬁw,G =Puw 5w,G + Pw dc xCw (34)
w w
By defining the capillary diffusivity as
Kin f (@, 0
e =P in,w raw OP¢ (35)
Hw dey,
the flux of water with respect to the ground can be written as
;iw,G = pwEw,G - Dw,c chw (36)
~—— ~——

Flux due to
capillary diffusion

Bulk flow of water
due to gas pressure

Vapor flux: The mass flux of vapor arises from the evaporation of
water and diffusion of water vapor and air treated as a concentrated
binary mixture (Bird et al., 2007). The mass fraction of water vapor and
air is used to calculate the concentration of the respective components.

C2
prg_¢Sg<p_g>MuManvxxu (37)
8

Kinof (ko
nyG = v "
v

From Eq. (27), we then write the total vapor flux as:

C2
> - g
n,6 = PuluG _¢Sg P MUM”DbVXxU (38
—— Py
Bulk flow of vapor
due to gas pressure Flux due to

binary diffusion

Total gas flux: The flow of the gas is from the pressure of gas aris-
ing from the evaporation of water. We consider the equimolar counter
diffusion of water vapor and air. Hence, the effective diffusive flux of
total gas is zero. Considering this, the gas flux can be written based on
the pressure-driven bulk flow:

. Kino f (D)K. .
Ny =—Pg % ViPe =Pgly i (39)
s

2.4.4. Energy conservation

The energy equation in the conservative form is written by consider-
ing the change in storage, convection due to the bulk flow, conduction
of heat, the evaporation-condensation and microwave power absorbed
by the chip.

Jd
i=s,w,v,a i=w,v,a

Simplifying the above equation, and using the equation of continu-
ity, the energy equation can be written as follows, which resembles the
non-conservative form.

ﬁi,ch,iT) =V, (ke Vi T) = Al +0

(40)
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aT o .
(pcp)ef/. T ( Z ni'chvl.) (Vi T) =V, (ko sV, T) = AT +0Q (41)
i=w,v,a
The thermophysical properties and the microwave heating term ‘Q’
in the above equation are described in Section 2.5.

2.4.5. Phase change

Equilibrium and non-equilibrium approaches have been used to
model the evaporation rate in the porous media. With microwave and
impingement heating generating very high fluxes in a relatively small
process time of 50 s to 100 s, we need to assume the non-equilibrium
approach to model evaporation. The evaporation/condensation rate is
modeled to be volumetrically distributed in the computational domain.
Since the method of heating is intense, there is a large amount of
moisture removal in a short time. For such processes, it will be more
appropriate to use the non-equilibrium evaporation rate (Halder et al.,
2007) and can be written as

, ) M,
1= Kep(Su)$S, [P (Day(M, T) = p,| 22

The term p}*(T)a,,(M,T) is the equilibrium vapor pressure and the
difference between the equilibrium vapor density and the vapor den-
sity at any location gives the evaporation rate. The evaporation rate
constant, K,,,, depends on the process to be modeled (Halder et al.,
2007). For a fast process, such as microwave or impingement heating,
a value of 100 1/s is considered here. Moreover, when the pores are
mostly empty (assumed when .S, <0.01), the residual water is strongly
bound to the solid matrix, resulting in high capillary forces. Due to the
unavailability of water for evaporation, the evaporation rate is assumed
to be zero. Similarly, when the pores are completely saturated (assumed
when .S, > 0.99), there is hardly any space for the liquid to evaporate
(very low gas porosity). This restricts the evaporation as well (Bénard
et al., 2005). Both conditions are considered in the formulation by as-
suming the evaporation rate constant to be zero at very high or very
low water saturation.

(42)

2.5. Input parameters
Refer to Table 1 for the input parameters.
2.5.1. Thermophysical properties

The thermophysical properties in Eq. (41) are weighted averages
and estimated as follows:

peff:(l_¢)p5+¢[swpw+sw (a)b.pu+a)apa)] (43)
keps = (1= $) ks + & [Sukiy + S (@pky +@oka)) (44
cp,eff = mscp,x + mwcp,w + (1 —mg— mw) (wvcp,v + a)acp,a) (45)

where m; is the weight fraction of the phase i.

