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Abstract

We present several schemes based on the spin-separation of the Dirac–Coulomb–

Breit Hamiltonian for the perturbative treatment of relativistic four-component Hamil-

tonians within the state interaction framework. While state interaction approaches tra-

ditionally use zeroth-order scalar-relativistic states, we develop augmented zeroth-order

Hamiltonians with increasing accuracy and investigate convergence to the variational

limit as a function of the choice of zeroth-order Hamiltonian. The state interaction

schemes developed in this work are benchmarked using ground-state fine-structure

splitting of late-row atoms and diatomic hyrides. Although the scalar-relativistic

zeroth-order Hamiltonian exhibits significant errors in ground-state fine-structure split-

ting, the predictive accuracy can be improved by augmenting the zeroth-order Hamil-

tonian with one- and two-electron vector-relativistic operators (e.g., spin–orbit, spin–

spin, orbit–orbit). This work lays the theoretical foundation for the development of

low-scaling, high-accuracy perturbative relativistic methods suitable for late-row ele-

ments.
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1 Introduction

Relativistic effects are ubiquitous in electronic structure calculations of late-row-containing

molecules, x-ray spectroscopy, and photochemistry.1–3 How to optimally include relativistic

effects in calculations is still an area of ongoing research. One can choose to include rel-

ativistic effects variationally (full wave function relaxation) or perturbatively (use a set of

zeroth-order wave functions as a basis). In general the perturbative approach will be more

practical in terms of computational cost; however, one needs to know when the relativistic

effect becomes large enough to deteriorate the perturbative approximation.

The most common relativistic effect included in quantum chemistry is scalar relativity.

Scalar relativity is routinely treated variationally. While this choice is often taken for granted

due to the ease of implementation, earlier benchmarking elucidated the effect of variational vs

perturbative scalar relativity for bond lengths, correlation energies, excitation energies, and

electron affinities.4–6 The next most common relativistic effect is spin–orbit coupling. Since

variational spin–orbit coupling implementations require complex arithmetic and two- or four-

component framework (which can both increase the computational cost),7–33 perturbative

approaches for spin–orbit coupling have proven to be more computationally efficient. 34–53

The perturbative relativistic approach has been widely used within the framework of state

interaction, often applied with multiconfigurational wave functions, such as the complete ac-

tive space self-consistent-field wave function with spin–orbit perturbation (CASSCF-SO or

SO-MCQDPT).35,39,53–57 State interaction traditionally represents a spin–orbit operator as

perturbation in a basis of scalar-relativistic wave functions (sometimes referred to as a set

“spin-free states”). In the full-configuration-interaction limit, state interaction converges to

the variational result since the orbital rotations missing in the state interaction become re-

dundant (assuming all possible states are included in the interaction space). As the strength

of relativistic effects increases in late-row elements, nonrelativistic or even scalar relativistic

wave functions may not be an ideal zeroth-order reference in the state interaction framework.

The two popular partitioning schemes for relativistic operators used in perturbation the-
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ory are the Breit–Pauli perturbation expansion and the spin-separation approach. While the

Breit–Pauli operator is based on a truncated perturbation expansion of the Dirac Hamilto-

nian, the spin-separation technique58,59 relies on the use of the Dirac identity to achieve the

exact partitioning of the scalar and spin-dependent terms. The Breit–Pauli operator cannot

be used to prepare the zeroth-order reference because it is not bounded from below in the

variational framework.60 In contrast, scalar and spin-dependent terms arising from the spin-

separation approach can be applied in both perturbative and variational electronic structure

contexts, leading to a flexible partitioning technique for relativistic Hamiltonians. In partic-

ular, with the recent advent of spin-separation of the Dirac–Coulomb–Breit Hamiltonian, 59

a hierarchy of perturbative four-component methods for molecular calculations can be effec-

tively developed within the state interaction framework. In this work, we introduce a series

of state interaction schemes, emphasizing the quality of various zeroth-order Hamiltonians

for late-row elements.

2 Method

2.1 Spin-Separation in the Four-Component Dirac–Coulomb–Breit

Hamiltonian

The matrix representation of the kinetically-balanced modified Dirac equation (in a.u.)

is:21,61 V T

T 1
4c2

W −T


C+

L C−
L

C+
S C−
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S 02
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where c is the speed of light. V, T, and S are the two-component nonrelativistic potential

energy, kinetic energy, and overlap matrices, respectively. {ε+}, {ε−} are the sets of posi-

tive/negative eigenvalues with corresponding molecular orbital coefficients (C+
L C+

S )T for
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the positive and (C−
L C−

S )T for the negative energy solutions, where L and S denote the

large and small component, respectively.

