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Virtual High-Throughput Screening of Vapor-Deposited
Amphiphilic Polymers for Inhibiting Biofilm Formation

Zhihao Feng, Yifan Cheng, Alexandra Khlyustova,* Aasim Wani, Trevor Franklin,

Jeffrey D. Varner,* Andrew L. Hook,* and Rong Yang*

Amphiphilic copolymers (AP) represent a class of novel antibiofouling
materials whose chemistry and composition can be tuned to optimize their
performance. However, the enormous chemistry-composition design space
associated with AP makes their performance optimization laborious; it is not
experimentally feasible to assess and validate all possible AP compositions
even with the use of rapid screening methodologies. To address this
constraint, a robust model development paradigm is reported, yielding a
versatile machine learning approach that accurately predicts biofilm formation
by Pseudomonas aeruginosa on a library of AP. The model excels in extracting
underlying patterns in a “pooled” dataset from various experimental sources,
thereby expanding the design space accessible to the model to a much larger
selection of AP chemistries and compositions. The model is used to screen
virtual libraries of AP for identification of best-performing candidates for
experimental validation. Initiated chemical vapor deposition is used for the

resistance genes across multiple coin-
habiting species via horizontal gene
transfer.’] As such, biofilms further chal-
lenge humanity’s capability to stay ahead
in the race against emerging bacterial
pathogens that already resist multiple
last-line antibiotics.!]

Polymer coatings that inherently resist
bacterial attachment and subsequent
biofilm formation, namely antibiofoul-
ing coatings, have been brought to the
forefront of combating the formation
of antibiotic-resistant biofilms. Rather
than killing bacteria, as in the case of
antibiotics, which inevitably breed re-
sistant strains over time, these novel
coatings prevent biofilm by disrupting

precision synthesis of the model-selected AP chemistries and compositions
for validation at solid—liquid interface (often used in conventional antifouling
studies) as well as the air-liquid-solid triple interface. Despite the vastly
different growth conditions, the model successfully identifies the
best-performing AP for biofilm inhibition at the triple interface.

1. Introduction

Biofilms formed on the surface of indwelling medical de-
vices are the root cause of many life-threatening nosocomial
infections.l'l Compared to their planktonic counterparts, bac-
teria in these surface-bound biofilm “fortresses” can be up
to 1000-fold more resistant to antibiotics and host defenses.[?!
Furthermore, biofilms can facilitate the dissemination of drug
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bacterial adhesion to a solid surface, thus
imposing minimal selective pressure
on bacteria.l>®! Successful examples of
such materials include poly(ethylene gly-
col) brushes,”! zwitterionic polymers,®!
liquid-infused surfaces,® and am-
phiphilic copolymers (AP).[1%15] Here,
we focus on AP for their capability in
mitigating bacterial attachment and biofilm formation at both
solid-liquid interfaces and solid-liquid—gas triple interfaces, the
latter of which has received far less attention despite their impli-
cation in nosocomial material-associated infections.!?!

While the antibiofouling performance of most polymer coat-
ings has been attributed to hydrophilicity, i.e., the increased en-
thalpic barrier for foulant adhesion, the fundamental mecha-
nism for AP’s fouling resistance is not well understood. The
hypotheses that have received most attention include Baier
curve minimum,*®/ dynamic surface reconstruction,'>'”] and
nanoscale or molecular heterogeneity.'*1418191 Based on these
theories, comonomers from the opposite ends of the sur-
face energy spectrum (e.g., pairing of hydrophilic zwitterionic
monomers with hydrophobic fluorinated monomers)!'?! have
been selected to form AP, which create high surface energy mis-
match and thus high thermodynamic penalty upon bacterial con-
tact. Indeed, these AP coatings have demonstrated superior an-
tibiofilm efficacy than zwitterionic coatings.!?]

Despite their great promise, the discovery of novel and ef-
fective AP is limited by the lack of a set of guiding principles,
which constitutes a major barrier due to the immense chemistry-
composition design space associated with AP. There are count-
less combinations of hydrophilic and hydrophobic monomer
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pairs and compositional variations,*?%) making a comprehen-
sive assessment extremely laborious. To address that challenge,
we resort to data-driven machine learning (ML) models, which
have demonstrated considerable potential in predicting biolog-
ical responses of materials, including biofilm formation.?!! To
generate a sufficiently large dataset for ML models, we adopted
a high-throughput screening platform reported by Hook et al.,
which has been leveraged to discover antibiofouling copoly-
mers that are unanticipated based on existing theoretical or
empirical knowledge.[%??] More recently, that platform has en-
abled the quantitative prediction of the attachment by multiple
pathogenic bacteria on a variety of polymers, pointing to the dis-
covery of materials with broad-spectrum efficacy.}] However, de-
spite their proven advantage in rapid synthesis and testing, the
high-throughput platform relies on solution-phase polymeriza-
tion, which limits the discovery of AP with high-contrast and
molecular-scale heterogeneity. Due to the lack of a common sol-
vent and the tendency for microphase separation for monomer
pairs with contrasting surface energies, solution-based synthesis
is considered inappropriate to address the detailed molecular de-
sign to advance antibiofouling AP.

To enable the precision synthesis of AP using monomer
pairs with contrasting surface energies, we leverage an all-dry
synthesis approach, namely initiated chemical vapor deposition
(iCVD). It has been used for AP synthesis due to its solvent-
free nature?*»! a high retention rate of functional moieties
borne in the monomers,1?] and its capability to deposit con-
formal nanolayers over nanostructured substrates.[?”?8] These
unique advantages of iCVD enable the synthesis of desired AP
chemistries and their one-step synthesis and application on es-
sentially any substrate while maintaining the beneficial bulk
properties (e.g., mechanical properties) and desired surface topo-
graphical features (e.g., nanostructures).[?*?° Despite its many
advantages, it is currently challenging to sift through the vast
chemistry-composition design space associated with AP using
iCVD alone.[*2]

This begs the question: can we combine the best of both
worlds, whereby solution-phase high-throughput synthesis pro-
vides a sufficiently large dataset for training a general ML model,
which is also applicable to the vapor-deposited AP materials?
Moreover, since AP holds great promise in reducing biofilm for-
mation at both solid-liquid interfaces and solid-liquid—air triple
interfaces, can a general ML model transfer what is learned from
solid-liquid interfaces to complete similar tasks at the triple in-
terfaces?

