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ARTICLE INFO ABSTRACT

Keywords: Carvacrol is a natural essential oil with a monoterpenoid structure and draws attention due to its antimicrobial
Carvacrol and antioxidant capacity. However, high volatility and hydrophobicity limit its use in food packaging systems.
Cyclodextrin This hindrance can be overcome by the complexation with cyclodextrins. In this study, the inclusion complexes
Electrospinning

(IC) of gamma-cyclodextrin (yCD) and carvacrol were integrated into gelatin/pullulan nanofibers. The control
sample of carvacrol loaded gelatin/pullulan nanofibers were generated, as well. Both nanofibers indicated a free-
standing and flexible character with defect-free morphology. The carvacrol-yCD-IC crystals were obviously
detected within the gelatin/pullulan nanofiber structure differently from carvacrol loaded one. The inclusion
complexation of yCD with carvacrol decreased the loss of this essential oil during electrospinning significantly (p
< 0.05). Carvacrol retention was determined as 67.84% and 57.63% after two months of storage at room
temperature for the carvacrol-yCD-IC and carvacrol loaded gelatin/pullulan nanofibers, respectively. Here, in-
clusion complexation played a key role in enhancing thermal stability and antibacterial performance of carvacrol
loaded in the gelatin/pullulan nanofibers. The promising antioxidant property of nanofibers was revealed in food
packaging applications by the accelerated shelf-life test at 40 °C. Oxidation of fish oil samples was retarded by
carvacrol-yCD-IC loaded nanofibers. This study provided an understanding of the potential of carvacrol in active
food packaging and how the inclusion complex with CD affected the physicochemical properties of this bioactive
compound.

Antibacterial and antioxidant
Fish oil oxidation
Active food packaging

1. Introduction are biopolymers that have been used in formulations of electrospun

packaging materials. However, additional chemical modification or

Electrospinning technology is one of the promising approaches to
produce food packaging materials (Aytac, Ipek, et al., 2017; Aytac,
Keskin, et al., 2017; Yilmaz et al., 2022). This efficient, cost-effective,
and versatile technique enables the production of antimicrobial and
antioxidant nanofibers (Topuz & Uyar, 2020). Besides the porous
structure and high surface area, electrospun nanofibers can encapsulate
bioactive substances with high loading capacity and with release profile
from fast to controlled/sustained (Weiss et al., 2012; Wen et al., 2017).
Polysaccharides including starch (Fonseca et al., 2019), chitosan (Lin
et al., 2018), alginate (Dai et al., 2022), pullulan (Celebioglu & Uyar,
2021) and proteins such as gelatin (Tang et al., 2019), whey (Sullivan
etal., 2014), zein (Zhan et al., 2020) and soy protein (Kutzli et al., 2019)
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carrier polymeric matrix can be required to remove the challenges from
their branched and complex chemical structures of these biopolymers
(Dierings de Souza et al., 2021).

In this study, pullulan and gelatin were combined to produce food-
grade nanofibers. Gelatin, an animal-sourced protein, is widely used in
the food industry as a stabilizing, emulsifying, thickening, and gelling
agent for several food products. Additionally, it plays an essential role in
developing edible coating and packaging (Hattrem et al., 2015; Karim &
Bhat, 2008). Nowadays, fish gelatin has pronounced attention due to
keeping away from religious concerns and apprehension about bovine
spongiform encephalopathy (mad cow disease) while the primary
commercial gelatin source is porcine skin (Nurilmala et al., 2022).
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Pullulan, synthesized by the yeast-like fungus Aureobasidium pullulans, is
a linear polysaccharide consisting of maltotriose units. These units are
formed by three glucose linked via a-1,4 glycosidic bonds, and between
the maltotriose units a-1,6 glycosidic linkages are found (Trinetta &
Cutter, 2016). This particular pattern of linkage and adhesive properties
provide distinct characteristics to pullulan including the ability to pro-
duce fibers and oxygen-impermeable, robust coatings (Krasniewska
et al., 2019). On the other hand, pullulan is hydrophilic due to hydrogen
bonding capacity. Pullulan electrospun nanofibers have previously been
used in antibacterial food packaging systems with the bioactive in-
gredients such as nisin (Soto et al., 2019), polyphenols (Shao et al.,
2018) and resveratrol (Seethu et al., 2020).

Carvacrol, found in oregano and thyme essential oils, is a phenolic
monoterpene compound having the chemical structure of 5-isopropyl-2-
methyl phenol. The phenolic OH group and substituted aromatic ring of
carvacrol have resulted in strong antioxidant properties and hydro-
phobicity (Friedman, 2014). Moreover, carvacrol demonstrates inhibi-
tory effect against a wide range of microorganisms, including
food-borne pathogens (Bayir et al, 2019). Carvacrol-incorporated
nanofibers have been previously applied to extend the shelf-life of
wheat bread (Altan et al., 2018), pork (Guo et al., 2020) and strawberry
(Wong et al., 2022). In this study, carvacrol-loaded nanofibers were
applied as food packaging material to prevent fish oil oxidation. Because
the long-chain -3 fatty acids in fish oil easily decompose to hydroper-
oxides and secondary oxidation products responsible for off-flavors.
Oxidation susceptibility restricts the use of fish oil as a food ingredient
and dietary supplement (Miyashita et al., 2018).

Cyclodextrins (CDs), the cyclic oligosaccharides, are starch-derived
molecules with o-1,4-linked glucose units in truncated conic shape.
The external wall has a hydrophilic character due to hydroxyl groups,
while the inner surface shows a hydrophobic nature attributed to
glycosidic bond orientations Therefore, the inner cavity enables the non-
covalent inclusion complexation with hydrophobic compounds (Cid--
Samamed et al., 2022; Crini et al., 2018; Y. Liu et al., 2022). Inclusion
complexation with volatile compounds acquires the enhancement in
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thermal and oxidative stability, efficient encapsulation, and controlled
release of active compound without hindering from bioactivity (Cid--
Samamed et al., 2022; Hadian et al., 2023; Y. Liu et al., 2022). In this
study, yCD was used to form inclusion complexes (IC) with carvacrol
molecules (Fig. 1).