2.5.2. Transfer coefficients
The heat and the mass transfer coefficients for the microwave drying
were assumed based on the work by Rakesh and Datta (2012) and, Ni
and Datta (1999). The heat transfer coefficient for the impingement and
the hot air drying was calculated based on the correlation for the flow
over a flat plate using the oven air temperature and the velocity and
accounting for the shrinking diameter, /(¢), of the chip Incropera and
DeWitt (1990); Warning et al. (2012); Gulati and Datta (2015).
()
u=

0.5
MY _ 0664 RE
k, P03

(46)

The mass transfer coefficient in the impinger was calculated based on
the modified Chilton-Colburn analogy.

h.D k 0.33
5t <7 ) (47)
k, ngp’ng

ht DbLe()A33

h,=05———=0.
m kv
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2.5.3. Mechanical properties and glass transition

The chip consists of starch that is made of amorphous and crys-
talline polymer chains, making the material semi-crystalline. Based on
the thermodynamic state of the medium, the polymer chains are ar-
ranged in the material. It is theorized that there is free space in the
material that is not occupied by the polymer chains (Young and Lovell,
2011). This allows the molecules to change their conformation freely.
This translates to a low viscosity and stiffness for the bulk properties. As
the temperature of the material increases during drying, the free volume
increases allowing easier flow or deformation of the material. Similarly,
higher moisture content (acting as a plasticizer) improves the mobility
of the polymer chains (Benczedi et al., 1998; Sperling, 2005; Yang et
al., 2005), which also decreases the viscosity. As moisture content and
temperature decrease, the stiffness of the material increases. This also
makes the material brittle or glass-like. This transition is termed the
glassy transition and is represented by T, the glass transition tempera-
ture, and is a function of moisture content. The glass transition curve of
potato starch (Benczedi et al., 1998; Gulati and Datta, 2015) is used to
simulate the mashed vegetable chip as potato is a major component of
the vegetable chip. The mechanical properties (the elastic modulus and
Poisson’s ratio) are changed when the state of the material changes.

2.5.4. Porosity factor

During the drying process, the chip undergoes large deformation.
Depending on the degree of shrinkage or puffing, the porosity increases
or decreases. Note that the porosity referred to here (as defined in
Eq. (2)) is the total porosity and not the gas porosity that is regularly
considered. As the porosity of the material decreases, it becomes less
permeable to the flow of the fluids. The Kozney-Carman equation (Bear,
1972) provides a means to account for the changes in the liquid and the
gas permeability by multiplying a porosity factor.

AYAR Y

ro=(3) (%) “9)
2.5.5. Microwave heating

Energy absorbed by the chip during microwave drying depends on
the penetration depth of the waves into the chip. As the chip size is
very thin, microwave power absorption can be assumed to be initially
uniform. The initial microwave power was estimated based on the tem-
perature profile of the sample at the center for the first 10 s. As the
concentration of liquid water in the chip reduces, the microwave power
absorption also falls below the initial absorption. This reduces the ef-
fect of microwave radiation as drying progresses. A similar reduction
can be seen when the fully coupled electromagnetism model is used
(Ni et al.,, 1999; Zhang and Datta, 2003; Chen et al., 2015; Gulati
et al.,, 2016). Without a fully coupled microwave model, the reduced
absorption of the microwave power needs to be empirically included.
Rakesh and Datta (2012) measured the initial power absorption and as-
sumed uniform power distribution in the foods due to small volume, and
the microwave power was scaled empirically to account for the mois-
ture loss. The scaling was based on the dielectric properties of leather
(Metaxas and Meredith, 1983; Ni, 1997), assuming reasonable similar-
ity in the composition of the raw/blanched potato. A similar approach
was followed in determining microwave power absorption. However,
the composition of the chip is much different from potato or leather.
Therefore, different scaling was required to match the temperature and
moisture histories. The initial microwave absorption by the chip was es-
timated based on the temperature profile of the sample at the center of
the chip for the first 10 s, assuming no evaporation, bulk flow and con-
duction occurred during this time. The empirical power reduction was
also obtained by the sensitivity analysis on the exponential factor to
fit the measured temperature profile at the center. Therefore, the final
form of microwave power was

-3
0=7x10’ (%) W/m?* (49)
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Table 1
Input parameters used in the sequential drying.
Parameter Value Unit Reference
Dimensions
Diameter 55 mm This study
Thickness 2.4 mm This study
Density
Water, p,, 998 kg/m? (McCabe et al., 2005)
Vapor, p, Ideal gas kg/m?
Air, p, Ideal gas kg/m?
Solid, p 1564 kg/m? (Choi and Okos, 1986)
Specific heat capacity
Water, c,,, 4178 J/kg-K (McCabe et al., 2005)
Vapor, c,, 2062 J/kg-K (McCabe et al., 2005)
Air, ¢, 1006 J/kg-K (McCabe et al., 2005)
Solid, Cps 1650 J/kg-K (Choi and Okos, 1986)
Thermal conductivity
Water, k,, 0.57 W/m-K (McCabe et al., 2005)
Vapor, k, 0.026 W/m-K (McCabe et al., 2005)
Air, k, 0.026 W/m-K (McCabe et al., 2005)
Solid, k, 0.21 W/m-K (Choi and Okos, 1986)
Intrinsic permeability
Water, k,,, 5x10710 m? (Ni and Datta, 1999)
Gas, ki, 1x10°15 m? (Ni and Datta, 1999)
Relative permeability
Water, k, ,, [(S,, —0.09)/0.913, 5, > 0.09 (Bear, 1972; Datta et al., 2012)
0,5, <0.09
Gas, k,, (1-1.1S,),5, <1/1.1 (Bear, 1972; Datta et al., 2012)
0,5, >1/1.1
Viscosity
Water, u,, 9.88x107* Pa-s (McCabe et al., 2005)
Gas, p, 1.8x1073 Pas (McCabe et al., 2005)
Diffusivity
Water, D, 1x10~8exp(-2.8+2M) m?/s (Ni et al., 1999)
Gas, D, 2.6x107° m?/s (Rakesh et al., 2012)
Mechanical properties
Poisson’s ratio, v 0.49 (rubbery) (Gulati and Datta, 2015)
0.3 (glassy)
Shear modulus, G Fig. 6b Pa This study
Other properties
Heat transfer coefficient, h, Fig. 7a W/m?K This study
Mass transfer coefficient, A, Fig. 7b m/s This study
Oven temperature, 7,,,, Fig. 7c K This study
Latent heat of vaporization, 4 2.26x10° J/kg-K (McCabe et al., 2005)

