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This work attempts to recover digital signals from a few stochastic samples in time domain.
The target signal is the linear combination of one-dimensional complex sine components
with R different but continuous frequencies. These frequencies control the continuous values
in the domain of normalized frequency [0, 1), contrary to the previous research into
compressed sensing. To recover the target signal, the problem was transformed into the
completion of a low-rank structured matrix, drawing on the linear property of the Hankel
matrix. Based on the completion of the structured matrix, the authors put forward a feasible-
point algorithm, analyzed its convergence, and speeded up the convergence with the fast

iterative shrinkage-thresholding (FIST) algorithm. The initial algorithm and the speed up
strategy were proved effective through repeated numerical simulations. The research results
shed new lights on the signal recovery in various fields.

1. INTRODUCTION

Signals contain valuable information on the attributes and
actions of the emitter, and reflect the unique features of the
relevant phenomena. In terms of economy, the periodic
fluctuations of signals, which differ in magnitude, phase, and
frequency, have attracted much attention from the academia.
In many cases, however, it is difficult to extract all the
information from signals, due to the limitations in sampling
instruments or measuring methods. Take the extraction of
frequency components for instance. Most scholars could only
obtain a few discrete components from the target signal.
Therefore, the signal recovery from multiple measured data is
of great importance to signal processing in various fields, such
as GNP cyclical fluctuations in economics [1, 2], in
acceleration of medical imaging, analog-to-digital conversion,
inverse scattering and in seismic imaging.

This work aims to recover a signal that linearly combines
one-dimensional complex sine components with R different
but continuous frequencies. To recover the entire signal, it is
necessary to fully analyze the few samples of the sine

components in the time domain, and measure their frequencies.

This recovery task is similar to that in the signal processing of
the following fields: variations in gross national product [1, 2],
speeding up the capture of medical images [3], transform from
analog signals to digital signals [4], and imaging of earthquake
consequences [5]. The traditional strategies for the task
include Prony’s approach [6], Estimation of Signal Parameters
via Rotational Invariance Techniques [7], and matrix pencil
[8]. In all these strategies, the sampling speed meets the
Nyquist sampling theorem (NST).

As a novel technique for signal recovery, compressed
sensing can recover the signal, which is sparsely or
approximately sparsely distributed in a finite discrete domain,
with a sample size smaller than the requirement of the NST [9]
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[10]. In the real-world, the signal values are usually distributed
in a continuous manner. In our problem, the signal frequencies
fall within the interval of [0, 1). To make compressed sensing
feasible, the continuous values of the target signal could be
divided into a limited number of equidistant points.
Nevertheless, basis mismatch will occur if the division is not
sufficiently refined [ 11]. In this case, the division error will be
so large as to induce a huge error in signal recovery. To make
matters worse, the ultrafine division of the continuous signal
values will incur an unbearably high cost [12].

In recent years, more and more scholars have proposed
strategies to recover continuous values based on a few discrete
and unbalanced data in the time domain. For example, Candés
et al. [13] minimized the total variation to pinpoint the
continuous frequencies from equidistant data. Xu et al. [14]
recovered the frequencies of the target signal from unbalanced
data by minimizing the atomic norm. Candées et al. [13], Xu et
al. [14] transformed the recovery of signal frequencies into the
completion of low-rank Toeplitz matrix. Tang et al. [15]
treated the signal frequency recovery of unbalanced data as a
low-rank Hamiltonian Monte-Carlo problem. The above
strategies can recover signals with a high robustness. But the
computing efficiency is rather low in the completion of the
low-rank matrices: the number of unknown factors in the
optimization process is the square of the signal dimension.

Many efforts have been paid to complete the relevant
matrices in an efficient manner. For instance, Candés and
Recht [16] adopted interior point strategy to derive a Hessian
matrix, whose scale is O(V*), in the Newtonian operation. In
addition, many first-order approaches [17] were developed for
matrix completion in signal recovery. Nonetheless, these
approaches require an unstructured dual matrix, whose scale is
O(N?). Overall, none of these approaches could efficiently
recover large-dimensional signals.

