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ARTICLE INFO ABSTRACT

Keywords: We present a filter stabilization technique for the mildly compressible Euler equations that relies on a linear
Filter stabilization or nonlinear indicator function to identify the regions of the domain where artificial viscosity is needed and
Large Eddy Simulation determine its amount. For the realization of this technique, we adopt a three step algorithm called Evolve-

Non-hydrostatic atmospheric flows
Finite volume approximation
Evolve-Filter-Relax algorithm

Filter-Relax (EFR), which at every time step evolves the solution (i.e., solves the Euler equations on a coarse
mesh), then filters the computed solution, and finally performs a relaxation step to combine the filtered and
non-filtered solutions. We show that the EFR algorithm is equivalent to an eddy-viscosity model in Large Eddy
Simulation. Three indicator functions are considered: a constant function (leading to a linear filter), a function
proportional to the norm of the velocity gradient (recovering a Smagorinsky-like model), and a function based
on approximate deconvolution operators. Through well-known benchmarks for atmospheric flow, we show
that the deconvolution-based filter yields stable solutions that are much less dissipative than the linear filter

and the Smagorinsky-like model and we highlight the efficiency of the EFR algorithm.

1. Introduction

The Direct Numerical Simulation (DNS) is a simulation in Compu-
tational Fluid Dynamics (CFD) that solves the equations governing the
fluid motion by resolving the entire range of relevant spatial and tem-
poral scales. In many practical CFD applications, the smallest spatial
scales can be several orders of magnitude smaller than the largest scales
in the flow. An example is atmospheric flow, whose smallest spatial
scales are typically of the order of 10~* m while the typical domain
size is of the order of 10* — 10° m. For these applications, a DNS is
beyond reach for nowadays computing machines and it will be for the
foreseeable future.

One way to keep the computational cost affordable without sacri-
ficing accuracy is to solve for the flow using a coarser mesh and model
the effects of the small scales that are not directly solved through a
so-called subgrid-scale (SGS) model. This is the principal idea behind
Large Eddy Simulation (LES). Traditionally, SGS models introduce the
effects of the unresolved scales with momentum fluxes that are linearly
dependent upon the rate of strain of the large scales. This is known
eddy-viscosity closure. The most famous eddy-viscosity model is the
Smagorinsky model [1]. Its success is due to several factors: (i) it
is relatively simple and easy to implement, (ii) it is computationally
inexpensive compared to other SGS models, and (iii) it features pa-
rameters that can be tuned for the particular application at hand so
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that the results are realistic. The main limitation of the Smagorinsky
model is the assumption of local balance between the subgrid scale
energy production and dissipation. Since such equilibrium conditions
do not hold in many practical applications, the Smagorinsky model
often results into over-diffusive simulations. A large body of research
has been motivated by improving upon the Smagorinsky model.

Some alternative methods introduce artificial diffusion that can be
solution-dependent (see, e.g., [2-6]) or residual-based (see, e.g., [7—
11]). These methods are driven by the intent to have an artificial
viscosity that vanishes where the solution is smooth and/or decreases as
the grid is refined. Other methods add a set of equations to the discrete
governing equations formulated on a coarse mesh (coarse is meant with
respect to the resolution required by DNS). This extra-problem can
be devised in different ways, for example by a functional splitting of
the solved and unresolved scales as in variational multiscale methods
(see, e.g., [12-15]). In this paper, we propose an extra problem that
acts as a differential (linear or nonlinear) low-pass filter added sequen-
tially to the mildly compressible Euler equations for stratified flows.
This sequential algorithm is called Evolve-Filter-Relax (EFR) since, at
every time step, one first evolves the solution, i.e., solves the Euler
equations on a coarse mesh, then filters the computed solution, and
finally performs a relaxation step to combine the filtered and non-
filtered solutions. This techniques is also known with the name of filter
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stabilization because it reduces or eliminates unphysical fluctuations
in the computed solution. We will show that the EFR algorithm is an
eddy-viscosity model.

Introduced in [16], EFR algorithms have been widely applied to
the incompressible Navier-Stokes equations [16-23]. It was shown
in [16,18-20,22] that numerical results obtained with nonlinear dif-
ferential filters are more precise in localizing where eddy viscosity
is needed and are overall more accurate than results obtained with
plain Smagorinsky-type models. Despite these promising results for the
incompressible Navier-Stokes equations, the application of filter stabi-
lization to the Euler equations has received much less attention [24—
27]. A possible alternative to nonlinear filters is given by variational
multiscale methods, which approximate (i.e., not model or filter) the
unresolved scale. See, e.g., [28-30].

In this paper, we consider the EFR algorithm for the Euler equations
with both linear and nonlinear filters. Developed in [31-33], stabiliza-
tion based on linear filters has been widely studied (see, e.g., [34-361).
However, it was noted in [37] that a linear stabilization can, at most,
give a solution converging to a weak solution that is not the entropy
solution, hence the need to investigate nonlinear filter stabilization
techniques. We will show that the EFR algorithm with a deconvolution-
based filter yields stable solutions that are much less dissipative than
the Smagorinsky model. We recall that the use of deconvolution op-
erators in SGS models to increase accuracy is well established and
mathematically grounded [38-40].

The main advantages of the EFR algorithm are: (i) modularity,
i.e., its implementation does not require any major modification of a
legacy solver, and (ii) flexibility in the choice of the filter. In addition, if
one chooses the deconvolution-based filter, the viscosity introduced by
the EFR algorithm vanishes where the solution is smooth and decreases
as the mesh is refined. We will show that we obtain numerical results
that agree very well with data published in the literature for well-
known 2D benchmark problems involving stratified and gravity driven
atmospheres. We will also show that the computational cost to solve the
additional filter problem is a fraction of the computational cost required
by the Euler solver.

All the simulations in this paper have been carried out with GEA
(Geophysical and Environmental Applications) [41], a new open-source
atmosphere and ocean modeling framework within the finite volume
C++ library OpenFOAM® [42]. For more details on GEA, see [43,44].
Although we demonstrate numerically the accuracy and efficiency of
EFR algorithm using a finite volume method for space discretization,
the algorithm itself can be used with any space discretization method.