W is the relativistic potential matrix, with elements defined as 〈µ|(σ · p)V̂ (σ · p)|ν〉,

where p is the linear momentum operator, σ contains Pauli spin matrices, and {µ, ν} are

atomic orbital bases. For the molecular Hamiltonian, the two potential energy terms are

the nuclear–electron and the electron–electron interactions. Using the Dirac relation, a spin

separation procedure can be carried out for W,58,59

(σ · p) V̂ (σ · p) = p V̂Ne · p + p V̂ee · p + iσ · p V̂Ne × p + iσ · p V̂ee × p (2)

where V̂Ne is the nuclear–electron operator and V̂ee is the electron–electron operator. The

first and second dot-product terms are the one- and two-electron scalar-relativities. The

third and fourth cross-product terms are the one- and two-electron vector relativities.

Equation (2) presents a framework where relativistic effects can be separated into scalar

and vector terms for perturbation theory. Since the scalar-relativistic effects do not break the

spin symmetry, they have been used in non-relativistic frameworks with real-value arithmetic

to prepare zeroth-order states followed by including spin-orbit, arising from the last two terms

in Equation (2), in the perturbative treatment.58,59,62–66 While the spin-separation for one-

electron operator is well understood,58 the mathematical procedure to separate scalar and

vector relativistic effects for two-electron operators is much more complex.

The frequency-independent Dirac–Coulomb–Breit (DCB) operator in the Coulomb gauge

gives rise to the most accurate description of electron–electron interaction before going into
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a genuine quantum field treatment.2,33,67–77 The DCB operator can be written as

V̂ DCB
ee =

N∑
i=1

∑
j>i

(ĝC(i, j) + ĝB(i, j)) (3)

ĝC(i, j) =
1

rij
(4)

ĝB(i, j) = −1

2

(
αi ·αj

rij
+

(αi · rij)(αj · rij)
r3ij

)
(5)

where {i, j} are electron indices. The components of the α matrices are defined as

αi =

02 σi

σi 02

 , i = {x, y, z} (6)

where

σx =

0 1

1 0

 ,σy =

0 −i

i 0

 ,σz =

1 0

0 −1

 . (7)

The spin-separation of the Coulomb operator (Equation (4)) results in two-electron scalar

relativity, vector spin-own-orbit interaction, and several more complex terms derived from the

(SS|SS) integrals.58,59,76,77 Recently, the spin-separation of the Breit operator (Equation (5))

has been developed, revealing that the Breit operator gives rise to spin–other–orbit, spin–

spin, and orbit–orbit interactions in both scalar and vector forms.59 For detailed derivations

and the complete set of equations, we refer readers to Refs. 76 and 77. Here, we present

only the final working expressions in the Supporting Information for the scalar-relativistic

Dirac–Coulomb–Breit Hamiltonian. The vector-relativistic expressions can be easily derived

by removing the terms listed in the Supporting Information from the full set of equations

provided in Refs. 76 and 77.

5



2.2 Perturbation Partitioning Schemes in Four-Component Dirac–

Coulomb–Breit Hamiltonian

Typical state interaction approaches for spin–orbit coupling use a non-relativistic or scalar-

relativistic Hamiltonian for the zeroth-order Hamiltonian, and the perturbation is a spin–

orbit operator (often with approximate two-electron spin–orbit coupling). Although the

terms ‘scalar relativistic’ and ‘spin-free relativistic’ have often been used interchangeably, we

advocate for the consistent use of ‘scalar relativistic’ because it includes scalar products of

spin-dependent terms when two-electron relativistic operator is considered.59 Additionally,

we advocate for the use of ‘vector relativistic’ instead of ‘spin–orbit’ effect in the pertur-

bation treatment, as the former is more inclusive, encompassing spin–spin and orbit–orbit

interactions in the DCB framework.

The perturbation partitioning of the DCB Hamiltonian can be written as,

ĤDC(B) = Ĥ0 + V̂ (8)

where Ĥ0 is the zeroth-order Hamiltonian and V̂ = ĤDC(B)− Ĥ0 collects the rest of one- and

two-electron contributions in the perturbative state-interaction treatment.