To improve the efficiency of large-dimensional signal
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recovery, this work presents a feasible-point algorithm to
complete the low-rank Hamiltonian Monte-Carlo matrix. The
algorithm does not implement convex optimization of the
matrix, but adopts a memory of the size O(NR), and recovers
large-dimensional signal efficiently, for the number of sine
components is way larger than N. Inspired by previous
research [18, 19], the convergence of the algorithm to global
optimal solution was analyzed in details. After that, the fast
iterative  shrinkage-thresholding (FIST) algorithm was
referred to accelerate the convergence of our algorithm [1].
Finally, simulations confirm that the initial algorithm and the
speed up strategy could recover large-dimensional signal,
which linearly combines one-dimensional complex sine
components with R different but continuous frequencies.

The rest of this work is arranged as follows: Chapter 2
introduces the details on the signal recovery problem; Chapter
3 presents the initial algorithm, analyzes its convergence
performance, and speeds up its convergence with a self-
designed algorithm; Chapter 4 verifies the feasibility of our
algorithm through simulations; Chapter 5 puts forward the
conclusions.

2. PRELIMINARIES
2.1 Target signal

The target signal X(t),t € R linearly combines one-
dimensional complex sine components with R different but
continuous frequencies [20]:

R

Z E;QZHiﬁ(t't >0

k=1

x(t) (M

where, fi, €[0,1), 1 < k <R is the frequencies; dy, is the
amplitudes of the complex sine components.

Traditionally, the target signal is recovered based on the
data ¥(t), =0, 1, ..., M-1 at the integer points of the time
domain. The frequencies of the target signal are obtained by
linearly solving structured matrices. As mentioned before, the
fully information of the target signal is not easily obtainable,
owing to the constraints of instruments and environment. This
is particularly true, because the target signal has large
dimensions [5]. To solve the problem, the time-domain data
were collected in an nonuniform manner [13, 21], which
speeds up the sample collection. Let N be a sufficiently big
integer, M (M<2N-1) be the number of observable data, and
0 c{0, 1, ..., 2N-2} be the index set of the observable data.
Based on the collected data, the target signal can be expressed
as:

x(t) = [#(0),%(1), ..., ¥(2N — 2)]" € €?N~? @)

2.2 Signal recovery methods

Let X be the actual vector of the target signal. The recovery
of this vector can be described by:

1
e2mf1

1
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920

y=Xo: = {%|t € 0} A3)

The vector recovery can be solved by many methods. For
example, the frequency domain [0, 1) could be meshed
uniformly into grids of the size 1/(2N-1). Let F* be inverse of
the 2N-1-order discrete Fourier transform matrix, F; be a row
of this matrix, ¢ € C2N~1 be a sparse vector without any zero
elements, and M be cardinality.

Assuming that the grid G covers every frequency, the target
signal could be described as ¥ = F*c, and the observable data
meet the condition y = Fgc . Then, the vector recovery
becomes the recovery of sparse vector ¢, that is, the actual
vector of the target signal. Suppose @ is a random subset
extracted from {0, 1, ..., 2N-2}. Aslong as M = O(Klog N),
the actual vector of the target signal can be recovered
accurately by:

minllcl;s.t.Foe=y
c

“4)

Formula (4) can be solved rapidly through the strategies
proposed by Beck and Teboulle [3], Yin et al. [6], Cai et al.
[8], Daubechies et al. [12], and Cai et al. [22].

Assuming that the grid G does not cover all frequencies, the
actual vector of the target signal could be approximated well
by solving formula (4). The deviation of the actual frequencies
from the said grid could be controlled to O(1/N).

However, Tang et al. [21] argued that the above strategy
leads to a large bias, even if the N value is rather big. To solve
the problem, the meshing of the frequencies was replaced by
considering them as continuous data in the interval [0, 1).
Following this train of thoughts, two compressed sensing
methods [11, 21], namely, ultra-resolution method and off-the-
grid method, were designed to recover the actual vector of the
target signal by:

T(u) x

+1t t.[
—t,s.t.
2 x* t

min
u,x,t

2(2N — 1)

where, T refers to the linear mapping to Toeplitz matrix.
Suppose 0O is a random subset extracted from {0, 1, ..., 2N-2}.
Then, the results of formula (5) agree with the actual vector of
the target signal at a high probability, which is no smaller than
1-0. Xu et al. [14] extended the minimization of the atomic
norm to the two-dimensional space.