Here, we demonstrate that a general support vector regres-
sion (SVR), when trained on a diverse polymer library, cap-
tures the fundamental quantitative structure-activity relationship
(QSAR) underlying both vapor- and solution-synthesized copoly-
mers, thus allowing transfer of the polymer chemistry-biofilm
performance knowledge across polymer synthesis methods. We
further demonstrate that transfer is effective even across differ-
ent growth environments for biofilm formation (i.e., liquid—solid
versus triple interface). Compared with the state-of-the-art,!?*] the
model reported here expands the accessible number of molec-
ular fingerprints by over twofold, that of monomers by sixfold,
and that of unique polymers by over fivefold, while maintain-
ing a desired accuracy of predicting their antibiofilm perfor-

Adv. Mater. Technol. 2023, 8, 2201533

2201533 (2 of 13)

www.advmattechnol.de

mance. To demonstrate the potential impact of the model, we
show how QSAR can be leveraged to shed light on the structure—
performance correlation (by associating low bacterial attachment
with specific monomers and molecular fingerprints borne by
polymers) and to guide the subsequent synthesis and testing of
promising candidates. The model development and implemen-
tation procedures demonstrated here can be directly adopted by
others in the field to rapidly discover antibiofilm chemistries, syn-
thesized using solution- or all-dry method, which are highly ef-
fective under different bacteria growth conditions.

2. Methodologies

The capability of a general ML to learn fundamental polymer
chemistry-biofilm relationships from numerous and diverse ex-
amples is vital to achieving robust predictive performance across
polymer synthesis methods and types of interfaces at which
biofilm forms. General ML models are characterized by their
capability to learn “deeper” patterns concealed in the high-
dimensional feature space with proper abstraction and general-
ization (e.g., dimension reduction) and subsequently apply such
learning to achieve accurate predictions of material properties
even when new examples appear different from the original train-
ing domain. In this work, we pooled together 2240 polymers
and their fluorescence intensities against Pseudomonas aerugi-
nosa (PAO1) (labeled as Fp,) from seven microarrays, including
the dataset previously published by Hook et al.[%?2] as well as un-
published samples from the same lab. Instead of emphasizing
the model’s generalization at a range of pathogens similar to pre-
vious studies,!*3% we aim to investigate a model’s ability to gener-
alize with data obtained from independent experimental sources
and possible transferability of learned patterns to a distinct poly-
merization strategy. Thus, fluorescence intensities against PAO1
are the only model learning target included in the polymer li-
brary. This library included homo- and copolymers with a broad
range of pendant groups, including hydrophilic, hydrophobic,
aromatic, cyclic, and branched functional groups. There was
an emphasis on copolymers with weakly amphiphilic pendant
groups that were a part of the class of poly(methacrylates) previ-
ously shown to prevent bacterial biofilm formation.*!! The poly-
mer synthesis procedure and biofilm formation measurement
are illustrated in “Experimental Data Collection” of Figure 1.
Also, the corresponding details are described in the Experimen-
tal Section. We cannot exclude that specific copolymer architec-
tures were generated on the microarray as a result of the polymer-
ization strategy used that would limit the ability to maintain the
biological properties measured on the microdots upon scale-up.
However, this is unlikely to be a dominant effect, as materials
selected from the microarray have been successfully scaled up
whilst maintaining antibiofilm properties using a range of poly-
merization strategies.[2232]

Due to the structural complexity of the pooled polymers,
we computed each polymer’s features with a linear combina-
tion of two corresponding monomer components’ features used
for this polymer. Therefore, the following steps were carried
out: i) We converted 137 unique monomers (used to derive all
polymers) into their corresponding simplified molecular-input
line-entry strings for generating computational features. These
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Figure 1. Machine learning model development pipeline. This pipeline is divided into five sections with a color code. Referenced figures are indicated
correspondingly. During “Experimental Data Collection” (red frame), a polymer that contained component A and B was achieved by dispensing x (volume
fraction) of monomer A and (1 — x) of B in a mixture onto glass slides to form microarrays. Upon incubation of microarrays with PAO1 for 72 h, the
microarrays’ fluorescence intensities were measured to quantify the biofilm formation on 2240 polymers (after removing the data below the limit of
detection). The impact of applying a limit of detection on the dataset has been described previously.?2] With the experimental data, “Computational
Dataset Construction” (blue frame) was performed with molecular descriptors (e.g., Gasteiger partial charges, octanol/water partition coefficient, and
other 95 descriptors) and 1024 extended-connectivity fingerprints with a linear combination of two corresponding monomer components’ features for
every copolymer’s computational feature entry against its experimental antibiofilm performance. In “Model Development” (gray blocks), we preprocessed
the training set followed by hyperparameter optimizations of support vector regressors. Subsequently, we generated an ensemble model that was trained
under various autoencoder-encoded feature sets for the internal model validation (e.g., at the solid-liquid interfaces) with the hold-out test set and
previously observed AP. In “Virtual Screening” (yellow blocks), the ensemble model virtually screened a newly built AP dataset for antibiofilm performance
with ranked candidates. Among the top-ranked candidates, compositional optimization was performed using the ensemble model. Finally, in “External
Model Validation” (green blocks), we synthesized the model-predicted AP using iCVD and tested their antibiofilm performance at liquid—solid and triple

interfaces.

features include Gasteiger partial charges, octanol/water par-
tition coefficient, and other 95 descriptors, as well as 1024
extended-connectivity fingerprints(**! with RDKit. ii) We linearly
combined these monomers’ features pairwise to derive all poly-
mers’ features. The dataset’s structure is presented in “Compu-
tational Dataset Construction” in Figure 1.

Previously, the Bayesian neural network has learned from a
polymer microarray comprising 404 unique homo- and copoly-
mers derived from 22 monomers.’] We expanded the num-
ber of individual monomers included in training from the ex-
isting record by sixfold (from 22 to 137), unique molecular fin-
gerprints by more than twofold (from 183 to 423), and unique
homopolymers and copolymers by more than fivefold (from 404
to 2240).12] This considerable expansion in the size and diversity
of the training set could bring the following potential challenges
to the development of a general model: i) Microarray results
obtained from multiple independently performed experiments
could introduce variables that were not explicitly controlled (e.g.,
slight differences in experimenter’s operation). ii) Diversity in
monomer chemistry could make accurate prediction more dif-
ficult, as unbalanced sample distribution might be embedded
into this dataset. To tackle these challenges, a generalizable algo-
rithm was desired. Therefore, we decided to build a radial-basis-
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function-kernelized SVR model, which is presumably more gen-
eralizable due to its e-insensitive region.3*

Therefore, we aim to i) train an SVR ensemble model gen-
eralized enough to predict the antibiofilm performances of un-
seen copolymers comprising diverse monomer chemistries and
compositions, making use of the bacterial attachment dataset
obtained through high-throughput microarray experimentation
carried out at the solid-liquid interface (“Model Development”
in Figure 1); ii) apply this trained ensemble model to virtu-
ally screen new hydrophilic-hydrophobic monomer pairs for top-
ranked amphiphilic copolymers based on their predicted perfor-
mance and optimize the hydrophilic-to-hydrophobic ratio of se-
lected comonomer pairs (“Virtual Screening” in Figure 1); iii)
test model transferability across synthetic methods by using
iCVD-synthesized AP and transferability across interfacial envi-
ronments for biofilm formation by predicting biofilms formed
on AP at solid-liquid-gas interfaces using a model trained at
solid-liquid interfaces (“External Model Validation” in Figure 1).
In particular, we categorize model validations at the microarray
solid-liquid interfaces as the internal validation and the iCVD-
synthesized interfaces as the external validation. Also, we focus
on each of the last three sections sequentially in the rest of the

paper.
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Figure 2. Key components of model development. A) The distribution of the experimentally measured fluorescence intensities after logarithmic trans-
formation. B) Architecture of the three-layer autoencoder, where the number of nodes in the input and output layers is equal to the original feature
dimensions (N = 1121). The code layer has M nodes (equal to the desired number of reduced features) chosen based on a bias-variance tradeoff in
five-fold cross-validation (CV) over the autoencoder-encoded training set. C) A variance-bias tradeoff plot indicated an acceptable range for the number
of reduced features (45-49) for balancing the variance and bias issue. D) The ensemble model’s internal validation over the holdout test set.