In the perturbative state interaction approach, the zeroth-order Hamiltonian Ĥ0 is used to

obtain the zeroth-order multiconfigurational states, denoted as |I〉. A one-shot perturbative

treatment is employed to couple the zeroth-order states with the perturbation, V̂ . The

general forms of the state interaction Hamiltonian elements are

〈
I
∣∣∣Ĥ0 + V̂

∣∣∣ I〉 =
∑
pq

DII
pqhpq +

1

2

∑
pqrs

dIIpqrsgpqrs (9)

〈
I
∣∣∣V̂ ∣∣∣ J〉 =

∑
pq

DIJ
pq

(
hpq − h0pq

)
+

1

2

∑
pqrs

dIJpqrs
(
gpqrs − g0pqrs

)
(10)
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where I, J are zeroth-order wave functions; p, q, r, s are general molecular orbital indices;

D, d are the one- and two-electron transition-density matrices, respectively, that correspond

to the zeroth-order wave functions; h, g are the one- and two-electron integrals, respectively;

and a superscript of 0 indicates integrals corresponding to Ĥ0.

3 Results and Discussion

In this work, we use minimal-active-space complete-active-space self-consistent field wave

functions, which is the standard starting point for a state interaction calculation. We focus

on ground-state fine-structure splitting of f -, d-, and p-occupied frontier orbital manifolds

of late-row atoms, and p-block diatomic hydrides.

All calculation were performed in a development version of the Chronus Quantum soft-

ware package with finite nuclei and a speed of light of 137.035999074 a.u.78 We use a large

basis set throughout this work (uncontracted ANO-RCC basis set).79,80 All variational four-

component calculations include negative–positive rotations, denoted as CASSCF±.33 In the

Supporting Information, we demonstrate that negative–positive rotations have minimal im-

pact on fine-structure splitting in the systems studied in this work. This insight is crucial

when comparing variational and perturbative calculations, as the perturbative Hamiltonian

used here does not include an explicit negative–positive rotation term.

In atomic systems, we use active spaces with n − 1 electrons in n orbitals, where n is

number of orbitals in the valence manifold (e.g., f orbitals for Yb3+ and Lu4+). Note that

our implementation is Kramers’ unrestricted, so there are 14 f orbitals instead of 7 in the

active space. State-average over all possible states generated from this active space was

carried out in the 4C-CASSCF± optimization.

The diatomic benchmarks focus on four diatomic molecules: GeH, SnH, GeF, and SnF.

We used a one-electron active space of four e1 orbitals (Ge or Sn valence p-orbitals) and

two a1 orbitals (σ∗). We state-average over the lowest four states, covering the lowest non-
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relativistic term symbol 2Π. The maximum interaction space of six states was used.

Table 1. Zeroth-Order Hamiltonian H0 studied in this work.

srDC(B)- variational scalar-relativistic (sr) Dirac–Coulomb(–Breit)

srD∗C(B)-
variational scalar-relativistic (sr) Dirac–Coulomb(–Breit) augmented with
one-electron vector-relativistic contributions

srD∗C∗B-
variational scalar-relativistic (sr) Dirac–Coulomb–Breit augmented with
one-electron and two-electron Coulomb vector-relativistic contributions

Table 2. Perturbations V studied in this work.

-vrDC(B) perturbative vector-relativistic (vr) Dirac–Coulomb(–Breit)
-vrC(B) perturbative vector-relativistic (vr) Coulomb(–Breit)

-vrB perturbative vector-relativistic (vr) Breit

3.1 Zeroth-Order Hamiltonians

The accuracy of the perturbative method is heavily dependent on the quality of the zeroth-

order wave function used in the state interaction treatment of the perturbation. In this

section, we explore various choices for zeroth-order Hamiltonians, as listed in Table 1. To

align with the original motivation of spin-separation,58,59 we develop an all scalar-relativistic

zeroth-order Dirac–Coulomb–(Breit) Hamiltonian, srDC(B), which incorporates scalar-relativistic

terms from both one- and two-electron contributions. Additionally, we propose two new

classes of zeroth-order Hamiltonians by augmenting the scalar-relativistic Hamiltonian with

vector-relativistic contributions from one-electron and two-electron operators. Note that

within the augmentation naming scheme srD∗C∗(B∗) and DC(B) would be the same Hamil-

tonians. To evaluate the quality of these zeroth-order Hamiltonians, we compare the com-

puted atomic ground-state fine-structure splitting with the variational formalisms they ap-

proximate, as shown in Table 3.