The outline of the paper is as follows. Section 2 describes the
compressible Euler equations for low Mach stratified flows and intro-
duces the filter stabilization for this model. In Section 3, we discuss
space discretization and the perturbation terms introduced by the filter
stabilization to the Euler equations. Numerical results are presented in
Section 4 and conclusions are drawn in Section 5.

2. Problem definition
2.1. The compressible Euler equations

We consider mildly compressible Euler equations to describe the
motion of the dry atmosphere, i.e., a compressible inviscid fluid, as-
sumed to behave like an ideal gas. Let £ be a spatial domain of interest
and (0, ¢ ] a time interval of interest. Let p, u = (u, v, w), and p be the
fluid density, velocity, and pressure. Moreover, let e = ¢, T + |u|?/2+ gz
be the total energy density, where ¢, is the specific heat capacity at
constant volume, 7T is the absolute temperature, g is the gravitational
constant, and z is the vertical coordinate. The conservation of mass,
momentum, and total energy can be written as:
dp

L ivV-(u)=0

in 2 x (0,7 /], 1
> in 2% (0,1,] 6
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a(g;l‘)+v‘(pu®u)+Vp+pgf(=0 in 2x0O,17], @
a(;e—) +V - (pew) +V - (pw) =0 in 2x 0171, ®

where k is the unit vector aligned with the vertical axis z. We close
system (1)-(3) using the following thermodynamics equation of state
for p:

p=pRT, ()]

where R is the specific gas constant of dry air.
Let us to write the pressure as the sum of a fluctuation p’ with
respect to a hydrostatic term:

p="+rpgz. )

By plugging (5) into (2), we obtain:

d(pu)
ot
Let ¢, be the specific heat capacity at constant pressure for dry air
and let

+V-(pu@u+Vp +gzVp=0 in 2x(0,1/] (6)

K = |ul?/2, h=c,T+p/p=c,T, 7

be the kinetic energy density and the specific enthalpy, respectively.
The total energy density can be written as e = h — p/p + K + gz. Then,
Eq. (3) can be rewritten as:

oK P .
V~(puh)+%+V~(puK)—a—1;+pgu~k=0, (8)

where we have used Eq. (1) for further simplification.
This paper focuses on formulation (1),(4)-(8) of the Euler equations.
A quantity of interest for atmospheric problems is the potential
temperature

d(ph)
Fra

R

9=Z,n=<£>¥, ©

T Po

where p, = 103 Pa, which is the atmospheric pressure at the ground.
Additionally, we define the potential temperature fluctuation ¢’ as the
difference between 6 and its mean hydrostatic value 6,:

0'(x,y,z,1) = 0(x, y, 2, 1) — 00(2). (10)

See, e.g., [45] for more details.
2.2. Filter stabilization as an eddy viscosity model

A numerical solution of system (1),(4)—(8) computed with a mesh
coarser than necessary for a DNS will be affected by non-physical os-
cillations that will eventually lead to a simulation breakdown. In order
to avoid incurring into non-physical solutions, we adapt to the Euler
equations an algorithm that has been shown to be accurate, efficient,
and robust for the incompressible Navier-Stokes equations [16-23].
This algorithm consists of three steps: in the first step (called Evolve)
one approximates the solution to the Euler equations with a coarse
mesh, in the second step (called Filter) the numerical oscillations are
smoothed out with a differential filter to obtain a filtered solution,
and in the third step (called Relax) one combines the filtered and non-
filtered solutions. This Evolve-Filter-Relax (EFR) algorithm, which is a
computationally efficient realization of filter stabilization, is described
next.

Let Ar € R, " = ndt, withn =0, ... SNy and t; = N, At. Moreover, we
denote by y" the approximation of a generic quantity y at the time .
We adopt a Backward Differentiation Formula of order 1 (BDF1) for the
discretization of the Eulerian time derivatives in (1),(6),(8). Other time
discretization schemes are possible (see, e.g., [16,17,21,22]). The EFR
algorithm reads as follows: given p°, u®, 10, p, and T9, set K = |u0|2 /2
and for n > 0 perform the following steps:
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- Step 1 - Evolve: find density p"*! and intermediate variables
vn+1 ln+1 Kn+l qn+1 ql,n+l Tn+1 such that:
T KT ) > T} :

pn+l _ pn
T_‘_V.(pn-%—lvn+l)=07 (11)
n+lgn+l _ ngn
P v - pu +V-(pn+1Vn+l ®Vn+l)+vq/,n+1 +gzvpn+l =0,
(12)
1 grn+1 npn
pn+lln+l — p"h" . — ot Kv - p"K
- 4+ V. n+vn+1n+ [
a1 @ ) 4t
+V. (pn+lvn+1Kn+1)
v
n+l _ on ~
ST P gyt k=0, 13)
At
qn+l — ql,n+l +p"+lgz, (14)
qn+1 — pn+1RTln+l, (15)
ln+] —" = cp(Tln+] _ T["), (16)
n+1)2
K"/H'] — |V > | (17)

Notice that in (16) we have chosen to update the value of the
intermediate specific enthalpy in an incremental fashion.

_ntl -+l
Step 2 - Filter: find filtered variables v s anr such that

v = Pyl (18)
—n+1

" = i, (19)
where F is a generic filter that could be linear or nonlinear. We
will present possible choices for F in Section 2.3.

Step 3 - Relax: find end of step u"+!, pt1, Krtl prtl phntl o+l

such that

wtl = (1= v (20)
= (1= 4t @D
pn+1 - pl,n+1 +pn+1gz’ (22)
pn+1 — pn+1RTVI+1 (23)
R — R = (T - T, (24

n+l2
Kn+l — |ll | , (25)

where y,¢ € [0, 1] are relaxation parameters.

The connection between the EFR algorithm and LES modeling is
easily seen by shifting the index n + 1 to n in (18)—(21) and plugging
them into (12)—(13) to obtain:

n+1gn+l nyn
A4 —pv
14 " 14 +V. (pn+lvn+] ®vn+1) + Vq/,n+1 +ngp"+]
+ _j\(z Gv' =0, (26)

n+lgn+l _ ngn n+l g+l o onopen

4 ! yr pl +V.(p”+1v"+1]”+1)+p VAI 4

+V. (pn+]vn+1K‘r:+1)

n+1 1

_ % +pn+1gvn+l /l\(+§
with G = I — F, I being the identity operator. System (11), (26),
(27), (14)—(17) gives us an implicit discretization of problem (1),(4)-
(8) with BDF1 and an additional explicitly treated (linear or nonlinear)
dissipation term.