2.3 Hankel Matrix Completion

Furthermore, Chen and Chi [17] developed a novel method
to recover signals with continuous frequencies in the time
domain: the task of signal recovery is transformed into the
completion of Hankel matrix. The linear mapping of a vector
in C2N~1 to an NxN Hankel matrix can be described as:

H:x € CN-1 — 3(x € CNXV,
[HX]jk = %40, 0 < jk <N -1

It is assumed that the R-rank Hankel matrix H = #%. Then,
the rank of H can be factorized as:

d1 eZmﬁ eZm(M—l)f1

1
: (6)
dr

i eZm}‘R eZEL(A;[—l)fR



Next, the H was recovered by transforming the NxN Hankel
matrix, which is converted from the vector in C2V~1. Let Q =
{(,k)|j + k € 0} be the locations of known data in /. Hence,
the signal recovery task can be described as searching for a
matrix whose rank is not greater than R, under the premise of
Xy=H, (j, k) € Q, with X being a Hankel matrix.

Since H is mapped from C2V~1 to the set of all Hankel
matrices, the recovery of the actual vector of the target signal
equals the recovery of H. Inspired by Candés and Recht [16],
the signal recovery task can be converted into minimizing the
rank of the Hankel matrix:

min || X Il s.t. Xji = 0y, G k) en (7)

The set of every singular data || X [l is called the nuclear
norm. Then, formula (7) is the method designed by Chen and

Chi [17]. Suppose 0 is a random subset extracted from {0,
1, ..., 2N-2}. Then, the results of formula (7) are the fully

recovered H [4]. Formula (7) is a convex optimization method.

In theory, the optimization effect is very desirable.
Nevertheless, the computing process of the formula is highly
inefficient. The number of unknown data is as high as O(N?2).
To solve the problem, formula (7) could be transformed into a
semidefinite-quadratic-linear programming problem, and be
treated with the relevant software [23]. But the relevant
software needs to iteratively solve a large linear system with
the order O(N?) X O(N?). Neither could formula (7) be
solved easily by algorithms that minimize the user-defined
nuclear norms [24], owing to the constraint on linear equality
of the Hankel matrix.

Through the above analysis, this paper directly tackles the
non-convex optimization problem, which converges fast in the
recovery of sparse and low-rank matrices [25, 26], and
develops a feasible point algorithm for signal recovery.

3. ALGORITHM DESIGN
3.1 Benchmark

To solve the non-convex optimization problem, the
collection of smaller-than-R-order matrices with complex
values and the collection of Hankel matrices with complex
values that meet the observable data can be respectively
expressed as:

RE ={L € C"*N|rank(L) < R}. (8)

H = {Hx|x € C*N 1, xy = X5} )
Then, the signal recovery task and non-convex optimization
can be described as:

1 2
min —=IIL—HIz
LerR Hex 2

(10)
where, RE is a collection and a smooth manifold; # is an
affine space. Formula (10) was solved by a feasible point
algorithm. The objective function with the actual values of
complex parameters can be expressed as: F(L,H): = g IIL—
H lI%. Complex calculus theory shows that the objective
function cannot be differentiated. But this function can be
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differentiated into a real part R of parameters, and an
imaginary part J of parameters. The two parts were subject to
gradient flow, respectively. It is assumed that:

z=[5]=m+is (11)

Then, the objective function can be rewritten as F (R, ).
Next, the real part was updated by Z—;, while the imaginary part

by Z—g. That is, the initial algorithm updates Z by Z—; + ig—g.
Inspired by Fischer [27], there is:
oF oF oF
w93 T “az (12
Thus:
) oF
oF ﬁ L—H
oH

Let §; and &, are positive step lengths; IPRE and P;, be the

projections to RR and H , respectively. Then, the initial
algorithm can be established as:

Liys € ?Rg(Lt - 51(Lt - Ht));

(14)
Hiyql € ?}[(Ht —6,(He — Lt+1))'

Then, the aim of the initial algorithm is to search for Pkg

and Pj. Suppose the columns of Ur and Vy are the first R
singular vectors of X from the left and the right, respectively;
X is the diagonal matrix whose elements correspond to these
vectors. Drawing on Golub and Van Loan [28], IPRg (X), as the
optimal rank approximation to X, can be described as
?Rfé (X) = URxZR V3. Then, the following lemma was proposed
to describe Py, in its closed form Lemma 1:
Py (X) = Hz,
i'vjﬁ
mean{Xy |k +1=j},

ifjeo,
otherwise.

(15)

where z; = {

Proof. Py (X) is the results of the LS (least squares)
problem:

Py (Z) = argming{ll Z — X I|2: W € H}

=3 - argmin,{ll Hz — X 2: 2o = %o}

2N-2 ~ (16)
=3¢ -argmind ) [ ) (5= Xu)*i7e = %ol}
=0 Kk+i=j

The results in the last row are clearly the z; in formula (15).
Q.E.D. During the iteration of our feasible-point algorithm, L,
and H, separately fall into the sets of feasible values R¥ and
H , which minimizes the computing load and memory
occupation, provided that R is less than N. Whereas L, € RE,
the relevant results only occupy a memory of O(NR).
Moreover, the parametric representation of H; only occupies a
space of O(N). In addition, the initial algorithm only has to
calculate the first R singular values and the relevant vectors
during the projection computation. The computation can be



completed without calling anything other than the matrix
vector product (MVP) of L, — &;(L; — H;). The MVP of L,
which is an R-rank factorized value, can be computed in only
O(NR) steps. Through fast Fourier transform [28], the MVP of
H; can be computed in only O(NlogN) steps. The second step
of the initial algorithm only need to average L,+; along anti-
diagonals [29-34].

3.2 Convergence analysis

Based on the data of Attouch et al. [18], the convergence of
the initial algorithm was analyzed. Let us denote proper and
lower semi-continuous (PLSC) functions as 6:R™ » R U
{+0} and w: R™ » R U {+0}, and C' function as ¢: R™ X
R™ — R. In general, the non-convex optimization can be
described as:

miny(x y): = ¢xy) +6(x) + w(y) (17)

Drawing on Attouch et al. [18], formula (17) was solved

through proximal alternating minimization:

1
Xp41 € argmingegrp (%, y5) + =—— Il x — xi 113,
22, (18)

! I 1%
2un Y = Vi llz-

Yi+1 € argmingermip(Xe41,y) +
Suppose function 1 meets the Kurdyka-Lojasiewicz
condition, and that V¢ is Lipschitz on bounded sets. Then, the
convergence of formula (17) could be proved by the method
specified by Attouch et al. [18]. Since it is difficult to verify,
the Kurdyka-Lojasiewicz condition could be guaranteed by the

semi-algebraic SA property. A PLSC function has SA property,

as long as its graph forms an SA set. The condition for a subset
S © R® to be a real SA set was defined as follows: there is a
limited number of real polynomial functions g;;, h;;: R? » R
so that:

| {u€ R?|gy;(w) = 0, hy;(w) < 0} (19)

IID-m

p
=

Then, the sets C € R" and D € R™ were respectively
indicated by functions 8 = §; and w = &p. Then, set C could

be indicated by 6. (x) = { +Oo,o ifxec, Under the condition
that ¢ (x,y)

ifx & C.
= i Il x —y ll%, the non-convex optimization can
be converted into an alternating projection:

1
Xpr1 € P (Xk - m(xk - YR)>'

(20)
(yx — Xk+1)> .

Ye+1 € Pp <YR T

According to Bolte et al. [7] and Attouch et al. [18], the
convergence of formula (18) can be described by the following
theorem.

Theorem 1. It is assumed that C € R™ and D € R™ have
SA property. Then, the alternating projection can produce (x,
Vi), where 0<a<dy, and <b for all k:

Case 1: || (Xg, yx) ll,— o0 as k — oo, or (xi, yx) converges to
a critical point of ;
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Case 2: If (x9, y0) is feasible and sufficiently close to a global
minimizer of ¥, (xg, o) converges to that minimizer.