1730.63

Saturation vapor pressure, p}"
81094

% x 10%0731- 755 274.15<T <373.15  Pa

(Warning et al., 2012)

101335 50 4814019~ 2555 27215 < T < 647.15

Water activity, a,, 0.2699 + 0.4479 In(M)

This study

2.6. Initial and boundary conditions

2.6.1. Initial conditions
The initial displacement in the sample was assumed to be zero.

u,_,=0m (50)
The initial temperature of the chip was assumed to be 20 °C.
T,_y=293.15K (51)

The initial concentration of water in the chip was calculated from
the recipe.

Cipsmp = 685 kg/m’ (52)

The initial mass fraction of water vapor in the gas phase was calcu-
lated by assuming water and vapor are at equilibrium at the beginning

of the process. The initial temperature and the water activity of the
mashed dough were used to calculate the concentration of vapor based
on the moisture isotherm.

@, = 0.0014 (53)

The porous medium was assumed to be at atmospheric pressure in
the beginning.

P—o = 101325 Pa (54

2.6.2. Boundary conditions

The boundaries on the axis of symmetry and the plane of symmetry
(Fig. 8), were set to zero flux condition (Egs. (55) and (56)) for the mul-
ticomponent and multiphase transport, and zero normal displacements
(Egs. (57) and (58)). All other boundaries were set to be unconstrained
and free to deform.
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Fig. 6. (a) Experimentally measured shear modulus and moisture content variation with temperature and (b) Estimated variation in the shear modulus with moisture

content change.

—f- ?itG'symm =0i=w, v, a g (55)
—* G jsymm =0 (56)
u,=0atr=0 (57)
u,=0atz=0 (58)

The pressure was set to ambient conditions for the boundaries ex-
posed to the atmosphere.

Plsury = 101325 Pa (59)

The liquid water moves from the interior of the chip to the surface
by capillary diffusion and the bulk flow, and evaporates before getting
convected away as vapor. Similarly, when the pores at the surface are
saturated (S, > 0.99), the water can also leave the chip due to drip
loss. The movement of the boundary also creates an additional flux.
Therefore, the flux of water at the surface, with respect to the ground,
can be written as

—A- ’_’iw,G|surf =h,$S, (pu - pu,oven) + puh- ﬁw,G e, - U (60)

——
When S,,>0.99

w=

The water vapor in the chip moves to the surface via binary diffusion
and bulk flow. At the surface, the vapor is convected away. Due to
large pressure gradients near the surface, the vapor also may undergo
blowing. Hence, the flux of the vapor, with respect to the ground, can
be written as
+ puh UU,G +eyit - Uy

——

Blowing flux

—h- ’_'iu,G|surf = hm¢Sg (Pu - Pu,oven) (1)

10

Similarly, the concentration of air in the chip decreases and causes
an influx of air into the chip from the environment. This is included
as the convective flux in the equation below. The air influx maintains
a certain minimum air concentration in the chip at high vaporization.
The air may be blown out of the chip from the high internal pressure as
well.

—n- ;ia,G|SL1rf = hm¢Sg (pa - Pa,oven) + paﬁ ) L_}a,G +Caﬁ : Bs (62)

——

Blowing flux
Depending on the temperature of the oven, the chip is subjected to
convective cooling or heating (the first term of Eq. (63)). The loss of
water occurs in the liquid and gas phases when the water evaporates at
the surface. This needs to be specifically accounted for when calculat-
ing the heat flux. Some of the water leaving the system evaporates and
is then convected away as vapor. Hence, the corresponding contribu-
tions of latent heat and sensible heat need to be counted. The water is
expelled from the surface due to gas pressure when the surface is satu-
rated. This is included in the third term of Eq. (63). Additionally, there
is a loss of sensible heat from the transport of water vapor and air (the
fourth and the fifth terms in Eq. (63), respectively) across the boundary.