The most accurate calculation in Table 3 is the Dirac–Coulomb–Breit CASSCF± (DCB-

CASSCF±) method, which has a mean unsigned error (MUE) of 0.048 eV. Transitioning from
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Table 3. Fine-structure splitting (in eV) for variational relativistic formalisms
with CASSCF± wave functions with corresponding mean unsigned error (MUE)
and percent error (shown in parentheses) relative to experiment. See Table 1 for
definition of Hamiltonians.

srD∗C DC srD∗CB srD∗C∗B DCB Expt.81

Pd+ 2D5/2 → 2D3/2 0.588(33.4) 0.434(1.0) 0.588(33.4) 0.435(0.9) 0.419(4.6) 0.439
Cd3+ 2D5/2 → 2D3/2 0.952(32.1) 0.722(0.2) 0.952(32.1) 0.722(0.2) 0.698(3.2) 0.721

I 2P3/2 → 2P1/2 1.015(7.7) 0.963(2.2) 1.012(7.4) 0.960(1.9) 0.951(0.9) 0.943
Xe+ 2P3/2 → 2P1/2 1.407(7.7) 1.336(2.3) 1.403(7.4) 1.332(2.0) 1.319(1.0) 1.306

Tm 2F7/2 → 2F5/2 2.002(84.1) 1.117(2.7) 2.004(84.3) 1.118(2.8) 1.062(2.4) 1.087
Yb3+ 2F7/2 → 2F5/2 2.296(81.3) 1.299(2.6) 2.298(81.4) 1.301(2.7) 1.238(2.2) 1.266
Lu4+ 2F7/2 → 2F5/2 2.615(78.9) 1.501(2.6) 2.617(79.0) 1.503(2.8) 1.433(2.0) 1.462
Pt+ 2D5/2 → 2D3/2 1.476(41.4) 1.218(16.7) 1.477(41.4) 1.219(16.8) 1.196(14.5) 1.044
Hg3+ 2D5/2 → 2D3/2 2.283(17.4) 1.908(1.9) 2.284(17.5) 1.910(1.8) 1.875(3.6) 1.945
Rn+ 2P3/2 → 2P1/2 4.108(7.3) 3.976(3.8) 4.086(6.7) 3.953(3.2) 3.938(2.8) 3.831

MUE 0.470 0.051 0.468 0.049 0.048

DCB-CASSCF± to the less accurate Dirac-Coulomb CASSCF± (DC-CASSCF±) approach

increases MUE by 0.003 eV.

The full-scalar zeroth-order Hamiltonians (srDC and srDCB) are excluded from this

comparison, since these reference calculations do not account for fine structure. However,

when the scalar zeroth-order Hamiltonians are augmented with vector-relativistic effects from

one-electron and two-electron operators, fine-structure splitting is partially recovered in the

zeroth-order energies. The extent of this recovery varies among the different zeroth-order

Hamiltonians. Specifically, when the scalar Hamiltonian is augmented with one-electron

vector-relativistic effects (srD∗C and srD∗CB), the computed zeroth-order fine-structure

splitting shows an overestimate of 0.47 eV compared to experimental data. This overes-

timation arises from the absence of two-electron spin-orbit coupling, which counteracts the

one-electron vector-relativistic effect.17 Significant improvement in the zeroth-order energies

can be achieved by augmenting the scalar Hamiltonian with both one-electron and two-

electron Coulomb vector-relativistic effects. The resulting srD∗C∗B Hamiltonian yields an

error of just 0.001 eV when compared to the results of the full DCB Hamiltonian.

Based on percentage errors, atoms and ions within a same block exhibit similar behavior

(see the Block-Dependent Analysis section below for more details). The one exception is
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in the 5d block, where Pt+ shows a significantly larger percent error for DCB-CASSCF±

(15% compared to 1-5% for all other systems). This discrepancy is likely due to electron

correlation effects, as the 5d→ 6s excitation energy is much lower in Pt+ than in Hg3+.

While adding vector-relativistic effects to the zeroth-order Hamiltonian is expected to

improve the quality of the zeroth-order wave function towards the full variational treatment,

it also significantly increases the computational cost. In the all-scalar srDC(B) Hamilto-

nian, spin symmetry is maintained. This allows for the use of real-valued arithmetic and

a reduced-dimension framework, keeping the computational cost comparable to that of a

non-relativistic calculation. However, when one-electron vector-relativistic effects are incor-

porated into the zeroth-order Hamiltonian, it requires the use of a complex-valued four-

component self-consistent field, despite the trivial cost of computing one-electron spin-orbit

integrals. Moreover, augmenting the zeroth-order Hamiltonian with two-electron Coulomb

vector-relativistic effects greatly increases the cost of integral evaluation (refer to Ref. 76 for

the cost estimate).

This section establishes a benchmark for the quality of the zeroth-order Hamiltonian. The

subsequent sections will examine the effectiveness of the perturbative treatment in correct-

ing errors in fine-structure due to missing relativistic effects, utilizing the state interaction

framework.