3. Model Development and Internal Model
Validation at the Solid-Liquid Interface

Upon completing the computational dataset construction for
the polymers, we performed data preprocessing and hyperpa-
rameter optimization. Besides the details mentioned in the
Experimental Section (e.g., the training-test set split, feature
rescaling, etc.), some critical components taken to validate the
ensemble model internally are highlighted here. i) In Figure 2A,
log-transformation was applied to the fluorescence intensity
distribution (labeled as log(F,)) due to the right-skewed issue
in the original distribution. ii) Three identical autoencoders were
trained at each number of reduced features with the signature
architecture (Figure 2B) to tackle the instabilities caused by the
autoencoders’ local optima and the number of reduced features.
iii) To trade off the bias and variance issue, the range of reduced
features (e.g., between 45 and 49) was selected, as shown in Fig-
ure 2C. The ensemble model consisted of separately trained 15
SVR models, which were developed corresponding to three au-
toencoders times five reduced feature numbers. In each hyper-
parameter optimization step over the autoencoder-coded train-
ing set, the model was assessed through the averaged root mean
squared error (RMSE), the averaged coefficient of determina-
tion (R?), and their standard deviations as the evaluation met-
rics with the fivefold CV. To demonstrate the results of the bias-
variance tradeoff in the fivefold CV, Table 1 presents a typical
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Table 1. Benchmark of fivefold CV (+standard deviation).

Metrics Benchmark

Average RMSE for 80% training [log(Fpa)] 0.3611 (+0.0069)
Average R? for 80% training 0.6467 (+0.0110)
Average RMSE for validation [log(Fpa)] 0.3915 (+0.0273)
Average R? for validation 0.5826 (+0.0448)

model benchmark, using 47 reduced features and one of the
three autoencoders as an example. The difference between the av-
eraged RMSE in the 80% training, and validation sets fell within
the desired range (e.g., #0.03 log (F},,)) to minimize the variance
issue while maintaining acceptable errors in both sets. For in-
stance, this model could cause up to 5-7% errors when predict-
ing a polymer’s antibiofilm performance with an average log(Fp,)
(~6.0) in the collected dataset. Although this model showed a
lower R? compared to the previous model’s benchmark (e.g., R
> 0.85),12) we hypothesized that our model could perform better
over the polymers out of the training domain since it was devel-
oped over a much more diverse training space as stated earlier.
Upon confirming the bias-variance tradeoff in each model’s
five-fold cross-validation (CV) benchmark, we validated the en-
semble model over the holdout test set, namely the first in-
ternal validation. These results, as shown in Table 2, are very
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Figure 3. Experimental validation of ML-predicted biofilm formation on various AP at the solid-liquid interface. A) Molecular structures of the hydrophilic
and hydrophobic monomers used in the validation.[??] B) Comparison of the ML predications (lines) and experimental results (discrete data points)
regarding biofilm formation at different film compositions for the four series of AP. The dashed and dotted lines represent the ML-predicted log(Fpa)
values and the standard errors, respectively. The discrete data points with error bars represent the experimental mean log(Fps) and standard errors,
respectively. C) Comparison of the ML predictions (y-axis) and experimental results (x-axis). The predicted linear line (e.g., R? of 0.87) is drew with the
red dashed line, while the gray dashed line is the diagonal line (e.g., y = x). The four series of AP have the same hydrophilic monomer (“A”) and different

hydrophobic monomers (“9,” “11,” “12,” or “14”).

Table 2. Benchmark of ensemble model.

Metrics Benchmark
RMSE for training [log(Fpa)] 0.3567
R? for training 0.6553
RMSE for holdout test [log(Fpa)] 0.3835
R? for holdout test 0.5959

comparable to the individual model’s benchmark in the fivefold
CV, which demonstrated the necessity of applying fivefold to fore-
see the model’s performance over the holdout test data. In Fig-
ure 2D, an encouraging agreement between the measured and
predicted quantities is showing in the training log(F,,) range.
However, errors appear over the ranges (e.g., approaching both
ends of the training range) with lack of training samples more
significantly compared to the sample-rich range. Thus, we shall
be cautious of applying this model to predict a polymer with ex-
treme log(Fp,).

Upon passing the first internal model validation using the
holdout test set, we retrained the ensemble model with all acces-
sible data to expand its knowledge base and predict other unseen
datasets in later model validations. Here, we report that the en-
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semble model over the entire dataset has root mean squared error
(RMSE) and R? of 0.3504 log(F,,) and 0.6664, respectively.

A second internal model validation was performed using
the above ensemble model and a previously reported dataset
that measures biofilm formation on AP at the solid-liquid
interface.??] We first defined AP as a copolymer comprising a hy-
drophobic monomer (with an octanol/water partition coefficient,
log P > 2) and a hydrophilic monomer (with log P < 0). In the
reported dataset,[??) one hydrophilic monomer (labeled “A” for
consistency with the previous labeling system) paired with four
hydrophobic monomers (labeled “9,” “14,” “11,” and “12”) ful-
filled this criterion as shown in Figure 3A. The four AP series
(i-e., 9A, 14A, 11A, and 12A) each features six compositions, rep-
resented by the volume percentage of A that was 0%, 10%, 15%,
20%, 25%, and 30%. These AP series were reserved for model
validation and thus excluded from the training dataset, i.e., they
represent unseen data to the ensemble model.

