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A B S T R A C T

The simulation of atmospheric flows by means of traditional discretization methods remains
computationally intensive, hindering the achievement of high forecasting accuracy in short
time frames. In this paper, we apply three reduced order models that have successfully
reduced the computational time for different applications in computational fluid dynamics
while preserving accuracy: Dynamic Mode Decomposition (DMD), Hankel Dynamic Mode
Decomposition (HDMD), and Proper Orthogonal Decomposition with Interpolation (PODI). The
three methods are compared in terms of computational time and accuracy in the simulation of
two well-known 2D benchmarks for mesoscale flow. The accuracy of the DMD and HDMD
solutions deteriorates rather quickly as the forecast time window expands, although these
methods are designed to predict the dynamics of a system. The reason is likely the strong
nonlinearity in the benchmark flows. The PODI solution is accurate for the entire duration of
the time interval of interest thanks to the use of interpolation with radial basis functions. This
holds true also when the model features a physical parameter expected to vary in a given range,
as is typically the case in weather prediction, and for preliminary results in 3D.

1. Introduction

Despite a continuous increase in computational power, simulations of atmospheric flows using classical discretization methods
e.g., finite element methods or finite volume methods) remain computationally expensive. Given the large number of simulations
equired to quantify uncertainty in weather prediction, alternatives to such discretization methods, also called Full Order Models
FOMs), are needed to reduce the computational time and allow for improved prediction accuracy in short time frames.
For over a couple of decades, Reduced Order Models (ROMs) have emerged a methodology of choice to reduce the computational

urden when FOM simulations have to be carried out for several (physical) parameter values, as in the case of uncertainty
uantification, or for long periods of time, as in the case of forecasts. ROMs replace the FOM of choice with a lower-dimensional
pproximation that captures the essential behavior of the system. This is achieved through a two-step procedure. In the first step,
alled offline phase, one constructs a database of several FOM solutions associated to given times and/or physical parameter values.
n example of a physical parameter for an atmospheric flow problem could be an initial temperature perturbation with magnitude
xpected to vary in a given range. The database of FOM solutions is used to generate a reduced basis, which is (hopefully much)
maller than the high-dimensional FOM basis but still preserves the essential features of the system. In the second step, called online
phase, one uses this reduced basis to quickly compute the solution for newly specified times and/or parameter values. Note that,
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while the offline phase is performed once and for all, the online phase is performed as many times as needed. For a comprehensive
review on ROMs, the reader is referred to, e.g., [1–6].

The ROMs that have been successfully applied to fluid dynamics problems could be divided into two major categories: projection-
ased vs. data-driven. In general terms, projection-based ROMs project the governing equations onto the low-dimensional subspace
panned by the basis functions of the reduced basis mentioned above. In order to implement a projection-based ROM efficiently,
ne needs access to the source code of the FOM solver. On the other hand, data-driven ROMs rely on available data from the high-
imensional FOM system to directly learn a reduced order model without explicitly considering the underlying equations. While
rojection-based methods aim to preserve the governing equations of the high-dimensional system in the reduced model, data-driven
ethods construct the reduced order model purely from the data, i.e., they learn the relationships and patterns observed in the data.
ence, a data-driven ROM is blind to the mathematical model and treats the FOM solver as a black box. For this reason, data-driven
OMs are also called non-intrusive.
In this paper, we focus on data-driven ROMs. The efficiency of projection-based ROMs is rather limited in the case of

onlinear problems as these problems often require hyper-reduction techniques (see, e.g., [7,8]) that are problem-dependent and
omputationally expensive. So, non-intrusive ROMs are to be preferred for applications where a high speed-up is required. Since
tmospheric flows are highly nonlinear and high speed-up is desirable for forecasts, the aim of this paper is to compare in terms of
ccuracy and computational time three data driven ROMs that have been successfully applied to different fluid dynamics problems:
ynamic Mode Decomposition (DMD), Hankel Dynamic Mode Decomposition (HDMD) and Proper Orthogonal Decomposition with
nterpolation (PODI). We start from DMD because it is specifically designed to predict the future behavior of a system [9–12] and
t was shown to work well for problems like axisymmetric jet flow [13], annular liquid sheets [14], and turbulent cavity flow [15].
he natural next choice is HDMD because it improves the DMD algorithm with time-delay embedding [16–21]. The result is that
DMD can predict more accurately and for longer periods of time systems exhibiting strong nonlinear dynamics [20,22], as is the
ase of atmospheric flows. HDMD has been successfully applied to simulate, e.g., periodic cavity flow [16,23], electromechanical
ystems [21], and biological systems [18]. PODI differs from DMD and HDMD in that it is not designed to forecast the system
volution, but rather to interpolate solutions in a parameter space, where time is one of possibly many parameters of interest. So far,
ODI has been applied to perform parametric studies for problems stemming from, e.g., thermo-mechanics [24], hemodynamics [25],
hemical [26] and naval [27,28] engineering, and aeronautics [29]. This long list of successes for DMD, HDMD, and PODI,
articularly in the field of computational fluid dynamics, is the reason why we have selected them for atmospheric simulations.
POD, which lies at the core of many ROMs, is often referred to as Empirical Orthogonal Function (EOF) analysis in the geophysical

luid dynamics community. It has been applied to reanalysis data to identify spatio-temporal coherent meteorological patterns
nd teleconnections, e.g., the Madden-Julian Oscillation, the Quasi-Biennial Oscillation, and the El Niño-Southern Oscillation. See,
.g., [30–32]. These phenomena involve large spatial and temporal scales: they result from the interaction of global circulation effects
nd happen over periods of time ranging from several months to many years. The EOF analysis uses data on the global scale and
onsiders time as the only parameter. In addition, it is mostly limited to system identification. Very recently, a data-driven ROM
ased on EOF analysis has been used for pattern prediction, specifically to forecast the weekly average sea surface temperature
31]. Other data-driven methods borrowed from Machine Learning (ML) have been applied to global weather forecasting. See,
.g., [33–39]. However, these methods cannot be strictly categorized as reduced order modeling since no reduced basis is generated.
The work presented in this paper is the first attempt to apply ROMs that generate a reduced order basis (unlike ML methods) for

oth system identification and forecast of regional atmospheric flows (unlike EOF). We focus on a spatial scale of a few kilometers
nd a time scale of a few hours, not on the global circulation for long periods of time, with an obvious difference in resolution.
inally, with PODI we perform a parametric study that includes a physical parameter as well, i.e., our analysis is not limited to time
s the only parameter.
This paper is organized as follows. Section 2 describes the compressible Euler equations for low Mach stratified flows and gives

details about the full order model. Section 3 presents the main ingredients of the three ROMs under consideration. Section 4 reports
he comparison of the three ROMs using three well-known benchmark problems involving stratified and gravity driven atmospheres:
he rising thermal bubble in 2D and 3D and the density current. Finally, Section 5 provides conclusions and perspectives.