3.2 Perturbative Dirac–Coulomb Hamiltonians

In Table 3, we presented the performance of the variational Dirac–Coulomb CASSCF± (DC-

CASSCF±), which yielded a mean unsigned error (MUE) of 0.051 eV. In this section, we

examine the performance of various perturbative schemes of the Dirac–Coulomb opera-

tor, as shown in Table 4. We consider two zeroth-order Hamiltonians: srDC and srD∗C.

The former is the all-scalar Dirac–Coulomb Hamiltonian, while the latter augments srDC

with one-electron vector-relativistic effects. The perturbative schemes are denoted as srDC-

CASSCF±-vrDC and srD∗C-CASSCF±-vrC, where the prefixes srDC- and srD∗C- refer to
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the zeroth-order Hamiltonian used in CASSCF±, and the suffix -vrDC and -vrC indicates the

inclusion of the remaining vector-relativistic (vr) Dirac–Coulomb terms via the state interac-

tion. Notably, the perturbations in srDC-CASSCF±-vrDC and srD∗C-CASSCF±-vrC differ:

the former includes the missing one- and two-electron vector-relativistic effects, while the

latter includes only the two-electron vector-relativistic contributions in the state interaction

treatment. The srDC-CASSCF±-vrDC formalism closely relates to traditional CASSCF-SO

methods used in the literature but avoids errors due to the picture change.35,39,53–55

Table 4. Atomic fine-structure splitting (in eV) for perturbative Dirac–Coulomb-
based relativistic formalisms with CASSCF± wave functions with the mean un-
signed error (MUE) and percent error (shown in parentheses) relative to experi-
ment. See Tables 1 and 2 for definition of Hamiltonians.

srDC-CASSCF±-vrDC srD∗C-CASSCF±-vrC DC-CASSCF± Expt.81

Pd+ 2D5/2 → 2D3/2 0.447(1.9) 0.431(1.9) 0.434(1.0) 0.439
Cd3+ 2D5/2 → 2D3/2 0.725(0.6) 0.715(0.7) 0.722(0.2) 0.721

I 2P3/2 → 2P1/2 0.880(6.6) 0.962(2.0) 0.963(2.2) 0.943
Xe+ 2P3/2 → 2P1/2 1.224(6.3) 1.335(2.2) 1.336(2.3) 1.306

Tm 2F7/2 → 2F5/2 1.097(0.9) 1.041(4.3) 1.117(2.7) 1.087
Yb3+ 2F7/2 → 2F5/2 1.281(1.1) 1.212(4.3) 1.299(2.6) 1.266
Lu4+ 2F7/2 → 2F5/2 1.477(1.0) 1.402(4.1) 1.501(2.6) 1.462
Pt+ 2D5/2 → 2D3/2 1.349(29.3) 1.197(14.6) 1.218(16.7) 1.044
Hg3+ 2D5/2 → 2D3/2 2.038(4.8) 1.884(3.1) 1.908(1.9) 1.945
Rn+ 2P3/2 → 2P1/2 3.424(10.6) 3.968(3.6) 3.976(3.8) 3.831

MUE 0.100 0.057 0.051

We find that srDC-CASSCF±-vrDC has a significantly larger MUE compared to the

variational DC-CASSCF± (0.100 eV for srDC-CASSCF±-vrDC versus 0.051 eV for DC-

CASSCF±). However, when the all-scalar srDC is augmented with one-electron spin–orbit

effects in the zeroth-order Hamiltonian, the error is notably reduced (0.057 eV for srD∗C-

CASSCF±-vrC compared to 0.051 eV for DC-CASSCF±). This analysis indicates that a wave

function computed without vector-relativistic effects may not serve as a suitable zeroth-order

reference for the perturbative state interaction treatment, especially for late-row elements.

To accurately recover the missing fine-structure splitting, a larger interaction space might

be required if the all-scalar-relativistic zeroth-order Hamiltonian is used (this would require

a larger active space for these systems).
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3.3 Perturbative Dirac–Coulomb–Breit Hamiltonians

For the Dirac–Coulomb–Breit (DCB) operator, three different zeroth-order Hamiltonians can

be constructed: the all-scalar-relativistic DCB (srDCB), srDCB augmented with one-electron

vector-relativistic terms (srD∗CB), and srDCB augmented with both one-electron and two-

electron Coulomb vector-relativistic terms (srD∗C∗B). We investigate these three different

perturbation partitionings and compare them to the variational DCB-CASSCF± method

and experimental data for ground-state fine-structure splittings, as shown in Table 5.

