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A B S T R A C T

We present a filter stabilization technique for the mildly compressible Euler equations that relies on a linear
or nonlinear indicator function to identify the regions of the domain where artificial viscosity is needed and
determine its amount. For the realization of this technique, we adopt a three step algorithm called Evolve-
Filter-Relax (EFR), which at every time step evolves the solution (i.e., solves the Euler equations on a coarse
mesh), then filters the computed solution, and finally performs a relaxation step to combine the filtered and
non-filtered solutions. We show that the EFR algorithm is equivalent to an eddy-viscosity model in Large Eddy
Simulation. Three indicator functions are considered: a constant function (leading to a linear filter), a function
proportional to the norm of the velocity gradient (recovering a Smagorinsky-like model), and a function based
on approximate deconvolution operators. Through well-known benchmarks for atmospheric flow, we show
that the deconvolution-based filter yields stable solutions that are much less dissipative than the linear filter
and the Smagorinsky-like model and we highlight the efficiency of the EFR algorithm.
1. Introduction

The Direct Numerical Simulation (DNS) is a simulation in Compu-
tational Fluid Dynamics (CFD) that solves the equations governing the
fluid motion by resolving the entire range of relevant spatial and tem-
poral scales. In many practical CFD applications, the smallest spatial
scales can be several orders of magnitude smaller than the largest scales
in the flow. An example is atmospheric flow, whose smallest spatial
scales are typically of the order of 10−4 m while the typical domain
size is of the order of 104 − 105 m. For these applications, a DNS is
eyond reach for nowadays computing machines and it will be for the
oreseeable future.
One way to keep the computational cost affordable without sacri-

icing accuracy is to solve for the flow using a coarser mesh and model
he effects of the small scales that are not directly solved through a
o-called subgrid-scale (SGS) model. This is the principal idea behind
arge Eddy Simulation (LES). Traditionally, SGS models introduce the
ffects of the unresolved scales with momentum fluxes that are linearly
ependent upon the rate of strain of the large scales. This is known
ddy-viscosity closure. The most famous eddy-viscosity model is the
magorinsky model [1]. Its success is due to several factors: (i) it
is relatively simple and easy to implement, (ii) it is computationally
inexpensive compared to other SGS models, and (iii) it features pa-
rameters that can be tuned for the particular application at hand so
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that the results are realistic. The main limitation of the Smagorinsky
model is the assumption of local balance between the subgrid scale
energy production and dissipation. Since such equilibrium conditions
do not hold in many practical applications, the Smagorinsky model
often results into over-diffusive simulations. A large body of research
has been motivated by improving upon the Smagorinsky model.

Some alternative methods introduce artificial diffusion that can be
solution-dependent (see, e.g., [2–6]) or residual-based (see, e.g., [7–
11]). These methods are driven by the intent to have an artificial
viscosity that vanishes where the solution is smooth and/or decreases as
the grid is refined. Other methods add a set of equations to the discrete
governing equations formulated on a coarse mesh (coarse is meant with
respect to the resolution required by DNS). This extra-problem can
be devised in different ways, for example by a functional splitting of
the solved and unresolved scales as in variational multiscale methods
(see, e.g., [12–15]). In this paper, we propose an extra problem that
acts as a differential (linear or nonlinear) low-pass filter added sequen-
tially to the mildly compressible Euler equations for stratified flows.
This sequential algorithm is called Evolve-Filter-Relax (EFR) since, at
every time step, one first evolves the solution, i.e., solves the Euler
equations on a coarse mesh, then filters the computed solution, and
finally performs a relaxation step to combine the filtered and non-
filtered solutions. This techniques is also known with the name of filter
vailable online 22 September 2023
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stabilization because it reduces or eliminates unphysical fluctuations
in the computed solution. We will show that the EFR algorithm is an
eddy-viscosity model.

Introduced in [16], EFR algorithms have been widely applied to
the incompressible Navier–Stokes equations [16–23]. It was shown
in [16,18–20,22] that numerical results obtained with nonlinear dif-
ferential filters are more precise in localizing where eddy viscosity
is needed and are overall more accurate than results obtained with
plain Smagorinsky-type models. Despite these promising results for the
incompressible Navier–Stokes equations, the application of filter stabi-
lization to the Euler equations has received much less attention [24–
27]. A possible alternative to nonlinear filters is given by variational
multiscale methods, which approximate (i.e., not model or filter) the
unresolved scale. See, e.g., [28–30].

In this paper, we consider the EFR algorithm for the Euler equations
with both linear and nonlinear filters. Developed in [31–33], stabiliza-
tion based on linear filters has been widely studied (see, e.g., [34–36]).
owever, it was noted in [37] that a linear stabilization can, at most,
ive a solution converging to a weak solution that is not the entropy
olution, hence the need to investigate nonlinear filter stabilization
echniques. We will show that the EFR algorithm with a deconvolution-
ased filter yields stable solutions that are much less dissipative than
he Smagorinsky model. We recall that the use of deconvolution op-
rators in SGS models to increase accuracy is well established and
athematically grounded [38–40].
The main advantages of the EFR algorithm are: (i) modularity,

.e., its implementation does not require any major modification of a
egacy solver, and (ii) flexibility in the choice of the filter. In addition, if
ne chooses the deconvolution-based filter, the viscosity introduced by
he EFR algorithm vanishes where the solution is smooth and decreases
s the mesh is refined. We will show that we obtain numerical results
hat agree very well with data published in the literature for well-
nown 2D benchmark problems involving stratified and gravity driven
tmospheres. We will also show that the computational cost to solve the
dditional filter problem is a fraction of the computational cost required
y the Euler solver.
All the simulations in this paper have been carried out with GEA

Geophysical and Environmental Applications) [41], a new open-source
tmosphere and ocean modeling framework within the finite volume
++ library OpenFOAM® [42]. For more details on GEA, see [43,44].
lthough we demonstrate numerically the accuracy and efficiency of
FR algorithm using a finite volume method for space discretization,
he algorithm itself can be used with any space discretization method.
The outline of the paper is as follows. Section 2 describes the

compressible Euler equations for low Mach stratified flows and intro-
duces the filter stabilization for this model. In Section 3, we discuss
space discretization and the perturbation terms introduced by the filter
stabilization to the Euler equations. Numerical results are presented in
Section 4 and conclusions are drawn in Section 5.

2. Problem definition

2.1. The compressible Euler equations

We consider mildly compressible Euler equations to describe the
motion of the dry atmosphere, i.e., a compressible inviscid fluid, as-
sumed to behave like an ideal gas. Let 𝛺 be a spatial domain of interest
and (0, 𝑡𝑓 ] a time interval of interest. Let 𝜌, 𝐮 = (𝑢, 𝑣,𝑤), and 𝑝 be the
fluid density, velocity, and pressure. Moreover, let 𝑒 = 𝑐𝑣𝑇 + |𝐮|2∕2+𝑔𝑧
be the total energy density, where 𝑐𝑣 is the specific heat capacity at
constant volume, 𝑇 is the absolute temperature, 𝑔 is the gravitational
constant, and 𝑧 is the vertical coordinate. The conservation of mass,
momentum, and total energy can be written as:
𝜕𝜌

+ ∇ ⋅ (𝜌𝐮) = 0 in 𝛺 × (0, 𝑡 ], (1)
2

𝜕𝑡 𝑓
𝜕(𝜌𝐮)
𝜕𝑡

+ ∇ ⋅ (𝜌𝐮⊗ 𝐮) + ∇𝑝 + 𝜌𝑔𝐤 = 𝟎 in 𝛺 × (0, 𝑡𝑓 ], (2)

𝜕(𝜌𝑒)
𝜕𝑡

+ ∇ ⋅ (𝜌𝑒𝐮) + ∇ ⋅ (𝑝𝐮) = 0 in 𝛺 × (0, 𝑡𝑓 ], (3)

where 𝐤 is the unit vector aligned with the vertical axis 𝑧. We close
system (1)–(3) using the following thermodynamics equation of state
or 𝑝:

= 𝜌𝑅𝑇 , (4)

here 𝑅 is the specific gas constant of dry air.
Let us to write the pressure as the sum of a fluctuation 𝑝′ with

espect to a hydrostatic term:

= 𝑝′ + 𝜌𝑔𝑧. (5)

y plugging (5) into (2), we obtain:
𝜕(𝜌𝐮)
𝜕𝑡

+ ∇ ⋅ (𝜌𝐮⊗ 𝐮) + ∇𝑝′ + 𝑔𝑧∇𝜌 = 0 in 𝛺 × (0, 𝑡𝑓 ]. (6)

Let 𝑐𝑝 be the specific heat capacity at constant pressure for dry air
nd let

= |𝐮|2∕2, ℎ = 𝑐𝑣𝑇 + 𝑝∕𝜌 = 𝑐𝑝𝑇 , (7)

e the kinetic energy density and the specific enthalpy, respectively.
he total energy density can be written as 𝑒 = ℎ − 𝑝∕𝜌 +𝐾 + 𝑔𝑧. Then,
q. (3) can be rewritten as:
𝜕(𝜌ℎ)
𝜕𝑡

+ ∇ ⋅ (𝜌𝐮ℎ) + 𝜕(𝜌𝐾)
𝜕𝑡

+ ∇ ⋅ (𝜌𝐮𝐾) −
𝜕𝑝
𝜕𝑡

+ 𝜌𝑔𝐮 ⋅ 𝐤̂ = 0, (8)

here we have used Eq. (1) for further simplification.
This paper focuses on formulation (1),(4)–(8) of the Euler equations.
A quantity of interest for atmospheric problems is the potential

emperature

= 𝑇
𝜋
, 𝜋 =

(

𝑝
𝑝0

)
𝑅
𝑐𝑝

, (9)

where 𝑝0 = 105 Pa, which is the atmospheric pressure at the ground.
Additionally, we define the potential temperature fluctuation 𝜃′ as the
difference between 𝜃 and its mean hydrostatic value 𝜃0:

𝜃′(𝑥, 𝑦, 𝑧, 𝑡) = 𝜃(𝑥, 𝑦, 𝑧, 𝑡) − 𝜃0(𝑧). (10)

See, e.g., [45] for more details.