. The full order model

We consider the dynamics of dry atmosphere, i.e., we neglect the effects of moisture. In addition, we neglect solar radiation and
eat flux from the ground. We assume that dry air behaves like an ideal gas. Then, the equations describing the mass, momentum,
nd energy conservation in a spatial domain of interest 𝛺 over a certain time interval (0, 𝑡𝑓 ] are given by

𝜕𝜌
𝜕𝑡

+ ∇ ⋅ (𝜌𝒖) = 0 in 𝛺 × (0, 𝑡𝑓 ], (1)

𝜕(𝜌𝒖)
𝜕𝑡

+ ∇ ⋅ (𝜌𝒖⊗ 𝒖) + ∇𝑝 + 𝜌𝑔𝐤 = 𝟎 in 𝛺 × (0, 𝑡𝑓 ], (2)

𝜕(𝜌𝑒)
𝜕𝑡

+ ∇ ⋅ (𝜌𝒖𝑒) + ∇ ⋅ (𝑝𝒖) = 0 in 𝛺 × (0, 𝑡𝑓 ], (3)

where 𝜌 is the air density, 𝒖 is the wind velocity, 𝑝 is the pressure, 𝐤̂ is the unit vector aligned with the vertical axis 𝑧, 𝑔 is the
gravitational constant, and 𝑒 is the total energy density. Note that 𝑒 = 𝑐 𝑇 + |𝒖|2∕2 + 𝑔𝑧 where 𝑐 is the specific heat capacity at
2
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constant volume and 𝑇 is the absolute temperature. To close system (1)–(3), we have the thermodynamics equation of state for
deal gases:

𝑝 = 𝜌𝑅𝑇 , (4)

here 𝑅 is the specific gas constant of dry air.
Introducing the following splitting of the pressure

𝑝 = 𝑝′ + 𝜌𝑔𝑧, (5)

here 𝜌𝑔𝑧 is a background state and 𝑝′ is a fluctuation with respect to it, Eq. (2) can be recast as:
𝜕(𝜌𝒖)
𝜕𝑡

+ ∇ ⋅ (𝜌𝒖⊗ 𝒖) + ∇𝑝′ + 𝑔𝑧∇𝜌 = 0 in 𝛺 × (0, 𝑡𝑓 ]. (6)

Let 𝑐𝑝 be the specific heat capacity at constant pressure for dry air. By introducing the specific enthalpy ℎ = 𝑐𝑣𝑇 + 𝑝∕𝜌 = 𝑐𝑝𝑇 , the
total energy can be written as 𝑒 = ℎ − 𝑝∕𝜌 +𝐾 + 𝑔𝑧, where 𝐾 = |𝒖|2∕2 is the kinetic energy density. Then, Eq. (3) can be rewritten
as:

𝜕(𝜌ℎ)
𝜕𝑡

+ ∇ ⋅ (𝜌𝒖ℎ) + 𝜕(𝜌𝐾)
𝜕𝑡

+ ∇ ⋅ (𝜌𝒖𝐾) −
𝜕𝑝
𝜕𝑡

+ 𝜌𝑔𝒖 ⋅ 𝐤̂ = 0 in 𝛺 × (0, 𝑡𝑓 ]. (7)

o obtain (7), we have also employed Eq. (1).
Since problem (1),(4)–(7) does not feature any dissipation mechanism, perturbations due to numerical error can lead to a

imulation breakdown or large, unphysical oscillations in the computed solution. Hence, numerical stabilization is needed. Typically,
t amounts to introducing additional (dissipative) terms in Eq. (6) and (7) as follows:

𝜕(𝜌𝒖)
𝜕𝑡

+ ∇ ⋅ (𝜌𝒖⊗ 𝒖) + ∇𝑝′ + 𝑔𝑧∇𝜌 − ∇ ⋅ (2𝜇𝑎𝝐(𝒖)) + ∇
( 2
3
𝜇𝑎∇ ⋅ 𝒖

)

= 0 in 𝛺 × (0, 𝑡𝑓 ], (8)

𝜕(𝜌ℎ)
𝜕𝑡

+ ∇ ⋅ (𝜌𝒖ℎ) + 𝜕(𝜌𝐾)
𝜕𝑡

+ ∇ ⋅ (𝜌𝒖𝐾) −
𝜕𝑝
𝜕𝑡

+ 𝜌𝑔𝒖 ⋅ 𝐤̂ − ∇ ⋅
( 𝜇𝑎
𝑃𝑟

∇ℎ
)

= 0 in 𝛺 × (0, 𝑡𝑓 ], (9)

where 𝜇𝑎 is an artificial viscosity, 𝝐(𝒖) = (∇𝒖+(∇𝒖)𝑇 )∕2 is the strain-rate tensor, and 𝑃𝑟 is the Prandtl number, i.e., the dimensionless
number defined as the ratio of momentum diffusivity to thermal diffusivity. Typically, the introduction of artificial viscosity 𝜇𝑎 serves
the dual purpose of achieving stabilization and Large Eddy Simulation (LES). See, e.g., [40–42].

The full order model in this paper is given by the stabilized Euler equations in the formulation (1), (4), (5), (8), (9).
A quantity of interest for atmospheric problems is the potential temperature 𝜃. Many authors choose to formulate the Euler

quations with 𝜃 as a variable. Instead, we compute it from 𝑇 and 𝑝 using the following definition:

𝜃 = 𝑇
𝜋
, 𝜋 =

(

𝑝
𝑝0

)
𝑅
𝑐𝑝

, (10)

where 𝑝0 = 105 Pa, which is the atmospheric pressure at the ground. This choice is due to implementation reasons explained in [41].
Let us also define the potential temperature fluctuation 𝜃′, which is the difference between 𝜃 and its typical hydrostatic value 𝜃0:

𝜃′(𝑥, 𝑦, 𝑧, 𝑡) = 𝜃(𝑥, 𝑦, 𝑧, 𝑡) − 𝜃0(𝑧). (11)

See, e.g., [43] for more details.