In the present study, pullulan, an edible polymer with a non-toxic,
odorless, and tasteless character, was chosen as the polysaccharide
because of its remarkable electrospinnability features, ability to create
nanofibers, and form hydrogen bonding with proteins (Gounga et al.,
2007; Trinetta & Cutter, 2016). Gelatin was selected as the protein part
which is compatible with pullulan, and could produce versatile elec-
trospun nanofibers. There have been studies conducted on producing
electrospun nanofiber with the incorporation of gelatin and pullulan to
create food packaging material (Shen et al., 2022; Wang et al., 2019,
2021). Even, the physicochemical properties of gelatin-pullulan-based
nanofibers has been investigated in these reports (Wang et al., 2019),
in which crosslinking (Wang et al., 2021) or modification by glycation
(Shen et al., 2022) were performed. However, none of them have
assessed the potential of this nanofiber system as a food packaging
material with an actual food application test. Additionally, there is no
study in the literature in which gelatin-pullulan nanofibers were incor-
porated with the essential oils or with their cyclodextrin inclusion
complexes to enhance the stability of these active compounds and to
exhibit their effect on the characteristic properties of the
gelatin-pullulan-based nanofibers. In this study, carvacrol-yCD-IC were
early incorporated in the gelatin-pullulan nanofibers for the purpose of
active food packaging. The structural examination and the potential of
these nanofibers as active food packaging were evaluated using proper
techniques and antioxidant, antimicrobial, peroxide value, and conju-
gated diene measurement. Carvacrol-loaded gelatin/pullulan nanofibers
were also generated for the comparative analysis.

Carvacrol
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Fig. 1. The chemical structure of (A) yCD and (B) carvacrol. (C)The schematic representation of inclusion complex formation between yCD and carvacrol. (D) The
schematic representation of the electrospinning of gelatin/pullulan/carvacrol-yCD-IC nanofibers.
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2. Materials and methods
2.1. Materials

Carvacrol (CRV) (98%, Sigma-Aldrich), gelatin from cold water fish
skin (Sigma-Aldrich), pullulan (Mw: 300 000 g/mol, TCI America),
dimethyl sulfoxide (DMSO, >99.9%, Sigma-Aldrich), methanol
(>99.8%, Sigma-Aldrich), 2,2-diphenyl-1-picrylhydrazyl (DPPH,
>97%, TCI America), fish oil (Spectrum Chemical MFG Corp), chloro-
form (99-99.4%, Merck), isooctane (2,2,4-Trimethylpentane, Aqua So-
lutions), sodium thiosulfate (Fisher Chemical) and potassium iodide
(99%, Thermo Scientific) were provided commercially. Gamma cyclo-
dextrin (yCD, Cavamax W8 Food) was supplied from Wacker Chemie AG
(USA) as a kind gift. Millipore Milli-Q ultrapure water system (Millipore,
USA) was used to distill the water.

2.2. Methods

2.2.1. Preparation of carvacrol-yCD-inclusion complexes and
electrospinning systems

The inclusion complexes (IC) of carvacrol and yCD were prepared by
adding carvacrol at molar ratio of 1:2 (yCD:carvacrol). Firstly, the yCD
was dissolved at the concentration of 16% (w/v) in water by continuous
stirring at room temperature. When the clear solution was obtained,
carvacrol was added to the aqueous yCD solution for forming inclusion
complexes (IC). Here, yCD was chosen instead of the other two native CD
types (aCD and BCD) due to its higher water solubility (232 g/L)
compared to others (145 g/L and 18.5 g/L) (Valle & Del, 2004). This
enabled to dissolution higher amount of CD in the aqueous medium of
electrospinning solution and so to attain the inclusion complex system
having a higher ratio within the ultimate nanofibrous sample. Addi-
tionally, yCD has a bigger cavity size compared to aCD and CD and this
also allowed preparation inclusion complexes with a 1:2 (host:guest)
molar ratio (Aytac, Ipek, et al., 2017). The IC solution was stirred
overnight at room temperature and white aqueous system was obtained
confirming the formation of IC crystals. Afterwards, pullulan (9%,
(w/v)) was added to the IC solution and continued to be stirred. Then,
glacial acetic acid was added to the solution so as to provide acetic
acid/water 3/7 (v/v) ratio and to dissolve the second polymer gelatin
(9%, w/v) at room temperature. The carvacrol content of gelati-
n/pullulan/carvacrol-yCD-IC (GEL/PUL/CRV-yCD-IC NF) nanofibers
was 10% (w/w), so the solution of the control sample of gelati-
n/pullulan/carvacrol nanofibers (GEL/PUL/CRV NF) was prepared to
have the same carvacrol content (10%, w/w). The three different elec-
trospinning  solutions (GEL/PUL, GEL/PUL/CRV, and GEL/-
PUL/CRV-yCD-IC) were individually loaded to 1 mL syringe having the
metallic needle (27 G) and delivered to the system using a horizontal
syringe pump. The grounded rectangular metal collector (15 x 15 cm)
was covered by aluminium foil and placed across the needle in elec-
trospinning equipment (Spingenix, model: SG100, Palo Alto, USA).
Optimized electrospinning parameters were constant flow rate at 1.0
mL/h, high voltage at 13 kV, and 15 cm distance between the needle tip
and metal collector. Electrospinning was performed under the ambient
conditions of 23% relative humidity and 20 °C. The solution parameters
such as viscosity and conductivity for each solution were determined
using appropriate equipment preceding electrospinning. Conductivity
was measured by a conductivity meter (FiveEasy, Mettler Toledo, USA)
at room temperature. The apparent viscosity of solutions at 20 °C was
measured by a rheometer (AR 2000 rheometer, TA Instrument, USA)
equipped with 4° cone-plate (20 mm) spindle at a shear rate of
0.01-1000 s~ 1.

2.2.2. Scanning electron microscopy (SEM) characterization

The morphology of GEL/PUL NF, GEL/PUL/CRV NF, and GEL/PUL/
CRV-yCD-IC NF was visualized by scanning electron microscope (SEM,
Tescan MIRA3, Czech Republic). Before measurement, samples were
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coated with layer of Au/Pd to avoid charging issues. The SEM images of
nanofibers were obtained at 12 kV accelerating voltage with distance of
10 mm and then processed by Image J software to calculate the average
diameter of fibers taking into account randomly selected 100 nanofibers.

2.2.3. X-ray diffraction

The X-ray diffraction patterns of GEL/PUL NF, GEL/PUL/CRV NF,
and GEL/PUL/CRV-yCD-IC NF were scanned over the 26 angles of 5°
and 30° using X-ray diffractometer (XRD, Bruker D8 Advance ECO). Cu-
Ko radiation was applied under the conditions of 40 kV and a current of
25 mA.

2.2.4. The Fourier transform infrared spectroscopy (FTIR)

The Fourier transform infrared spectra of gelatin, pullulan, yCD,
carvacrol, GEL/PUL NF, GEL/PUL/CRV NF, and GEL/PUL/CRV-yCD-IC
NF were obtained by the attenuated total reflectance Fourier transform
infrared spectrometer (ATR-FTIR, PerkinElmer, USA). Measurements
were carried out in the range of 4000-600 cm™!. The spectra were
collected at 4 cm™'resolution by 64 scans.