Further, the above theorem was introduced to the initial
algorithm to test its convergence performance. Although the
initial algorithm takes the same shape as alternating projection,
the above theorem targets real numbers, while the initial
algorithm handles the matrix space with complex values.
Fortunately, any matrix with complex values could be
converted into a matrix with real number by merging the real
part with imaginary part. As stated before, the initial algorithm
was constructed based on the gradient of the two parts.
Because the objective function remains the same through the
identification, it is only necessary to judge if RE and  have
SA property, when they are treated as collections of the two
parts. The judgment was completed by the following lemmas:

Lemma 2. The following set has SA property:

Se ={[X,YI(X +1¥) € RE} e2y)
Proof. Suppose
B = {[X,Y]IX,Y € RV, rank(X +¥) =7} (22)
and
0, = (X YIX,Y € R™" rank([y =21} (3

The first step is to demonstrate that P, = Q. by proving
P. c @, and Q. € R.y. Suppose [X,Y] € P,, and a singular
value decomposition (SVD) of X+iY is(X +iY) = (Uge +
iUpn)Z (Vge + iVi)*, where Ugg, Ui, Vre, and Vi, € RNXT

and £ € R™". Then, an SVD of [);: _XY] can be expressed as:
X Y [URe Ulm] [VRe Vlm]
= 24
Y X UIm ] VIm Re ( )

Thus, rank ([);

and that B. € Q..
Next, it is that [X,Y] € Q,.

(0, [Zﬂ'[z;]) is a singular triplet of [);

_XY]) = 2r indicates that [X,Y] € Q,,

assumed Suppose

Y1 then it is

—Uy1 [~V
obvious that (a,[ u12]'[ vlz])' As a result, every singular

_XY] must
take the shape of formula (24). Thus, (X +iY) = (Uge +
iUm)2 (Vge + iVi)* is an SVD of X+iY, indicating that
rank(X + iY) = r. Hence, [X,Y] € B, and thus Q, c ..

Because Q. is the overlap between the collection of rank-2r
matrices with real numbers, and the linear subspace of

value has an even multiplicity, and the SVD of [)}f

matrices, whose form is [); _XY]’ it must have the SA

property, according to the example in Bolte’s research [7].
Whereas P, = Q,, it can be seen that P, also has SA property.
R

Since Sg = U B, Sy is a collection with SA property.
r=0
Q.E.D.
Lemma 3. The following set has SA property:

K = {[X,Y]I(X +iY) € H} (25)

Proof. For the linear operator ', we have:



Hx = HR(x) + i3 (x) (26)

If x meets xo = X5, then R(xy) = R(Xp) and J(xp) =
3(Xg). Thus, we have:

H = RH) +13(H) = Ky +15, 27)

where, ¥; = {Hr|r € R*N"2,rg = R(%5)}, K, = {Hi|i€
R*N72,ig = 3(%a)}-

The above results indicate that X' = K; X K,. Whereas K
and K, are affine spaces, the product X of these spaces must
be an affine space, which has SA property. Based on the above
theorem and lemmas, the convergence of the initial algorithm
can be described as the following theorem.

Theorem 2. Suppose (L, H,) is produced by the initial
algorithm under 0<d;, and J,<1.

Case 1: || (L, Hy) llg—= o0 as t — oo, or (L;, H;) converges.

Case 2: Suppose (Lo, Hy) is feasible and sufficiently close to
a global minimizer of {% IL—HI%|L€REHE}, then
(Lo, Hp) converges to that minimizer.

The unboundedness in Case 1 can be solved easily by
adding a constraint to H.