Let us assume that y = yy4r and & = &,Ar, where y, and ¢, are
time-independent constants. Then, system (11), (26), (27), (14)-(17)
can be seen as a time-stepping scheme for problem:

GI" =0, (27)

P
2 iv.w=0, (28)
ot

P}

V) V(v @)+ Vi +g2Vp + 1, G =0, (29)

ot
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%+V-(pul)+$+v(pu1<)—%ng-iﬁoc‘l:o, (30)
p=p +pgz, (31)
p=pRT, (32)
h=c¢,T, (33)
K = |v|?/2. €D

Thus, filter stabilization algorithm (11)-(25) can be interpreted as a
splitting scheme for problem (28)-(34).

Notice that model (28)-(34) can be considered as a LES model of
the eddy-viscosity type with closure:

V-(pv®V—pv®V) = y,GV, (35)
V - (pvl — pVl) = &Gl. (36)

This shows the connection between algorithm (11)-(25) and LES mod-
eling.

2.3. A possible choice for the filter

We will consider the following filter for step 2 (18)—(19):

F=U+L)", L=-V-(6V) 37

where 6 > 0 is a linear or nonlinear artificial “viscosity”. Such a filter
applied to v'*! as in (18) amounts to solving the following problem:
find v"*' such that

V- GVETY) + VT = vl 5 = glapvrth, (38)

where a can be interpreted as the filtering radius and a(-) € (0,1] is
the so-called indicator function. Note that § is not properly a viscosity
since it has the dimension of a length squared. However, if we multiply
(38) by p"*1/At, we obtain Stokes problem:

pn+1

At
where u is dimensionally a dynamic viscosity.
The same filter applied to /"*! as in (19) yields:

2
@ vt v @Vt =0, = (ZT,"(V"“)’ (39)

ntl —nt+1
A" - - v @i =o. (40)

In summary, the EFR algorithm we will use in this paper entails
performing the following steps:

- Step 1 - Evolve: find density p"!,vi+1, i+l g+l gntl ghatl Tl"+l
such that (11)—(17) hold.

- Step 2 - Filter: find filtered variables V"+1,7"+1 such that (39)-(40)
hold.

- Step 3 - Relax: set (20)-(25).

2.4. Possible choices for the indicator function

The success of the EFR algorithm in the simulation of atmospheric
flows ultimately depends on the reliability of the indicator function.
The indicator function has to be such that it takes values close to
zero where its argument (i.e., the Euler velocity or specific enthalpy)
does not need regularization, while it takes values close to 1 where
the argument does need to be regularized. Different choices for in-
dicator function a(-) have been proposed in the literature for the
incompressible Navier-Stokes equations [16,18,46,47]. Some indicator
functions [16,18] are based on physical quantities that are known to
vanish for coherent flow structures. The drawback for these indicator
functions is that they do not allow for a rigorous convergence theory
to verify the robustness of the associated filtering method. Hence,
mathematics-based (instead of physics-based) indicator functions were
proposed [16,19]. In this paper, we will consider and compare three
mathematics-based choices.
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The first and easiest choice corresponds to a linear filter, i.e., we
take

av)y=a,(v)=1, 41)

in (39). Besides linearity, another advantage of this choice is that it
makes the operator in the filter equations constant in time. However,
its efficacy is rather limited, since it introduces the same amount of
regularization everywhere in the domain. This is likely to introduce
overdiffusion as we will show in Section 4

A second mathematically convenient indicator function is

[Vl
V¥l

which has strong monotonicity properties. With a¢(-) as indicator func-
tion for the EFR algorithm, we recover a Smagorinsky-like model,
which is an improvement over the linear filter obtained with a; (-).
Finally, we consider a class of deconvolution-based indicator func-
tions, which were shown to be particularly accurate for realistic in-
compressible flow problems [17,21]. Such functions are defined as:

(42)

a(v) = ag(v) =

a(v) = ap(v) = |v - D(F(W)), (43)

where F is the linear Helmholtz filter (i.e., (37) with § constant in space
and time) and D is the Van Cittert deconvolution:

N

D= (I-F). (44)
n=0

We remark that D is a bounded regularized approximation of F~'.

Typically, N in (44) is set to 0, 1 [17,21]. In this paper, we consider

N = 0, which means D = I. For this choice of N, indicator function

(43) becomes

ap(V) =|v-F)|. (45)

3. Space discretization of the steps in the EFR algorithm

For space discretization, we adopt a finite volume method. The
Evolve step is the most computationally intensive step in the EFR
algorithm and to contain its computational cost we use a splitting
scheme thoroughly described in [44]. This section focuses on the space
discretization of the Filter and Relax steps.

Let us consider a partition of the computational domain 2 into
cells or control volumes £;, with i = 1,..., N,, where N, is the total
number of cells in the mesh. Let A; be the surface vector of each face
of the control volume, with j = 1,..., M. We will start with the space
discretization of the Filter problem (39)-(40) and then write the space
discrete version of the Relax Step (20)-(25)

The integral form of the Eq. (39) for each volume ; is given by:

L d!)—/ V-(,WV"“)dQ:i/ PV Q.
At @ Q At @

By using the Gauss-divergence theorem, the above equation becomes:

1 ,,+1—n+1 —n+l1 1 n+1gn+l
— dQ — Vv dA = dQ. 46
yr (H ) vl v (46)

Let us denote with (ﬁVV" ); and V;’“ the average stress tensor and fil-
tered velocity in control volume £2;, respectively. Similarly, we denote
with pf“ and vf“ the average density and intermediate velocity in £;.
Then, Eq. (46) is approximated as follows:

1 —n+l — o+l 1
Ep7+1v7+ _ Z(vam— )i’j 'Aj == pf’Hvan‘ 47)
J

We choose to approximate the gradient of V:’“
order accuracy. See [48] for more details.
Following a similar procedure for (40), we obtain:

at face j with second

171 +1 — Lt et
417 I Z( vi' g Ay = (48)
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-n+1
where I, and l;’“

are the average filtered and intermediate specific

-n+1
enthalpy in ;. For the approximation of the gradient of anr
n+1

at face j,
we use the same formula used for the components of v,

Now, let us turn to the Relax step. The dlscretlzed form of each
equation in the Relax step is simply given by taking the average of each
variable in Q;:

Wt = (1= v (49)

A= (1 - ot gl (50)

= p g ez, (E1D)

p;""l _ p"HRTi"H, (52)

h:m — = cp(Tin-H -, (53)

P (54)
i T T

where z; is the vertical coordinate of the centroid of cell @;.