2.2.5. Thermal characterization

The thermal profile of carvacrol, GEL/PUL NF, GEL/PUL/CRV NF,
and GEL/PUL/CRV-yCD-IC NF was characterized by a thermogravi-
metric analyzer (TGA, Q500, TA Instruments, USA). The samples were
weighed into a platinum pan, and analysis was performed in the range of
30°C-600 °C under the nitrogen atmosphere with a heating rate of
20 °C/min.

2.2.6. Encapsulation efficiency and shelf-life test

The predetermined amount of (~4 mg) GEL/PUL/CRV NF and GEL/
PUL/CRV-yCD-IC NF were weighed and dissolved in 5 mL dimethyl
sulfoxide (DMSO) separately. Three replicates were prepared for each
sample. The DMSO solutions were stirred at room temperature for 30
min. The UV-Vis absorbance values of samples were measured at 278
nm by UV-Vis-spectrophotometer (PerkinElmer, Lambda 35, USA). A
calibration curve (R? > 0.99) of carvacrol with various concentrations
was prepared in DMSO to calculate the encapsulation efficiency of
carvacrol. The encapsulation efficiency (%) of carvacrol was calculated
using the following equation;

Encapsulation efficiency (%) = (C, / C;) x 100 1)

where C, and C; are the extracted carvacrol concentration and the initial
carvacrol concentration, respectively. The preserved carvacrol amount
in nanofibers was monitored for two months shelf-life test considering
weekly intervals until the fourth week. Each sample was stored in Petri
dishes at room temperature and opened to the atmosphere.

2.2.7. Antioxidant activity test

The antioxidant activity of GEL/PUL NF, GEL/PUL/CRV NF and
GEL/PUL/CRV-yCD-IC NF was determined by a 2,2-diphenyl-1-picryl-
hydrazyl (DPPHe) assay. The DPPHe radical scavenging activity of
samples was evaluated against both concentration-dependent and time-
dependent manner. The stoke solution of DPPHe in methanol (75 pM)
was prepared and diluted to an absorbance less than 1.0 at 517 nm to
obtain working solution. For the time-dependent test, ~3 mg of sample
was dissolved in 6 mL of distilled water and then 300 pL of this solution
was mixed with 2700 pL DPPHe working solution. The absorbance
values of solutions were recorded at 517 nm for 48 h (0.25, 0.5, 1, 2, 4, 6,
8, 12, 24, and 48 h). For the concentration-dependent test, aqueous
solutions of samples were prepared at five different concentrations
ranging from 125 pg/mL to 2000 pg/mL. An aliquot volume (2700 pL) of
DPPHe working solution was added to 300 pL of the sample-containing
solutions and then stirred. The samples were incubated for 24 h in the
dark at room temperature. UV-Vis spectroscopy was used to assess the
decrease of DPPHe absorption (517 nm). Each experiment was carried
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out in triplicate. The DPPHe radical scavenging activity of GEL/PUL NF,
GEL/PUL/CRV NF, and GEL/PUL/CRV-yCD-IC NF was calculated using
the following equation;

DPPH e Inhibition (%) = [ (Aconrol — Asarmple) / Acontrol] X 100 2

where Acontrol i the absorbance of the DPPHe working solution, and
Asample is the absorbance values of sample solutions. The 50% inhibition
(IC50) concentrations which represent the minimum quantity of sample
required to reduce DPPHe absorbance by 50% were calculated using the
concentration-dependent graph.

2.2.8. Food application

Commercial fish oil was used to determine the antioxidative capa-
bility of nanofibers during accelerated storage at 40 °C. Fish oil (~13 g)
was transferred into 50 mL glass bottles. Nanofibers were cut into 3.5 cm
diameter circles (~40 mg) and placed on the surface under the plastic lid
of bottles. Fish oil samples were closed with nanofibrous mat-covered
lids. As a control, fish oil was closed using a nanofiber-free lid. The in-
ternal headspace of the fish oil included the ambient air. All samples
were kept in dark at 40 °C and 100 rpm by an orbital shaker for 16 days.
For the oxidative stability test, samples were taken on days 0, 4, 8, 12,
and 16 for the peroxide and conjugated diene measurements. The
peroxide values (PV) of the fish oil were determined according to Wang
etal. (2011) with some modifications. The fish oil (~2 g) was weighed in
an Erlenmeyer and 30 mL of chloroform:glacial acetic acid (3:2, v/v)
solvent mixture was added. Subsequently, 1 mL saturated potassium
iodide (KI) solution was added. The mixture was shaken for 30 s and
then kept in the dark at room temperature for 5 min. After incubation,
75 mL distilled water and 0.5 mL starch indicator (0.05%) were added.
The liberated iodine was titrated against the 0.01 M sodium thiosulfate
(NayS203) until the blue colour disappeared. The PV was calculated as
meq O2/kg oil by the equation below;

PV (meq /kg) = (C x (V = V,) x 12.69 x 78.8) /m 3)

where C is the concentration of sodium thiosulphate solution (mol/L); V
and V represent the volumes of titrant consumption by the samples and
the blank, respectively (mL); and m is the fish oil mass (g).

Conjugated dienes, the early-stage products of fish oil oxidation,
were evaluated using the UV-Vis spectrum of the oil samples (Ferreira
et al., 2018). Fish oil samples (~0.02 g) were dissolved in 6 mL isooctane
and then diluted with isooctane to read absorbance between 0.1 and 0.8.
As a blank, pure isooctane was placed. The conjugated diene contents
were determined by using absorbance values at 232 and calculated using
the following equation;

Conjugated Diene = A3, / (C x 1) “4)

where Ags; is the absorbance value at the wavelength of 232 nm. C is the
final concentration of the fish oil sample (/100 mL), and 1 is the optical
path length (cm) or the cuvette width which is 1 cm.

2.2.9. Antibacterial activity

First, the antibacterial performance of nanofibers was examined
using the disk-diffusion assay. For this, Escherichia coli, Salmonella
enterica serovar Typhimurium 14028s and Staphylococcus aureus were
maintained in LB broth and LB agar. Single colonies of each LB agar plate
were dissolved in 1X sterile PBS (pH = 7.4) and the turbidity of the
solution was measured. All bacterial solutions were prepared to a
McFarland standard of ~0.5. Sterile cotton swabs were saturated with
bacterial solutions and streaked on LB agar plates. Nanofibers or filter
papers of the same diameter were placed in triplicate on streaked LB
agar plates. Streptomycin solution (50 mg/mL) was spotted on filter
paper of similar diameter and used as a positive control. These were
incubated at 37°C overnight. The region of clear zones surrounding the
nanofibers or Streptomycin (Zone of exclusion) was photographed in the
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BioRad ChemiDoc gel acquisition system.