As shown in Figure 3B,C, the ML model successfully predicted
the effect of monomer chemistries on biofilm formation at the
solid-liquid interface. The values of log(F,,) predicted by the
model (solid lines in Figure 3B) matched closely to the experi-
mental values (individual data points in Figure 3B). The predic-
tion benchmarks, i.e., an R* value of 0.87 and an RMSE value of
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0.16 log(Fp,), also pointed to the excellent quality of the model
predictions. Moreover, the model correctly identified the surpris-
ing effect of the hydrophilic monomer on biofilm formation,
which increased with an increasing amount of A in the AP. In
contrast, conventional wisdom considers hydrophilicity desirable
for antifouling purposes.®>] Interestingly, the model did not ac-
centuate the fluctuations in log(F;,) among neighboring compo-
sitions, which implied that the model was generalized based on
the structure—activity relationship uncovered from the training
set. Taken together, the validation results presented here indicate
that the ML model provides quantitatively accurate predictions of
the effect of monomer hydrophilicity and composition on biofilm
formation at the solid-liquid interface. This capability is at the
core of the virtual screening of high-performing AP using a di-
verse polymer library, as described below.

4. Virtual Screening

Upon confirming the prediction accuracy of the ensemble model
over the internal unseen dataset, we virtually screened all pos-
sible AP derived from the 137 unique monomers with var-
ious compositions. We first separated these monomers into
the hydrophilic (log P < 0) and the hydrophobic (log P > 2)
groups, respectively, yielding 61 hydrophobic and five hy-
drophilic monomers. We subsequently combined one hydropho-
bic monomer’s features with one hydrophilic monomer’s fea-
tures at varying compositions from 10 to 90 vol% with an in-
crement of 10 vol%. The increment was chosen to test the en-
semble model’s ability to differentiate the performance of AP
within a relatively narrow range of compositions, while maintain-
ing a low computational cost. This choice was unlikely to affect
the accuracy of prediction because the experimental uncertainty
(e.g., during the quantification of AP composition and biofilm
formation) was on the order of 10 vol%.[?2] Even smaller compo-
sitional increments (e.g., 1 vol% or less) are also compatible the
model if needed, albeit a drastic increase in computational cost.
Therefore, the entire dataset contained 305 AP series (i.e., 61 hy-
drophobic monomers X 5 hydrophilic monomers) and each AP
series included nine compositions with the same combination of
hydrophobic-hydrophilic monomers.

We applied the ensemble model to virtually screen the 50 vol%
AP first, anticipating that to be a top-ranked composition (af-
ter preprocessing using the recallable scaler and correspond-
ing autoencoders). As a result, the ensemble model predicted
that poly(2-hydroxyethyl methacrylate-co-hexafluorobutyl acry-
late) with 50 vol% 2-hydroxyethyl methacrylate (HEMA) (the
copolymer abbreviated as pHEMA-co-HFBA, Figure 4A) would
result in antibiofilm performance that ranks among the top 5%
out of the 305 AP candidates. This monomer pair was selected for
the external validation detailed below also because of their appro-
priate volatility required for iCVD.[**] We then performed virtual
compositional optimization of pHEMA-co-HFBA. The predicted
log(Fp,)-composition correlation appeared to depend on autoen-
coder seed selection, with an example shown in Figure 4B for 45
reduced features, as well as the number of reduced features, as
shown in Figure 4C. These observations further supported the
need for the ensemble model and our approach of constructing
the model to improve stability and generalizability. The model
predicted that optimum composition of pHEMA-co-HFBA for
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antibiofilm-formation lied in the range of 60-80 vol% HEMA.
Note that this prediction was made based on training using bac-
terial quantification data measured at the solid-liquid interfaces
from polymer microarray samples.

5. External Model Validation at the
Solid-Liquid—Air Interface

5.1.iCVD Synthesis of AP

The ability to combine the virtual screening of AP using a gener-
alized ML model with the high-fidelity synthesis of AP coatings
using iCVD would considerably accelerate the discovery of high-
performing AP in various antibiofilm contexts. Further, here we
test whether a generalized ML model that performs well at its
native solid-liquid interfaces can also provide useful synthesis
guides at unseen solid-liquid—air interfaces.

To this end, we synthesized the pHEMA-co-HFBA copolymer
thin films with vol% of HEMA ranging from 0% (i.e., pHFBA) to
100% (i.e., pHEMA) using iCVD (see Table S1, Supporting Infor-
mation, for iCVD synthesis conditions). iCVD is an all-dry depo-
sition technique that produces polymer thin films via free radical
polymerization!?*?*! in which initiator and monomer(s) are in-
troduced simultaneously into a reaction chamber, as depicted in
Figure 5A. Due to the solubility of pHEMA homopolymer in an
aqueous environment, we introduced a small amount (%15% in
final composition) of a hydrophilic crosslinker, namely ethylene
glycol dimethacrylate (EGDMA), to improve its stability during
biofilm formation tests. The choice of EGDMA as the crosslinker
was based on its molecular structure, which resembles that of
HEMA. The inclusion of EGDMA rendered the copolymers insol-
uble during prolonged exposure to an aqueous environment (Fig-
ure S6, Supporting Information). The introduction of EGDMA
to hydrophilic polymer coatings has been shown to have min-
imal effect on the antifouling activity of the coatings in previ-
ous studies. The successful synthesis of pHEMA-co-HFBA thin
films at various compositions and the pHEMA-co-EGDMA thin
film was confirmed by Fourier transform infrared spectroscopy
(FTIR, Figure S1, Supporting Information) and X-ray photoelec-
tron spectroscopy (XPS, Table S2, Supporting Information).

Complete polymerization for all polymers was confirmed by
the absence of the C=C peak at around 1640 cm™'. There was a
slight shift in the peak position of C=0, i.e., from 1757 cm™" (for
pHEFBA) to 1753 cm™! (for pHEMA-co-HFBA), confirming suc-
cessful copolymerization reaction rather than physical mixing of
the homopolymers.?”] The composition of pHEMA-co-EGDMA
was determined using a previously established method.[*8! The
composition of pHEMA-co-HFBA was calculated by performing
peak deconvolution on the C=0 group: 1753 cm™! for HFBA and
1728 cm™! for HEMA. Note that pHEMA-co-HFBA with 76 vol%
HEMA was soluble in water (Figure S2, Supporting Information)
and thus not suitable for the antibiofilm experimentation. To
further confirm the chemical composition of pHEMA-co-HFBA,
XPS survey scans were collected and the composition was cal-
culated and shown in Table S2 in the Supporting Information.
The difference between the compositions calculated using XPS
and that using FTIR was up to 5%. This discrepancy, though
relatively small, might suggest possible differences between the
film surface and bulk compositions. We chose to use the FTIR
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Figure 4. Virtual screening results of the best-performing AP and its antibiofilm performances at various compositions. A) The ensemble model predicted
that poly(2-hydroxyethyl methacrylate-co-hexafluorobutyl acrylate) (or pHEMA-co-HFBA) was a top performer, with an antibiofilm performance among
the top 5% out of the 305 AP candidates screened. B) The prediction of antibiofilm performance depends on the autoencoder seeds used for the SVR
models. The thick line represents the averaged prediction for the three seeds tested. C) The prediction of antibiofilm performance depends on the
number of reduced features. The thick purple line shows the ensemble model prediction and the colored thin lines represent the model predictions
using different numbers of reduced features (averaged over three SVR models). Therefore, the ensemble model improves stability and generalizability

of the predictions.