3.1. The EFR algorithm as a solver for the Euler equations with perturba-
tions

In this section, we will show that by combining the equations at the
Evolve, Filter, and Relax steps we obtain the Euler equations perturbed
by some extra terms and we discuss such terms.

Let us use a subindex 4 to denote the space-discrete solution, where
h refers to the mesh size. We rewrite (12)

pn+1vn+| _pnun
AV (Y, @ Vi + H g gt =0, (55)
where v} is a suitable extrapolation of vZ“ to linearize the convective

term and H (g ot o = Vq;l‘"Jrl + gzVpit!. Let us also write the

space-discrete version of Eq. (20)

1 +1
== v+ 4,7, (56)
and Eq. (39)
pn+1
h (—Z+I n+1) N v (ﬁhvvzﬂ) =0, (57)
where
o2
Fh — p;tl+ —a(V'H'l) (58)

We multiply (57) by y, add it to (55), and make use of (56) to
obtain:

n+l _
PRU,
At

Using (56) once more, we get:

pn+lu
A V-V @V + H(g™ o) — V-G, V) = 0

n+1 n+l nan

a A
h hm +V (pn+1 * ®ll"+l)+H(q,"+1,pZ+1)

+ 2V (FVE® (v =) — v (1, VYT = 0.

which can be rewritten as

p»;l+1 n+l pn un

At
+ ZV (pn+1 * ® (Vn+]

+V (pn+1 * +1)+H(q/n+1 ZJrl)_/YV (”hvun+l)

v;’,*‘)) -2V @VET —wr) =0, (59)

In (59), we have explicitly written a diffusive term involving only the
end-of-step velocity u;'l“, i.e., the last term in the first line. The last
term at the left-hand side in (59) can be rewritten using (56) to get:

pn+1un+l pnun
h hA, +V- (pn+1 * ®u"+1)+H(q'"+1 n+1)_/}/v (thun-H)
+ V- (V@ (v =) — 2 (1= V- G VAT - vt =0
(60)
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Eq. (60) shows that the end-of-step velocity uZ“ provided by the EFR
algorithm solves a perturbed discrete momentum balance equation.
The perturbation consists of three terms, all multiplied by y: an ex-
tra convection term and two extra diffusion terms. As mentioned in
Section 2.2, y should be a multiple of Ar. Thus, as 4t tends to zero,
the perturbation terms vanish and we recover the discrete momentum
balance equation. In addition, we notice that when /At tends to zero,
the artificial viscosity z,, (58) vanishes and v vh ! tends to v;”“. If a is
a multiple of & (as it is typically the case), then Eq. (60) is consistent
with Eq. (2) so long as the mesh size and time step go to zero at the
same rate.

Combining in a similar fashion the space discrete version of Eq. (13):

pn+lln+l pnhn
h yP +V- (pn+1 *[n+l) +G (pn+l K"“,q:“, n+l) =0,

n+1 n+l _ ngn
Py Kon — oK,

+V. n+1 *KrH—l
" (), )

n+1 n+l _n+l n+1
G (ot K g v ) =
qn+1 n
h n+l  ontl o
p ko pyevyt -k,
with the discrete versions of Eq. (40):

o -nt1
"—(1 )=V @V =0
and Eq. (21):

+1 _ +1 L
R = (1= oI 4 el
we obtain

1 pn+1 npn
AR
h hA[ h'n +V'(1’Z+l hn+l)+G(pn+l Kn+l’q;:+l’ n+l)

— &V (@, VhT

-n+1 — -n+1
+HEV - (Vi =T ) = 1 = OV - (1, VA,
Eq. (61) is a perturbed discrete enthalpy balance equation, with the
perturbation coming from an extra convection term and two extra
diffusion terms. Like in the case of Eq. (60), the perturbation terms are
multiplied by the relaxation parameter.

-y =0, (61)

Remark 1. For y = 1, which corresponds to accepting the filtered
velocity as the end-of-step velocity, Eq. (60) becomes:

1,n+1
p;ll+ VH’ pnun

yr +V -V, @uith + Hg™ g = V- (g, V)

+V. (pn+l % ® (Vn+l —:‘!‘H)) _

where we clearly see that the artificial diffusion introduced by the EFR

algorithm is i, (58). Similarly, by setting & = 1 (i.e, we take the filtered

enthalpy as the end-of-step enthalpy) Eq. (61) becomes:

p2+lh"+1 — pZ/’l" n+1 v n+1 n+1 n+1  n+l n+1
— +V (VR )+G( KL g )

-V .(pthn+l)

+V. (pn+l *(ln+l -h+l)) =0

Remark 2. Eddy viscosity models are equivalent to introducing
additional terms in Eq. (6) and (8) of the form

9(pu)

L2V (ue® W+ Vp +52Vp- V- (2ﬂa€(u))+V(§

V. u) =0,
(62)

0(ph)

9(pK) ap ~ My
2P0 4V (puh) + —E=2 + V. (puK) — £ k=-V.(22vh)=o0.
V- lpuh) =5 4V (uk) = 5+ pgu (Pr ) 0

(63)

where y,, is an artificial viscosity, e(u) = (Vu+(Vu)")/2 is the strain-rate
tensor, and Pr is the Prandtl number, i.e., the dimensionless number
defined as the ratio of momentum diffusivity to thermal diffusivity. The
artificial viscosity u, is defined differently for the different LES models.
Comparing (62)—(63) with (60)—(61) suggests choosing & = y/Pr.
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Similar derivations to those presented in Remarks 1 and 2 apply
for eddy viscosity models derived from variational multiscale methods.
See, e.g., [49].

Remark 3. The Smagorinsky model sets y, in (62)-(63) as

Ck
C.