Growth curve assay was also applied for analysing the antibacterial
profile of nanofibers. For this, the same bacterial strains were grown
overnight in LB broth. From saturated overnight cultures, fresh starter
cultures were grown until ODgg reached 1. Equal volume of culture was
then centrifuged at 5000 x g for 10 min. The supernatant was discarded,
and pellets were resuspended in 1 mL of LB with 100 mM 3-(N-mor-
pholino) propanesulfonic acid (MOPS) (pH = 6.8). Different concen-
trations of each nanofiber in DMSO were added to a mix of LB with 100
mM MOPS and 10 pL of the bacterial suspension. ODgoo was recorded
every 30 min for 20 h in Biotek Synergy H1 microplate reader. Data were
plotted on Graphpad Prism. The inhibition rate (%) was calculated by
the equation below using sample-free DMSO as a control;

0OD600; — OD600;,

Inhibition rate (%) = ———————2%
OD600,; — 0D600Ln

x 100 )

where OD600; is the initial OD600 value, and OD600; is the OD600
value of the samples at the 20th hour. OD600S and OD600C are the

0
values of the DMSO measured at the beginning and after 20 h, respec-
tively. As control, growth curve assay test was also performed for the

different concentration of pure carvacrol.

2.2.10. Statistical analyses

Statistical analyses were conducted using analysis of variance
(ANOVA) to determine whether there is a significant difference between
the samples (p < 0.05). Minitab 16 Statistical Software (Minitab Inc.,
State College, PA, USA) was used for all these ANOVA analyses. Tukey
comparison test was used to determine the significant difference be-
tween applications (p < 0.05). All the analyses were performed in
triplicate.

3. Results and discussion
3.1. Morphological characterization of nanofibers

Aqueous electrospinning solutions formed solely by proteins are
inadequate to produce nanofiber due to the lack of interchain associa-
tions or entanglements. In the literature, there are different approaches
for producing nanofiber from native or denatured forms of proteins such
as the use of organic or alcohol-based solvents or mixing with other
spinnable polymers (Mendes et al., 2017). In this study, gelatin was
blended with the carbohydrate-based polymer pullulan at ratio of 1/1
(w/w), and gelatin/pullulan nanofibers were produced successfully
using acetic acid/water 3/7 (v/v) solvent system. The polymer ratio in
this blend is one of the most important parameters that affects nanofiber
morphology and size (Drosou et al., 2018). By using the same gelati-
n/pullulan (1/1) ratio, both carvacrol and carvacrol-yCD-inclusion
complex loaded nanofibers were obtained with initial 10% (w/w) of
carvacrol amount. This initial ratio (10% (w/w)) corresponds to the
molar ratio of 1:2 (yCD:carvacrol) for inclusion complex based system.
Due to the bigger cavity volume of yCD (427 A%) compared to other two
native CD («CD: 174 A% and pCD: 262 A%) (Valle & Del, 2004), yCD was
chosen to form inclusion complexes with 1:2 M ratio which enables to
attain complexes with higher number of active compounds in the CD
cavities. Even one of the related studies showed that thymol, another
essential oil compound of oregano, formed inclusion complexes with
yCD at both 1:1 and 1:2 M ratio, however 1:2 provided better
complexation efficiency compared to 1:1 with higher loading of thymol,
enhanced thermal stability, and retention due to better size match
(Aytac, Ipek, et al., 2017).

The photos of electrospinning solutions and electrospun nanofibers
and their scanning electron microscopy (SEM) images were shown in
Fig. 2. The gelatin/pullulan solution was homogenous and transparent
as seen in Fig. 2A. While a yellowish colour was observed after the
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GEL/PUL NF

Fig. 2. The representative SEM images, the photos of electrospinning solutions,
and the ultimate electrospun nanofibrous webs of (A) GEL/PUL, (B) GEL/PUL/
CRV, and (C) GEL/PUL/CRV-yCD-IC NFs.

addition of carvacrol due to the emulsion like system formation
(Fig. 2B), the crystals of carvacrol-yCD-inclusion complexes turned the
colour of solution into white (Fig. 2C). The photo of carvacrol-yCD-in-
clusion complex solution taken just before the addition of polymers
confirmed that the white colour of this system originated from the ex-
istence of inclusion complex crystals (Fig. S1). Here, it is noteworthy to
mention that the precipitation or phase separation of polymers was not
observed in the electrospinning solution which was used to generate
nanofibers (Fig. 2A). Protein-polysaccharide interactions and their sol-
uble complexes can be responsible for the stability of electrospinning
solutions by the establishment of hydrogen bonds, hydrophobic in-
teractions, and/or ionic bonds (Aceituno-Medina et al., 2013; Gounga
et al., 2007). Here, both gelatin and pullulan were easily dissolved at a
ratio of 9% (w/v) and this might have provided adequate interactions
between these two polymers. As it has been previously reported, higher
concentration of these polymers was also used to generate nanofiber by
electrospinning. The continuous, pullulan-based nanofibers were ob-
tained instead of a beaded structure when the amount of pullulan was
raised from 10% to 20% in formic acid (95%) solution due to the
increasing entanglements of polymer chains (Aceituno-Medina et al.,
2013). Therefore, the acetic acid/water 3/7 (v/v) solvent system was
not supposed to affect the pullulan, a non-ionic polysaccharide, spinn-
ability or solution properties. It has been stated that the gelatin-based
nanofiber was also fabricated by using solely 20% gelatin in acetic
acid/water (3/1, v/v) (Mosayebi et al., 2022). Proteins are more
dependent on pH than polysaccharides. As pH approaches the isoelectric
point (pI), protein solubility decreases. However, the pH of the gelati-
n/pullulan solution was determined as 2.52 and this pH value was far
from the fish gelatin (Type B) pI (pH 4.7-5.3) according to the type of
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gelatin used in this study. For all three systems, nanofibers were
generated with free-standing and flexible features (Fig. 2). The uniform
and homogenous nanofiber formation was observed for gelatin/pullulan
nanofibers (GEL/PUL NF) and gelatin/pullulan/carvacrol nanofibers
(GEL/PUL/CRV NF) (Fig. 2A and B). On the other hand, the SEM image
of gelatin/pullulan/carvacrol-yCD-inclusion complex nanofibers
(GEL/PUL/CRV-yCD-IC NF) indicated the distribution of inclusion
complex crystals throughout the nanofibers (Fig. 2C). Inclusion com-
plexes of yCD with eugenol in pullulan nanofibers demonstrated the
similar crystal structures (Celebioglu & Uyar, 2021).