results in the compositional analysis of the iCVD-synthesized
AP films because they represent the film bulk composition (as
the data were collected based on IR signals that penetrated the
entire thickness of the films). Whereas XPS is known to be
a surface-sensitive technique, probing the composition within
very top layer (~10 nm) of a given samplel**! and is thus sen-
sitive to surface contamination (e.g., adventitious carbon). Sur-
face chain reorientation (e.g., with hydrophobic moieties concen-
trated in the top layer) has been reported in AP copolymers,['?!
which may lead to an overestimate of the hydrophobic content
when XPS results were used (as shown in Table S2, Support-
ing Information). Furthermore, the ML model was trained on
microarray polymer libraries within which copolymer composi-
tions were calculated using the volume ratios of the constituent
monomer feeds, which were more characteristic of average bulk
compositions than surface compositions. For this reason, the
bulk compositions derived from FTIR should provide a closer
match with the compositional descriptor used in the training
data and hence were expected to be more suited for testing the
ML model with respect to the iCVD-synthesized AP coatings.
To further minimize possible errors due to differences in com-
positional units, AP compositions were shown in vol% (rather
than mol%) to be consistent with training (see the Experimental
Section).
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Molecular-scale heterogeneity is one of the key attributes that
underpin the antibiofilm performance of AP. To confirm that
the pHEMA-co-HFBA synthesized using iCVD was indeed free
of microphase separation, we performed Fineman-Ross copoly-
merization analysis (Figure S3, Supporting Information) to de-
termine reactivity ratios of HEMA (rypy,) and HFBA (rygga), re-
spectively (see the Experimental Section for details). ryypy, and
T'qrpa Were determined to be 1.05 (R? = 0.97) and 0.65 (R? = 0.97),
ie., rypma > 1 and 0 < rypya - Tapsa < 1, indicating pHEMA-co-
HFBA exhibited random copolymerization with a small prefer-
ence for HEMA addition to a growing chain end. Fineman-Ross
plots using XPS-derived HEMA compositions yielded poorer lin-
earity (Figures S4 and S5, Supporting Information), which was
likely caused by XPS being a surface analysis technique. Hence,
iCVD enabled the synthesis of random AP, which is not possible
in solution-phase free radical polymerization where AP tend to
derive from block copolymers with microphase separation.*"!

Lastly, to confirm the stability of pHEMA-co-HFBA, the as-
synthesized thin films were immersed in deionized water over
a period of 24 h at room temperature. The film thickness was
measured before and after the incubation (Figure S6, Support-
ing Information), which showed decreases less than 10% for
pHEMA-co-HFBA thin films, and less than 17% for pHEMA-co-
EGDMA, which were within the range anticipated due to chain
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Figure 5. Model validation at using iCVD-synthesized AP for their antibiofilm performance at the triple interface. A) A schematic of the iCVD synthesis,
during which polymerization occurs on a substrate placed on a continuously cooled stage. B) Quantification of the amount of biofilms formed at the triple
interface on a series of pHEMA-co-HFBA with varying compositions. C) Comparison of ML-predicted and experimentally obtained biofilm quantities on
the AP series. The solid purple line represents the averaged predictions by the ensemble model trained using data obtained at the solid-liquid (SL)
interface and dashed purple lines represent 95% confidence intervals (Cl); the red dashes and gray circles represent the experimentally obtained means
and individual data points, respectively. D) On the hydrophobic homopolymer pHFBA, although the amounts of biofilms formed at the triple interface
(red and “triple”) differed from the ML prediction (purple), that formed at the SL interface (red and “SL”) was consistent with the ML predictions. Error
bars represent 95%Cl. *** indicates p < 0.001, ** p < 0.01, * p < 0.05, and ns p > 0.05.

reorganization and compression. We further corroborated that
attribution through the measurement of refractive index (RI) be-
fore and after 24 h of incubation in water (Table S3, Support-
ing Information), as RI is known to reflect the packing density
(free volume) of a polymer.[*!l After the 24 h incubation, we ob-
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served an increase in the film RI, implying that the films became
more compact with less free volume and a greater density. Fur-
thermore, a previous study has shown that with polymer chain
dissolution or coating delamination, iCVD films would disap-
pear in 10 h.8l As such, we believe the observed reduction in
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thickness after soaking was likely due to chain reorganization and
compression.

5.2. Performance Comparison between Model Prediction and
iCVD-Enabled AP Thin Films

The amount of biofilms formed on each iCVD thin film, at solid—
liquid—air triple interfaces, was quantified using a crystal vio-
let biofilm assay, following the steps shown in Figure 5B. The
triple interface was chosen as the focus of our performance test-
ing because biofilms of motile bacteria, including PAO1, form
predominantly at the triple interfaces.['?] Despite the prevalence
and the importance of biofilms formed at the triple interface in
materials-associated nosocomial infections, antibiofilm perfor-
mance at the triple interface is not well understood. As such, this
focus provides important insight into the materials design prin-
ciples, while allowing us to explore the transferability of the gen-
eralized model that was trained using biofilm data collected at
the solid-liquid interfaces to predicting performance at the prac-
tically important triple interface.

The ensemble model successfully predicted the existence of
a minimum in the experimentally obtained biofilm quantities,
which resided between 60 and 80 vol% HEMA (Figure 5C). Here,
we performed max-min standardization on the log(F,,) pre-
dicted by the ensemble model (see Equation (4)) such that the
maximum and minimum of the ML predicted means match
those of the experimentally acquired means at the triple in-
terface. The experimental means of the amounts of biofilm
formed on pHEMA-co-HFBA at the triple interface, as indicated
by log(A* ), traced the trend predicted by the ML model rea-
sonably well, except for that of the hydrophobic pHFBA ho-
mopolymer. Specifically, the ML model predicted the hydropho-
bic homopolymer pHFBA to be more antibiofilm than the hy-
drophilic homopolymer pHEMA, whereas the biofilms formed
at the triple interface demonstrated no significant difference be-
tween pHFBA and pHEMA. That discrepancy could be attributed
to the high sensitivity of the performance of hydrophobic pHFBA
to the presence of an air phase at the interface of interest. Indeed,
we demonstrated experimentally that the biofilms formed on the
pHFBA at the liquid-solid interface exhibited a mean value of
log(A* ) close to that predicted by the ML model (p = 0.34,
Figure 5D). That sensitivity of the hydrophobic homopolymer to
the presence of an air phase is likely a result of the disparate an-
tifouling mechanisms at play at the different interfaces. For ex-
ample, air entrapment by a hydrophobic surface has been con-
sidered as an effective antifouling mechanism at the liquid-solid
interface, [l which may lose its effectiveness due to the rapid air
exchange at the triple contact line. In summary, the ML model
trained using the biofilm data at the solid-liquid interface suc-
cessfully captured the dependence of AP’s antibiofilm perfor-
mance on the polymer composition. Nevertheless, transfer of the
ML model to the triple interface should be carried out with cau-
tion, especially in the case of hydrophobic homopolymers.