2.1. Some details about the full order method (FOM)

If one is not careful in designing an efficient numerical scheme, a solver for the full order model (1), (4), (5), (8), (9) could
e computationally intensive. In order to contain the computational cost, we use a splitting scheme thoroughly described in [41].
ere, we report only some details.
To discretize in time, we introduce a time step 𝛥𝑡 ∈ R to partition time interval (0, 𝑡𝑓 ] and obtain time levels 𝑡𝑛 = 𝑡0 + 𝑛𝛥𝑡, with

= 0,… , 𝑁𝑡𝑓 and 𝑡𝑓 = 0+𝑁𝑡𝑓𝛥𝑡. For the discretization of the Eulerian time derivatives in (1), (8), and (9), we adopt the Backward
uler scheme. In Eq. (8) and (9), the treatment of the convective terms is semi-implicit while the treatment of the diffusive terms
s implicit. On the other hand, Eq. (1) is treated explicitly. For the space discretization, the computational domain 𝛺 is partitioned
nto cells or control volumes 𝛺𝑖, with 𝑖 = 1,… , 𝑁𝑐 , where 𝑁𝑐 is the total number of cells in the mesh. We adopt second-order finite
olume schemes. Finally, in order to decouple the computation of the pressure from the computation of the velocity we use the
ISO algorithm [44–46].
This FOM is implemented within GEA (Geophysical and Environmental Applications) [40,41,47,48], an open-source package for

tmosphere and ocean modeling based on the finite volume C++ library OpenFOAM®.
We would like to point out that, although we have made specific choices for the full order method (e.g., spatial discretization

ia a finite volume method), the conclusions that we will draw about the reduced order methods presented in the next section are
3

xpected to hold also for different full order methods (e.g., finite element methods).
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3. The reduced order model

Let us assume that the PDE problem described in Section 2 depends on some physical parameters that vary over a certain interval.
Let 𝑑 be the number of parameters of interest and 𝝅 the vector that stores them. In addition, let  ⊂ R𝑑 be parameter space with
𝝅 ∈  . Although the time 𝑡 could be treated as a parameter, we do not store it in 𝝅 and deal with it separately.

The basic assumption of ROM for a PDE problem depending on time 𝑡 and parameter vector 𝝅 is that any solution can be
represented in terms of a linear combination of a reduced number of global basis functions, that depend exclusively on space 𝒙,
with the weights of the linear combination depending only on 𝑡 and 𝝅. In the case of the potential temperature perturbation 𝜃′,
which is our variable of interest, this is written as:

𝜃′(𝒙; 𝑡,𝝅) ≈ 𝜃′𝑟(𝒙; 𝑡,𝝅) =
𝑁𝜃′
∑

𝑖=1
𝛼𝑖(𝑡,𝝅)𝜑𝑖(𝒙), (12)

where 𝜃′𝑟 is the reduced order approximation of 𝜃′, 𝑁𝜃′ is the number of basis functions, the 𝜑𝑖 are the basis functions and the 𝛼𝑖
are the weights of the linear combination. If the time 𝑡 is the only parameter of interest, then Eq. (12) becomes

𝜃′(𝒙; 𝑡) ≈ 𝜃′𝑟(𝒙; 𝑡) =
𝑁𝜃′
∑

𝑖=1
𝛼𝑖(𝑡)𝜑𝑖(𝒙). (13)

While we focus on approximating 𝜃′, approximations similar to (12) and (13) can be applied to any other variable of interest, either
primal (i.e., unknown of the original problem, density, velocity, pressure and the specific enthalpy) or derived (like 𝜃′ itself).

In this paper, we focus on three data-driven ROMs that have not been applied to mesoscale atmospheric flows yet: Dynamic
Mode Decomposition (DMD), Hankel DMD (HDMD), and Proper Orthogonal Decomposition with Interpolation (PODI). All these
methods rely on the Singular Value Decomposition (SVD) algorithm as a main tool to compute the basis functions 𝜑𝑖. DMD and
Hankel DMD are mainly designed to predict the future behavior of a system, so they are intrinsically suited for problems where the
time is the parameter of interest. On the other hand, PODI relies primarily on interpolation procedures in the parameter space, so it
is not designed to forecast the time evolution of the system but it interpolates solutions dependent on time and parameter 𝝅 alike.

In the three subsections below, we report the main ingredients of the DMD and HDMD algorithms, and the PODI approach.

3.1. Dynamic mode decomposition

Introduced in [10], DMD is a useful tool to effectively extract the dominant dynamic flow structure from a unsteady flow field
[11,13,49,50]. In particular, DMD forecasts future states of a non-linear time-dependent system through a linear combination of
few main structures evolving linearly. Such a feature makes the DMD appealing for atmospheric problems and weather forecasts.
In this work, we will adopt DMD to reconstruct, and more importantly, forecast the time evolution of 𝜃′ through (13).

In this section, we briefly present the main ingredients of the DMD algorithm concerning the computation of the basis functions
𝜑𝑖 and of the weights 𝛼𝑖 in (13). For more details, we refer the reader to, e.g., [9,12,51].

Recall that 𝑁𝑐 denotes the number of degrees of freedom of the potential temperature perturbation in the full order method. Let
𝜃′ℎ(𝒙; 𝑡

𝑖) ∈ R𝑁𝑐 , with 𝑖 = 1,… , 𝑁𝑡, be the full order solution (also called snapshot) computed at time instant 𝑡𝑖. As mentioned above,
DMD is designed to predict the future of a system, thus the collection of the snapshots stops before the end of the time interval of
interest and DMD will complete the simulation. This means that 𝑁𝑡 < 𝑁𝑡𝑓 . The key idea of DMD is that there exists a governing
operator matrix, denoted as 𝑨, that maps 𝜃′ℎ(𝒙, 𝑡

𝑖) to 𝜃′ℎ(𝒙, 𝑡
𝑖+1) and approximates the nonlinear dynamics of the dynamical system

of interest, i.e.:

𝜃′ℎ(𝒙, 𝑡
𝑖+1) = 𝑨𝜃′ℎ(𝒙, 𝑡

𝑖). (14)

To find 𝑨 ∈ R𝑁𝑐×𝑁𝑐 , we build two snapshot matrices in R𝑁𝑐×(𝑁𝑡−1):