The solution properties and the average fiber diameter (AFD) values
were summarized in Table 1. The AFD of GEL/PUL NF, GEL/PUL/CRV
NF, and GEL/PUL/CRV-yCD-IC NF were determined as 520 + 115 nm,
540 + 85 nm, and 595 + 205 nm, respectively. Morphology and size of
nanofibers is significantly affected by the conductivity and viscosity of
electrospinning solutions (Si et al., 2023; Zaitoon et al., 2021). Here, the
addition of carvacrol into the electrospinning solutions did not drasti-
cally affect the solution conductivity or viscosity. Therefore, a notable
difference was not observed between the AFD values of GEL/PUL NF and
GEL/PUL/CRV NF. On the other hand, the inclusion complex included
system caused distinct decrease at the conductivity value and an in-
crease at the viscosity (Table 1). As expected, the incorporation of an
additional solid substance; IC with the polymers in the electrospinning
solution can result in more viscous system. On the other hand, gelatin is
a polyelectrolytic polymer and shows higher conductivity than pullulan
(Duconseille et al., 2015). Here, IC might have created a similar effect
with pullulan due to the polysaccharide structure of yCD, and the dilu-
tion of the gelatin in the solution system might be responsible for the
decreasing conductivity of GEL/PUL/CRV-yCD-IC solution (Drosou
et al.,, 2018). Similar trends in conductivity and viscosity were also
observed in polyvinyl alcohol (PVA) based electrospinning solutions
which contained ICs of native CDs (a, f, and yCD) with vanillin (Kayaci
& Uyar, 2012) and eugenol (Kayaci et al., 2013). Depending on lower
conductivity and higher viscosity, less stretching was applied to the
inclusion complex loaded system compared to other two during the
electrospinning, and this led to thicker fiber formation (Si et al., 2023).
The statistical analysis also displayed the significantly higher AFD value
of GEL/PUL/CRV-yCD-IC NF compared to other two nanofibers with p
< 0.05.

3.2. Structural characterization

The crystalline structure of samples was investigated using X-ray
diffractometry (XRD). The XRD patterns of the GEL/PUL NF, GEL/PUL/
CRV NF, and GEL/PUL/CRV-yCD-IC NF were presented in Fig. 3A. XRD
was utilized to enquire about the inclusion complexation between CD
and guest molecules in the sample (Narayanan et al., 2017). Here, both
GEL/PUL NF and GEL/PUL/CRV NF had a similar broad halo in their
diffractogram, indicating their amorphous structure. The addition of
carvacrol didn’t alter the crystalline structure of the GEL/PUL NF, and
carvacrol molecule was distributed throughout the nanofibers without
producing a crystal phase. Fundamentally, the crystalline pattern of
inclusion complexation corresponds to the cylindrical channels by
stacking CDs on top of each other and is called “channel-type” packing
(Fig. S2B) whereas the pristine yCD possesses “cage-type” packing in
which each CD cavity obstructs the neighbouring CD (Fig. S2A) (Cele-
bioglu et al., 2017; Celebioglu & Uyar, 2021). Here, XRD graph of
GEL/PUL/CRV-yCD-IC NF indicated the characteristic crystalline peaks
at 20 = 7.5, 14.2, 15.0, 15.9, 16.7, and 22.0° (Fig. 3A) presenting the
channel-type packing that is quite different from the XRD pattern of
pristine yCD having cage-type packing (Fig. S2C). This finding
confirmed the formation and presence of the carvacrol-yCD-inclusion
complex crystals within the GEL/PUL/CRV-yCD-IC NF (Celebioglu &
Uyar, 2021).

Fourier transform infrared (FTIR) spectroscopy is one of the most
widely used methods to determine the inclusion complex formation
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Table 1
The solution properties and average fiber diameters (AFD) of nanofibers.
Sample GEL (w/v) PUL (w/v) CRV (w/w) yCD (w/v) Viscosity (Pa.s) Conductivity (uS/cm) AFD (nm)
GEL/PUL NF 9 9 - - 0.2239 1235 520 £ 115
GEL/PUL/CRV NF 9 9 10 - 0.2510 1233 540 + 85
GEL/PUL/CRV-yCD-IC NF 9 9 10 16 0.5515 1034 595 + 205
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Fig. 3. (A) XRD patterns of GEL/PUL, GEL/PUL/CRV, and GEL/PUL/CRV-yCD-IC NFs. (B) The full range FTIR spectra of carvacrol, gelatin, pullulan, yCD, GEL/PUL
NF, GEL/PUL/CRV NF, and GEL/PUL/CRV-yCD-IC NF. (C) The expanded range of FTIR spectra of carvacrol, yCD, GEL/PUL NF, and GEL/PUL/CRV-yCD-IC NF
between (i) 1500-1000 cm?, (ii) 1000-600 cm ™! and (iii) the expanded range of FTIR spectra of carvacrol, GEL/PUL NF, and GEL/PUL/CRV NF between 980 and

600 cm™ ™.

between cyclodextrin and guest molecules (Narayanan et al., 2017).
Here, Fig. 3B showed the FTIR spectra and Fig. 3C indicated the
expanded range FTIR spectra of samples. In the spectrum of carvacrol,
the stretching peak of the ~OH group was observed at 3368 cm™! (Altan
et al., 2018). The peak was around 2960 cm ™! associated with sym-
metric and asymmetric C-H stretching due to methyl groups (Valder-
rama & Rojas De, 2017). The distinctive absorption band originating
from the aromatic ring of carvacrol between 1622 and 1420 cm™! was
specified as C-C stretching (Arrieta et al., 2013). The band at 1250 em!
is related to the C-O stretching of carvacrol. The key absorption bands of
carvacrol were seen around 1116 and 994 cm™! which were related to
ortho-substitution and 1:2:4-substitution of carvacrol, respectively
(Valderrama & Rojas De, 2017). The characteristic key band for carva-
crol between 864 and 812 cm ™! is associated with the aromatic ring. The
peak of out-of-plane C-H wagging vibrations, utilized to distinguish
several types of aromatic ring substitutions, was located at about 812
em™! (Altan et al., 2018). In the FTIR spectra of yCD, a broad peak

observed around 3268 cm™! was associated with symmetrical and

asymmetrical O-H stretching, while the peak around 2926 cm™! was
related to C-H stretching. The peak at 1642 cm™! was represented as
H-O-H bending of adsorbed water in yCD. Asymmetric stretching of
C-0-C was detected at 1153 cm ™! and the bands at 1077 and 1020 cm™?
were attributed to C-O and C-C stretching (Celebioglu & Uyar, 2021;
Kapoor et al., 2021).