6. Discussion and Conclusion

In this study, we constructed and applied an ensemble model to
achieve high-throughput screening of a large virtual library of AP
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to search for antibiofilm polymer chemistries in the vast chemical
and compositional space. The model provided accurate predic-
tions of antibiofilm performance of AP synthesized using a pre-
cision synthesis approach, i.e., iCVD, based on training datasets
obtained using a high-throughput approach, i.e., microarrays. It
predicted the quantity of solid-liquid biofilms reasonably well
(R?> = 0.60, RMSE = 0.38 log (F;,)) involving polymers over a
vast chemistry-composition design space. Intriguingly, the accu-
racy of the model improved further (R? = 0.87, RMSE = 0.16 log
(Fpa)) when tested on the hold-out set comprising only AP. This
is quite encouraging because the model successfully extrapolated
the behavior of AP from a training set without any examples of
amphiphilic copolymers. Moreover, the prediction accuracy AP
even surpassed that obtained during training for all copolymers
(R*> = 0.66, RMSE = 0.36 log (F,,)) by an appreciable margin.
One possible explanation might be that polymers in the training
set featured disparate antifouling mechanisms (or QSAR), which
the model captured with varying degrees of success, and that the
QSAR for AP might belong to the category that the model cap-
tured to a greater degree.

Furthermore, for biofilms formed at the air-liquid-solid triple
interface, the ensemble model successfully predicted how an-
tibiofilm performance varies with the polymer composition,
identifying an optimum at the HEMA composition of 60—
80 vol%, which was consistent with the experimental results. As
such, we demonstrated the ensemble model as a reliable tool for
virtual screening of high-performance amphiphilic chemistries
and for optimizing their compositional design. The model also
points to the possibility of transferring the knowledge obtained
from biofilm data obtained under one condition (i.e., liquid-solid
interface) to identify best-performing AP under other conditions
(e.g., the triple interface), and more broadly, the generalizability
of the ensemble model demonstrated here.

That generalizability was enabled by the robust model devel-
opment framework we established for generating ML models
with reasonable bias-variance tradeoff and generalizability. The
model was achieved through the implementation of rigorous
data-preprocessing steps (e.g., log-transformation, feature rescal-
ing, and dimensionality reduction with autoencoders), of hyper-
parameter optimization in a fivefold CV, and of an ensemble
model. The model demonstrated the ability to captured broad di-
versity in monomer chemistry (137) and unique molecular fin-
gerprints (423), with a modest abundance of samples during
training (2,240). Additionally, its ability to tackle diverse training
datasets, pooled from seven independent experiments, greatly al-
leviated the common challenge of data scarcity for training ML
models in antifouling material studies. That flexibility in training
dataset sources also unveiled the tantalizing potential of contin-
ual expansion and enrichment of the training dataset via exten-
sive interlaboratory collaborations, akin to the Human Genome
Project.

We employed the approach of SVR assisted by autoencoders,
as other methods attempted (e.g., neural nets) caused signif-
icant bias issues. Despite the challenges around model inter-
pretability, this approach demonstrated distinct advantages in
this study, such as a lower time complexity (e.g., compared to fea-
ture selection) in handling the size of the datasets in this study,
which was a result of the SVR’s capability to combine dimen-
sionality reduction and implicit mapping. Furthermore, model
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interpretation can be achieved by identifying clusters with re-
duced feature vectors (computed by autoencoders) or other un-
supervised mapping strategies to extract the key functional moi-
eties that determine the antibiofilm performance. Compared
with the state of the art,[®?223] the ensemble model reported here
is uniquely able to address a broad polymer design space due
to the unprecedentedly diverse training dataset employed in this
work. Nevertheless, it could be outperformed in terms of predic-
tion errors by models trained to operate within a confined domain
of chemistry. Our future work will focus on improving the com-
putational method for copolymer feature generation as the cur-
rent approach of linear combination may have limited the SVR
mapping ability. We will also expand the design space by incor-
porating ionizable functional groups, such that the model can
predict the performance of a wider variety of AP (e.g., zwitteri-
onic hydrophilic groups). We will improve the accuracy of model
predictions by broadly sampling a variety of ML approaches, such
as transfer learning while retraining the general model building
framework reported here to address the fundamental distinctions
among disparate antifouling mechanisms.

7. Experimental Section

Collection of Bacterial Microarray Data: The synthesis procedure and
biofilm formation measurement are followed the methods previously
described.[?2] Polymers on microarrays were derived from various
monomers mixed pairwise at different compositions and incubated with
PAOT for 72 h in Roswell Park Memorial Institute (RPMI) 1640 media.
Plasmids for constitutively expressing green fluorescent proteins (pBK-
miniTn7-egfp) and mCherry (pPMMR) were introduced into the relevant
host strain by conjugation or electroporation to enable bacterial quantifi-
cation.

Additional Details of Model Development: Upon completing the com-
putational dataset construction for the polymers, data-preprocessing was
performed to clean the data and reduce its redundancy. Out of the 2420
polymers, 180 polymers had a fluorescence intensity below the limit of de-
tection (LOD) (e.g., these fluorescence intensities were labeled as “zero,”
which did not reflect the actual antibiofilm performances) and were thus
removed from the dataset to prevent them from potentially misleading
ML models, leaving 2240 polymers in the final dataset. Since the origi-
nal fluorescence intensity distribution was right-skewed (not showing), a
logarithmic transformation was applied to all the remaining fluorescence
intensity values (Fpa), which were labeled as log(Fps) as shown in Fig-
ure 2A. The dataset was further splitted into a training set and a holdout
test set at a ratio of 80:20 with stratification due to the relatively small size
of the dataset and applied a recallable minimum-maximum scaler to the
training set.

The autoencoder, with its signature three-layer structure (Figure 2B)
was effective in distinguishing all polymers in the training space while re-
ducing the noise and redundancy in the dataset. The autoencoder was con-
structed to reduce the training set’s dimension (labeled as the encoded
training set) with proper reference validation assisted by TensorFlow and
Keras. Despite the effectiveness of the autoencoder, there remains two
sources for instabilities. First, an optimized autoencoder was unlikely to
behave consistently once a completely new seed was used due to its non-
convexity (e.g., different local optimums would lead to different reduced
feature contents). Additionally, the number of reduced features used could
bring about variability in the final model predictions. To account for those
instabilities, an ensemble model was developed by averaging the predic-
tions of three autoencoders, which have similar mean squared error but
a different number of reduced features. The ensemble method has been
shown to simultaneously mitigate variance and bias issues, therefore im-
proving the model’s generalizability and performance.[4]

[43]
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Hyperparameter optimization is also another key to balancing the bias
and variance tradeoff. Building upon the strengths of SVR, e.g., its gener-
alizability and low time-complexity by implicit mapping,[>*] a radial-basis-
function-kernelized SVR model was developed using the encoded training
set.