𝑺1 = [𝜃′ℎ(𝒙, 𝑡
1),… , 𝜃′ℎ(𝒙, 𝑡

𝑁𝑡−1)] and 𝑺2 = [𝜃′ℎ(𝒙, 𝑡
2),… , 𝜃′ℎ(𝒙, 𝑡

𝑁𝑡 )]. (15)

Notice that 𝑺1 contains the first 𝑁𝑡 −1 snapshots, while 𝑺2 contains the last 𝑁𝑡 −1 snapshots. By rewriting (14) in matrix form, we
obtain:

𝑺2 = 𝑨𝑺1. (16)

Then, we perform the SVD of the matrix 𝑺1:

𝑺1 = 𝑼𝜮𝑽 𝑇 , (17)

where 𝑼 ∈ R𝑁𝑐×𝑁𝑐 is the orthogonal matrix whose columns are the left singular vectors, 𝜮 ∈ R𝑁𝑐×(𝑁𝑡−1) is the rectangular diagonal
matrix containing the singular values 𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎min{𝑁𝑐 ,𝑁𝑡−1} ≥ 0, and 𝑽 ∈ R(𝑁𝑡−1)×(𝑁𝑡−1) is the orthogonal matrix whose
columns are the right singular vectors. Symbol 𝑇 denotes the transpose.

In order to form a basis for the reduced space, we adopt the POD algorithm [24,26–29]. Let 𝑅 ≤ min{𝑁𝑐 , 𝑁𝑡 − 1} be the rank
4

of the matrix 𝑺1. The POD space is spanned by the first 𝑅 columns of the matrix 𝑼 . Then, the reduced space is constructed by
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retaining the first 𝑁𝜃′ < 𝑅 columns, called POD modes. The value of 𝑁𝜃′ is commonly chosen to reach a user-provided threshold 𝛿
for the cumulative energy of the singular values:

𝐸 =
∑𝑁𝜃′

𝑖=1 𝜎𝑖
∑𝑅

𝑖=1 𝜎𝑖
≥ 𝛿. (18)

nce we have 𝑁𝜃′ , we can introduce 𝑼𝑁𝜃′
∈ R𝑁𝑐×𝑁𝜃′ , which comes from retaining the first 𝑁𝜃′ columns of 𝑼 , 𝜮𝑁𝜃′

∈ R𝑁𝜃′×𝑁𝜃′ ,
hich comes from keeping the first 𝑁𝜃′ columns and rows of 𝜮, and 𝑽 𝑁𝜃′

∈ R(𝑁𝑡−1)×𝑁𝜃′ , which is obtained from the first 𝑁𝜃′

olumns of 𝑽 . Then, matrix 𝑺1 is approximated as follows:

𝑺1 ≈ 𝑼𝑁𝜃′
𝜮𝑁𝜃′

𝑽 𝑇
𝑁𝜃′

. (19)

By plugging (19) into (16), 𝑨 can be approximated as:

𝑨 ≈ 𝑺2𝑽 𝑁𝜃′
𝜮−1

𝑁𝜃′
𝑼𝑇

𝑁𝜃′
. (20)

This approximation is projected onto the POD modes to get the reduced operator matrix 𝑨𝑁𝜃′
∈ R𝑁𝜃′×𝑁𝜃′ :

𝑨𝑁𝜃′
= 𝑼𝑇

𝑁𝜃′
𝑨𝑼𝑁𝜃′

= 𝑼𝑇
𝑁𝜃′

𝑺2𝑽 𝑁𝜃′
𝜮−1

𝑁𝜃′
𝑼𝑇

𝑁𝜃′
𝑼𝑁𝜃′

= 𝑼𝑇
𝑁𝜃′

𝑺2𝑽 𝑁𝜃′
𝜮−1

𝑁𝜃′
. (21)

Next, we perform the eigendecomposition of 𝑨𝑁𝜃′
, i.e. we solve the following eigenvalue problem:

𝑨𝑁𝜃′
𝑾 = 𝑾𝜦, (22)

here 𝜦 ∈ R𝑁𝜃′×𝑁𝜃′ is the diagonal matrix containing the eigenvalues 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑁𝜃′
≥ 0 of 𝑨𝑁𝜃′

and 𝑾 ∈ R𝑁𝜃′×𝑁𝜃′ is the
atrix whose columns are the eigenvectors of 𝑨𝑁𝜃′

. The eigenvalues of 𝑨𝑁𝜃′
are an approximation of the first (when arranged by

magnitude) 𝑁𝜃′ eigenvalues of 𝑨 and are known as DMD eigenvalues [10,52].
As basis functions 𝜑𝑖 in (13), one takes the eigenvectors of 𝑨 associated to the DMD eigenvalues. It can be shown [12] that these

eigenvectors, called exact DMD modes, are the columns of the matrix 𝝋 ∈ R𝑁𝑐×𝑁𝜃′ :

𝝋 = 𝑺2𝑽 𝑁𝜃′
𝜮−1

𝑁𝜃′
𝑾 . (23)

Another possibility (not explored in this paper) is to take the columns of 𝑼𝑁𝜃′
𝑾 , which are known as projected DMD modes [10].

Finally, the temporal coefficients 𝛼𝑖 in Eq. (13) are given by

𝛼𝑖(𝑡) = 𝑒𝜆𝑖𝑡, 𝑖 = 1,… , 𝑁𝜃′ . (24)

3.2. Hankel dynamic mode decomposition

The Hankel DMD [16,17,20,21] is a variation of the standard DMD algorithm based on the idea to combine the DMD algorithm
with time delay-embedding [16,18,19]. In delay embedding, a given time-dependent datum, which in our case is the snapshot
𝜃′ℎ(𝒙, 𝑡), is augmented by a time history of previous data.