3.3 Speeding up convergence

The convergence of the initial algorithm was sped up
referring to the FIST algorithm [1]. The FIST algorithm can
efficiently minimize the sum of two convex functions, in
which one of them has a Lipschitz continuous gradient, by
linearly combine the iterative results of the two functions. This
linear combination strategy was adopted for the initial
algorithm, despite that our problem is non-convex
optimization. The speed-up strategy is described as follows:

For ky=1, (L¢, Hy\¢) can be produced by

Lir1 € Pgr (Lt — &8, (Le — ﬁ;)):

Heyt € Py (Ht — 8, (H; - Lt+1))'

J1+4kZ2+1 (28)
2 )

kiyr =

— kt - 1
Hepq = Hepr + k—(Ht+1 — Hy).

t+1

where, H is an affine subspace, the linear combination does
not affect the feasibility of H,,,. Hence, the first and second
steps of the speed-up strategy have the same computing load
and memory occupation as those in the proposed algorithm. In
addition, the computing load of the third and fourth steps are
so small as to be negligible. Therefore, the speed-up strategy
is as simple as the initial algorithm in terms of computation.

4. SIMULATION
4.1 Parameter optimization

The initial algorithm converges as long as J; and 9, falls in
(0, 1). The influence of the two parameters on the convergence
of the initial algorithm was simulated to optimize their values.
The initial algorithm was applied to recover signals of
different dimensions, with five different values of the two
parameters: 0,=02€{0.3.0.5,0.7,0.9,0.9999}.

Firstly, the target signal was measured for 2N-1=101 times,
that is, the Hankel matrix is of the dimension N=51; the rank
R, and the size of location set Q were set to 3 and 20,

respectively. Then, the efficiency of signal recovery, i.e., the

I . IHUmab gy,
NMSE between initial and final matrices (TSO.OOO 1)
2

is reported in Figure 1.

8,=6=03
8=605
——5=6,207
—5,=5,708
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Log of NMSE

0 10 20 30 4 s EOD /0 80 90 100
Number of iterations

(a) N=51, R=1, and M=10

8,=6=03

—— =505
8,=6,0.7
—— §,=6,=0.9
8,=6,=0.9939 |

Log of NMSE

. \ \ . . .
0 0 40 60 80 100 120 140
Number of iterations

(b) N=51, R=3, and M=20

Figure 1. The influence of d1and J, on the convergence of
the initial algorithm (simulation 1)
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6,=6,=0.9999 l

Log of NMSE

, . , . \ . ,
0 20 40 0 80 100 120 140 180
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(a) N=501, R=5, and M=100

§=6=03
——5=6,205
8=6,=07
——8,=6,09
&,=6,=0.8999

Log of NMSE

\ . . , . , . \
0 10 20 30 40 &1 B0 70 60 0
Number of iterations

(b) N=501, R=8, and M=200

Figure 2. The influence of d;and J, on the convergence of
the initial algorithm (simulation 2)



Secondly, the target signal was measured for 2N-1=5,001
times, that is, the Hankel matrix is of the dimension N=51; the
rank R, and the size of location set Q were set to 2,501 and 13,
respectively. Then, the efficiency of signal recovery, i.e., the
NMSE between initial and final matrices is reported in Figure
2.

After that, the recovery time of the signal with the initial
algorithm with different parameters is displayed in Table 1.
Obviously, the greater the parameter values, the smaller the
NMSE, and the more efficient the signal recovery. Hence, the
two parameters were set to 0.9999 for the following
experiments.

Table 1. The recovery time of the signal with the initial algorithm with different parameters

Signal 01,0=0.3 01,0=0.5 01,02=0.7 01,02=0.9 01,02=0.9999
N=51, R=1, M=10 0.55s 0.49s 0.43s 0.36s 0.34s
N=51, R=3, M=20 0.72s 0.64s 0.58s 0.50s 0.46s
N=501, R=5, M=100 20.17s 17.85s 15.84s 13.89s 12.69s
N=501, R=8, M=200 10.97s 9.52s 8.29s 7.06s 6.67s

4.2 Phase transition for precise recovery (PTPR)

To verify its feasibility, our algorithm was subject to
multiple simulations on PTPR. A total of one hundred 100
Morte-Carlo simulations were conducted for each pair of R
and M. Then, R frequencies were selected by random in the
interval [0, 1), and used to produce a complex signal x with
sparse spectrum. Then, the initial algorithm was implemented
under 0;=0,=0.9999. Each simulation was deemed as a
success, provided that the NMSE meets |[x(a) — ||,/
[1Z]], < 0.005, with X being the expected return of our

algorithm. The final success rate was obtained as the mean of
the 100 simulations.