€

Ho = p(C8Y V2 1€, C2=C, (64)
where 6 is the filter width (typically comparable with the mesh size),
and C, and C, are model parameters. In order to obtain the same
amount of artificial viscosity with the EFR algorithm and ag (42), one
needs a ~ C;6v/ AT||VVZ+1||00 at time "*!. In practice, one can easily

calculate C,6/ 4t while ||Vv2+] |l would have to be guessed to tune a.
4. Numerical results

We consider two well-known benchmarks: the rising thermal bubble
as presented in [50,51] and the density current [52,53]. Both test
cases involve a perturbation of a neutrally stratified atmosphere with
uniform background potential temperature over a flat terrain and the
boundaries are treated as if the problem were inviscid (i.e., free-slip
boundary conditions are imposed). So, these are not boundary layer
flow problems. We presents our results for the rising thermal bubble
and the density current in Sections 4.1 and 4.2, respectively, and
compare them with other numerical data available in the literature
since there is no exact solution for these benchmarks.

4.1. Rising thermal bubble

In computational domain £ = [0,5000] x [0, 10000] m?, a neutrally
stratified atmosphere with uniform background potential temperature
0,=300 K is perturbed by a circular bubble of warmer air. The initial
temperature field is

6° =300 +2 [1 - L] if r <ry=2000 m, 6" = 300 otherwise, (65)
o

where r =4/(x — x.)? + (z — 2,)?, (x.,z,) = (5000,2000) m is the radius

of the circular perturbation [50,54]. The initial density is given by

¢,/R
p cv/cp Z 14
0 g p g
=L (P . op=p(1-22 , 66
’ RO, <Pg> b Pg< 90 (66)

with ¢, = R+c¢y ¢, = 7155 J/(Kg K), R = 287 J/(Kg K). The initial
velocity field is zero everywhere. Finally, the initial specific enthalpy
is given by:
LS
hO—ce°<”>“’. ©7)
Pg

We let the bubble evolve in the time interval of interest is (0, 1020] s.
Impenetrable, free-slip boundary conditions are imposed on all walls.

We consider five different meshes with uniform resolution 4 = Ax =
Az = 125,62.5, 31.25, 15.625 m. The time step is set to 4t = 0.1 s for all
the simulations. In all the cases, we set y = ¢ = 1 so that the artificial
diffusion introduced by the EFR algorithm can easily be calculated (see
Remark 1).

We start with the linear filter, i.e., we take a; (41) as indicator
function, because it allows us to make a direct comparison with the
results obtained by setting u, = 15 and Pr =1 in (62)—(63) [44,50]. We
note that both of these are ad-hoc values chosen by the authors of [50]
to stabilize the numerical simulations. It is not unusual in benchmarks
to set Pr = 1 although the air Prandtl number is about 0.71 at 20 °C
(see, e.g., [55]). Other authors have chosen other arbitrary values, like
Pr = 0.1 in [56]. For a qualitative analysis of the results for the rising
thermal bubble as Pr varies we refer the reader to [11]. To introduce
the same amount of artificial viscosity with the EFR algorithm and a,,
we use (58) to get a ~ \/u,4t/p™+! at time "1, For simplicity, we keep



N. Clinco et al.

1
] 2 = 15.625 m 2000 IERIWERY
8000 8000
7000 7000
6000 6000
E 5000 £ 5000
N N
4000 4000
3000 3000
2000 2000
1000 1000
o o
0 2000 4000 0 2000 4000
x(m) x(m)

Computers and Fluids 266 (2023) 106057

1
9000 0.9 h = 125 m
8000 0.8
7000 0.7
6000 0.6
E 5000 05 E
N N
4000 0.4
3000 .
2000 0:2
1000 0:1
0
0 0
0 2000 4000 0 2000 4000
x(m) x(m)

Fig. 1. Rising thermal bubble, a,, a = 1.9 m: perturbation of potential temperature at + = 1020 s computed with four different meshes. The mesh size, specified in each panel, is

increasing from left to right.
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Fig. 2. Rising thermal bubble, a;, « = 1.9 m: contour plots of the horizontal velocity
component u (left) and the vertical velocity component w (right) at = 1020 s computed
with mesh 2= 125 m.

« constant in space and time and set it to 1.9, which is obtained by
taking the minimum value of density. Fig. 1 shows the perturbation of
potential temperature ¢’ at ¢t = 1020 s computed by the EFR algorithm
(with a; and a = 1.9) and all the meshes under consideration. From
Fig. 1, we observe no visible change in the computed ¢’ when the
mesh is refined past 2 = 62.5 m. In order to facilitate the comparison
of the panels in Fig. 1 with data in the literature [11,44,50,54], we
have forced the colorbar to range from O to 1. Overall, these results
are in very good qualitative agreement with the corresponding figures
in [11,44,50,54].

We obtain good qualitative agreement with data in the literature
(e.g., Fig. 7 in [50]) also for Fig. 2, which displays velocity components
u and w at t+ = 1020 s computed by the EFR algorithm (with 4; and
a = 1.9) with mesh 42 = 125 m.

Fig. 3 reports a more quantitative comparison. It compares the time
evolution of the maximum perturbation of potential temperature ¢/,
and maximum vertical component of the velocity w,,,, computed by the
EFR algorithm (with a; and « = 1.9) against the corresponding results
from [50]. We see that the evolution of 9,/,, . computed with meshes
h = 125 m is affected by spurious oscillations. Oscillations of small
amplitude affect also the ¢/ ~computed with mesh 4 = 62.5 m, but
they disappear with finer meshes. Since ¢/, = and w,,,, computed with
meshes A = 31.25 m and 4 = 15.625 m are practically overlapped, we
chose not to refine the mesh further. The “converged” w,,,, overlaps
with the reference value till about + = 800 s, which is a remarkable

improvement over our previous results in [44]. The “converged” 0,’,, ax

Table 1

Rising thermal bubble, a;, « = 1.9: minimum and maximum vertical velocity w and
potential temperature ¢’ at r = 1020 s compared with the values extracted from the
figures in [50].

Type h (m) W, (m/s) W,yax (M/S) 0., (K 0. K
Ref. [50] 125 =7.75 13.95 -0.013 1.4
a;,a=19 125 -10.35 12.01 -0.012 1.23
a,a=19 62.5 -10.54 12.16 —0.041 1.24

a ,a=19 31.25 -10.61 12.21 -0.050 1.22
a;,a=19 15.625 -10.63 12.28 —0.052 1.22

is also closer to the results from [50] than in [44], however there is
still some distance between the two curves.