FTIR spectrum of pullulan indicated a similar pattern with yCD due
to o (1 — 4) linked glucopyranose units. Pullulan is a polymer that has
maltotriose units made up of « (1 — 6) linked (1 — 4) a-d-triglucosides
(Trinetta & Cutter, 2016). The spectrum of pullulan has characteristic
peaks from O-H stretching (3330 cm’l), C-H stretching (2918 cm™ D),
H-O-H bending (1642 cm™?), and C-O stretching (1200-1000 cm™1).
The characteristic peak of a-(1,6) glycosidic bonds, a-glucopyranosyl
units, and o-(1,4) was presented at 930 cm ™, 850 cm ! and 754 cm ™,
respectively (Drosou et al., 2018; Islam & Yeum, 2013). The gelatin
presented four identical absorption bands in the FTIR spectra at 3282



K. Ertan et al.

cm ! (O-H stretching), 1634 cm~! (C=0 stretching), 1520 cm ! (N-H
bending with C-N stretching), and 1238 cm ! (N-H stretching) that
were associated with Amide A, Amide I, Amide II and Amide III,
respectively (Ghorani et al., 2020). The other characteristic peak at
2934 cm~! was Amide B corresponds to the asymmetric stretching vi-
bration of = C-H and -NH3 (Mosayebi et al., 2022). In our study,
GEL/PUL NF absorption bands were located at the intensity between
individual absorptions of gelatin and pullulan. The carvacrol presence in
GEL/PUL/CRV NF was observed with the absorption bands at 864 and
812 cm™! (Fig. 3C-iii). On the other hand, the absorption of bands at
938 cm’l, 864 cm’l, and 638 cm ™! indicated the presence of carvacrol
in GEL/PUL/CRV-yCD-IC NF (Fig. 3C-ii). The expanded FTIR region
indicating the absorption bands between 1500 and 1420 cm™!
(Fig. 3C-i) is related to the aromatic ring of carvacrol, and the shifts
detected at the characteristic peaks of carvacrol proved the IC formation.
Carvacrol interacts with the hydrophobic cavities of CD through its ar-
omatic ring (Liu et al., 2021).

The thermal evaporation of volatile guest molecules can be retarded
by forming inclusion complexes with cyclodextrin molecules (Mura,
2015). Therefore, the thermal stabilities and volatility of carvacrol and
carvacrol loaded nanofibers were evaluated by thermogravimetric
analysis (TGA). Fig. 4A indicates the relation between the mass-loss ratio
of the samples and the temperature. The derivative thermogravimetric
analysis (DTG) curve (Fig. 4B), which illustrates the weight loss rate as a
function of temperature, showed that carvacrol underwent one-stage
weight loss as a result of its evaporation at around 164 °C. The TGA
thermograms of GEL/PUL NF exhibited three weight loss stages: the first
stage was from 30 °C up to 100 °C, the second was at around 144 °C, and
the last significant one was detected at 308 °C. The initial weight loss
was attributed to water loss below 100 °C. The major weight loss at
308 °C and the small step at 144 °C corresponds to the degradation of
gelatin/pullulan blend system. For GEL/PUL/CRV NF, there were also
detected three main weight loss in the thermogram. Here, the moisture
loss stage and the evaporation of carvacrol overlayed, and so a distinct
step was observed at around 105 °C. The other small step (207 °C) and
the big one (309 °C) was again due to the thermal degradation of the
gelatin/pullulan blend. Meanwhile, GEL/PUL/CRV-yCD-IC NF did not
display a noticeable weight loss step up to 200 °C except water loss
(Fig. 4B). Here, the pattern that we had in case of GEL/PUL NF became
sharper and more intense in shape with a step at 216 °C and at 319 °C
due to the incorporation of CRV-yCD-IC crystals into nanofibers. This
finding showed the encapsulated carvacrol in yCD cavities represented a
delayed volatilization, so an enhanced thermal stability compared to its
pristine state. It has been also reported in the previous studies involving
various essential oils such as geraniol (P. P. Menezes et al., 2012),
thymol (Tao et al., 2014), and eugenol (Celebioglu & Uyar, 2021).

3.3. Encapsulation efficiency and shelf-life of nanofibers

Carvacrol encapsulation efficiency after the electrospinning process
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and carvacrol preservation during two-months storage were evaluated
for GEL/PUL/CRV NF and GEL/PUL/CRV-yCD-IC NF (Fig. 5). Both
nanofibers were produced with the initial theoretical percentage of
~10% (w/w, mg carvacrol/mg NF) carvacrol. The encapsulation effi-
ciency value for GEL/PUL/CRV NF right after the electrospinning was
calculated as 70.58% 4 0.77, while the 90.62% 4 4.35 carvacrol
retention was achieved for GEL/PUL/CRV-yCD-IC NF. The easy evapo-
ration of the uncomplex carvacrol resulted in a higher loss in the GEL/
PUL/CRV NF, and it was able to preserve carvacrol with 57.63% + 1.30
at the end of the two months-storage. On the other hand, GEL/PUL/CRV-
yCD-IC NF showed significantly higher preservation with 67.84% =+
0.61 after two months-storage (p < 0.05). The significant variations
between the preservation values of these two samples were maintained
during the whole storage period (p < 0.05). Here, the inclusion
complexation ensured a better encapsulation profile for carvacrol in
GEL/PUL/CRV-yCD-IC NF compared to GEL/PUL/CRV NF. A significant
difference in the carvacrol preservation values was also observed during
the fish oil storage test (p < 0.05). The preserved carvacrol values of
GEL/PUL/CRV NF and GEL/PUL/CRV-yCD-IC NF used in the acceler-
ated storage of fish oil as food packaging material were determined as
approximately 64.70% and 88.68%, respectively. The findings proved
that carvacrol stability was enhanced by inclusion complexation with
yCD during the electrospinning process, storage at room temperature,
and food packaging application at 40 °C.

100

a GEL/PUL/CRV NF
GEL/PULICRV-yCD-IC NF
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0 1 2 3 4 8
Shelf-life (Week)

Fig. 5. Carvacrol encapsulation efficiency (%) of GEL/PUL/CRV NF and GEL/
PUL/CRV-yCD-IC NF during shelf-life.
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Fig. 4. (A) TGA thermograms and (B) derivatives of yCD powder, GEL/PUL, GEL/PUL/CRV, and GEL/PUL/CRV-yCD-IC NFs.
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3.4. Antioxidant activity