2.2. Filter stabilization as an eddy viscosity model

A numerical solution of system (1),(4)–(8) computed with a mesh
coarser than necessary for a DNS will be affected by non-physical os-
cillations that will eventually lead to a simulation breakdown. In order
to avoid incurring into non-physical solutions, we adapt to the Euler
equations an algorithm that has been shown to be accurate, efficient,
and robust for the incompressible Navier–Stokes equations [16–23].
This algorithm consists of three steps: in the first step (called Evolve)
one approximates the solution to the Euler equations with a coarse
mesh, in the second step (called Filter) the numerical oscillations are
smoothed out with a differential filter to obtain a filtered solution,
and in the third step (called Relax) one combines the filtered and non-
filtered solutions. This Evolve-Filter-Relax (EFR) algorithm, which is a
computationally efficient realization of filter stabilization, is described
next.

Let 𝛥𝑡 ∈ R, 𝑡𝑛 = 𝑛𝛥𝑡, with 𝑛 = 0,… , 𝑁𝑓 and 𝑡𝑓 = 𝑁𝑓𝛥𝑡. Moreover, we
denote by 𝑦𝑛 the approximation of a generic quantity 𝑦 at the time 𝑡𝑛.
We adopt a Backward Differentiation Formula of order 1 (BDF1) for the
discretization of the Eulerian time derivatives in (1),(6),(8). Other time
discretization schemes are possible (see, e.g., [16,17,21,22]). The EFR
algorithm reads as follows: given 𝜌0, 𝐮0, ℎ0, 𝑝0, and 𝑇 0, set 𝐾0 = |𝐮0|2∕2
and for 𝑛 ≥ 0 perform the following steps:
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- Step 1 - Evolve: find density 𝜌𝑛+1 and intermediate variables
𝐯𝑛+1, 𝑙𝑛+1, 𝐾𝑛+1

𝐯 , 𝑞𝑛+1, 𝑞′,𝑛+1, 𝑇 𝑛+1
𝑙 such that:

𝜌𝑛+1 − 𝜌𝑛

𝛥𝑡
+ ∇ ⋅ (𝜌𝑛+1𝐯𝑛+1) = 0, (11)

𝜌𝑛+1𝐯𝑛+1 − 𝜌𝑛𝐮𝑛
𝛥𝑡

+ ∇ ⋅ (𝜌𝑛+1𝐯𝑛+1 ⊗ 𝐯𝑛+1) + ∇𝑞′,𝑛+1 + 𝑔𝑧∇𝜌𝑛+1 = 𝟎,

(12)

𝜌𝑛+1𝑙𝑛+1 − 𝜌𝑛ℎ𝑛

𝛥𝑡
+ ∇ ⋅ (𝜌𝑛+1𝐯𝑛+1𝑙𝑛+1) +

𝜌𝑛+1𝐾𝑛+1
𝐯 − 𝜌𝑛𝐾𝑛

𝛥𝑡
+ ∇ ⋅ (𝜌𝑛+1𝐯𝑛+1𝐾𝑛+1

𝐯 )

−
𝑞𝑛+1 − 𝑝𝑛

𝛥𝑡
+ 𝜌𝑛+1𝑔𝐯𝑛+1 ⋅ 𝐤̂ = 0, (13)

𝑞𝑛+1 = 𝑞′,𝑛+1 + 𝜌𝑛+1𝑔𝑧, (14)

𝑞𝑛+1 = 𝜌𝑛+1𝑅𝑇 𝑛+1
𝑙 , (15)

𝑙𝑛+1 − 𝑙𝑛 = 𝑐𝑝(𝑇 𝑛+1
𝑙 − 𝑇 𝑛

𝑙 ), (16)

𝐾𝑛+1
𝐯 =

|𝐯𝑛+1|2

2
. (17)

Notice that in (16) we have chosen to update the value of the
intermediate specific enthalpy in an incremental fashion.

- Step 2 - Filter : find filtered variables 𝐯𝑛+1, 𝑙
𝑛+1

such that

𝐯𝑛+1 = 𝐹𝐯𝑛+1, (18)

𝑙
𝑛+1

= 𝐹 𝑙𝑛+1, (19)

where 𝐹 is a generic filter that could be linear or nonlinear. We
will present possible choices for F in Section 2.3.

- Step 3 - Relax: find end of step 𝐮𝑛+1, ℎ𝑛+1, 𝐾𝑛+1, 𝑝𝑛+1, 𝑝′,𝑛+1, 𝑇 𝑛+1

such that

𝐮𝑛+1 = (1 − 𝜒)𝐯𝑛+1 + 𝜒𝐯𝑛+1, (20)

ℎ𝑛+1 = (1 − 𝜉)𝑙𝑛+1 + 𝜉𝑙
𝑛+1

, (21)

𝑝𝑛+1 = 𝑝′,𝑛+1 + 𝜌𝑛+1𝑔𝑧, (22)

𝑝𝑛+1 = 𝜌𝑛+1𝑅𝑇 𝑛+1, (23)

ℎ𝑛+1 − ℎ𝑛 = 𝑐𝑝(𝑇 𝑛+1 − 𝑇 𝑛), (24)

𝐾𝑛+1 =
|𝐮𝑛+1|2

2
, (25)

where 𝜒, 𝜉 ∈ [0, 1] are relaxation parameters.

The connection between the EFR algorithm and LES modeling is
easily seen by shifting the index 𝑛 + 1 to 𝑛 in (18)–(21) and plugging
them into (12)–(13) to obtain:

𝜌𝑛+1𝐯𝑛+1 − 𝜌𝑛𝐯𝑛
𝛥𝑡

+ ∇ ⋅ (𝜌𝑛+1𝐯𝑛+1 ⊗ 𝐯𝑛+1) + ∇𝑞′,𝑛+1 + 𝑔𝑧∇𝜌𝑛+1

+
𝜒
𝛥𝑡

𝐺𝐯𝑛 = 𝟎, (26)

𝜌𝑛+1𝑙𝑛+1 − 𝜌𝑛𝑙𝑛

𝛥𝑡
+ ∇ ⋅ (𝜌𝑛+1𝐯𝑛+1𝑙𝑛+1) +

𝜌𝑛+1𝐾𝑛+1
𝐯 − 𝜌𝑛𝐾𝑛

𝛥𝑡
+ ∇ ⋅ (𝜌𝑛+1𝐯𝑛+1𝐾𝑛+1

𝐯 )

−
𝑞𝑛+1 − 𝑝𝑛

𝛥𝑡
+ 𝜌𝑛+1𝑔𝐯𝑛+1 ⋅ 𝐤̂ +

𝜉
𝛥𝑡

𝐺𝑙𝑛 = 0, (27)

ith 𝐺 = 𝐼 − 𝐹 , 𝐼 being the identity operator. System (11), (26),
(27), (14)–(17) gives us an implicit discretization of problem (1),(4)–
(8) with BDF1 and an additional explicitly treated (linear or nonlinear)
dissipation term.

Let us assume that 𝜒 = 𝜒0𝛥𝑡 and 𝜉 = 𝜉0𝛥𝑡, where 𝜒0 and 𝜉0 are
time-independent constants. Then, system (11), (26), (27), (14)–(17)
an be seen as a time-stepping scheme for problem:
𝜕𝜌
𝜕𝑡

+ ∇ ⋅ (𝜌𝐯) = 0, (28)

𝜕(𝜌𝐯)
+ ∇ ⋅ (𝜌𝐯⊗ 𝐯) + ∇𝑝′ + 𝑔𝑧∇𝜌 + 𝜒 𝐺𝐯 = 𝟎, (29)
3

𝜕𝑡 0
𝜕(𝜌𝑙)
𝜕𝑡

+ ∇ ⋅ (𝜌𝐮𝑙) + 𝜕(𝜌𝐾)
𝜕𝑡

+ ∇ ⋅ (𝜌𝐮𝐾) −
𝜕𝑝
𝜕𝑡

+ 𝜌𝑔𝐮 ⋅ 𝐤̂ + 𝜉0𝐺𝑙 = 0, (30)

𝑝 = 𝑝′ + 𝜌𝑔𝑧, (31)

𝑝 = 𝜌𝑅𝑇 , (32)

ℎ = 𝑐𝑝𝑇 , (33)

𝐾 = |𝐯|2∕2. (34)

Thus, filter stabilization algorithm (11)–(25) can be interpreted as a
plitting scheme for problem (28)–(34).
Notice that model (28)–(34) can be considered as a LES model of

he eddy-viscosity type with closure:

⋅ (𝜌𝐯⊗ 𝐯 − 𝜌𝐯⊗ 𝐯) ≈ 𝜒0𝐺𝐯, (35)

∇ ⋅ (𝜌𝐯𝑙 − 𝜌𝐯𝑙) ≈ 𝜉0𝐺𝑙. (36)

his shows the connection between algorithm (11)–(25) and LES mod-
ling.