Table 1 reports the extrema for the vertical velocity w and potential
temperature perturbation ¢’ at + = 1020 s obtained with the EFR
algorithm (with 4; and a = 1.9), together with the values extracted
from the figures in [50]. This tables confirms the findings from Fig. 3.

Next, we consider indicator functions ag and a; and focus on the
two intermediate meshes (A = 31.25 m and & = 62.5 m). We set the
value of a using C; = 0.094 [44] and Remark 3, which suggests an
order of magnitude for « rather than a strict value. We take @« = 3 m
for mesh 4 = 31.25 m. Since Remark 3 suggests a linear dependence
of a on the mesh size, we take « = 6 m for mesh 4 = 62.5 m. We
note that these values would apply only for ag but we will use them
for ap too in order to show the differences in the solutions obtained
with the two indicator functions. Fig. 4 shows the spatial distribution
of ¢’ and the indicator function at s = 1020 s computed with the EFR
algorithm and the nonlinear filters. Note that with the nonlinear filters
we can capture a larger amount of vortical structures than with the
linear filter (compare Fig. 4 with Fig. 1). The results computed with
ag and mesh A = 31.25 m (Fig. 4, first panel on the top row) agree
very well with those obtained with the Smagorinsky model in [44]
(Fig. 5, left panel). On a given mesh, the Rayleigh-Taylor instability
at the edge of the bubble is more developed when using a; instead
of ag, which indicates that aj introduces less artificial viscosity than
ag. Recall that the artificial viscosity introduced by the EFR algorithm
(58) is proportional to the indicator function. Indeed, the plots on the
bottom row of Fig. 4 show that ag at r = 1020 s has larger values over
wider regions than aj. This means that indicator function aj is more
selective in identifying the regions of the domain where diffusion is
needed.

Table 2 reports the extrema for the vertical velocity w and potential
temperature perturbation ¢’ at + = 1020 s obtained with the EFR
algorithm, together with the values from [44] for the Smagorinsky
model. The data in Table 2 confirm our observation from Fig. 4 about
ag Vs ap. Indeed, we see that larger extreme values are found with the
EFR algorithm and 4. In addition, we see that the Smagorinsky model
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Fig. 4. Rising thermal bubble: perturbation of potential temperature (top row) and corresponding indicator function (bottom row) at r = 1020 s computed with the EFR and ag

(first two columns) and a,, (last two columns) for different mesh sizes.

Table 2

Rising thermal bubble: minimum and maximum vertical velocity w and potential
temperature 6’ at + = 1020 s computed by the EFR algorithm with different meshes,
indicator functions, and values of a. For comparison, the table reports the values from
[44] obtained with the Smagorinsky model.

Model h(m) @) W, M) W, @5 0, K o, K
EFR, a) 31.25 3 -13.39 15.59 -0.18 1.88
EFR, ag 31.25 3 -11.60 15.29 -0.13 1.75
Smagorinsky [44] 31.25 - -11.54 15.04 -0.072 1.89
EFR, a) 62.5 6 -11.3 14.88 -0.12 1.78
EFR, ag 62.5 6 -10.76 13.38 -0.14 1.72

from [44] gives smaller extreme values than EFR algorithm with ag,
which seems to be less diffusive.

We conclude this section by highlighting the important role played
by the filtering radius. Fig. 5 shows ¢’ at t+ = 1020 s computed by the
EFR algorithm with ag and different values of « for mesh 4 = 31.25 m.
Although the three values of « are all of the same order of magnitude,

we see a big difference in the solution. This sensitivity to a can be
mitigated by choosing y # 1 (see, e.g., [17]) and & # 1.

4.2. Density current

The computational domain in the xz-plane is 2 = [0,25600] X
[0,6400] m? and the time interval of interest is (0,900] s. Impenetrable,
free-slip boundary conditions are imposed on all the walls. The initial
density is given by (66) with initial potential temperature:

6° =300 — g [1+cos(zr)] if r <1, 6°=300 otherwise, (68)

X=X, zZ-Z,

= g = )2, with (x,,z,) = (4000,2000) m and
(x,.z,) = (0,3000) m. The initial bubble in this test is of cold air. The
initial velocity field is zero everywhere and the initial specific enthalpy
is given by (67).

We consider uniform, orthogonal meshes with mesh sizes 4 = Ax =
Az =200, 100, 50,25 m. The time step is set to 4t = 0.1 s. Just like in the
case of the warm bubble, we set y = ¢ =1 in the EFR algorithm.

where r =
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Fig. 6. Density current, a,, a =2.7: time evolution of potential temperature fluctuation ¢’ computed with mesh 4 =25 m.

We start again with the linear filter, i.e., we take a; (41) as indicator
function, because it allows us to make a direct comparison with the
results obtained by setting u, = 75 and Pr = 1 in (62)-(63) [44,53].
To introduce the same amount of artificial viscosity with the EFR
algorithm and a;, we use (58) and get « = 2.7 m by using the minimum
density in the computational domain. Fig. 6 shows 6’ computed with
this value of « and mesh 2 = 25 m (i.e., the finest mesh among those
considered) at ¢ = 300, 600, 750,900 s. We observe very good agreement
with the results reported in Fig. 1 of [53], which were obtained with
the same resolution. In order to understand the behavior of the liner
filter as the mesh size is varied, we report 6’ computed at t = 900 s
with all the meshes mentioned above in Fig. 7. We observe that the
EFR algorithm with ¢; and ¢ = 2.7 m does not introduce sufficient
artificial diffusion to stabilize the solution with the coarsest mesh we
consider (i.e., 4 =200 m). For all the other meshes though, we see the
emergence of a clear three-rotor structure when the mesh is refined.
Also the results in Fig. 7 are in very good agreement with those reported
in the literature. See, e.g., [11,44,50,53,57,58].