Let𝑀 be the embedding dimension and let 𝑯(𝜃′ℎ(𝒙, 𝑡
𝑖)) ∈ R𝑁𝑐×𝑀 , with 𝑖 = 1,… , 𝑁𝑡 and 𝑁𝑡 < 𝑁𝑡𝑓 , be the so-called Hankel matrix

associated to the snapshot 𝜃′ℎ(𝒙, 𝑡
𝑖):

𝑯(𝜃′ℎ(𝒙, 𝑡
𝑖)) = [𝜃′ℎ(𝒙, 𝑡

𝑖), 𝜃′ℎ(𝒙, 𝑡
𝑖−1),… 𝜃′ℎ(𝒙, 𝑡

𝑖−(𝑀−1))]. (25)

We build two matrices in R𝑁𝑐×((𝑁𝑡−𝑀)𝑀):

𝑺𝐻
1 =

[

𝑯(𝜃′ℎ(𝒙, 𝑡
𝑀 )) 𝑯(𝜃′ℎ(𝒙, 𝑡

𝑀+1)) … 𝑯(𝜃′ℎ(𝒙, 𝑡
𝑁𝑡−1))

]

,

𝑺𝐻
2 =

[

𝑯(𝜃′ℎ(𝒙, 𝑡
𝑀+1)) 𝑯(𝜃′ℎ(𝒙, 𝑡

𝑀+2)) … 𝑯(𝜃′ℎ(𝒙, 𝑡
𝑁𝑡 ))

]

. (26)

Then, we follow the DMD algorithm described Section 3.1 by simply replacing 𝑺1 with 𝑺𝐻
1 and 𝑺2 with 𝑺𝐻

2 .
It should be noted that the embedding dimension 𝑀 is a crucial parameter affecting the accuracy of the HDMD algorithm. The

optimal value of 𝑀 could depend on the problem at hand and, to the best of our knowledge, there is no general rule to choose
it [19,53,54]. In this work, its value is determined through a trial and error procedure, i.e., we try several values of 𝑀 and choose
the one that maximizes the accuracy of the associated HDMD-based ROM in the 𝐿2 norm. See Section 4.1 for more details. Of course,
such a procedure is time-consuming and leaves room to further research for improvement.

3.3. Proper orthogonal decomposition with interpolation

In the PODI method, which was introduced in [55], the POD algorithm is used to extract the reduced basis functions from the
set of full order solutions associated with given values of time and 𝝅, whilst the coefficients 𝛼𝑖 are approximated by an interpolation
5

technique. In the following, we briefly recall the main steps required by PODI method.
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Following the notation introduced in Sections 2 and 3.1, let 𝜃′ℎ(𝒙; 𝑡
𝑖,𝝅𝑗 ) ∈ R𝑁𝑐 , with 𝑖 = 1,… , 𝑁𝑡𝑓 and 𝑗 = 1,… , 𝑁𝜋 , be the full

order solution computed at time instant 𝑡𝑖 and for parameter value 𝝅𝑗 . We set 𝑁𝑠 = 𝑁𝑡𝑓 ⋅𝑁𝜋 and arrange these full order solutions
as the columns of the snapshot matrix

𝑺 = [𝜃′ℎ(𝒙; 𝑡
1,𝝅1), 𝜃′ℎ(𝒙; 𝑡

2,𝝅1),… , 𝜃′ℎ(𝒙; 𝑡
𝑁𝑡𝑓 ,𝝅𝑁𝑘 )] ∈ R𝑁𝑐×𝑁𝑠 . (27)

The SVD of matrix 𝑺 gives us:

𝑺 = 𝑼𝜮𝑽 𝑇 , (28)

where the explanation for 𝑼 ∈ R𝑁𝑐×𝑁𝑐 , 𝜮 ∈ R𝑁𝑐×𝑁𝑠 , and 𝑽 ∈ 𝑅𝑁𝑠×𝑁𝑠 is provided in Section 3.1. The POD space is constructed by
retaining the first 𝑁𝜃′ ≤ min{𝑁𝑐 , 𝑁𝑠} columns of matrix 𝑼 . The value of 𝑁𝜃′ is set as described in Section 3.1 and, like in Section 3.1,
e will denote with 𝑼𝑁𝜃′

the matrix that contains the first 𝑁𝜃′ columns of 𝑼 .
Now that we have the basis functions, we can use Eq. (12) to approximate the snapshots:

𝜃′ℎ(𝒙; 𝑡
𝑖,𝝅𝑗 ) ≈ 𝜃′𝑟(𝒙; 𝑡

𝑖,𝝅𝑗 ) =
𝑁𝜃′
∑

𝐿=1
𝛼𝐿(𝑡𝑖,𝝅𝑗 )𝜑𝐿(𝒙), (29)

or 𝑖 = 1,… , 𝑁𝑡𝑓 and 𝑗 = 1,… , 𝑁𝜋 , where the coefficients 𝛼𝐿(𝑡𝑖,𝝅𝑗 ) are the entries of the matrix 𝑪 = 𝑼𝑇
𝑁𝜃′

𝑺 ∈ R𝑁𝜃′×𝑁𝑠 ,
.e., 𝛼𝐿(𝑡𝑖,𝝅𝑗 ) = 𝑪 𝑖𝑗 . Given these coefficients at 𝑡𝑖 and 𝝅𝑗 , we construct an interpolant with Radial Basis Functions [56] as follows:

𝛼𝐿(𝑡𝑖,𝝅𝑗 ) =
𝑁𝜋
∑

𝑛=1

𝑁𝑡𝑓
∑

𝑚=1
𝑤𝐿𝑚,𝑛

𝜁𝐿𝑚,𝑛
(‖(𝑡𝑖,𝝅𝑗 ) − (𝑡𝑚,𝝅𝑛)‖). (30)

ere, 𝜁𝐿𝑚,𝑛
are the Radial Basis Functions (chosen to be Gaussian functions) centered in (𝑡𝑚,𝝅𝑛) and 𝑤𝐿𝑚,𝑛

are unknown weights. We
ind the weights by solving the linear system associated to (30):

𝒁𝐿𝒘𝐿 = 𝜶𝐿. (31)

n (31), 𝒘𝐿 is the vector obtained as follows:

𝒘𝐿𝑘
= 𝑤𝐿𝑚,𝑛

, 𝑘 = (𝑚) + (𝑛 − 1) ⋅𝑁𝑡𝑓 , 1 ≤ 𝑚 ≤ 𝑁𝑡𝑓 , 1 ≤ 𝑛 ≤ 𝑁𝜋 ,

.e., the first 𝑁𝑡𝑓 entries of 𝒘𝐿 are 𝑤𝐿1∶𝑁𝑡𝑓 ,1
, which are related to 𝝅1, the following 𝑁𝑡𝑓 entries are 𝑤𝐿1∶𝑁𝑡𝑓 ,2