.3. A possible choice for the filter

We will consider the following filter for step 2 (18)–(19):

= (𝐼 + 𝐿)−1, 𝐿 = −∇ ⋅ (𝛿∇) (37)

here 𝛿 > 0 is a linear or nonlinear artificial ‘‘viscosity’’. Such a filter
pplied to 𝐯𝑛+1 as in (18) amounts to solving the following problem:
find 𝐯𝑛+1 such that

−∇ ⋅ (𝛿∇(𝐯𝑛+1)) + 𝐯𝑛+1 = 𝐯𝑛+1, 𝛿 = 𝛼2𝑎(𝐯𝑛+1), (38)

where 𝛼 can be interpreted as the filtering radius and 𝑎(⋅) ∈ (0, 1] is
he so-called indicator function. Note that 𝛿 is not properly a viscosity
since it has the dimension of a length squared. However, if we multiply
(38) by 𝜌𝑛+1∕𝛥𝑡, we obtain Stokes problem:

𝜌𝑛+1

𝛥𝑡
(𝐯𝑛+1 − 𝐯𝑛+1) − ∇ ⋅ (𝜇∇𝐯𝑛+1) = 𝟎, 𝜇 = 𝜌𝑛+1 𝛼

2

𝛥𝑡
𝑎(𝐯𝑛+1), (39)

where 𝜇 is dimensionally a dynamic viscosity.
The same filter applied to 𝑙𝑛+1 as in (19) yields:

𝜌𝑛+1

𝛥𝑡
(𝑙
𝑛+1

− 𝑙𝑛+1) − ∇ ⋅ (𝜇∇𝑙
𝑛+1

) = 0. (40)

In summary, the EFR algorithm we will use in this paper entails
performing the following steps:

- Step 1 - Evolve: find density 𝜌𝑛+1, 𝐯𝑛+1, 𝑙𝑛+1, 𝐾𝑛+1
𝐯 , 𝑞𝑛+1, 𝑞′,𝑛+1, 𝑇 𝑛+1

𝑙
such that (11)–(17) hold.

- Step 2 - Filter : find filtered variables 𝐯𝑛+1, 𝑙
𝑛+1

such that (39)–(40)
hold.

- Step 3 - Relax: set (20)–(25).

2.4. Possible choices for the indicator function

The success of the EFR algorithm in the simulation of atmospheric
flows ultimately depends on the reliability of the indicator function.
The indicator function has to be such that it takes values close to
zero where its argument (i.e., the Euler velocity or specific enthalpy)
does not need regularization, while it takes values close to 1 where
the argument does need to be regularized. Different choices for in-
dicator function 𝑎(⋅) have been proposed in the literature for the
incompressible Navier–Stokes equations [16,18,46,47]. Some indicator
functions [16,18] are based on physical quantities that are known to
vanish for coherent flow structures. The drawback for these indicator
functions is that they do not allow for a rigorous convergence theory
to verify the robustness of the associated filtering method. Hence,
mathematics-based (instead of physics-based) indicator functions were
proposed [16,19]. In this paper, we will consider and compare three
mathematics-based choices.
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The first and easiest choice corresponds to a linear filter, i.e., we
take

𝑎(𝐯) = 𝑎𝐿(𝐯) = 1, (41)

in (39). Besides linearity, another advantage of this choice is that it
makes the operator in the filter equations constant in time. However,
its efficacy is rather limited, since it introduces the same amount of
regularization everywhere in the domain. This is likely to introduce
overdiffusion as we will show in Section 4

A second mathematically convenient indicator function is

𝑎(𝐯) = 𝑎𝑆 (𝐯) =
|∇𝐯|

‖∇𝐯‖∞
, (42)

hich has strong monotonicity properties. With 𝑎𝑆 (⋅) as indicator func-
ion for the EFR algorithm, we recover a Smagorinsky-like model,
hich is an improvement over the linear filter obtained with 𝑎𝐿(⋅).
Finally, we consider a class of deconvolution-based indicator func-

ions, which were shown to be particularly accurate for realistic in-
ompressible flow problems [17,21]. Such functions are defined as:

(𝐯) = 𝑎𝐷(𝐯) = |𝐯 −𝐷(𝐹 (𝐯))| , (43)

here 𝐹 is the linear Helmholtz filter (i.e., (37) with 𝛿 constant in space
nd time) and 𝐷 is the Van Cittert deconvolution:

=
𝑁
∑

𝑛=0
(𝐼 − 𝐹 )𝑛. (44)

e remark that 𝐷 is a bounded regularized approximation of 𝐹−1.
ypically, 𝑁 in (44) is set to 0, 1 [17,21]. In this paper, we consider
= 0, which means 𝐷 = 𝐼 . For this choice of 𝑁 , indicator function

43) becomes

𝐷(𝐯) = |𝐯 − 𝐹 (𝐯)| . (45)

. Space discretization of the steps in the EFR algorithm

For space discretization, we adopt a finite volume method. The
volve step is the most computationally intensive step in the EFR
lgorithm and to contain its computational cost we use a splitting
cheme thoroughly described in [44]. This section focuses on the space
iscretization of the Filter and Relax steps.
Let us consider a partition of the computational domain 𝛺 into

ells or control volumes 𝛺𝑖, with 𝑖 = 1,… , 𝑁𝑐 , where 𝑁𝑐 is the total
umber of cells in the mesh. Let A𝑗 be the surface vector of each face
f the control volume, with 𝑗 = 1,… ,𝑀 . We will start with the space
iscretization of the Filter problem (39)–(40) and then write the space
iscrete version of the Relax Step (20)–(25)
The integral form of the Eq. (39) for each volume 𝛺𝑖 is given by:

1
𝛥𝑡 ∫𝛺𝑖

𝜌𝑛+1𝐯𝑛+1 𝑑𝛺 − ∫𝛺𝑖

∇ ⋅ (𝜇∇𝐯𝑛+1) 𝑑𝛺 = 1
𝛥𝑡 ∫𝛺𝑖

𝜌𝑛+1𝐯𝑛+1 𝑑𝛺.

y using the Gauss-divergence theorem, the above equation becomes:
1
𝛥𝑡 ∫𝛺𝑖

𝜌𝑛+1𝐯𝑛+1 𝑑𝛺 − ∫𝛺𝑖

(𝜇∇𝐯𝑛+1) ⋅ 𝑑𝐀 = 1
𝛥𝑡 ∫𝛺𝑖

𝜌𝑛+1𝐯𝑛+1𝑑𝛺. (46)

Let us denote with (𝜇∇𝐯𝑛+1)𝑖 and 𝐯𝑛+1𝑖 the average stress tensor and fil-
ered velocity in control volume 𝛺𝑖, respectively. Similarly, we denote
ith 𝜌𝑛+1𝑖 and 𝐯𝑛+1𝑖 the average density and intermediate velocity in 𝛺𝑖.

Then, Eq. (46) is approximated as follows:
1
𝛥𝑡

𝜌𝑛+1𝑖 𝐯𝑛+1𝑖 −
∑

𝑗
(𝜇∇𝐯𝑛+1)𝑖,𝑗 ⋅ 𝐀𝑗 =

1
𝛥𝑡

𝜌𝑛+1𝑖 𝐯𝑛+1𝑖 . (47)

e choose to approximate the gradient of 𝐯𝑛+1𝑖 at face 𝑗 with second
order accuracy. See [48] for more details.

Following a similar procedure for (40), we obtain:
1
𝛥𝑡

𝜌𝑛+1𝑖 𝑙
𝑛+1
𝑖 −

∑

(𝜇∇𝑙
𝑛+1

)𝑖,𝑗 ⋅ 𝐀𝑗 =
1
𝛥𝑡

𝜌𝑛+1𝑖 𝑙𝑛+1𝑖 , (48)
4

𝑗

where 𝑙
𝑛+1
𝑖 and 𝑙𝑛+1𝑖 are the average filtered and intermediate specific

nthalpy in 𝛺𝑖. For the approximation of the gradient of 𝑙
𝑛+1
𝑖 at face 𝑗,

we use the same formula used for the components of 𝐯𝑛+1𝑖 .
Now, let us turn to the Relax step. The discretized form of each

quation in the Relax step is simply given by taking the average of each
ariable in 𝛺𝑖:
𝑛+1
𝑖 = (1 − 𝜒)𝐯𝑛+1𝑖 + 𝜒𝐯𝑛+1𝑖 , (49)

ℎ𝑛+1𝑖 = (1 − 𝜉)𝑙𝑛+1𝑖 + 𝜉𝑙
𝑛+1
𝑖 , (50)

𝑝𝑛+1𝑖 = 𝑝′,𝑛+1𝑖 + 𝜌𝑛+1𝑖 𝑔𝑧𝑖, (51)

𝑝𝑛+1𝑖 = 𝜌𝑛+1𝑅𝑇 𝑛+1
𝑖 , (52)

ℎ𝑛+1𝑖 − ℎ𝑛𝑖 = 𝑐𝑝(𝑇 𝑛+1
𝑖 − 𝑇 𝑛

𝑖 ), (53)

𝐾𝑛+1
𝑖 =

|𝐮𝑛+1𝑖 |

2

2
, (54)

here 𝑧𝑖 is the vertical coordinate of the centroid of cell 𝛺𝑖.