For a quantitative comparison, we consider the potential temper-
ature perturbation ¢’ at + = 900 s along the horizontal direction at
height z = 1200 m. Fig. 8 displays a comparison between the results
given by the EFR model with a; and « = 2.7 for meshes » = 100, 50, 25
m. We see that the curves associated to meshes 2 = 50,25 m are
practically superimposed. In Fig. 8, we report also the results from [57],
which were obtained by setting a constant artificial viscosity (i.e., u, =
75) and using a spectral element method. Such results are labeled as
“Reference” and refer to resolution 25 m. We observe that our results
are slightly out of phase with respect to the reference data. Each dip in
¢’ in Fig. 8 corresponds to a recirculation in Fig. 7, top three panels.
So, from Fig. 8 we learn that in our simulations the front is faster than
in the simulations from [57]. For this reason, Table 3 reports the front
location (defined as the location on the ground where ¢’ = —1 K) at

0
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x(m)

h =50 m

0 . ‘ >
1] 2000 4000 6000 8000 10000 12000 14000 16000
x(m)

h =100 m

'l » o
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Fig. 7. Density current, a,, a = 2.7: potential temperature fluctuation 6’ computed at
t =900 s with meshes h = 25,50, 100,200,400 m. The mesh size is increasing from top
to bottom.
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Table 3

Density current, a;, a = 2.7: our results for the front location at 7 = 900
s obtained with different meshes compared against results reported in
[53]. For Ref. [53], we provide the range of mesh sizes and front
location values obtained with different methods.

Method h (m) Front location (m)
EFR, a; 25 15170

EFR, a; 50 15190

EFR, a; 100 15210

Ref. [53] (25, 200) (14533,17070)

t = 900 s obtained with EFR and a; and compares it with the data
in Table 4 of [53]. The data in [53] refer to the model with constant
artificial viscosity (i.e., u, = 75) and 14 different numerical approaches.
We note that our results fall well within the values from [53]. Hence,
we attribute the difference with the Reference in Fig. 8 to the use of
different numerical methods.

Next, we focus on the EFR algorithm with indicator function ag. We
restrict our attention to meshes 4 = 25,50 m and, following [11], we
further refine the mesh to get 2 = 12.5 m. Like in Section 4.1, we set the
value of « using the rule of thumb in Remark 3 and C; = 0.454 [44]. We
take @ = 4 m for mesh 4 = 12.5 m because smaller values would lead to
instabilities. Then, we use the linear dependence of a on the mesh size
to set « = 8 m for mesh 4 = 25 m and « = 16 m for mesh A = 50 m. Fig. 9
(left), 9 (right), and 10 (left) show the time evolution of the potential
temperature fluctuation computed with meshes 4 = 12.5,25,50 m,
respectively. As expected, more vortical structures appear when we
reduce the mesh size. The EFR algorithm with ag produces very similar
results to a standard implementation of the Smagorinsky model with
mesh A =25 m: compare Fig. 9 (right) with Fig. 10 in [44]. However,
our method does a better job at stabilizing the larger eddies with mesh
h = 12.5 m: Fig. 9 (left) with Fig. 9 in [44]. For mesh 4 = 50 m, Fig. 10
(left) indicates that the & = 16 leads to overdiffusion. In fact, it provides
a smoothed out solution even when compared to the linear filter (see
Fig. 7, second panel from the top). A less dissipative solution can be
found by lowering the values of «. Fig. 10 (right) shows ¢’ computed
with mesh 42 = 50 m and a = 11. We this new value of « the solution
obtained with mesh 2 = 50 m looks similar to the solution given by
mesh 4 = 25 m. This is confirmed by Table 4, which reports the front
locations at ¢ = 900 s obtained with EFR and ag. The location computed
with mesh 4 = 25 m and a = 8 is very close to the location given by
mesh 2 = 50 m and « = 11. This is exactly what expected from the
EFR algorithm: with a proper tuning of «, one can use coarser meshes
without compromising accuracy. In [17,21], using heuristic arguments
we provided guidelines to set « and y for the EFR algorithm applied
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Table 4
Density current, ag: front location at 1 = 900 s obtained with the EFR algorithm and
different meshes. Our results are compared against results from [11,53]. For Ref. [11],
we report only the front location computed with the finest resolution. For Ref. [53],
we provide the range of mesh sizes and front location values obtained with different
methods.

Method h (m) a (m) Front location (m)
Ref. [11] 12.5 - 15056

EFR, ag 125 4 15550

EFR, ag 25 8 15300

EFR, ag 50 11 15220

EFR, ag 50 16 15090

Ref. [53] (25, 200) - (14533,17070)

to the incompressible Navier—Stokes equations. Such arguments cannot
be easily extended to the Euler equations, so further investigation is
need to understand how to tune « and the relaxation parameters with
no user intervention. This will be the object of a follow-up paper.
Now, let us turn our attention to aj. In Section 4.1, we have shown
that aj, is a more selective indicator function than ag. Thus, we slightly
increase the values of « used for ag since at the moment we do not have
a better criterion to set « for a;. We take a = 5 for mesh 4 = 12.5 m,
a = 10 for mesh A = 25 m, a = 12 for mesh 4 = 50 m. Before showing
the solutions obtained with a; and these values of «, in Fig. 11 we
compare the time evolution of the space-averaged artificial viscosity

1 _
b= 5 /Q 1,0 (69)

obtained with ag and a;, for meshes 4 = 12.5,25,50 m. We recall that
Hy, is defined in (58). From Fig. 11, we see that ag with « = 4 and
ap with @ = 5 introduce roughly the same amount of space-averaged
artificial viscosity for most of the time interval under consideration in
the case of mesh 4 = 12.5 m. The main difference for this mesh is that
ap introduces almost no artificial diffusion till about 100 s and then
ramps it up faster than ag. A rather fast ramp is observed for a;, also
in the case of meshes 4 = 25,50 m: yu,, remains small while the cold
perturbation falls due to negative buoyancy and it increases as the cold
front propagates horizontally. For mesh 4 = 25 m, y,, given by ay with
a = 8 grows almost linearly till about 300 s and then around 600 s it
flattens. As already evident from Fig. 10, ag with @ = 16 introduces
too much artificial viscosity for mesh # = 50 m. This can be fixed by
decreasing the value to a = 11, which introduces a similar amount of
Hgap as @ = 8 does for mesh h =25 m.

Fig. 12 (left), 12 (right), and 13 display the time evolution of the
potential temperature fluctuation computed with a; and the chosen
values of « for meshes n = 12.5,25, 50 m, respectively. When compared
to the respective counterparts obtained with ag (namely Fig. 9 (left),
9 (right), and 10 (right)), all the observations made about Fig. 11
are confirmed: the solutions obtained with the finer mesh are initially
comparable early and then some differences are observed for the larger
recirculations, the solutions for the intermediate mesh are remarkably
similar. While Fig. 11 suggests that EFR with aj and a« = 12 is more
diffusive (in average) than with ag and « = 11, the respective solutions
in Fig. 13 and Fig. 10 (right) are surprisingly similar.