T,

oven

) - hm¢Sw (pu - pu,oven) (’1 + Cp.wT)

- (Cwﬁ . aw.G) Cp,wT - (_ﬁ . ﬁv,Glsurf) Cp,vT - (_ﬁ . ﬁa,Glsurf) cp,aT

—i - ‘76|surf =h (T -

When 5,,>0.99

(63)
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3. Experimental methodology and model implementation

Sample preparation: The sequential drying experiments were car-
ried out in an industrial facility. The chip was made from individualized
quick frozen (IQF) sweet potato, potato, potato flakes, chickpea flour
and high oleic sunflower oil (HOSO). The potatoes were peeled, washed
with tap water, and diced. A single layer of potato and IQF sweet potato
dices was steamed at 100°C in 100% steam. Approximately 86 g of
steamed sweet potato and potato were mashed together and mixed with
11 g of potato flakes, chickpea flour, and 3 g HOSO. The dough was
formed into 55 mm diameter and 2 to 3 mm thick discs. The chips
passed through a microwave dryer for 1-2 min followed by the impinge-
ment dryer for 2 min, and finally through a hot air convection dryer for
10 min as shown in the schematic (Fig. 1).

Shear modulus and glass transition The shear modulus of the chip
was measured using the DHT3 Rheometer (TA Instruments, New Castle,
DE) with a 5°C/minute temperature ramp and 25.0 mm parallel plate,
Peltier plate Steel 103824 geometry. The initial sample (prepared as
mentioned above) of mass 1.01 g +0.045 g was placed in the rheometer.
The temperature of the sample was increased from 35°C to 155°C.

11
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Uniform heating and hence, the uniform property of the sample, was
assumed due to its small size. The shear modulus (+ 0.05 MPa) was
measured as a function of temperature and showed a transition from
a rubbery to a glassy state near 100 °C. During the temperature rise,
the sample lost water. As the glass transition temperature is affected by
the moisture content, the same experiments were repeated to measure
the mass of the sample. The mass of the sample before temperature
ramping and at intermediate times (when the temperature reached 55,
65, 75, 85, 95, 105, 115, 125, 135, 145 and 155°C), was recorded
using a balance with an accuracy of 10 pg. All samples, once used for
measurement of either moisture or shear modulus, were discarded. The
experiments were repeated thrice to increase confidence in the data.
From the two sets of data, the shear modulus was obtained as a function
of moisture content (Fig. 6).

Water activity measurement: The water activity was measured us-
ing a Novasina water activity meter (Novatron Scientific Ltd, Horsham,
United Kingdom). A small quantity of the sample was placed in a plas-
tic vessel, which was placed into the water activity meter. The lid was
closed, sealing the sample in a small chamber in which the relative hu-
midity was monitored by a humidity sensor. When equilibrium relative
humidity was reached at the test temperature of 25 °C (considered to
be stable when no change greater than 0.1% in 3 minutes), the reading
was displayed. Water activity was calculated by dividing the equilib-
rium relative humidity (%) by 100. The water activity was measured in
replicates of three for the range of moisture content during the sequen-
tial drying process.

Temperature, moisture and size validation: The temperature of
the chip was measured by inserting a probe near the center using
the Scorpion 2 data logger system (Reading Thermal, PA). The probe
and the logger instrument were passed through the microwave and the
impingement dryer. A separate probe was used to measure the air tem-
perature and velocity in the impingement oven. The temperature at a
location near the center was logged every 2 s. The chips were passed
through the dryers and samples were taken out every 2 seconds in the
microwave dryer, every 30 s in the impingement dryer, and every 5 min
in the hot air convection dryer. The weight of the chip was measured
immediately after taking it out of the dryer. The chip diameter and
thickness were measured using a vernier caliper. A typical dried/par-
tially dried chip (Fig. 9) was reasonably regular shaped in thickness
and diameter. The average value of 5 chips was considered to calculate
the moisture loss, diameter and thickness.

3.1. Simulation details

The governing equations in the above formulation for the 2D ax-
isymmetric geometry (Fig. 8) were solved in a commercial finite ele-
ment software (COMSOL Multiphysics 5.6, COMSOL, Burlington, MA)
using the PARDISO direct solver in a fully coupled manner. Taking ad-
vantage of the symmetry in the sample, 2D-axisymmetric geometry was
used. A mapped mesh with 13,726 elements and variable time stepping,
with a maximum time step of 1 s and an initial time step of 1 us, was
used following the convergence analysis. The simulation of the sequen-
tial drying of 1300 s took approximately 3 h of CPU time on a 3.00 GHz,
24-core each, dual-processor, and 128 GB RAM workstation.