To achieve a reasonable bias-variance trade-off the model’s perfor-
mance was investigated ranging from ten to one hundred reduced fea-
tures with an increment of ten as shown in Figure 2C. Under each reduced
dimension, an SVR model’s hyperparameters were optimized by the ran-
dom search algorithm in CV. The averaged RMSE, the averaged coefficient
of determination (R?), and their standard deviations were also assessed
as the evaluation metrics for every model’s optimization process.

To the best of our knowledge, there is not a quantitative method widely
accepted in the field of ML that allows nonarbitrary selection of the number
of the reduced features. Optimization of such selection is of high theoret-
ical and practical importance but is beyond the scope of this work. There-
fore, the following qualitative approach was taken to define an acceptable
range for the number of reduced features. As shown in Figure 2C, when
the number of reduced features was too small (e.g., 10), the models per-
formed poorly as indicated by the high average RMSE during training (blue
curve) and validation (red curve), despite a relatively narrow difference
between these two sets (e.g., 0.013 RMSE difference in terms of log(Fpa)
when ten reduced features were applied), which is typical of a bias issue—
i.e., not enough fitting dimensions to capture the trends contained in the
training (or validation) set. In contrast, when the number of reduced fea-
tures was too high (e.g., 70 and higher), the model performance started
to diverge considerably between the two sets (e.g., 0.035 RMSE difference
in terms of log(Fpa) when 70 reduced features were applied). That gap be-
tween validation and training indicated a variance issue, suggesting that
the models were not general enough to make accurate predictions for pre-
viously unseen polymer chemistries.

The ability to generalize would be essential for the purpose of virtual
screening of novel AP for their antibiofilm performance. Therefore, to trade
off the bias-variance issue, an acceptable range was identified for the num-
ber of reduced features to be between 45 and 49 in this study. To minimize
potential variation in model prediction due to the selection of a single re-
duced feature number, the predictions generated by models developed us-
ing each of the five reduced feature numbers from 45 to 49 were averaged.
In total, this ensemble model consisted 15 individually train SVR models.
It should also be noted that the reproducibility of the model can be guar-
anteed by using the same seeds for the initialization of autoencoder neural
networks.

Vapor-Deposition of AP:  The amphiphilic copolymer thin films were
synthesized using an all-dry deposition technique termed iCVD. The iCVD
mechanism involves free radical polymerization,[2®] in which initiator and
monomer(s) are introduced simultaneously into a reaction chamber, as
depicted in Figure 5A. In this chamber, the heated filament wires are
suspended above a continuously cooled substrate (i.e., silicon [Si] wafer
and glass coverslips) and promote thermal decomposition of the ini-
tiator resulting in free radicals. Then, these radicals chemisorb to ad-
sorbed monomers on the substrate via the Eley—Rideal mechanism[2>4°]
so that polymerization is initiated, and monomer mono/multilayers are
formed.

Before iCVD deposition, the coverslips and Si wafer were cleaned in
a plasma cleaner (PDC-001-HP, Harrick Plasma) for 2 min at a high ra-
dio frequency setting. No covalent grafting was required to achieve suffi-
cient adhesion of the polymer thin films to the underlying substrates used
in this study (Figure S6, Supporting Information).l134647] The substrate-
independent nature of the iCVD technology and good adhesion of the
iCVD coatings on most substrates have been well documented.[2%36:48]
That adhesion was enabled by the strong molecular interactions be-
tween the iCVD polymer and the underlying substrate, due to the strong
molecular adsorption of monomer precursors to the substrate during the
iCVD synthesis process (which has been described using the Brunauer—
Emmett-Teller theory). Subsequentially, pHEMA-co-HFBA copolymer thin
films were synthesized using a customer-built iCVD reactor (335 mm di-
ameter, 50 mm height), which was evacuated by an E2M40 rotary vane
vacuum pump (Edwards Vacuum, UK). pHEMA-co-HFBA amphiphilic
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copolymer thin films with different compositions were achieved by vary-
ing HFBA and HEMA flow rates, respectively. The deposition conditions
are summarized in Table S1 in the Supporting Information. The pressure
in the reactor chamber was set to 1.1 Torr by a throttling valve (MKS In-
struments, USA) and it was maintained by a manometer (Baratron, MKS
Instruments, USA). The stage temperature of the chamber was set to 20 °C
by an Accel 500 LC recirculating chiller (Thermo Fisher, USA), and the fila-
ment nickel-chromium wires (80% Ni/20% Cr) were heated to 220-230 °C
using a DC power source (B&K Precision, USA). A type K thermocouple
(Omega Engineering, USA) measured both filament and stage tempera-
tures. In situ laser interferometry (He-Ne laser, DS Uniphase Corpora-
tion, USA) was located above the reactor glass lid to enable the coating
thickness control. During deposition, HFBA was slightly heated to 25 °C.
To vaporize HEMA, the monomer jar was heated at 75 °C. All monomers
were metered into the reactor using needle valves (Swagelok, USA). The
initiator, tert-butyl peroxide (TBPO) was maintained at room temperature,
and its flow rate was set using a mass flow controller (MKS Instruments,
USA). Argon (Ar) was utilized as a carrier gas to maintain a constant to-
tal gas flow rate at four standard cubic centimeters per minute (sccm)
and thus constant residence time for gas flow. Lastly, pHEMA homopoly-
mer was deposited with a trace of EGDMA at a pressure of 0.2 Torr and
a stage temperature of 30 °C. EGDMA was used as a crosslinker to make
the pHEMA film insoluble.[*¥] EGDMA was chosen due to its molecular
resemblance to HEMA.

After the vapor deposition, AP coatings were left to equilibrate overnight
(=16 h) under vacuum at 20 °C. This equilibration time was chosen be-
cause it allowed ample time for pHEMA to equilibrate (typically over 60—
100 min)14%3% while avoiding the potential aging effect (typically over
months-years).>'l This also allowed to match training conditions, where
the ML model was trained using material properties and biofilm data
obtained on well-equilibrated but still fresh polymer microarrays, thus
precluding potential effects of equilibration and aging on the learned
properties-biofilm relationships.

Chemical Characterization: Fourier-transform infrared spectroscopy
(FTIR) (Bruker Vertex V80V Vacuum FTIR system with cooled Mercury-
Cadmium-Telluride detector) was used to determine the final composition
of copolymer thin films. The spectra were acquired over 400-4000 cm™'
with a resolution of 4 cm~" and 256 total scans.[°?] The spectra were ana-
lyzed and the baseline was corrected using OPUS software (Bruker). The
thickness of the thin films on a flat surface (Si wafers) was measured by
variable angle spectroscopic ellipsometry (J.A. Woollam Alpha-SE ellip-
someter) at three different angles (65°, 70°, and 75°) with a wavelength
range from 315 to 718 nm.[33] The optical model with a Cauchy function
was used to fit-in experimental data that consisted of three different layers:
silicon wafer (Si) as a substrate, silicon oxide (IV) (SiO,) as a calibration
standard, and the copolymer thin film.