Table 5 reports the front locations at + = 900 s obtained with EFR
and aj, for the three meshes under consideration. The three locations
are within about 400 m of each other, with the front becoming faster
as the mesh is refined. This was the case also for ag (see Table 4). The
opposite trend is observed for a; (see Table 3), i.e., the front slows
down as the mesh is refined, although the locations are only roughly
40 m apart. In any case, our results fall well within the results from
[53] and are close to the results from [11].

Next, in Fig. 14 we report with a comparison of indicator functions
ag and ap for the simulations in Fig. 9 (left) and 12 (left). We see
that, while both indicator functions have larger values (red to yellow
shades) at the bottom of the largest recirculation, at a given time ag
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Table 5

Density current, ap: front location at + = 900 s obtained with the EFR algorithm and
different meshes. Our results are compared against results from [11,53]. For Ref. [53],
we provide the range of mesh sizes and front location values obtained with different
methods. For Ref. [11], we report only the front location computed with the finest
resolution.

Method h (m) a (m) Front location (m)
Ref. [11] 12.5 15056

EFR, a) 12.5 15560

EFR, a 25 10 15215

EFR, a, 50 12 15120

Ref. [53] (25, 200) - (14533,17070)
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has larger regions of intermediate values (light blue shade) than ay,.
This is due to the fact that agy is a less selective indicator function,
as mentioned earlier. This is more evident on mesh A~ = 50 m: see
Fig. 15 for the plots of the indicator function for ag and a for the
simulations in Fig. 10 (left) and 13. The higher selectivity of a;, results
in much smaller regions of high and intermediate values (red to green
shades). Finally, we note that the maximum magnitude of the indicator
function is higher for the finer mesh (2 = 25 m), which gives rise to
more localized and higher peaks than the coarser mesh (A = 50 m).
This is in line with what already observed in [17].

We conclude with a comment on the computational cost. Table 6
reports the computational time taken by the evolve step and filter step
per time step and total simulation time for the EFR algorithm with
indicator functions a;, ag, and ap and the specified values of « for
meshes h 50,25 m. All the simulations were run on a common
laptop (AMD Ryzen 7 5700U, 16 GB RAM). As expected, the total
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Fig. 13. Density current, a,, a« = 12: time evolution of potential temperature
fluctuation ¢’ computed with mesh 4 =50 m.

computational cost increases when switching from the linear filter to
nonlinear filters, with the deconvolution-based indicator function being
the most expensive. In fact, while ag requires a simple post-processing
of the velocity field, a;, in (45) requires one application of the linear
Helmbholtz filter. Despite this increased cost, the simulation with mesh
h = 25 m and a takes a little less than 1 h and 10 min, which
means that the solver is rather efficient. We note that when using
ap, the filter step takes about half of the time needed for the evolve
step. This might seem counter-intuitive given the relative complexity
of the problems solved at the two steps. However, it can be explained
with the solver choices. During the evolve step, the majority of the
computational cost is spent to solve the equation for p’ (recall we
adopt a splitting scheme detailed in [44]) with the Diagonal incomplete
Cholesky preconditioned conjugate gradient method, which is the same
method used for the filter step. Since the equation of mass conservation
is treated fully explicitly, it is very inexpensive to solve. The solver
for the conservation of energy equation uses the bi-conjugate gradient
stabilized method with a diagonal-based incomplete LU preconditioner.
The accuracy for the resolution of all the linear system is set to le — 8.
The computational cost of the evolve step is also contained by not
performing a momentum predictor step.

5. Concluding remarks

In this paper, we presented a filter stabilization technique for the
mildly compressible Euler equations that is realized through a three
step algorithm called Evolve-Filter-Relax (EFR). While filter stabiliza-
tion and the EFR algorithm have been widely investigated for the
incompressible Navier-Stokes equations, this work is one of the few
papers that applies them to the Euler equations. We showed that
the EFR algorithm is equivalent to an eddy viscosity model in LES
and we considered three indicator functions to tune the amount and

12
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Table 6

Density current: computational time taken by the evolve step and filter step per time
step and total simulation time for the EFR algorithm with indicator functions a,, ag,
and a,, and the specified values of a for meshes h = 50,25 m.

Model h (m) a (m) Evolve (s) Filter (s) Total (s)
EFR, a; 25 2.7 0.3 0.070 3492
EFR, ag 25 8 0.3 0.108 3880
EFR, a, 25 10 0.3 0.159 4163
EFR, a; 50 2.7 0.06 0.015 707
EFR, ag 50 11 0.06 0.023 772
EFR, a) 50 12 0.06 0.029 790

location of eddy viscosity: a constant indicator function, an indicator
function proportional to the velocity gradient norm that recovers a
Smagorinsky-like model, and indicator function based on approximate
deconvolution operators. The first indicator function corresponds to a
linear filter, which is known to be overdiffusive, while the other two
lead to nonlinear filters.

We tested our EFR approach with two well-known benchmarks for
atmospheric flow: the rising thermal bubble and the density current.
For both benchmarks, we showed that the linear filter provides results
in excellent agreement with data in the literature obtained by setting
an ad-hoc eddy viscosity. We showed that with the nonlinear filters
we can capture a larger amount of vortical structures in the flows,
which is expected and in line with other published data obtained with
LES models. Of the three indicator functions under consideration, the
deconvolution-based indicator function was shown to be more selective
in identifying the regions of the domain where artificial diffusion is
needed. Finally, we commented about the computational efficiency of
our approach, highlighting that the filter step is computationally cheap
with respect to the evolve step.

More work is needed to improve the EFR algorithm proposed in this
paper. A parametric study of the relaxation parameters y and ¢ (set
equal to 1 in this work) would inform us on their “optimal” value to
improve the accuracy and would help to mitigate the sensitivity to the
filtering radius «. In addition, the role of the order of the deconvolution
N needs to be investigated.
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Fig. 14. Density current, mesh 4 = 12.5 m: time evolution of ag with « =4 m (left) and a4, with « =5 m (right).
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