Carvacrol is a phenolic monoterpene compound that exhibits anti-
oxidant properties because of chain breaking activity of phenolic com-
ponents. Carvacrol molecules prevent oxidation by proton donation and
cause their own oxidation. After then, their polarity gets stabilized by
means of electron dislocation. The antioxidant bioactivity of carvacrol is
the outcome of this process (Gursul et al., 2019; Zeb, 2020). Here, the
DPPHe assay was performed to assess the antioxidant capacity of sam-
ples. In this method, antioxidant molecules reduce the DPPH radical,
and the colour of the solution turns from violet to yellowish based on
electron transfer (Brand-Williams et al., 1995). The UV-Vis absorption
spectra of GEL/PUL NF, GEL/PUL/CRV NF, GEL/PUL/CRV-yCD-IC NF,
and DPPHe solution were recorded between the wavelengths of
400-800 nm since the DPPHe shows the maximum absorption at 517 nm
(Fig. 6A). The DPPHe solution included GEL/PUL NF was purple,
whereas the carvacrol loaded ones exhibited a yellowish colour after 48
h incubation (Fig. 6B). The antioxidant activities of GEL/PUL/CRV NF
and GEL/PUL/CRV-yCD-IC NF were tested at sample concentrations
ranging from 125 pg/mL to 2000 pg/mL. GEL/PUL NF was also prepared
in the determined concentration range and used as a control. The IC50
values were calculated using the radical inhibition (%) data as a function
of sample concentration for 30 min period. The IC50 value denotes the
quantity of antioxidant material required to reduce the initial concen-
tration of DPPH radicals by 50% (de Menezes et al., 2021). The IC values
of GEL/PUL/CRV NF and GEL/PUL/CRV-yCD-IC NF were determined as
701 g/mL and 692 g/mL, respectively and lower value showed the
higher antioxidant capacity of GEL/PUL/CRV-yCD-IC NF compared to
GEL/PUL/CRV NF.

The time-dependent inhibition graph demonstrated that 97.93% of
inhibition was achieved within 48 h by GEL/PUL/CRV-yCD-IC NF
(Fig. 6B). On the other hand, GEL/PUL/CRV NF had 93.24% inhibition
of DPPHe activity. The DPPH radical was reduced by the strong
hydrogen-donating ability of the carvacrol. The control sample of GEL/
PUL NF slightly affected inhibition (24.32%). While pure pullulan and
yCD do not affect DPPHe inactivation, the radical scavenging capacity of
GEL/PUL NFs originates from antioxidant peptide fractions of fish
gelatin (Celebioglu & Uyar, 2021; Kwak et al., 2021). GEL/-
PUL/CRV-yCD-IC NF had significantly higher antioxidant potential than
other samples after 48 h (p < 0.05). These results showed that inclusion
complexation did not obstruct the radical scavenging activity of carva-
crol. In a related study, Celebioglu and Uyar (2021) reported that the
yCD inclusion complex did not also limit the radical scavenging ability of
the eugenol compound since its phenolic group was oriented on the
broader rim of CD. The methyl and phenolic hydroxyl groups of carva-
crol can be found at either the broad or narrow rim of the CD molecule
since the cavity size is wide enough. (Yildiz et al., 2018). The geomet-
rical accommodation of carvacrol in complex structure provided higher
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encapsulation efficiency. Here, the activity and stability of carvacrol
were evolved by inclusion complexation and the results of the antioxi-
dant activity tests confirmed the potential of these nanofibers to be used
in food packaging applications.

3.5. Food application and oxidative stability

Fish oil is one of the most widely used food supplements worldwide
and contains nutritionally valuable fatty acids. However, its poly-
unsaturated fatty acids are very susceptible to degradation. The break-
down of polyunsaturated long-chain fatty acids into smaller molecules
forms hydroperoxides that tend to decompose into undesired volatile
components such as ketones, aldehydes, and carboxylic acids (Lembke &
Schubert, 2014). Oxidative degradation is the main problem that re-
duces the shelf life of fish oil. Therefore, protecting fish oil against
oxidation is the primary concern during processing, transportation, and
storage. Oxidation may be avoided by restricting the presence of oxygen,
establishing an inert atmosphere, and adding synthetic or natural anti-
oxidants to the oil content (Jairoun et al., 2020; Mozuraityte et al.,
2016). Liquid fish oil can be kept in an inert atmosphere to avoid
oxidation, but this is not practical for consumers once the bottle has been
opened. In this study, fish oils were stored at 40 °C and under the at-
mospheric air without a particular inert environment. As depicted in
Fig. 7A, nanofibers were placed on the inner face of the lids and not in
contact with fish oil.

The oxidation degree of oils during accelerated storage was quanti-
fied by the analyses of peroxide value (PV) and conjugated dienes. The
PV results of fish oil samples were summarized in Fig. 7B. The initial PV
was found as 6.15 + 0.07 meq Oy/kg oil. The PV increased for each
sample in the first four days and this increase kept up until the 8th day of
storage. The control fish oil group, without attached nanofiber in the lid,
reached the highest PV which is 42.83 meq Oy/kg oil at 8 days of storage
at 40 °C. The PV of GEL/PUL NF, and GEL/PUL/CRV NF were signifi-
cantly higher compared to GEL/PUL/CRV-yCD-IC NF at the fourth day.
(p < 0.05). Both GEL/PUL/CRV NF and GEL/PUL/CRV-CD-IC NF dis-
played considerable variations from the control sample by the eighth
day. The samples that significantly vary from the control are pointed out
in Fig. 7B. The PV was decreased after 8 days due to the breakdown of
hydroperoxides to secondary oxidation products. The statistical analysis
indicated that the carvacrol-loaded nanofibers achieved a delay in the
oxidation of oil samples and the highest impact was observed by GEL/
PUL/CRV-yCD-IC NF during 8-day storage (p < 0.05).

The unsaturated fatty acids in fish oil were oxidized during accel-
erated storage, leading to a change in double bond positions and the
formation of conjugated double bonds. Since the formation of conju-
gated dienes increases UV absorption, it is used to determine the
oxidation level of the product (Khor et al., 2021). The changes in con-
jugated dienes of fish oil samples were represented in Fig. 7C. As
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Fig. 6. (A) The UV-Vis absorption spectra of DPPHe solution and GEL/PUL NF, GEL/PUL/CRV NF, GEL/PUL/CRV-yCD-IC NF at the concentration of 0.5 mg NF/mL
after 30 min incubation. (B) Time-dependent antioxidant performance graph and the representative solution photos of nanofibers after 48 h incubation.
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Fig. 7. (A) Food system application of nanofiber samples and control fish oil. (B) Peroxide value and (C) conjugated dienes concentration of fish oil during
accelerated storage. Data points having the * symbol significantly differ from the control sample (p < 0.05).

expected, the conjugated diene values were increased during storage.
The conjugated dienes value of control fish oil, which was initially
determined as 8.13 g/L, reached 10.68 g/L after four days. High poly-
unsaturated fatty acid concentrations may contribute to the rapid
development of conjugated dienes (Liu & White, 1992). Hence, at the
beginning of the storage, a sharp increase was observed in conjugated
diene concentrations of each fish oil sample. Nanofiber free control
samples had similar behaviour with GEL/PUL NF integrated system,
while GEL/PUL/CRV NF and GEL/PUL/CRV-yCD-IC NF significantly
decelerated the formation of conjugated dienes up to day eight (p <
0.05). Carvacrol activity of GEL/PUL/CRV NF on oxidation rate began to
decline in later stages. GEL/PUL/CRV-yCD-IC NF integrated systems
were able to reduce conjugated diene formation until day 12, possibly
due to efficient encapsulation and controlled release of carvacrol.
Although conjugated dienes displayed of increase during the oxidation
test, the PVs exhibited an increase and then a decrease. The reason for
the different trends is that conjugated dienes outlast hydroperoxides
because they remain intact (Schaich et al., 2013). Besides PV results,
conjugated dienes values confirmed that GEL/PUL/CRV-yCD-IC NF
retarded oxidation at 40 °C and under ambient air.