The solid mechanics equations were easier to solve in the Lagrangian
frame and, hence, the conservation of linear momentum and the conser-
vation of gas equations were converted to the Lagrangian frame. This
was done to simplify the implementation and its coupling with the me-
chanics physics interface in the software. The conservation of linear
momentum (Eq. (17)) was solved in the Lagrangian frame using the
Structural Mechanics and the Nonlinear Structural Materials physics in-
terfaces. The hygroscopic swelling sub-module was used to calculate
the deformation from the moisture loss. It is important to note that
the local concentration, c,,, in Eq. (24) may be higher than the initial
concentration due to pressure-driven flow during microwave heating.
In such a situation, Eq. (23) will predict swelling instead of shrinkage.
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(b) 2D-axisymmetric geometry simulated
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Fig. 8. A schematic showing (a) the actual shape and the 2D axisymmetric computational geometry of the chip and (b) the boundary conditions for transport and

solid mechanics for the computational geometry.
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Fig. 9. The thickness (left) and the diameter (right) of the chip were measured using a vernier caliper.

To avoid such a situation, a minimum between the initial concentra-
tion, ¢, o, and the local concentration, c,, was chosen. Secondly, the
concentration also needs to be calculated in the Lagrangian frame. The
Lagrangian and Eulerian quantities are equal at t=0. Considering the
porosity in the Lagrangian frame (Coussy, 2004), ® (= J¢), and the La-
grangian concentration, cZ, can be expressed as p,,®s,,.

The conservation of water (Eq. (28)) was solved in the Eulerian
frame of reference using the Transport of Diluted Species physics in-
terface. The conservation of water vapor (Eq. (29)) and the energy
conservation equation were solved in the Eulerian frame of reference us-
ing the General form PDE. The conservation of gas (Eq. (30)) was solved
using the Darcy’s Law physics interface in the Lagrangian frame of refer-
ence with appropriate changes as described below. From Egs. (30), (39)

and (42), we can write the gas transport equation in the Eulerian frame,

12

dc ko f (@)K,
g ing rg
| Pg u Vibg [ = KeupdSg (P aw = py)
I

Ml)
o Y

Bulk flow of gas
due to pressure

While writing the above equation in the Lagrangian frame, it should
be noted that the function calculating the change in porosity due to
deformation, f(¢), needs to be calculated using the porosity in the Eu-
lerian frame (MacMinn et al., 2016). Although the domain is fixed in the
Lagrangian frame, the internal physical structure of the porous medium
changes and affects the fluid flow differently. Considering the poros-
ity in the Lagrangian frame (Coussy, 2004), ® = (J ¢), the equivalent of
Eq. (64) in the Lagrangian frame can be written as
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4. Results and discussion

The model was validated against the experimentally measured mois-
ture loss, temperature, diameter and thickness, and total porosity.

4.1. Experimental validation

Moisture histories (Fig. 10) show a good match between the com-
putation and experiment. The moisture loss histories in the microwave
dryer and the hot air convection dryer match better than in the im-
pingement dryer (standard deviation 2.7-4.9%). This might be due to
more heterogeneous oven conditions and the internal stacking of chips
inside the dryer.

The predicted temperature histories near the chip center and close
to the chip edge in (Fig. 11a and b) are in good agreement. In the
microwave dryer, the temperature rises rapidly. The slight dip in the
temperature follows the trend in the microwave power input. Cooler
ambient temperature in the microwave dryer results in the chip edge
temperature being lower than the center. In the impinger as well as the
hot air convection dryer, drying is carried out by the hot air. This results
in the temperature near the edge being higher than the center tempera-
ture. The predicted temperatures show similar qualitative trends as the
ambient air. At the beginning of the impinger, measured temperatures
are lower than the predictions due to the time taken during the insertion
of thermocouples that were not included in the model. Additionally, the
chip deformation during drying may result in thermocouple movement.

The chip diameter predictions match closely with the experiments,
while the chip thickness, measured at a non-blistered location, only
matches during microwave drying (Fig. 12). Experimental observations
show that the chip inflates under microwaves, possibly due to layer
separation. Additionally, since the chip was still rubbery at the end of
the microwave drying, the puffing that occurred was reverted once the
driving force for puffing (microwave heating that generates gas pressure
rapidly) was removed. However, during impingement and subsequent
hot air drying, the chip transitioned to a glassy state at low moisture
content. This resulted in fixing the puffed shape of the chip even after
being taken out of the dryer. The physics of blister formation and layer
separation is beyond the scope of the current manuscript and needs

13

further study to obtain better validation for the increase in thickness in
the impinger.