The simulation results on the signals with dimensions
between 20 and 127 are recorded in Figure 3, where the y-axis
is the number of samples, and the x-axis is the level of sparsity,
and the color of each grid is the success rate. It can be seen that
the initial algorithm and the speed-up strategy outshined the
other algorithms, especially the speed-up strategy, in the effect
and feasibility in signal recovery. The two algorithms can
recover the signals with fewer samples than the other
algorithms.

(a) PTPR of speed-up strategy

(b) PTPR of initial algorithm

m

(c) PTPR of ANM with Af > ﬁ

(d) PTPR of ANM without Af > ﬁ

m

(¢) PTPR of EMaC

Figure 3. The PTPR of different algorithms

Note: The ANM and EMaC are short for atomic norm minimization [14], and enhanced matrix completion, respectively.

4.3 Speed up effect

The convergence of initial algorithm is compared with the
speed up strategy in Figures 4 and 5, and Table 2. It is obvious

that the speed up strategy converged more rapidly than the
initial algorithm. To reach the solution of comparable
precision, the speed up strategy only needed two thirds the
number of iterations of the initial algorithm.
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Figure 4. The convergence curves of the two algorithms
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(simulation 3)
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. . . . .
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Number of iterations

(a) N=501, R=8, and M=200

Log of NMSE
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Figure 5. The convergence curves of the two algorithms
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Table 2. The convergence speeds of the two algorithms

Signal Speed up strategy  Initial algorithm
N=51, R=1, M=10 0.29s 0.34s
N=51, R=3, M=20 0.38s 0.46s
N=101, R=5, M=40 0.90s 0.95s

N=501, R=5,
M=100 8.48s 12.69s

4.4 Recovery of large-dimensional 1D signal

Furthermore, the two proposed methods were compared
with ANM and EMaC, two convex optimization strategy, to
verify their effect on the recovery of large-dimensional 1D
signals. Our methods were expected to work effectively on
large signals with sparse spectrum. Our methods adopt the
same settings as previously; the contrastive methods were
solved by CVX software. Table 3 compares the recovery time
of signals with different sizes. It can be seen that our methods
recovered medium signals faster than the contrastive methods,
and performed excellently on the recovery of large signals.

Table 3. The recovery time of signals with different sizes

Speed up Initial

Signals . ANM EMaC
strategy  algorithm
N=51, R=1, M=10 0.29s 0.34s 5.7s 47.8s
N=51, R=3, M=20 0.38s 0.46s 6.9s 58.0
N=101, R=5,
M=40 0.90s 0.95s 51.6s  787.6s
N=501, R=5,
M=100 8.48s 12.69s N/A N/A
N=2501, R=13,
M=500 88.95s 133.25s N/A N/A
N=2501, R=25,
M=1000 70.71s 91.46s N/A N/A
N=5001, R=20,
M=1000 473.48s 645.09s N/A N/A
N=5001, R=31,
M=2000 301.03s 402.56s N/A N/A

5. CONCLUSIONS

This paper presents a feasible-point algorithm for the
recovery of signals with sparse spectrum, and continuous
frequencies in the interval [0, 1], using only a few data in the
time domain. Unlike the conventional recovery methods, the
initial algorithm takes root in the non-convex optimization,
and handles large-dimensional signals effectively. The
convergence of the algorithm was verified through repeated
simulations.

Moreover, the convergence of the initial algorithm was
accelerated by referring to the FIST algorithm. Simulations
show that the initial algorithm and the speed up strategy could
recover signals on medium and large scales successfully from
a limited amount of data in the time domain, and outperform
contrastive methods like ANM and EMacC.

The future research will focus on the following aspects:
identifying the theoretical limit on the sample size for signal
recovery by our algorithms; applying our methods to the
recovery of damped signals, e.g., the fluctuation GNP data;
solving the problems in the programming of the Hankel matrix.
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