Table 5. Fine-structure splitting (in eV) for perturbative Dirac–Coulomb–Breit-
based relativistic formalisms with CASSCF± wave functions with corresponding
mean unsigned error (MUE) and percent error (shown in parentheses) relative to
experiment. The top row denotes the zeroth-order Hamiltonian and the row below
denotes the remaining vector-relativistic terms that are included perturbatively.
See Tables 1 and 2 for definition of Hamiltonians.

srDCB srD∗CB srD∗C∗B
DCB-CASSCF± Expt.81

vrDCB vrCB vrB

Pd+ 2D5/2 → 2D3/2 0.432(1.5) 0.416(5.2) 0.420(4.3) 0.419(4.6) 0.439
Cd3+ 2D5/2 → 2D3/2 0.703(2.5) 0.693(3.8) 0.700(2.9) 0.698(3.2) 0.721

I 2P3/2 → 2P1/2 0.869(7.8) 0.950(0.7) 0.951(0.9) 0.951(0.9) 0.943
Xe+ 2P3/2 → 2P1/2 1.209(7.5) 1.319(1.0) 1.320(1.1) 1.319(1.0) 1.306

Tm 2F7/2 → 2F5/2 1.053(3.2) 0.995(8.5) 1.071(1.5) 1.062(2.4) 1.087
Yb3+ 2F7/2 → 2F5/2 1.230(2.9) 1.161(8.3) 1.250(1.3) 1.238(2.2) 1.266
Lu4+ 2F7/2 → 2F5/2 1.421(2.8) 1.346(7.9) 1.446(1.1) 1.433(2.0) 1.462
Pt+ 2D5/2 → 2D3/2 1.323(26.8) 1.174(12.5) 1.196(14.5) 1.196(14.5) 1.044
Hg3+ 2D5/2 → 2D3/2 1.999(2.8) 1.850(4.9) 1.876(3.6) 1.875(3.6) 1.945
Rn+ 2P3/2 → 2P1/2 3.385(11.6) 3.930(2.6) 3.938(2.8) 3.938(2.8) 3.831

MUE 0.109 0.071 0.044 0.048

State interaction calculations using the all-scalar-relativistic zeroth-order srDCB Hamil-

tonian show a large mean unsigned error (MUE) of 0.109 eV for the benchmark test set. This

significant error again suggests that the all scalar-relativistic wave function may not be a

suitable zeroth-order reference for the perturbative state interaction treatment. By including

the one-electron spin–orbit coupling in the zeroth-order Hamiltonian, the MUE reduces from

0.109 eV to 0.071 eV (srDCB-CASSCF±-vrDCB vs. srD∗CB-CASSCF±-vrCB). The third
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partitioning includes the two-electron spin–orbit coupling contribution from the Coulomb

operator in the zeroth-order Hamiltonian (srD∗C∗B-CASSCF±-vrB), resulting in an MUE

difference of only 0.004 eV compared to DCB-CASSCF±, indicating near perturbation con-

vergence.

Despite its high computational cost, using the zeroth-order Hamiltonian with two-electron

Coulomb vector-relativistic terms (srD∗C∗B) is advantageous. This approach avoids the

computation of the most expensive Breit integrals in the CASSCF± procedure while the state

interaction with one-shot perturbative Breit treatment can produce fine-structure splittings

comparable to full variational calculations. Assuming 20 iterations in the CASSCF± step

and that all integrals are computed once and stored in memory, i.e., the in-core method,

the cost analysis in terms of floating-point operations (FLOP) count from Ref. 77 indicates

that the one-shot perturbative Breit method using the state interaction approach is 4 times

faster than the full DCB-CASSCF±. The computational savings primarily arise from the

reduced number of in-core integral transformations for the Breit Hamiltonian. For the AO-

direct CASSCF± procedure, these savings are even more substantial, as the computation of

Breit integrals is 2 orders of magnitude more expensive than those for the Dirac–Coulomb

Hamiltonian. As a result, one should expect a 2-3 order magnitude speedup when using

the perturbative Breit method within the state interaction framework compared to the fully

variational DCB-CASSCF±.