4.2. Moisture distribution

During microwave drying, the water saturation is higher at the sur-
face (Fig. 13). Since the surface is not completely saturated (i.e., .S,
~ 1), the dripping effect is not observed. With water evaporation, the
loss of vapor at the boundary also increases. Increased internal evapo-
ration increases the concentration of vapor and, hence, provides higher
driving forces for the convective loss of vapor. The convective loss of
water at the boundary and the internal evaporation of water primar-
ily remove the moisture from the chip in the microwave dryer and the
impinger (Fig. 14). Evaporation of water becomes the dominant mech-
anism of moisture loss after the initial 25 seconds. This initial period
also corresponds to the temperature increases beyond 100 °C (Fig. 11).
Water at the surface of the chip evaporates and is lost via convection.

Microwave drying accounts for 50% of the total moisture loss while
impingement drying and hot air drying account for 22% and 28% mois-
ture loss, respectively. Out of the total energy input to the chip from the
dryers, 66%, 28% and 6% inputs, respectively, are from the microwave,
impingement and the hot air dryer.

4.3. Temperature distribution

The temperature of the chip in the microwave dryer does not in-
crease above 100 °C. The microwave energy is used to evaporate water
in the chip at initial high moisture conditions (average moisture content
is 68%(wb) at 15 s), as opposed to the temperature rise. The volumetric
heating and cooler ambient air (50 °C) result in the center of the chip
being the hottest during microwave drying (Fig. 15). In the impinger,
surface heating and progressive moisture loss result in the chip temper-
atures increasing much above 100 °C. The hot air dryer maintains an
almost uniform temperature (113-114°C) across the entire chip help-
ing to remove the residual moisture.

4.4. Deformation

Of the total chip shrinkage, 77% was achieved in the microwave
dryer, 21.3% in the impingement dryer, and the rest in the hot air
dryer. The shrinkage data reflect the moisture loss in each dryer (see
Section 4.2) as moisture loss is the primary mechanism of the volume
change (Fig. 16a). The other mechanism of volume change, gas pressure
gradient, only slightly affects deformation as this driving force is not
large enough to expand the material with high bulk modulus. Another
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sequential drying. (b) Expanded version to show details.

effect of moisture loss being a dominant mechanism is seen through
the applicability of the linear elastic constitutive model (Fig. 16b). Al-
though viscous contributions and non-linearity are applicable in theory
(Section 2.3.3), the linear viscoelastic and the neo-Hookean constitutive
material models show no difference owing to their low contribution to
deformation. Thirdly, the shrinkage is expected to be higher at the cor-
ner due to higher moisture loss. Although the cross-section of the chip
at the center and at the corner appears to be the same (Fig. 14), the
thicknesses at these two locations are different (Fig. 16¢). The volume
change Jacobian also follows the same trend (not shown here).

The chip is initially in the rubbery state characterized by the low
shear modulus (Fig. 6b). Since the chip is very thin, it is difficult to char-
acterize the exact location at which the glass transition occurs. Glass
transition occurs in the chip into 2/39 of the impingement drying (185
s) based on the difference between the maximum and minimum value
of the shear modulus and the Poisson’s ratio (Fig. 17). After the glass
transition, the growth in the thickness and the shrinkage in the diam-
eter stops (Fig. 12). As the chip becomes glassy, further shrinkage also
decreases as is evident from the small change in the diameter after 185
s (Fig. 12a). In the glassy state, the Poisson’s ratio is lower than 0.5 and,
hence, the deformation occurs with changes in the elastic volume of the
material. Similarly, due to extremely high heat and mass fluxes in the
impinger, the material dries faster at the surface than at its core. The
dried material acts as an additional resistance to further moisture re-
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moval and subsequent shrinkage. Hence, the shrinkage is slowed as the
drying progresses in the impingement dryer and the hot air dryer.

4.5. Evaporation rate

The evaporation rate starts to increase from the surface and is the
highest at the end of the microwave drying (Fig. 18). The difference
between the equilibrium vapor pressure and the partial pressure of va-
por drives the evaporation. During microwave drying, internal water
rapidly evaporates resulting in the generation of vapor. This increases
the internal partial pressure of vapor. Additionally, vapor generated at
the surface is carried away by the dry oven air (Halder and Datta, 2012)
maintaining a higher driving force for evaporation than at the center.
The rate of evaporation reduced after 2/3"% of the impingement was
completed. This coincided with the glass transition of the chip. A simi-
lar reduction was observed in the case of rice puffing (Gulati and Datta,
2016).

4.6. Pressure generation

Pressure in the impinger decreases for the initial 10 s and starts to
increase afterward. The initial reduction is suspected because of the
carried-over effect of ambient cooling before the second phase of im-
pingement drying starts. At ambient conditions, the pressure reduces
back to atmospheric conditions.
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The change in pressure also results from the change in the gas per-
meability of the chip. The internal pressure generated from evaporation
acts as a deforming force that expands the chip when it is in the rub-
bery state. With the expansion, the gas volume fraction in the pore
increases. Such changes to the structure of the material facilitate the
diffusive and convective transport of vapor (Halder and Datta, 2012;
Rakesh and Datta, 2012). This reduces the vapor trapped inside the
porous medium and reduces further pressure development. Similarly,
the loss of moisture during the drying process removes the water in the
pores. For a rubbery material, the lost water represents the loss in vol-
ume and, hence, the reduction in porosity. The reduced porosity reduces
the permeability through the porosity factor (Eq. (48)). Therefore, the
complex effect of change in porosity, gas saturation and evaporation
rate alters the pressure in the chip during the sequential drying.