.1. The EFR algorithm as a solver for the Euler equations with perturba-
ions

In this section, we will show that by combining the equations at the
volve, Filter, and Relax steps we obtain the Euler equations perturbed
y some extra terms and we discuss such terms.
Let us use a subindex ℎ to denote the space-discrete solution, where
refers to the mesh size. We rewrite (12)

𝜌𝑛+1ℎ 𝐯𝑛+1ℎ − 𝜌𝑛ℎ𝐮
𝑛
ℎ

𝛥𝑡
+ ∇ ⋅ (𝜌𝑛+1ℎ 𝐯∗ℎ ⊗ 𝐯𝑛+1ℎ ) +𝐻(𝑞′,𝑛+1ℎ , 𝜌𝑛+1ℎ ) = 𝟎, (55)

here 𝐯∗ℎ is a suitable extrapolation of 𝐯
𝑛+1
ℎ to linearize the convective

erm and 𝐻(𝑞′,𝑛+1ℎ , 𝜌𝑛+1ℎ ) = ∇𝑞′,𝑛+1ℎ + 𝑔𝑧∇𝜌𝑛+1ℎ . Let us also write the
pace-discrete version of Eq. (20)
𝑛+1
ℎ = (1 − 𝜒)𝐯𝑛+1ℎ + 𝜒𝐯𝑛+1ℎ , (56)

and Eq. (39)

𝜌𝑛+1ℎ
𝛥𝑡

(𝐯𝑛+1ℎ − 𝐯𝑛+1ℎ ) − ∇ ⋅ (𝜇ℎ∇𝐯
𝑛+1
ℎ ) = 𝟎, (57)

where

𝜇ℎ = 𝜌𝑛+1ℎ
𝛼2

𝛥𝑡
𝑎(𝐯𝑛+1ℎ ). (58)

We multiply (57) by 𝜒 , add it to (55), and make use of (56) to
obtain:
𝜌𝑛+1ℎ 𝐮𝑛+1ℎ − 𝜌𝑛ℎ𝐮

𝑛
ℎ

𝛥𝑡
+∇⋅(𝜌𝑛+1ℎ 𝐯∗ℎ⊗𝐯𝑛+1ℎ )+𝐻(𝑞′,𝑛+1ℎ , 𝜌𝑛+1ℎ )−𝜒∇⋅(𝜇ℎ∇𝐯

𝑛+1
ℎ ) = 𝟎.

Using (56) once more, we get:

𝜌𝑛+1ℎ 𝐮𝑛+1ℎ − 𝜌𝑛ℎ𝐮
𝑛
ℎ

𝛥𝑡
+ ∇ ⋅ (𝜌𝑛+1ℎ 𝐯∗ℎ ⊗ 𝐮𝑛+1ℎ ) +𝐻(𝑞′,𝑛+1ℎ , 𝜌𝑛+1ℎ )

+ 𝜒∇ ⋅ (𝜌𝑛+1ℎ 𝐯∗ℎ ⊗ (𝐯𝑛+1ℎ − 𝐯𝑛+1ℎ )) − 𝜒∇ ⋅ (𝜇ℎ∇𝐯
𝑛+1
ℎ ) = 𝟎.

which can be rewritten as
𝜌𝑛+1ℎ 𝐮𝑛+1ℎ − 𝜌𝑛ℎ𝐮

𝑛
ℎ

𝛥𝑡
+ ∇ ⋅ (𝜌𝑛+1ℎ 𝐯∗ℎ ⊗ 𝐮𝑛+1ℎ ) +𝐻(𝑞′,𝑛+1ℎ , 𝜌𝑛+1ℎ ) − 𝜒∇ ⋅ (𝜇ℎ∇𝐮𝑛+1ℎ )

+ 𝜒∇ ⋅ (𝜌𝑛+1ℎ 𝐯∗ℎ ⊗ (𝐯𝑛+1ℎ − 𝐯𝑛+1ℎ )) − 𝜒∇ ⋅ (𝜇ℎ∇(𝐯
𝑛+1
ℎ − 𝐮𝑛+1ℎ )) = 𝟎. (59)

In (59), we have explicitly written a diffusive term involving only the
end-of-step velocity 𝐮𝑛+1ℎ , i.e., the last term in the first line. The last
term at the left-hand side in (59) can be rewritten using (56) to get:

𝜌𝑛+1ℎ 𝐮𝑛+1ℎ − 𝜌𝑛ℎ𝐮
𝑛
ℎ

𝛥𝑡
+ ∇ ⋅ (𝜌𝑛+1ℎ 𝐯∗ℎ ⊗ 𝐮𝑛+1ℎ ) +𝐻(𝑞′,𝑛+1ℎ , 𝜌𝑛+1ℎ ) − 𝜒∇ ⋅ (𝜇ℎ∇𝐮𝑛+1ℎ )

+ 𝜒∇ ⋅ (𝜌𝑛+1ℎ 𝐯∗ℎ ⊗ (𝐯𝑛+1ℎ − 𝐯𝑛+1ℎ )) − 𝜒(1 − 𝜒)∇ ⋅ (𝜇ℎ∇(𝐯
𝑛+1
ℎ − 𝐯𝑛+1ℎ )) = 𝟎.

(60)
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Eq. (60) shows that the end-of-step velocity 𝐮𝑛+1ℎ provided by the EFR
lgorithm solves a perturbed discrete momentum balance equation.
he perturbation consists of three terms, all multiplied by 𝜒 : an ex-
ra convection term and two extra diffusion terms. As mentioned in
ection 2.2, 𝜒 should be a multiple of 𝛥𝑡. Thus, as 𝛥𝑡 tends to zero,
he perturbation terms vanish and we recover the discrete momentum
alance equation. In addition, we notice that when 𝛼2∕𝛥𝑡 tends to zero,
he artificial viscosity 𝜇ℎ (58) vanishes and 𝐯𝑛+1ℎ tends to 𝐯𝑛+1ℎ . If 𝛼 is
a multiple of ℎ (as it is typically the case), then Eq. (60) is consistent
with Eq. (2) so long as the mesh size and time step go to zero at the
same rate.

Combining in a similar fashion the space discrete version of Eq. (13):

𝜌𝑛+1ℎ 𝑙𝑛+1ℎ − 𝜌𝑛ℎℎ
𝑛
ℎ

𝛥𝑡
+ ∇ ⋅ (𝜌𝑛+1ℎ 𝐯∗ℎ𝑙

𝑛+1
ℎ ) + 𝐺

(

𝜌𝑛+1ℎ , 𝐾𝑛+1
𝐯,ℎ , 𝑞𝑛+1ℎ , 𝐯𝑛+1ℎ

)

= 0,

𝐺
(

𝜌𝑛+1ℎ , 𝐾𝑛+1
𝐯,ℎ , 𝑞𝑛+1ℎ , 𝐯𝑛+1ℎ

)

=
𝜌𝑛+1ℎ 𝐾𝑛+1

𝐯,ℎ − 𝜌𝑛ℎ𝐾
𝑛
ℎ

𝛥𝑡
+ ∇ ⋅ (𝜌𝑛+1ℎ 𝐯∗ℎ𝐾

𝑛+1
𝐯,ℎ )

−
𝑞𝑛+1ℎ − 𝑝𝑛ℎ

𝛥𝑡
+ 𝜌𝑛+1ℎ 𝑔𝐯𝑛+1ℎ ⋅ 𝐤̂,

with the discrete versions of Eq. (40):

𝜌𝑛+1ℎ
𝛥𝑡

(𝑙
𝑛+1
ℎ − 𝑙𝑛+1ℎ ) − ∇ ⋅ (𝜇ℎ∇𝑙

𝑛+1
ℎ ) = 0,

nd Eq. (21):
𝑛+1
ℎ = (1 − 𝜉)𝑙𝑛+1ℎ + 𝜉𝑙

𝑛+1
ℎ ,

e obtain
𝜌𝑛+1ℎ ℎ𝑛+1ℎ − 𝜌𝑛ℎℎ

𝑛
ℎ

𝛥𝑡
+ ∇ ⋅ (𝜌𝑛+1ℎ 𝐯∗ℎℎ

𝑛+1
ℎ ) + 𝐺

(

𝜌𝑛+1ℎ , 𝐾𝑛+1
𝐯,ℎ , 𝑞𝑛+1ℎ , 𝐯𝑛+1ℎ

)

− 𝜉∇ ⋅ (𝜇ℎ∇ℎ𝑛+1ℎ )

+ 𝜉∇ ⋅ (𝜌𝑛+1ℎ 𝐯∗ℎ(𝑙
𝑛+1
ℎ − 𝑙

𝑛+1
ℎ )) − 𝜉(1 − 𝜉)∇ ⋅ (𝜇ℎ∇(𝑙

𝑛+1
ℎ − 𝑙𝑛+1ℎ )) = 0. (61)

Eq. (61) is a perturbed discrete enthalpy balance equation, with the
perturbation coming from an extra convection term and two extra
diffusion terms. Like in the case of Eq. (60), the perturbation terms are
multiplied by the relaxation parameter.