, which are related to
1, and so on. Matrix 𝒁𝐿 is constructed from the 𝜁𝐿𝑚,𝑛

using a similar strategy.
We remark that it is done only once during the offline phase.
Let us now consider a solution that does not belong to the snapshot matrix, i.e., we want to compute 𝜃′(𝒙; 𝑡𝑛𝑒𝑤,𝝅𝑛𝑒𝑤) for new

ime 𝑡𝑛𝑒𝑤 and new parameter value 𝝅𝑛𝑒𝑤. We obtain

𝜃′𝑟(𝒙; 𝑡
𝑛𝑒𝑤,𝝅𝑛𝑒𝑤) =

𝑁𝜃′
∑

𝐿=1
𝛼𝐿(𝑡𝑛𝑒𝑤,𝝅𝑛𝑒𝑤)𝜑𝐿(𝒙), (32)

here coefficients 𝛼𝐿(𝑡𝑛𝑒𝑤,𝝅𝑛𝑒𝑤) are computed by:

𝛼𝐿(𝑡𝑛𝑒𝑤,𝝅𝑛𝑒𝑤) =
𝑁𝑡𝑓
∑

𝑖=1

𝑁𝜋
∑

𝑗=1
𝑤𝐿𝑚,𝑛

𝜁𝐿𝑚,𝑛
(‖(𝑡𝑛𝑒𝑤,𝝅𝑛𝑒𝑤) − (𝑡𝑖,𝝅𝑗 )‖). (33)

otice that while (30) is used to find the weights 𝑤𝐿𝑚,𝑛
, (33) is used to find 𝛼𝐿.

. Numerical results

To validate our ROM approaches, we consider two standard 2D benchmarks for atmospheric flows: the rising thermal
ubble [42,57–59] and the density current [42,57,60–63]. Both test cases involve a perturbation of a neutrally stratified atmosphere
ith uniform background potential temperature. It is worth to note that there exist several variations of these benchmarks, featuring
ifferent geometries and/or initial conditions. We use the setting from [57] for the rising thermal bubble and the setting from [60,63]
or the density current.
We compare the ROM techniques presented in Section 3 in terms of the reconstruction of the time evolution of the potential

emperature perturbation for the rising thermal bubble in Section 4.1 and for the density current in Section 4.2. Moreover, in
ection 4.2 we present a parametric study with PODI, where the varying parameter is the amplitude of the initial temperature
erturbation in the density current benchmark. Finally, Section 4.3 presents preliminary results in 3D using a tree-dimensional
ariant of the rising thermal bubble benchmark taken from [62].
All the ROM techniques utilized in this study are implemented in open-source Python package EZyRB [64]. The reader interested

n the validation of the FOM model is referred to [41].
6
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Fig. 1. Rising thermal bubble: cumulative energy 𝐸 in (18) for the three ROM approaches under consideration.

4.1. Rising thermal bubble

The computational domain for this benchmark is 𝛺 = [0, 5000] × [0, 10000] m2 in the 𝑥𝑧-plane. In this domain, a neutrally
stratified atmosphere with uniform background potential temperature 𝜃0 = 300 K is perturbed by a circular bubble of warmer air.
The initial temperature field is

𝜃0 = 300 + 2
[

1 − 𝑟
𝑟0

]

if 𝑟 ≤ 𝑟0 = 2000 m, 𝜃0 = 300 otherwise, (34)

where (𝑥𝑐 , 𝑧𝑐) = (5000, 2000) m and 𝑟 =
√

(𝑥 − 𝑥𝑐)2 + (𝑧 − 𝑧𝑐 )2 are the center and the radius of the circular perturbation,
espectively [57,58]. The initial density is given by

𝜌0 =
𝑝𝑔
𝑅𝜃0

(

𝑝
𝑝𝑔

)𝑐𝑣∕𝑐𝑝
with 𝑝 = 𝑝𝑔

(

1 −
𝑔𝑧
𝑐𝑝𝜃0

)𝑐𝑝∕𝑅

, (35)

where 𝑐𝑝 = 𝑅 + 𝑐𝑣, with 𝑐𝑣 = 715.5 J/(Kg K) and 𝑅 = 287 J/(Kg K). The initial velocity field is zero everywhere. The initial specific
enthalpy is defined as:

ℎ0 = 𝑐𝑝𝜃
0
(

𝑝
𝑝𝑔

)
𝑅
𝑐𝑝

. (36)

We impose impenetrable, free-slip boundary conditions on all the boundaries and we set 𝑡𝑓 = 1020 s. In time interval (0, 1020] s, the
warm bubble rises due to buoyancy and evolves into a mushroom-like shape as a result of shear stress.

We generate a uniform structured mesh with mesh size ℎ = 𝛥𝑥 = 𝛥𝑧 = 62.5 m and set the time step set to 𝛥𝑡 = 0.1 s.
ollowing [41,57], we set 𝜇𝑎 = 15 and 𝑃𝑟 = 1 in (8)–(9). Both of these are ad-hoc values provided in [57] to stabilize the numerical
imulations. More sophisticated LES models can be found in, e.g., [40,42].
We collect an original database consisting of 204 snapshots, i.e., the computed 𝜃′ every 5 s. These snapshots are divided into

wo different sets. A first set, called training set, is used to generate the reduced basis. All the snapshots belonging to the training
et are stored in the matrix 𝑺 for PODI, while all but one are stored in 𝑺1 for DMD, and 𝑺𝐻

1 for HDMD as explained in Sections 3.1
nd 3.2. The second set, called validation set, is the complement of the training set in the original database and it is used to assess
he accuracy of the ROM solution. The partitioning into these sets can be done in two ways: randomly or by preserving the temporal
rder (i.e., keeping the snapshots associated with the first 𝑁𝑡 times).
Out of the 204 computed 𝜃′ in the original database, we take 184 (i.e., 90% of the database) to form the training set. In the

ase of DMD and Hankel DMD, these 184 solutions are the first 184 in the database (associated to the time interval (0, 920] s). In
he case of PODI instead, these 184 solutions are selected randomly over the entire time interval [0, 1020] s. For all three methods,
he remaining 20 solutions form the validation set. This difference in the training and validation sets reflects the different nature of
ODI and DMD/HDMD algorithms: the former relies on the reconstruction of the solution, the latter predicts the future behavior of
system.
We start with the plot of the cumulative eigenvalues energy 𝐸 (18) for PODI, DMD and HDMD in Fig. 1. We see that the curves

or PODI and DMD are very close, while the curve for HDMD is farther apart. In particular, HDMD requires a larger number of
ingular values to reach a given energy level. To clarify the extent of this difference, Table 1 reports the number of modes needed
to attain 𝛿 = 0.7, 0.9, 0.99 in (18). We observe that DMD and PODI require the same number of modes for a given 𝛿, while HDMD
needs about or more than twice as many modes.