4.7. Comparison with individual drying

To identify and separate the effect of each dryer on the chip tex-
ture, with porosity as a surrogate measure, the sequential drying was
compared with individual drying processes to achieve the same mois-
ture loss. Four different scenarios were considered here: (S1) sequential
drying, (S2) only microwave drying with an average microwave power
of combined dryers used as a constant energy input, (S3) only impinge-
ment drying with a constant and averaged temperature, and heat and
mass transfer coefficients, and (S4) only hot air convection drying. The
simulations were continued for different drying times in each scenario
(Fig. 19a). S1 removes moisture the fastest (80s) as the energy input
from the microwaves is the highest among the four scenarios. All scenar-
ios resulted in the same final volume change (Fig. 19¢) and gas porosity
(Fig. 19d) as the change in volume is primarily influenced by moisture
loss. S3 achieves the desired moisture loss faster (360 s) than S1 (1300
s) but is slow to develop the gas porosity compared to the first two
stages of sequential drying. S4 shows the highest drying time (1800 s)
because of the slow convective drying.

The main difference among all scenarios was seen in the maximum
temperature and internal pressure. Scenario S1 achieved the highest
temperatures in its second drying stage (impingement drying). The max-
imum temperature was predicted at the surface after 75% moisture loss.
Scenario S2 predicted the second-highest temperature (Fig. 19b) and
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the highest pressure. Microwave drying showed higher temperatures at
the chip center at low moisture content. The temperature of the chip did
not increase much higher than 100 °C until significantly high moisture
loss was achieved.

The highest temperature and pressure predictions can be used as
quality indicators. At very high temperatures, the flavor and the color of
the food can deteriorate due to burning, which leads to reduced quality
perception by the consumer; whereas, the highest pressure may affect
the quality differently at high and low moisture content.

At high moisture content (scenario S2) the rubbery chip exhibiting
lower fracture strength will likely undergo delamination at higher pres-
sure. This may introduce blisters or even explosions at extremely high
pressures. At low moisture content (scenario S1), the glassy chip may
undergo brittle fractures with large cracks. This may provide the path of
least resistance for the generated vapor to escape and will likely reduce
the potential expansion. Both cases present additional complexity and
are beyond the scope of this manuscript. However, the fundamental un-
derstanding of the complex interplay of these phenomena as elucidated
in this work can assist product developers in optimizing product quality.

4.8. Sensitivity analysis

A large number of input parameters and material properties are
needed to simulate the sequential drying of the chip. An accurate value
of all parameters is not always available in the literature. The exper-
imentally measured properties and parameters include variability and
uncertainty associated with the measurements and errors. Additionally,
varying certain parameters may be of interest for optimization or er-
ror margin estimation. Therefore, to have greater confidence in the
predicted values, sensitivity analysis is performed for intrinsic perme-
ability, shear modulus and the heat and mass transfer coefficients in the
microwave oven.

Permeability: Intrinsic permeability of water and gas in the food
greatly affects the drying process. During a drying process, the pore
size distribution and the internal structure of the food change. This sig-
nificantly changes the permeability.

Although part of the change is accounted for through the porosity
factor and the relative permeability, the absolute value of permeability
reported for a single food material in the literature varies. For a com-
plex food such as a chip that consists of various starches and proteins,
sometimes the permeability values are not available in the literature.
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Therefore, sensitivity analysis for the permeability was performed by porosity were compared to study the effect of permeability. Higher
varying the permeability by 1000%, +50%, +20%. Average moisture permeability facilitates more moisture loss (Fig. 20a). At higher perme-
content, the temperature at the center, volume change and the gas ability, the convective flux of water is higher in microwave drying. This
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allows more water to be pushed to the surface and results in more water
loss. Secondly, as moisture loss is the primary mechanism of deforma-
tion, this also results in higher volume change (Fig. 20c) and increased
gas porosity (Fig. 20d). As more energy is used towards loss of moisture,
this results in lower temperatures (Fig. 20b).