Remark 1. For 𝜒 = 1, which corresponds to accepting the filtered
velocity as the end-of-step velocity, Eq. (60) becomes:

𝜌𝑛+1ℎ 𝐮𝑛+1ℎ − 𝜌𝑛ℎ𝐮
𝑛
ℎ

𝛥𝑡
+ ∇ ⋅ (𝜌𝑛+1ℎ 𝐯∗ℎ ⊗ 𝐮𝑛+1ℎ ) +𝐻(𝑞′,𝑛+1ℎ , 𝜌𝑛+1ℎ ) − ∇ ⋅ (𝜇ℎ∇𝐮𝑛+1ℎ )

+ ∇ ⋅ (𝜌𝑛+1ℎ 𝐯∗ℎ ⊗ (𝐯𝑛+1ℎ − 𝐯𝑛+1ℎ )) = 𝟎,

here we clearly see that the artificial diffusion introduced by the EFR
lgorithm is 𝜇ℎ (58). Similarly, by setting 𝜉 = 1 (i.e, we take the filtered
enthalpy as the end-of-step enthalpy) Eq. (61) becomes:

𝜌𝑛+1ℎ ℎ𝑛+1ℎ − 𝜌𝑛ℎℎ
𝑛
ℎ

𝛥𝑡
+ ∇ ⋅ (𝜌𝑛+1ℎ 𝐯∗ℎℎ

𝑛+1
ℎ ) + 𝐺

(

𝜌𝑛+1ℎ , 𝐾𝑛+1
𝐯,ℎ , 𝑞𝑛+1ℎ , 𝐯𝑛+1ℎ

)

− ∇ ⋅ (𝜇ℎ∇ℎ𝑛+1ℎ )

+ ∇ ⋅ (𝜌𝑛+1ℎ 𝐯∗ℎ(𝑙
𝑛+1
ℎ − 𝑙

𝑛+1
ℎ )) = 0.

emark 2. Eddy viscosity models are equivalent to introducing
dditional terms in Eq. (6) and (8) of the form
𝜕(𝜌𝐮)
𝜕𝑡

+ ∇ ⋅ (𝜌𝐮⊗ 𝐮) + ∇𝑝′ + 𝑔𝑧∇𝜌 − ∇ ⋅ (2𝜇𝑎𝝐(𝐮)) + ∇
( 2
3
𝜇𝑎∇ ⋅ 𝐮

)

= 0,

(62)
𝜕(𝜌ℎ)
𝜕𝑡

+ ∇ ⋅ (𝜌𝐮ℎ) + 𝜕(𝜌𝐾)
𝜕𝑡

+ ∇ ⋅ (𝜌𝐮𝐾) −
𝜕𝑝
𝜕𝑡

+ 𝜌𝑔𝐮 ⋅ 𝐤̂ − ∇ ⋅
( 𝜇𝑎

𝑃𝑟
∇ℎ

)

= 0.

(63)

where 𝜇𝑎 is an artificial viscosity, 𝝐(𝐮) = (∇𝐮+(∇𝐮)𝑇 )∕2 is the strain-rate
tensor, and 𝑃𝑟 is the Prandtl number, i.e., the dimensionless number
defined as the ratio of momentum diffusivity to thermal diffusivity. The
artificial viscosity 𝜇𝑎 is defined differently for the different LES models.
Comparing (62)–(63) with (60)–(61) suggests choosing 𝜉 = 𝜒∕𝑃𝑟.
5

w

Similar derivations to those presented in Remarks 1 and 2 apply
for eddy viscosity models derived from variational multiscale methods.
See, e.g., [49].

Remark 3. The Smagorinsky model sets 𝜇𝑎 in (62)–(63) as

𝜇𝑎 = 𝜌(𝐶𝑠𝛿)2
√

2𝝐 ∶ 𝝐, 𝐶2
𝑠 = 𝐶𝑘

√

𝐶𝑘
𝐶𝜖

(64)

where 𝛿 is the filter width (typically comparable with the mesh size),
and 𝐶𝑘 and 𝐶𝜖 are model parameters. In order to obtain the same
mount of artificial viscosity with the EFR algorithm and 𝑎𝑆 (42), one
eeds 𝛼 ≈ 𝐶𝑠𝛿

√

𝛥𝑡‖∇𝐯𝑛+1ℎ ‖∞ at time 𝑡𝑛+1. In practice, one can easily
calculate 𝐶𝑠𝛿

√

𝛥𝑡 while ‖∇𝐯𝑛+1ℎ ‖∞ would have to be guessed to tune 𝛼.

4. Numerical results

We consider two well-known benchmarks: the rising thermal bubble
as presented in [50,51] and the density current [52,53]. Both test
cases involve a perturbation of a neutrally stratified atmosphere with
uniform background potential temperature over a flat terrain and the
boundaries are treated as if the problem were inviscid (i.e., free-slip
boundary conditions are imposed). So, these are not boundary layer
flow problems. We presents our results for the rising thermal bubble
and the density current in Sections 4.1 and 4.2, respectively, and
ompare them with other numerical data available in the literature
ince there is no exact solution for these benchmarks.

.1. Rising thermal bubble

In computational domain 𝛺 = [0, 5000] × [0, 10 000] m2, a neutrally
tratified atmosphere with uniform background potential temperature
0=300 K is perturbed by a circular bubble of warmer air. The initial
emperature field is

0 = 300 + 2
[

1 − 𝑟
𝑟0

]

if 𝑟 ≤ 𝑟0 = 2000 m, 𝜃0 = 300 otherwise, (65)

where 𝑟 =
√

(𝑥 − 𝑥𝑐 )2 + (𝑧 − 𝑧𝑐 )2, (𝑥𝑐 , 𝑧𝑐 ) = (5000, 2000) m is the radius
of the circular perturbation [50,54]. The initial density is given by

𝜌0 =
𝑝𝑔
𝑅𝜃0

(

𝑝
𝑝𝑔

)𝑐𝑣∕𝑐𝑝
, 𝑝 = 𝑝𝑔

(

1 −
𝑔𝑧
𝑐𝑝𝜃0

)𝑐𝑝∕𝑅

, (66)

with 𝑐𝑝 = 𝑅 + 𝑐𝑣, 𝑐𝑣 = 715.5 J/(Kg K), 𝑅 = 287 J/(Kg K). The initial
velocity field is zero everywhere. Finally, the initial specific enthalpy
is given by:

ℎ0 = 𝑐𝑝𝜃
0
(

𝑝
𝑝𝑔

)
𝑅
𝑐𝑝

. (67)

We let the bubble evolve in the time interval of interest is (0, 1020] s.
Impenetrable, free-slip boundary conditions are imposed on all walls.

We consider five different meshes with uniform resolution ℎ = 𝛥𝑥 =
𝛥𝑧 = 125, 62.5, 31.25, 15.625 m. The time step is set to 𝛥𝑡 = 0.1 s for all
the simulations. In all the cases, we set 𝜒 = 𝜉 = 1 so that the artificial
diffusion introduced by the EFR algorithm can easily be calculated (see
Remark 1).

We start with the linear filter, i.e., we take 𝑎𝐿 (41) as indicator
function, because it allows us to make a direct comparison with the
results obtained by setting 𝜇𝑎 = 15 and 𝑃𝑟 = 1 in (62)–(63) [44,50]. We
note that both of these are ad-hoc values chosen by the authors of [50]
to stabilize the numerical simulations. It is not unusual in benchmarks
to set 𝑃𝑟 = 1 although the air Prandtl number is about 0.71 at 20 ◦C
(see, e.g., [55]). Other authors have chosen other arbitrary values, like
𝑃𝑟 = 0.1 in [56]. For a qualitative analysis of the results for the rising
thermal bubble as 𝑃𝑟 varies we refer the reader to [11]. To introduce
the same amount of artificial viscosity with the EFR algorithm and 𝑎𝐿,
e use (58) to get 𝛼 ≈

√

𝜇 𝛥𝑡∕𝜌𝑛+1 at time 𝑡𝑛+1. For simplicity, we keep
𝑎
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Fig. 1. Rising thermal bubble, 𝑎𝐿, 𝛼 = 1.9 m: perturbation of potential temperature at 𝑡 = 1020 s computed with four different meshes. The mesh size, specified in each panel, is
ncreasing from left to right.
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Fig. 2. Rising thermal bubble, 𝑎𝐿, 𝛼 = 1.9 m: contour plots of the horizontal velocity
component 𝑢 (left) and the vertical velocity component 𝑤 (right) at 𝑡 = 1020 s computed
with mesh ℎ = 125 m.