3.6. Antimicrobial activity

The growth curve assay was performed to assess the antibacterial
property of nanofibers, and graphs were given in Fig. 8. Different strains
of Gram-positive and Gram-negative bacteria, including Escherichia coli,
Salmonella enterica serovar Typhimurium 14028s and Staphylococcus
aureus, were cultured to test a broad range of activity. Streptomycin was
used as a positive control. Different concentrations of carvacrol (2.5, 5,
and 10 mg/mL) were also examined for each microorganism. To assess
bacterial viability ODgop was recorded every 30 min for 20 h. The
antimicrobial activity of the samples was also evaluated by disk-
diffusion assay. Although the results gave an insight into the anti-
microbial activity of the nanofibers, they were not reported here since
the zones were overlapped and unclear but used as supplementary

information (Fig. S3). Streptomycin and carvacrol demonstrated similar
activity against microorganisms. As shown in Fig. 8, the GEL/PUL/CRV-
yCD-IC NF demonstrated better antibacterial activity against the tested
microorganisms as compared to the GEL/PUL/CRV NF (p < 0.05). As
expected, bacterial viability in GEL/PUL NF treatment were similar to
that of sample-free DMSO. The incubation period includes different
phases of microorganism growth which are the lag, logarithmic and
stationary phases (Adkar et al., 2017). GEL/PUL/CRV NF extended the
lag phase for all strains of bacteria. In the beginning, there was a
noticeable effect on bacterial growth. After 3 h of incubation, the lowest
concentration (25 mg/mL) of GEL/PUL/CRV NF showed increased
growth in both Gram-positive and Gram-negative bacteria. The
growth-inhibiting effect on the bacteria significantly increased as the
nanofiber concentration increased (p < 0.05). For example, the inhibi-
tion rates of the GEL/PUL/CRV-yCD-IC NF at 25 mg/mL and 50 mg/mL
concentrations were calculated as 34.1% and 60.6% relative to DMSO,
while the concentration of 100 mg/mL provided complete growth in-
hibition of Gram-negative E. coli. Although the nanofibers brought about
different inhibition rates in tested bacterial strains, their antibacterial
activities were sorted against Gram-positive S. aureus and
Gram-negative S. enterica as follows: GEL/PUL/CRV-yCD-IC NF >
GEL/PUL/CRV NF > GEL/PUL NF.

The highest concentration of the GEL/PUL/CRV-yCD-IC NF acted
like the antibiotic streptomycin for Gram-negative microorganisms. The
growth of both E. coli and S. enterica was completely inhibited by GEL/
PUL/CRV-yCD-IC NF at the highest concentration of nanofiber, whereas
S. aureus showed minimal growth after 18-h incubation. Although
several studies have hypothesized (Ait-Ouazzou et al., 2012; Amjadi
et al., 2022; Wen et al., 2016) that Gram-negative bacteria are more
resistant against essential oils than Gram-positives due to divergences in
cell wall patterns, various researchers reported contrary results for
carvacrol (Kurek et al., 2014; Tampau et al., 2018) and citrus essential
oils (Ambrosio et al.,, 2019). The outer membrane found in
Gram-negative bacteria is absent in Gram-positive bacteria. This outer
membrane has transmembrane channels (porins) and
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Fig. 8. Growth curves of samples against (A) E. coli, (B) S. aureus, and
(C) S. enterica.
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lipopolysaccharides with polar ends that allow the passage of hydro-
philic compounds while impeding the diffusion of hydrophobic mole-
cules, such as essential oils, into the cytoplasm (Marinelli et al., 2018). In
this study, the enhanced hydrophilic character, and the varying polarity
of the GEL/PUL/CRV-yCD-IC NF, which is a result of inclusion
complexation, may account for the decelerated rate of growth. On the
other hand, the similar trend in antibacterial activity of GEL/PUL/CRV
NF against Gram-negative and -positive bacteria can be attributed to
several proposed mechanisms of carvacrol including leaking of cell
contents, cytoplasm coagulation, inhibition of motility, damage of
cytoplasmic membrane and membrane protein (Burt, 2004).

4. Conclusion

In this study, the inclusion complexes of carvacrol-yCD were incor-
porated into electrospun nanofibers of gelatin/pullulan biopolymers
(GEL/PUL/CRV-yCD-IC NF). Carvacrol retention, at 10% initial con-
centration, was found to differ significantly during the electrospinning
process and the storage for GEL/PUL/CRV-yCD-IC NF and the control
sample of GEL/PUL/CRV NF. The inclusion complexation resulted in
higher preservation during storage at room temperature and enhanced
the shelf-life. In addition, carvacrol evaporation from the solution dur-
ing the electrospinning process was substantially prevented. The free-
standing and flexible nanofibers were obtained for both GEL/PUL/
CRV-yCD-IC and GEL/PUL/CRV systems. While a smooth nanofiber
formation was observed for GEL/PUL/CRV NF, the inclusion complex
crystals were detected throughout GEL/PUL/CRV-yCD-IC NF. The in-
clusion complexation ensured thermal stability and delayed the vola-
tilization for carvacrol. Inclusion complexation is also an efficient way to
enhance the water solubility of essential oil carvacrol by the lipophilic
cavity, provided highly stable encapsulation without hindering the
antioxidant and antibacterial activity. The promising antioxidant ac-
tivity of nanofibers delayed fish oil oxidation, and the GEL/PUL/CRV-
yCD-IC NF had the most significant influence. The increased hydrophilic
character of carvacrol in GEL/PUL/CRV-yCD-IC NF led to the remark-
able inhibitory activity of the active compound against Gram-negative
bacteria. As this research has demonstrated, gelatin/pullulan nano-
fibers loaded inclusion complex of yCD with carvacrol have further
potential with the promoted thermal, antimicrobial, and antioxidant
characteristics, which are highly desirable properties for active food
packaging systems. Because of its bioactivity, this developed electrospun
nanofiber can be used to package foods susceptible to oxidation, extend
the shelf life of foods by preventing microbial spoilage, and ensure food
safety. The packaging material developed from pullulan and gelatin
biopolymers offers sustainability and serves green practices.
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