Shear modulus: The shear modulus used in the study was experi-
mentally measured. There is a difference of two orders of magnitude in
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the values of the shear modulus of raw potato (Yang and Sakai, 2001;
Gulati and Datta, 2015) and that of blanched potato (Thussu and Datta,
2012) reported in the literature. The value of shear modulus obtained in
this study was in between the range. Although some differences can be
attributed to differences in the food material, it is necessary to perform
the sensitivity analysis. Hence, the shear modulus was varied by 1000%,
+50%, +20%. There is hardly any effect of variation in shear modulus
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on average moisture content, center temperature, chip diameter and
gas porosity (Fig. 21). The transport of water affects the deformation
physics (Fig. 3) to a greater extent by changes in the driving forces and
the glass transition. However, the effect of deformation in the transport
processes is weak as it does not directly affect the driving forces for
moisture removal. As other physics are also primarily affected by the
moisture concentration (Section 4.2), there is little effect on the chip
diameter, center temperature and gas porosity. The effective stress on
the food material varied significantly when the shear modulus was var-
ied. An increase in the shear modulus by +1000% showed a nearly 10
times increase in the effective stress (Fig. 22). This has significant impli-
cations for the quality during drying. If the effective stress on the solid
is higher than the fracture strength of the material then the likelihood
of blister formation and delamination will be higher. This can have a
significant effect on chip porosity, further drying and the texture of the
chip.

It is worth noting that similar characteristic results were predicted
for the sensitivity analysis for the elastic modulus of a raw potato dur-
ing microwave drying (Gulati et al., 2016). Both drying processes are
different with regard to material, the intensity of microwave power and
sequential drying. As the physics governing drying and deformation of
the foods is the same, a similar effect on the quality is expected here as
well.

Conditions in microwave drying (heat and mass transfer coeffi-
cient): The mass transfer coefficients predicted by the correlations and

used in previous studies of microwave drying (Rakesh and Datta, 2012;
Ni et al.,, 1999) varied by one order of magnitude. Therefore, it was
necessary to choose the proper value of mass and heat transfer coeffi-
cient. Hence, a sensitivity analysis was performed for the mass and heat
transfer coefficients during microwave drying. The range of values cho-
sen here represents the difference between the values predicted by the
correlation and the values used in this study. Internal evaporation is
the primary mechanism of moisture loss in microwave drying (Fig. 13).
When the generated vapor can not escape the chip due to resistance
at the boundary, the internal concentration of vapor increases. This in-
creases the partial pressure of vapor and decreases further evaporation,
the effect of which is seen in two ways: (1) the moisture content of
the chip remains high at a low mass transfer coefficient (Fig. 23a) and,
(2) the internal chip temperature increases (Fig. 23b) as the energy of
microwaves is used for increasing the temperature instead of evapora-
tion of water. This shows that the mechanism of moisture loss at the
boundary also affects the internal physics during drying.

In absence of correlations that specifically separate out the effect of
convective heat and mass transfer, sensitivity analysis is necessary. Sec-
ondly, the heat transfer coefficient does not seem to have a significant
effect (Fig. 24a and b) on the transport phenomena in the chip. This
possibly is due to the small amount of heat lost at the boundary com-
pared to a large amount of heat used for the internal evaporation of
water that affects the transport processes more significantly.
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5. Conclusion

A fully coupled model for multi-phase and multi-component trans-
port, large deformation, distributed evaporation, and glass transition
was developed, solved and validated for sequential drying of a mashed
vegetable chip using microwave, impingement and hot air drying. A
comprehensive understanding of quality evolution was obtained by
studying the effect of microwave heating, pressure-driven flow, glass
transition and change in properties, moisture loss and shrinkage, vol-
umetric evaporation and subsequent pressure generation that reduces
the extent of shrinkage and coupling between various physics. The sen-
sitivity of the model to drying conditions in the microwave dryer, gas
and water permeability and individual drying methods was also stud-
ied. The physics-based framework for the processes and the material
transformation being extensive, physical parameters-based quality evo-
lution in various drying processes, drying sequences, and for various
materials undergoing significant changes during drying, can be mecha-
nistically understood and optimized following this study. Such practices
are a part of computer-aided food engineering that minimizes trial and
error, time to market, and resource use (Datta et al., 2022). The model
presented in this study, or its data-driven surrogate (Ghosh and Datta,
2023), can be part of a digital twin (Verboven et al., 2020).

The specific conclusions of the study are: (1) The model accurately
predicts the moisture loss, temperature, shrinkage, and porosity evolu-
tion during sequential drying. (2) Porosity is primarily generated due to
moisture loss. (3) The effect of gas pressure is seen through its contri-
bution to reducing the effect of shrinkage. (4) Microwave drying is very
intense and affects moisture loss and shrinkage the most. (5) The high-
est temperature is observed in the impingement dryer. (6) Microwave
drying does not increase the temperature much higher than 100°C as
the energy of the microwave is used for water evaporation in the chip
at a high moisture content. (7) The hot air convective dryer, with the
lowest drying intensity, removes residual moisture and has little effect
on the transport of moisture, energy and deformation of the chip. (8)
Sequential drying was able to achieve a quality, based on porosity and
maximum temperature, that would be hard to achieve using an individ-
ual drying method.
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