𝛼 constant in space and time and set it to 1.9, which is obtained by
taking the minimum value of density. Fig. 1 shows the perturbation of
potential temperature 𝜃′ at 𝑡 = 1020 s computed by the EFR algorithm
(with 𝑎𝐿 and 𝛼 = 1.9) and all the meshes under consideration. From
Fig. 1, we observe no visible change in the computed 𝜃′ when the
esh is refined past ℎ = 62.5 m. In order to facilitate the comparison
f the panels in Fig. 1 with data in the literature [11,44,50,54], we
ave forced the colorbar to range from 0 to 1. Overall, these results
re in very good qualitative agreement with the corresponding figures
n [11,44,50,54].
We obtain good qualitative agreement with data in the literature

e.g., Fig. 7 in [50]) also for Fig. 2, which displays velocity components
𝑢 and 𝑤 at 𝑡 = 1020 s computed by the EFR algorithm (with 𝑎𝐿 and
𝛼 = 1.9) with mesh ℎ = 125 m.

Fig. 3 reports a more quantitative comparison. It compares the time
evolution of the maximum perturbation of potential temperature 𝜃′𝑚𝑎𝑥
and maximum vertical component of the velocity 𝑤𝑚𝑎𝑥 computed by the
EFR algorithm (with 𝑎𝐿 and 𝛼 = 1.9) against the corresponding results
from [50]. We see that the evolution of 𝜃′𝑚𝑎𝑥 computed with meshes
ℎ = 125 m is affected by spurious oscillations. Oscillations of small
amplitude affect also the 𝜃′𝑚𝑎𝑥 computed with mesh ℎ = 62.5 m, but
they disappear with finer meshes. Since 𝜃′𝑚𝑎𝑥 and 𝑤𝑚𝑎𝑥 computed with
meshes ℎ = 31.25 m and ℎ = 15.625 m are practically overlapped, we
chose not to refine the mesh further. The ‘‘converged’’ 𝑤𝑚𝑎𝑥 overlaps
with the reference value till about 𝑡 = 800 s, which is a remarkable

′

6

improvement over our previous results in [44]. The ‘‘converged’’ 𝜃𝑚𝑎𝑥
Table 1
Rising thermal bubble, 𝑎𝐿, 𝛼 = 1.9: minimum and maximum vertical velocity 𝑤 and
potential temperature 𝜃′ at 𝑡 = 1020 s compared with the values extracted from the
figures in [50].
Type ℎ (m) 𝑤𝑚𝑖𝑛 (m/s) 𝑤𝑚𝑎𝑥 (m/s) 𝜃′𝑚𝑖𝑛 (K) 𝜃′𝑚𝑎𝑥 (K)

Ref. [50] 125 −7.75 13.95 −0.013 1.4
𝑎𝐿 , 𝛼 = 1.9 125 −10.35 12.01 −0.012 1.23
𝑎𝐿 , 𝛼 = 1.9 62.5 −10.54 12.16 −0.041 1.24
𝑎𝐿 , 𝛼 = 1.9 31.25 −10.61 12.21 −0.050 1.22
𝑎𝐿 , 𝛼 = 1.9 15.625 −10.63 12.28 −0.052 1.22

is also closer to the results from [50] than in [44], however there is
still some distance between the two curves.

Table 1 reports the extrema for the vertical velocity 𝑤 and potential
emperature perturbation 𝜃′ at 𝑡 = 1020 s obtained with the EFR
lgorithm (with 𝑎𝐿 and 𝛼 = 1.9), together with the values extracted
rom the figures in [50]. This tables confirms the findings from Fig. 3.
Next, we consider indicator functions 𝑎𝑆 and 𝑎𝐷 and focus on the

two intermediate meshes (ℎ = 31.25 m and ℎ = 62.5 m). We set the
value of 𝛼 using 𝐶𝑠 = 0.094 [44] and Remark 3, which suggests an
order of magnitude for 𝛼 rather than a strict value. We take 𝛼 = 3 m
for mesh ℎ = 31.25 m. Since Remark 3 suggests a linear dependence
of 𝛼 on the mesh size, we take 𝛼 = 6 m for mesh ℎ = 62.5 m. We
note that these values would apply only for 𝑎𝑆 but we will use them
for 𝑎𝐷 too in order to show the differences in the solutions obtained
with the two indicator functions. Fig. 4 shows the spatial distribution
of 𝜃′ and the indicator function at 𝑡 = 1020 s computed with the EFR
algorithm and the nonlinear filters. Note that with the nonlinear filters
we can capture a larger amount of vortical structures than with the
linear filter (compare Fig. 4 with Fig. 1). The results computed with
𝑎𝑆 and mesh ℎ = 31.25 m (Fig. 4, first panel on the top row) agree
very well with those obtained with the Smagorinsky model in [44]
(Fig. 5, left panel). On a given mesh, the Rayleigh–Taylor instability
at the edge of the bubble is more developed when using 𝑎𝐷 instead
of 𝑎𝑆 , which indicates that 𝑎𝐷 introduces less artificial viscosity than
𝑎𝑆 . Recall that the artificial viscosity introduced by the EFR algorithm
(58) is proportional to the indicator function. Indeed, the plots on the
bottom row of Fig. 4 show that 𝑎𝑆 at 𝑡 = 1020 s has larger values over
wider regions than 𝑎𝐷. This means that indicator function 𝑎𝐷 is more
selective in identifying the regions of the domain where diffusion is
needed.

Table 2 reports the extrema for the vertical velocity 𝑤 and potential
temperature perturbation 𝜃′ at 𝑡 = 1020 s obtained with the EFR
algorithm, together with the values from [44] for the Smagorinsky
model. The data in Table 2 confirm our observation from Fig. 4 about
𝑎𝑆 vs 𝑎𝐷. Indeed, we see that larger extreme values are found with the
EFR algorithm and 𝑎 . In addition, we see that the Smagorinsky model
𝐷



Computers and Fluids 266 (2023) 106057N. Clinco et al.

(

w

b
E
A

Fig. 3. Rising thermal bubble, 𝑎𝐿, 𝛼 = 1.9: time evolution of the maximum perturbation of potential temperature 𝜃′𝑚𝑎𝑥 (left) and the maximum vertical component of the velocity
𝑤𝑚𝑎𝑥 (right) computed with all the meshes under consideration. The reference values are taken from [50] and refer to resolution 125 m.
Fig. 4. Rising thermal bubble: perturbation of potential temperature (top row) and corresponding indicator function (bottom row) at 𝑡 = 1020 s computed with the EFR and 𝑎𝑆
first two columns) and 𝑎𝐷 (last two columns) for different mesh sizes.
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Table 2
Rising thermal bubble: minimum and maximum vertical velocity 𝑤 and potential
temperature 𝜃′ at 𝑡 = 1020 s computed by the EFR algorithm with different meshes,
indicator functions, and values of 𝛼. For comparison, the table reports the values from
[44] obtained with the Smagorinsky model.
Model ℎ (m) 𝛼 (m) 𝑤𝑚𝑖𝑛 (m/s) 𝑤𝑚𝑎𝑥 (m/s) 𝜃′𝑚𝑖𝑛 (K) 𝜃′𝑚𝑎𝑥 (K)

EFR, 𝑎𝐷 31.25 3 −13.39 15.59 −0.18 1.88
EFR, 𝑎𝑆 31.25 3 −11.60 15.29 −0.13 1.75
Smagorinsky [44] 31.25 – −11.54 15.04 −0.072 1.89
EFR, 𝑎𝐷 62.5 6 −11.3 14.88 −0.12 1.78
EFR, 𝑎𝑆 62.5 6 −10.76 13.38 −0.14 1.72

from [44] gives smaller extreme values than EFR algorithm with 𝑎𝑆 ,
hich seems to be less diffusive.
We conclude this section by highlighting the important role played

y the filtering radius. Fig. 5 shows 𝜃′ at 𝑡 = 1020 s computed by the
FR algorithm with 𝑎𝑆 and different values of 𝛼 for mesh ℎ = 31.25 m.
lthough the three values of 𝛼 are all of the same order of magnitude,
7

e see a big difference in the solution. This sensitivity to 𝛼 can be
itigated by choosing 𝜒 ≠ 1 (see, e.g., [17]) and 𝜉 ≠ 1.

.2. Density current

The computational domain in the 𝑥𝑧-plane is 𝛺 = [0, 25 600] ×
0, 6400] m2 and the time interval of interest is (0, 900] s. Impenetrable,
ree-slip boundary conditions are imposed on all the walls. The initial
ensity is given by (66) with initial potential temperature:
0 = 300 − 15

2
[1 + cos(𝜋𝑟)] if 𝑟 ≤ 1, 𝜃0 = 300 otherwise, (68)

where 𝑟 =
√

(

𝑥−𝑥𝑐
𝑥𝑟

)2
+
(

𝑧−𝑧𝑐
𝑧𝑟

)2
, with (𝑥𝑟, 𝑧𝑟) = (4000, 2000) m and

(𝑥𝑐 , 𝑧𝑐 ) = (0, 3000) m. The initial bubble in this test is of cold air. The
initial velocity field is zero everywhere and the initial specific enthalpy
is given by (67).

We consider uniform, orthogonal meshes with mesh sizes ℎ = 𝛥𝑥 =
𝛥𝑧 = 200, 100, 50, 25 m. The time step is set to 𝛥𝑡 = 0.1 s. Just like in the

case of the warm bubble, we set 𝜒 = 𝜉 = 1 in the EFR algorithm.
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Fig. 5. Rising thermal bubble, 𝑎𝑆 : perturbation of potential temperature at 𝑡 = 1020 s computed by the EFR algorithm with mesh ℎ = 31.25 m and (from left to right) 𝛼 = 5, 4, 3, 2
.