XPS was performed using a Scienta Omicron ESCA 2SR (Uppsala,
Sweden) with operating pressure of 1 x 10~ Torr. X-rays were generated
from monochromatic Al Ka at 300W (15 kV; 20 mA) with an analysis spot
size of 2 mm in diameter. Survey scans were collected to determine the
composition of the copolymer thin films.

Fineman-Ross:  To determine the type of copolymerization for pHEMA-
co-HFBA, Fineman-Ross copolymerization analysis was used to determine
reactivities of HEMA and HFBA, respectively.>4]

The surface monomer composition, fiygya, Was calculated as follows

Prema
5 _ Psat, HEMA )
HEMA Prema | _Purea
Psat, HEMA  Psat, HFBA
P P . )
where —HEMA_ o _—HFBA_ is monomer partial pressure over monomer
Psat, HEMA Psat, HFBA

saturated pressure, which is also representative of the monomer surface
concentration of each comonomer.

The film composition (Fygua) Was obtained from FTIR as mentioned
above. To determine, the type of copolymerization (either random, block
or alternating), Fineman-Ross equation was used as follows
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2
Srema (1= 2Fpema) fiema Frema = 1)

Frema (1= frema)

@)

= rura T 'HEMA
Frema (1= frema)’

where rygya and ryega are reactivities of HEMA and HFBA, which can be
determined from the slope and intercept, respectively.

Biofilm Assay at Solid—Liquid—Air and Solid—Liquid Interfaces:  After con-
firming the hydrophilic content in each pHEMA-co-HFBA with FTIR, a crys-
tal violet biofilm assay was performed to evaluate biofilm formation as a
function of volume percentage of HEMA (vol% HEMA). The reason for
using vol% is to keep consistent with the quantification method used in
the training dataset, which approximates polymer compositions on the
microarray slide based on the volume percentage of each monomer feed
used for synthesis (assuming complete conversion of comonomers). To
convert mol% into vol%, molar volumes of 121.63 mL mol~! for HEMAI>5]
and 185.56 mL mol~" for HFBA[®®] (see the Supporting Information for de-
tails) were adopted. The procedures of the crystal violet biofilm assay are
reported in ref. [12]. Briefly, PAOT were grown to stationary phase (37 °C,
16 h, 225 rpm) in Luria Bertani (LB, Lennox) broth and subcultured in
fresh LB broth (1:100 dilution). For the biofilm assay at solid-liquid—air
interfaces, the AP-coated glass substrates with hydrophilic content rang-
ing from 0% to 100%, along with the uncoated controls, were each half-
submerged vertically in the diluted LB culture contained the wells of 12-
well culture plates. This was followed by static incubation for 8 h at 37 °C
based on P. aeruginosa biofilm lifecycle and previous work.2°7:58] At this
point in time (8 h) when culture transitions from stage Il to Ill, quantifica-
tion is most reliable due to the presence of linear and vertical biofilm devel-
opment; further growth would lead to biofilm maturation, giving rise to a
3D community (stage IV, 14-24 h) where biomass accumulation would re-
flect more of multiplication and quorum sensing,[>°! rather than bacteria—
material interactions. For the biofilm assay at solid-liquid interfaces, the
hydrophobic pHFBA-coated substrates (i.e., “0% HEMA”), along with the
uncoated controls, were placed horizontally with the coated side facing up-
ward on the well bottom of six-well culture plates. These substrates were
fully submerged in 4 mL of the diluted LB culture and incubated with gentle
shaking (60 rpm) for 72 h at 37 °C, with replacement of 3.5 mL of the spent
medium in each well with fresh LB every 24 h. The shaking and extended in-
cubation time were implemented to encourage biofilm formation by PAO1
at the solid-liquid interfaces. At the end of the incubation period specified
for either type of interfaces, the biofilm-covered substrates were rinsed in
Milli-Q water to dislodge loosely attached cells, followed by staining in
crystal violet solution (0.5% w/v) for 15 min. After removing unbound dye
molecules in Milli-Q water, crystal violet molecules bound to the biofilm
were dissolved in 1 mL acetic acid (30% v/v). At least four biological repli-
cates were included for each type of substrates. To correct for the artifact
caused by crystal violet bound to polymer coatings, medium controls (LB
without bacteria) were included for each substrate type alongside the in-
oculated samples. The absorbance of the dissolved crystal violet was mea-
sured from each sample at 550 nm and the normalized absorbance was
obtained based on the following equation

A = Asp _ (Ayp = Agp) /ODggo,p 3)
o A (Ayc = Aoc) /ODgooc

where A,p and A, g are total absorbance for polymer-coated (“P”) and
glass coverslip (“G”), respectively. Ay p and Ay ¢ are absorbance measured
from bacteria-free controls. Thus, the difference between these two mea-
sured absorbances (e.g., Ap — Agp) is the corrected absorbance. This
value was then divided by its corresponding ODg at the end of the in-
cubation, which normalizes the biofilm growth by the planktonic cell den-
sity to account for variations in growth conditions, resulting in A¢ , and

norm?
benchmarks biofilm formed on the coatings of interest against bare glass
Foverslip. A;*norm Igs.s than unity suggests the coating outperformed glass
in terms of its antibiofilm property and vice versa.
In order to compare the ML predictions directly with the experimental
observations, standardization of the biomass units was performed. The

A; c Lastly, the ratio ofAE pover A;;,c is computed, denoted A* ‘which
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unit of ML-predicted biomass was logFps, which was inherited from the
fluorescent microarray experiment. Rescaling of the ML-predicted logFpa
values was performed by applying Equation (4), such that the maxima and
minima of the means predicted by ML were set to align with that of the
experimentally observed maxima and minima, respectively.

log (Fpa) — min [log (Fpa)]
max [log (Fpa)] — min [log (Fpa)]

- {max [log (A" gy )| = min [log (A", )]}

+min [log (A%, )] ()

Std. log (Fps) =

where Biomass is the amount of biofilm quantified in either A* | or Fpy;

“min[]” and “max[]” are functions that return minima and maxima of the
logarithmic mean biomass among all pHEMA-co-HFBA compositions.

Statistical Analysis:  Analysis of variance and post hoc TukeyHSD were
performed using statistical programing language R (RStudio, Version
1.2.1335) to compare biofilm formation observed during experiments at
solid-liquid—gas and solid-liquid interfaces and that predicted by the ML
model, at a 95% confidence level.

Supporting Information

Supporting Information is available from the Wiley Online Library or from
the author.
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