3.4 Block-Dependent Analysis

In Table 6 we show the MUE of the computed ground-state fine-structure splitting as a

function of blocks of the periodic table. For 4d and 5p blocks (fifth-row), perturbative

state-interaction approaches perform well, with small errors comparable to variational meth-

ods. However, the error increases significantly for the 5d and 6p blocks. For these blocks,

state-interaction methods using all-scalar references (srDC- and srDCB-) exhibit large er-

rors in the range of 0.40-0.45 eV, rendering them unreliable for computational studies of
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Table 6. Mean-unsigned error (MUE) (in eV) of the computed ground-state
fine-structure splitting using perturbative and variational Dirac–Coulomb(–Breit)
relativistic formalisms with CASSCF± wave functions. The top row denotes
the zeroth-order Hamiltonian and the row below denotes the remaining vector-
relativistic terms that are included perturbatively. See Tables 1 and 2 for defini-
tion of Hamiltonians.

srDC srD∗C
DC-CASSCF± srDCB srD∗CB srD∗C∗B

DCB-CASSCF±
vrDC vrC vrDCB vrCB vrB

4d 0.007 0.007 0.003 0.012 0.025 0.020 0.022
5p 0.072 0.024 0.025 0.086 0.010 0.011 0.011
4f 0.013 0.054 0.033 0.038 0.105 0.016 0.028
5d 0.199 0.107 0.105 0.167 0.112 0.110 0.111
6p 0.407 0.137 0.145 0.446 0.099 0.107 0.107

molecular complexes containing elements in the sixth-row or above. This observation agrees

with previous work using all-scalar-relativistic zeroth-order Hamiltonianss. 39,40,52,53 In con-

trast, methods using reference Hamiltonians augmented with one-electron and two-electron

Dirac–Coulomb vector relativistic corrections can nearly replicate the results obtained with

variational methods.

Overall, for all methods considered here, the error increases with increasing principle

quantum number and angular momentum with an exception for the 4f manifold. State-

interaction methods using all-scalar references (srDC- and srDCB-) exhibit an exceptionally

small error, even out-performing some high-level methods. Adding extra tight or diffuse f

functions does not seem to change the behavior as shown in the Supporting Information,

suggesting that this is not a basis set issue. Nevertheless, all methods considered here do

well for the 4f fine-structure splitting.
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3.5 Perturbative Hamiltonians Applied to Diatomic Hydrides

Figure 1. Potential energy surface of GeH. The E1/2 ground state surfaces are
shown on the bottom plots. The E3/2 surfaces are shown on the top plots. Sur-
faces on the left are calculated using Dirac–Coulomb-based formalisms. Surfaces
on the right are calculated using Dirac–Coulomb–Breit-based formalisms.

Figure 2. Potential energy surface of SnH. The E1/2 ground state surfaces are
shown on the bottom plots. The E3/2 surfaces are shown on the top plots. Sur-
faces on the left are calculated using Dirac–Coulomb-based formalisms. Surfaces
on the right are calculated using Dirac–Coulomb–Breit-based formalisms.
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Figure 3. Potential energy surface of GeF. The E1/2 ground state surfaces are
shown on the bottom plots. The E3/2 surfaces are shown on the top plots. Sur-
faces on the left are calculated using Dirac–Coulomb-based formalisms. Surfaces
on the right are calculated using Dirac–Coulomb–Breit-based formalisms.

Figure 4. Potential energy surface of SnF. The E1/2 ground state surfaces are
shown on the bottom plots. The E3/2 surfaces are shown on the top plots. Sur-
faces on the left are calculated using Dirac–Coulomb-based formalisms. Surfaces
on the right are calculated using Dirac–Coulomb–Breit-based formalisms.

We expand our benchmark of the Dirac–Coulomb-based formalisms to diatomic molecules

GeH, SnH, GeF, and SnF. Without vector-relativity, these molecules exhibit a four-fold de-

generate 2Π ground state. Vector-relativity splits the four-fold degeneracy into two Kramers

pairs denoted by the double group irreducible representation E1/2 for the ground state and
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E3/2 for the excited state.

To visualize the splitting as bond length varies, we report potential-energy curves in

Figures 1 to 4.Using the presented formalisms, equilibrium bond lengths were computed

along with the 2Π splitting at equilibrium. The equilibrium bond length was not affected

by the choice of formalism, with only the srDC-CASSCF±-vrDC SnH bond length differing

from the two other formalisms by 0.001 Å.

Table 7 presents the computed fine-structure splitting of the 2Π ground state using the

Dirac–Coulomb-based methods. Consistent with the atomic results, srDC-CASSCF±-vrDC

underperformed compared to the other two formalisms in predicting the 2Π splitting, under-

estimating it by 0.009, 0.023, 0.011, and 0.035 eV for GeH, SnH, GeF, and SnF, respectively.

Augmenting with one-electron vector relativity reduces the error to the meV range, aligning

closely with the results from full variational DC-CASSCF±. Interestingly, the average er-

ror of srDC-CASSCF±-vrDC in predicting p-block molecular splittings is noticeably smaller

than that observed for atomic species in Table 6.