Next, Figs. 2 and 3 show a qualitative comparison of the ROM solutions for 𝛿 = 0.7, 0.9, 0.99 with the FOM solution. Among the
ive time instants chosen for the visualization, two of them, namely 𝑡 = 255 s and 𝑡 = 505 s, correspond to solutions belonging to the
7

raining set. These two times allow us to asses the ability of each ROM technique to identify the system dynamics. The remaining
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Table 1
Rising thermal bubble: number of modes required to retain
different energy thresholds, 𝛿 = 0.7, 0.9, 0.99, for the three ROM
methods under consideration.

DMD HDMD PODI

𝛿 = 70% 4 7 4
𝛿 = 90% 8 19 8
𝛿 = 99% 17 46 17

Table 2
Rising thermal bubble: computational time needed to construct the reduced basis offline (Basis) and to perform a simulation
online (Online) for DMD, HDMD, and PODI when 𝛿 is set to 0.7, 0.9, 0.99.
𝛿 DMD HDMD PODI

Basis Online Basis Online Basis Online

70% 0.0833 s 0.0182 s 2.487 s 2.73 s 0.074 s 0.012 s
90% 0.0835 s 0.0193 s 2.546 s 2.822 s 0.092 s 0.015 s
99% 0.085 s 0.02 s 2.865 s 2.95 s 0.1 s 0.018 s

three times, i.e., 𝑡 = 930, 980, 1020 s, are not associated with the training set and thus are used to check the accuracy of the ROM
n predicting (for DMD and HDMD) or interpolating (for PODI) the system dynamics. Let us discuss the results in Figs. 2 and 3
starting from the system identification. For 𝛿 = 0.7, 0.9, HDMD provides a better reconstruction of 𝜃′ than PODI and DMD, whose
solutions are spoiled by visible oscillations above the bubble. See the first two rows in Fig. 2. However, when 𝛿 is increased to 0.99
we observe that all three ROMs reconstruct 𝜃′ well. Indeed, no significant difference can be observed in the panels of row one and
two of Fig. 3. Now, let us take a look at the solutions corresponding to the times not associated with the training set. From the
bottom three rows in Figs. 2 and 3, we see that for none of the values of 𝛿 DMD can correctly predict the evolution of 𝜃′, while
HDMD and PODI reconstruct well the solution when 𝛿 is set to 0.99. The problem with the reconstruction provided by DMD appears
to be related to assigning large weights to basis functions associated to previous times. Indeed, in the DMD solution in Fig. 3 for
𝑡 = 1020 s we can observe the time history of the system dynamics, i.e., the rising of the warm bubble. This will be even more
evident in the DMD results for the density current benchmark (see Fig. 7).

To quantitate the agreement between the ROM solutions and the FOM solutions in Figs. 2 and 3, we report in Fig. 4 the 𝐿2 error

𝐸𝜃′ (𝑡) = 100 ⋅
‖𝜃′ℎ(𝑡) − 𝜃′𝑟(𝑡)‖𝐿2(𝛺)

‖𝜃′ℎ(𝑡)‖𝐿2(𝛺)
, (37)

or the three values of 𝛿 under consideration. We see that the 𝐿2 errors for DMD and HDMD increase sharply around and after
= 920 s for all values of 𝛿. Since the training set for DMD and HDMD includes only solutions before 𝑡 = 920 s, an increase in the
rrors past that time is to be expected. However, the magnitude of the errors at the end of the time interval, which in the best case
HDMD with 𝛿 = 0.99) is around 20%, indicates that both DMD and HDMD do a poor job in predicting the evolution of the warm
ubble. This is somewhat surprising since visually the HDMD solution for 𝛿 = 0.99 compares well with the FOM solution for all the
times shown in Fig. 3, including the times corresponding to the validation set. We suspect that the larger error for HDMD is due
to a difference in rising speed for the bubble, and not so much in the bubble shape. Since the snapshots in the training dataset for
PODI were chosen randomly, and thus include FOM solutions past 𝑡 = 920 s, the 𝐿2 errors for PODI are comparable to (for 𝛿 = 0.7)
or smaller (for 𝛿 = 0.9, 0.99) than the errors for DMD and HDMD when 𝑡 > 920 s. In particular, we notice that then 𝛿 = 0.99 the 𝐿2

errors for PODI remain less than 1% for the entire duration of the time interval. In time interval (0, 920] s, which corresponds to
system identification, HDMD reconstructs the solution more accurately than DMD and PODI. This is especially true for 𝛿 = 0.7, 0.9.

We point out that for HDMD we set 𝑀 = 25. We tried 𝑀 = 5, 10, 25, 50, 75 and found that this value provided a reasonable
trade-off between accuracy measured with error (37) and computational cost, mentioned below.

We ran all the simulations on a 11th Gen Intel(𝑅) Core(TM) i7-11700 @ 2.50 GHz system with 32 GB RAM. The time required
by the FOM to complete the simulation is 65 s. Table 2 reports the computational time needed to construct the reduced basis offline
and to perform a simulation online for each of the ROM we consider. The computational times for DMD and PODI are comparable,
which for the online phase is explained by the fact that the DMD and PODI reduced basis have the same size for the three values
of 𝛿 we consider (see Fig. 1). The speed up, i.e., the ratio between the time for a FOM simulation and the online time for the
ROM, is of the order of 3000 for these two methods, specifically 65/0.02 = 3250 for DMD and 65/0.018 = 3611 for PODI. HDMD
is computationally more expensive than DMD and PODI, which is the price one has to pay for the increased accuracy in system
identification (see Fig. 4). The speed up for HDMD is only about 20.

4.2. Density current

The computational domain for this benchmark is 𝛺 = 25600 × 6400 m2 in 𝑥𝑧-plane. Like for the previous benchmark, we start
8

from a neutrally stratified atmosphere with uniform background potential temperature 𝜃0=300 K by introducing a perturbation.
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Fig. 2. Rising thermal bubble: comparison of the evolution of 𝜃′ given by the ROMs (first 3 columns in each panel) and the FOM (last column in each panel)
for 𝛿 = 0.7 (left panel) and 𝛿 = 0.9 (right panel).