Fig. 6. Density current, 𝑎𝐿, 𝛼 = 2.7: time evolution of potential temperature fluctuation 𝜃′ computed with mesh ℎ = 25 m.
We start again with the linear filter, i.e., we take 𝑎𝐿 (41) as indicator
function, because it allows us to make a direct comparison with the
results obtained by setting 𝜇𝑎 = 75 and 𝑃𝑟 = 1 in (62)–(63) [44,53].
To introduce the same amount of artificial viscosity with the EFR
algorithm and 𝑎𝐿, we use (58) and get 𝛼 = 2.7 m by using the minimum
density in the computational domain. Fig. 6 shows 𝜃′ computed with
this value of 𝛼 and mesh ℎ = 25 m (i.e., the finest mesh among those
considered) at 𝑡 = 300, 600, 750, 900 s. We observe very good agreement
with the results reported in Fig. 1 of [53], which were obtained with
the same resolution. In order to understand the behavior of the liner
filter as the mesh size is varied, we report 𝜃′ computed at 𝑡 = 900 s
with all the meshes mentioned above in Fig. 7. We observe that the
EFR algorithm with 𝑎𝐿 and 𝛼 = 2.7 m does not introduce sufficient
artificial diffusion to stabilize the solution with the coarsest mesh we
consider (i.e., ℎ = 200 m). For all the other meshes though, we see the
emergence of a clear three-rotor structure when the mesh is refined.
Also the results in Fig. 7 are in very good agreement with those reported
in the literature. See, e.g., [11,44,50,53,57,58].

For a quantitative comparison, we consider the potential temper-
ture perturbation 𝜃′ at 𝑡 = 900 s along the horizontal direction at
eight 𝑧 = 1200 m. Fig. 8 displays a comparison between the results
iven by the EFR model with 𝑎𝐿 and 𝛼 = 2.7 for meshes ℎ = 100, 50, 25
. We see that the curves associated to meshes ℎ = 50, 25 m are
ractically superimposed. In Fig. 8, we report also the results from [57],
hich were obtained by setting a constant artificial viscosity (i.e., 𝜇𝑎 =
5) and using a spectral element method. Such results are labeled as
‘Reference’’ and refer to resolution 25 m. We observe that our results
re slightly out of phase with respect to the reference data. Each dip in
′ in Fig. 8 corresponds to a recirculation in Fig. 7, top three panels.
o, from Fig. 8 we learn that in our simulations the front is faster than
n the simulations from [57]. For this reason, Table 3 reports the front
ocation (defined as the location on the ground where 𝜃′ = −1 K) at
8

Fig. 7. Density current, 𝑎𝐿, 𝛼 = 2.7: potential temperature fluctuation 𝜃′ computed at
𝑡 = 900 s with meshes ℎ = 25, 50, 100, 200, 400 m. The mesh size is increasing from top
to bottom.



Computers and Fluids 266 (2023) 106057N. Clinco et al.

a

a
W
w

v
t
i
t
(
t
r
r
r
m
o
ℎ
(
a
F
f
w
o
m
l
w
m
E
w
w

𝛼

i

𝛼
f
t

Fig. 8. Density current, 𝑎𝐿, 𝛼 = 2.7: potential temperature perturbation 𝜃′ at 𝑡 = 900 s
long the horizontal direction at a height of 𝑧 = 1200 m for meshes ℎ = 100, 50, 25 m
compared against data from [57] (denoted as ‘‘Reference’’ and referred to resolution
25 m).

Table 3
Density current, 𝑎𝐿, 𝛼 = 2.7: our results for the front location at 𝑡 = 900
s obtained with different meshes compared against results reported in
[53]. For Ref. [53], we provide the range of mesh sizes and front
location values obtained with different methods.
Method ℎ (m) Front location (m)

EFR, 𝑎𝐿 25 15170
EFR, 𝑎𝐿 50 15190
EFR, 𝑎𝐿 100 15210
Ref. [53] (25, 200) (14533,17070)

𝑡 = 900 s obtained with EFR and 𝑎𝐿 and compares it with the data
in Table 4 of [53]. The data in [53] refer to the model with constant
rtificial viscosity (i.e., 𝜇𝑎 = 75) and 14 different numerical approaches.
e note that our results fall well within the values from [53]. Hence,
e attribute the difference with the Reference in Fig. 8 to the use of

different numerical methods.
Next, we focus on the EFR algorithm with indicator function 𝑎𝑆 . We

restrict our attention to meshes ℎ = 25, 50 m and, following [11], we
further refine the mesh to get ℎ = 12.5 m. Like in Section 4.1, we set the
alue of 𝛼 using the rule of thumb in Remark 3 and 𝐶𝑠 = 0.454 [44]. We
ake 𝛼 = 4 m for mesh ℎ = 12.5 m because smaller values would lead to
nstabilities. Then, we use the linear dependence of 𝛼 on the mesh size
o set 𝛼 = 8m for mesh ℎ = 25m and 𝛼 = 16m for mesh ℎ = 50m. Fig. 9
left), 9 (right), and 10 (left) show the time evolution of the potential
emperature fluctuation computed with meshes ℎ = 12.5, 25, 50 m,
espectively. As expected, more vortical structures appear when we
educe the mesh size. The EFR algorithm with 𝑎𝑆 produces very similar
esults to a standard implementation of the Smagorinsky model with
esh ℎ = 25 m: compare Fig. 9 (right) with Fig. 10 in [44]. However,
ur method does a better job at stabilizing the larger eddies with mesh
= 12.5 m: Fig. 9 (left) with Fig. 9 in [44]. For mesh ℎ = 50 m, Fig. 10
left) indicates that the 𝛼 = 16 leads to overdiffusion. In fact, it provides
smoothed out solution even when compared to the linear filter (see
ig. 7, second panel from the top). A less dissipative solution can be
ound by lowering the values of 𝛼. Fig. 10 (right) shows 𝜃′ computed
ith mesh ℎ = 50 m and 𝛼 = 11. We this new value of 𝛼 the solution
btained with mesh ℎ = 50 m looks similar to the solution given by
esh ℎ = 25 m. This is confirmed by Table 4, which reports the front
ocations at 𝑡 = 900 s obtained with EFR and 𝑎𝑆 . The location computed
ith mesh ℎ = 25 m and 𝛼 = 8 is very close to the location given by
esh ℎ = 50 m and 𝛼 = 11. This is exactly what expected from the
FR algorithm: with a proper tuning of 𝛼, one can use coarser meshes
ithout compromising accuracy. In [17,21], using heuristic arguments
e provided guidelines to set 𝛼 and 𝜒 for the EFR algorithm applied
9

Table 4
Density current, 𝑎𝑆 : front location at 𝑡 = 900 s obtained with the EFR algorithm and
different meshes. Our results are compared against results from [11,53]. For Ref. [11],
we report only the front location computed with the finest resolution. For Ref. [53],
we provide the range of mesh sizes and front location values obtained with different
methods.
Method ℎ (m) 𝛼 (m) Front location (m)

Ref. [11] 12.5 – 15056
EFR, 𝑎𝑆 12.5 4 15550
EFR, 𝑎𝑆 25 8 15300
EFR, 𝑎𝑆 50 11 15220
EFR, 𝑎𝑆 50 16 15090
Ref. [53] (25, 200) – (14533,17070)

to the incompressible Navier–Stokes equations. Such arguments cannot
be easily extended to the Euler equations, so further investigation is
need to understand how to tune 𝛼 and the relaxation parameters with
no user intervention. This will be the object of a follow-up paper.

Now, let us turn our attention to 𝑎𝐷. In Section 4.1, we have shown
that 𝑎𝐷 is a more selective indicator function than 𝑎𝑆 . Thus, we slightly
increase the values of 𝛼 used for 𝑎𝑆 since at the moment we do not have
a better criterion to set 𝛼 for 𝑎𝐷. We take 𝛼 = 5 for mesh ℎ = 12.5 m,
= 10 for mesh ℎ = 25 m, 𝛼 = 12 for mesh ℎ = 50 m. Before showing

the solutions obtained with 𝑎𝐷 and these values of 𝛼, in Fig. 11 we
compare the time evolution of the space-averaged artificial viscosity

𝜇𝑎𝑣 = 1
𝛺 ∫𝛺

𝜇ℎ𝑑𝛺 (69)

obtained with 𝑎𝑆 and 𝑎𝐷 for meshes ℎ = 12.5, 25, 50 m. We recall that
𝜇ℎ is defined in (58). From Fig. 11, we see that 𝑎𝑆 with 𝛼 = 4 and
𝑎𝐷 with 𝛼 = 5 introduce roughly the same amount of space-averaged
artificial viscosity for most of the time interval under consideration in
the case of mesh ℎ = 12.5 m. The main difference for this mesh is that
𝑎𝐷 introduces almost no artificial diffusion till about 100 s and then
ramps it up faster than 𝑎𝑆 . A rather fast ramp is observed for 𝑎𝐷 also
n the case of meshes ℎ = 25, 50 m: 𝜇𝑎𝑣 remains small while the cold
perturbation falls due to negative buoyancy and it increases as the cold
front propagates horizontally. For mesh ℎ = 25 m, 𝜇𝑎𝑣 given by 𝑎𝑆 with
= 8 grows almost linearly till about 300 s and then around 600 s it
lattens. As already evident from Fig. 10, 𝑎𝑆 with 𝛼 = 16 introduces
oo much artificial viscosity for mesh ℎ = 50 m. This can be fixed by
decreasing the value to 𝛼 = 11, which introduces a similar amount of
𝜇𝑎𝑣 as 𝛼 = 8 does for mesh ℎ = 25 m.