Table 7. GeH and SnH ground state fine-structure splitting (in eV) and equi-
librium bond lengths (in Å) calculated using perturbative Dirac–Coulomb-based
relativistic formalisms with CASSCF± wave functions. See Tables 1 and 2 for
definition of Hamiltonians.

srDC-CASSCF±-vrDC srD∗C-CASSCF±-vrC DC-CASSCF± Expt.81

GeH 2Π
Splitting 0.102 0.111 0.111 0.111
Bond Length 1.584 1.584 1.584 1.588

SnH 2Π
Splitting 0.247 0.269 0.270 0.270
Bond Length 1.768 1.767 1.767 1.782

GeF 2Π
Splitting 0.105 0.117 0.117 0.116
Bond Length 1.729 1.729 1.729 1.745

SnF 2Π
Splitting 0.252 0.285 0.286 0.287
Bond Length 1.930 1.930 1.930 1.944

Similar to the results in Table 7, in Table 8 the different Dirac–Coulomb–Breit for-

malisms minimally affect equilibrium bond length, with the SnH bond length differing by
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0.001 Å when using an all-scalar-relativistic zeroth-order DCB Hamiltonian compared to

the other formalisms. The all-scalar-relativistic zeroth-order formalism continues to under-

estimate the 2Π splitting compared to the other formalisms but noticeably less than the

srDCB-CASSCF±-vrDCB 5p atomic benchmark in Table 6.

Table 8. GeH and SnH ground state fine-structure splitting (in eV) and equi-
librium bond lengths (in Å) calculated using perturbative Dirac–Coulomb–Breit-
based relativistic formalisms with CASSCF± wave functions. The top row de-
notes the zeroth-order Hamiltonian and the row below denotes the remaining
vector-relativistic terms that are included perturbatively. See Tables 1 and 2 for
definition of Hamiltonians.

srDCB srD∗CB srD∗C∗B
DCB-CASSCF± Expt.81

vrDCB vrCB vrB

GeH 2Π
Splitting 0.100 0.109 0.109 0.109 0.111
Bond Length 1.584 1.584 1.584 1.584 1.588

SnH 2Π
Splitting 0.244 0.266 0.267 0.267 0.270
Bond Length 1.769 1.768 1.768 1.768 1.782

GeF 2Π
Splitting 0.103 0.114 0.114 0.114 0.116
Bond Length 1.730 1.730 1.730 1.730 1.745

SnF 2Π
Splitting 0.249 0.281 0.282 0.282 0.287
Bond Length 1.930 1.930 1.930 1.930 1.944

4 Conclusion

In this work, based on the recent development of spin-separation of the Dirac–Coulomb–

Breit operator, we introduced several zeroth-order four-component Hamiltonians suitable

for state-interaction perturbation theory using CASSCF wave functions: scalar-relativistic

Dirac–Coulomb (srDC), scalar-relativistic Dirac–Coulomb–Breit (srDCB), srDC augmented

with one-electron vector-relativity (srD∗C), srDCB augmented with one-electron vector-

relativity (srD∗CB), and srDCB augmented with one- and two-electron Coulomb vector-
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relativity (srD∗C∗B).

Benchmark calculations using atomic and diatomic fine-structure splitting show that the

accuracy of the proposed state-interaction schemes increases converging toward the varia-

tional full DCB-CASSCF± results. For late-row elements, the all scalar-relativistic zeroth-

order Hamiltonian used in the state interaction CASSCF± method exhibits a large error

in fine-structure splitting. The accuracy can be improved by augmenting the all scalar-

relativistic zeroth-order Hamiltonian with one- and two-electron Coulomb vector-relativities.

Orbital-dependent analysis supports the use of all-scalar relativistic zeroth-order Hamil-

tonians for 4d, 5p, and core-like 4f manifolds. However, for heavier elements in the sixth-row

and above, we recommend using vector-relativity-augmented zeroth-order Hamiltonians.

Despite its high computational cost, using the zeroth-order Hamiltonian augmented with

one-electron and two-electron Coulomb vector-relativistic terms (srD∗C∗B) is advantageous.

This approach avoids the computation of the most expensive Breit integrals in the CASSCF±

procedure, while the state interaction with one-shot perturbative Breit treatment can pro-

duce fine-structure splittings comparable to full variational calculations.

It is important to note that these findings are based on small state-interaction spaces,

consistent with a low-scaling relativistic approach suitable for perturbation theory. Conver-

gence as a function of state-interaction space remains to be demonstrated in future work.
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