Fig. 12 (left), 12 (right), and 13 display the time evolution of the
potential temperature fluctuation computed with 𝑎𝐷 and the chosen
values of 𝛼 for meshes ℎ = 12.5, 25, 50 m, respectively. When compared
to the respective counterparts obtained with 𝑎𝑆 (namely Fig. 9 (left),
9 (right), and 10 (right)), all the observations made about Fig. 11
are confirmed: the solutions obtained with the finer mesh are initially
comparable early and then some differences are observed for the larger
recirculations, the solutions for the intermediate mesh are remarkably
similar. While Fig. 11 suggests that EFR with 𝑎𝐷 and 𝛼 = 12 is more
diffusive (in average) than with 𝑎𝑆 and 𝛼 = 11, the respective solutions
in Fig. 13 and Fig. 10 (right) are surprisingly similar.

Table 5 reports the front locations at 𝑡 = 900 s obtained with EFR
and 𝑎𝐷 for the three meshes under consideration. The three locations
are within about 400 m of each other, with the front becoming faster
as the mesh is refined. This was the case also for 𝑎𝑆 (see Table 4). The
opposite trend is observed for 𝑎𝐿 (see Table 3), i.e., the front slows
down as the mesh is refined, although the locations are only roughly
40 m apart. In any case, our results fall well within the results from
[53] and are close to the results from [11].

Next, in Fig. 14 we report with a comparison of indicator functions
𝑎𝑆 and 𝑎𝐷 for the simulations in Fig. 9 (left) and 12 (left). We see
that, while both indicator functions have larger values (red to yellow

shades) at the bottom of the largest recirculation, at a given time 𝑎𝑆
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Fig. 9. Density current, 𝑎𝑆 : time evolution of potential temperature fluctuation 𝜃′ computed with mesh ℎ = 12.5 m and 𝛼 = 4 (left) and with mesh ℎ = 25 m and 𝛼 = 8 (right).

Fig. 10. Density current, 𝑎𝑆 : time evolution of potential temperature fluctuation 𝜃′ computed with mesh ℎ = 50 m and two values of 𝛼: 𝛼 = 16 (left) and 𝛼 = 11 (right).
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Fig. 11. Density current: time evolution of the average eddy viscosity (69) for 𝑎𝑆 (left) and 𝑎𝐷 (right) with meshes ℎ = 12.5, 25, 50 m.
Fig. 12. Density current, 𝑎𝐷 : time evolution of potential temperature fluctuation 𝜃′ computed with mesh ℎ = 12.5 m and 𝛼 = 5 (left) and with mesh ℎ = 25 m and 𝛼 = 10 (right).
T
a

Table 5
Density current, 𝑎𝐷 : front location at 𝑡 = 900 s obtained with the EFR algorithm and
different meshes. Our results are compared against results from [11,53]. For Ref. [53],
we provide the range of mesh sizes and front location values obtained with different
methods. For Ref. [11], we report only the front location computed with the finest
esolution.
Method ℎ (m) 𝛼 (m) Front location (m)

Ref. [11] 12.5 – 15056
EFR, 𝑎𝐷 12.5 5 15560
EFR, 𝑎𝐷 25 10 15215
EFR, 𝑎𝐷 50 12 15120
Ref. [53] (25, 200) – (14533,17070)
11
has larger regions of intermediate values (light blue shade) than 𝑎𝐷.
his is due to the fact that 𝑎𝑆 is a less selective indicator function,
s mentioned earlier. This is more evident on mesh ℎ = 50 m: see
Fig. 15 for the plots of the indicator function for 𝑎𝑆 and 𝑎𝐷 for the
simulations in Fig. 10 (left) and 13. The higher selectivity of 𝑎𝐷 results
in much smaller regions of high and intermediate values (red to green
shades). Finally, we note that the maximum magnitude of the indicator
function is higher for the finer mesh (ℎ = 25 m), which gives rise to
more localized and higher peaks than the coarser mesh (ℎ = 50 m).
This is in line with what already observed in [17].

We conclude with a comment on the computational cost. Table 6
reports the computational time taken by the evolve step and filter step
per time step and total simulation time for the EFR algorithm with
indicator functions 𝑎𝐿, 𝑎𝑆 , and 𝑎𝐷 and the specified values of 𝛼 for
meshes ℎ = 50, 25 m. All the simulations were run on a common
laptop (AMD Ryzen 7 5700U, 16 GB RAM). As expected, the total
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Fig. 13. Density current, 𝑎𝐷 , 𝛼 = 12: time evolution of potential temperature
luctuation 𝜃′ computed with mesh ℎ = 50 m.

computational cost increases when switching from the linear filter to
nonlinear filters, with the deconvolution-based indicator function being
the most expensive. In fact, while 𝑎𝑆 requires a simple post-processing
of the velocity field, 𝑎𝐷 in (45) requires one application of the linear
Helmholtz filter. Despite this increased cost, the simulation with mesh
ℎ = 25 m and 𝑎𝐷 takes a little less than 1 h and 10 min, which
means that the solver is rather efficient. We note that when using
𝑎𝐷, the filter step takes about half of the time needed for the evolve
step. This might seem counter-intuitive given the relative complexity
of the problems solved at the two steps. However, it can be explained
with the solver choices. During the evolve step, the majority of the
computational cost is spent to solve the equation for 𝑝′ (recall we
adopt a splitting scheme detailed in [44]) with the Diagonal incomplete
Cholesky preconditioned conjugate gradient method, which is the same
method used for the filter step. Since the equation of mass conservation
is treated fully explicitly, it is very inexpensive to solve. The solver
for the conservation of energy equation uses the bi-conjugate gradient
stabilized method with a diagonal-based incomplete LU preconditioner.
The accuracy for the resolution of all the linear system is set to 1𝑒 − 8.
The computational cost of the evolve step is also contained by not
performing a momentum predictor step.

5. Concluding remarks

In this paper, we presented a filter stabilization technique for the
mildly compressible Euler equations that is realized through a three
step algorithm called Evolve-Filter-Relax (EFR). While filter stabiliza-
tion and the EFR algorithm have been widely investigated for the
incompressible Navier–Stokes equations, this work is one of the few
papers that applies them to the Euler equations. We showed that
the EFR algorithm is equivalent to an eddy viscosity model in LES
and we considered three indicator functions to tune the amount and
12
Table 6
Density current: computational time taken by the evolve step and filter step per time
step and total simulation time for the EFR algorithm with indicator functions 𝑎𝐿, 𝑎𝑆 ,
and 𝑎𝐷 and the specified values of 𝛼 for meshes ℎ = 50, 25 m.
Model ℎ (m) 𝛼 (m) Evolve (s) Filter (s) Total (s)

EFR, 𝑎𝐿 25 2.7 0.3 0.070 3492
EFR, 𝑎𝑆 25 8 0.3 0.108 3880
EFR, 𝑎𝐷 25 10 0.3 0.159 4163
EFR, 𝑎𝐿 50 2.7 0.06 0.015 707
EFR, 𝑎𝑆 50 11 0.06 0.023 772
EFR, 𝑎𝐷 50 12 0.06 0.029 790

location of eddy viscosity: a constant indicator function, an indicator
function proportional to the velocity gradient norm that recovers a
Smagorinsky-like model, and indicator function based on approximate
deconvolution operators. The first indicator function corresponds to a
linear filter, which is known to be overdiffusive, while the other two
lead to nonlinear filters.

We tested our EFR approach with two well-known benchmarks for
atmospheric flow: the rising thermal bubble and the density current.
For both benchmarks, we showed that the linear filter provides results
in excellent agreement with data in the literature obtained by setting
an ad-hoc eddy viscosity. We showed that with the nonlinear filters
we can capture a larger amount of vortical structures in the flows,
which is expected and in line with other published data obtained with
LES models. Of the three indicator functions under consideration, the
deconvolution-based indicator function was shown to be more selective
in identifying the regions of the domain where artificial diffusion is
needed. Finally, we commented about the computational efficiency of
our approach, highlighting that the filter step is computationally cheap
with respect to the evolve step.

More work is needed to improve the EFR algorithm proposed in this
paper. A parametric study of the relaxation parameters 𝜒 and 𝜉 (set
equal to 1 in this work) would inform us on their ‘‘optimal’’ value to
improve the accuracy and would help to mitigate the sensitivity to the
filtering radius 𝛼. In addition, the role of the order of the deconvolution
𝑁 needs to be investigated.
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Fig. 14. Density current, mesh ℎ = 12.5 m: time evolution of 𝑎𝑆 with 𝛼 = 4 m (left) and 𝑎𝐷 with 𝛼 = 5 m (right).

Fig. 15. Density current, mesh ℎ = 50 m: time evolution of 𝑎𝑆 with 𝛼 = 11 m (left) and 𝑎𝐷 with 𝛼 = 12 m (right).
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