However, unlike the previous benchmark, the perturbation is represented by a circular bubble of colder air. The initial temperature
field is

𝜃0 = 300 − 𝜃𝑠[1 + cos(𝜋𝑟)], if 𝑟 ≤ 1, otherwise 𝜃0 = 300, (38)

where 𝑟 =
√

(

𝑥−𝑥𝑐
𝑥𝑟

)2
+
(

𝑧−𝑧𝑐
𝑧𝑟

)2
, with (𝑥𝑟, 𝑧𝑟) = (4000, 2000) m and (𝑥𝑐 , 𝑧𝑐) = (0, 3000) m. In (38), 𝜃𝑠 is the semi-amplitude of the initial

temperature perturbation. In [42,57,60–63], 𝜃𝑠 is set to 7.5. We will start from this value as well, but later will let 𝜃𝑠 vary in a given
nterval. The initial density is given by (35), while the initial specific enthalpy is (36). The initial velocity field is zero everywhere.
e impose impenetrable, free-slip boundary conditions on all the walls. In the time interval of interest, which is (0, 900] s, the cold
ir descends due to negative buoyancy and when it reaches the ground, it rolls up and forms a front. As this front propagates, a
ulti-rotor structure develops. One important difference with respect to the previous benchmark is that in this test the flow structures
ave a predominantly vertical motion till about 𝑡 = 280 s (fall of the cold air) and then the motion becomes predominantly horizontal
front propagation). See Fig. 5 for the initial solution and computed solution at 𝑡 = 280 s.
We generate a uniform structured mesh with mesh size ℎ = 𝛥𝑥 = 𝛥𝑧 = 100 m and set the time step set to 𝛥𝑡 = 0.1 s.

ollowing [57,63], we set 𝜇𝑎 = 75 and 𝑃𝑟 = 1 in (8)–(9). Like in the case of the previous benchmark, these are ad-hoc values
sed to stabilize the numerical simulations.
9
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Fig. 3. Rising thermal bubble: comparison of the evolution of 𝜃′ given by the ROMs (first 3 columns) and the FOM (last column) for 𝛿 = 0.99.

We will compare the ROM techniques under consideration in terms of the reconstruction of the time evolution of 𝜃′ in
Section 4.2.1. In addition, in Section 4.2.2 we perform a parametric study for 𝜃𝑠 with PODI.

4.2.1. Time reconstruction
For the results in this section, we set 𝜃𝑠 = 7.5. To generate the reduced basis, we collect a database consisting of 225 snapshots,

i.e., the computed 𝜃′ every 4 s. Similarly to the procedure reported in Section 4.1, we divide the database into two sets: a training
set containing 90% of the snapshots (i.e., 202 snapshots) and a validation set containing the remaining 10% (i.e., 23 snapshots). The
partition of the database is performed sequentially for DMD and HDMD and corresponds to the first 202 snapshots. In the case of
PODI, the 202 snapshots in the training set are selected randomly from the entire time interval. For HDMD, we set 𝑀 = 50, which
is larger that the value we used for the warm bubble because the density current flow is more complex.

The cumulative eigenvalue energy (18) as the number of eigenvalues is increased is shown in Fig. 6 for all the ROM approaches.
e observe a less steep increase than in Fig. 1, indicating that more modes are required to capture the flow dynamics in the density
urrent test than in the thermal rising bubble test. Table 3 displays the number of modes required to capture different energy
hresholds (𝛿 = 0.7, 0.9, 0.99) for PODI, DMD, and HDMD. PODI and DMD require the same number of modes for 𝛿 = 0.7 and similar
umbers for 𝛿 = 0.9, 0.99. The number of modes needed by HDMD is larger for every 𝛿. While the observations for Table 3 are similar
o the observation for Table 1, the numbers in Table 3 are larger. Again, this is due to the fact that the density current produces a
more complex flow.

In view of the results in Section 4.1, we set the energy threshold 𝛿 to 99%. See Table 3 for the number of modes retained for the
different methods. Fig. 7 compares the evolution of the potential temperature perturbation given by DMD, HDMD, and PODI with
10
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Fig. 4. Rising thermal bubble: time evolution of the 𝐿2 error (37) for DMD, HDMD, and PODI for 𝛿 = 0.7 (top left panel), 𝛿 = 0.9 (top right panel) and 𝛿 = 0.99
bottom panel).

Fig. 5. Density current: initial condition (left) and computed solution at 𝑡 = 280 s (right).

Fig. 6. Density current: cumulative energy 𝐸 in (18) for the three ROM approaches under consideration.

the evolution computed by the FOM. The top two rows in Fig. 7 correspond to solutions belonging to the training set. We see that all
three methods can accurately identify the main flow structure, but the DMD and PODI solutions show some instability for 𝑥 < 5 Km
and 𝑥 ∈ [10, 15] Km, respectively. These instabilities, that are especially evident at 𝑡 = 600 s, are not present in the HDMD solutions.
11
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Table 3
Density current: number of modes required to retain different
energy thresholds, 𝛿 = 0.7, 0.9, 0.99, for three ROM methods under
consideration.

DMD HDMD PODI

𝛿 = 70% 11 15 11
𝛿 = 90% 28 44 29
𝛿 = 99% 63 120 65

Fig. 7. Density current: comparison of evolution of 𝜃′ given by the ROMs (first 3 columns) and the FOM (last column) for 𝛿 = 0.99.

The bottom three rows in Fig. 7 are not associated with the training set. We see that the instabilities in the DMD solution grow
in time and expand to the majority of the domain, making the DMD prediction of the system dynamics off. As noted for the DMD
results in Fig. 3, it appears that the DMD solution gives a large weight to many basis functions associated to previous times. Indeed,
in the DMD solution for 𝑡 = 852 s we can observe the time history of the system dynamics, i.e. the fall of the cold bubble and the
front propagation. We note also that the more time passes, the larger the weights for the ‘‘past’’ snapshots become, i.e., the entire
evolution of the flow structures becomes more visible. In fact, the DMD solution for 𝑡 = 900 s clearly shows the initial cold bubble,
which is not present in the DMD solution for 𝑡 = 820 s. The HDMD algorithm fixes such issue and provides a very good prediction
of 𝜃′ field for 𝑡 = 820 s and 𝑡 = 852 s. For 𝑡 = 900 s, the HDMD solution compares less favorably with the FOM solution, although
no instability emerges. Finally, the PODI solution suppresses the instability for 𝑥 ∈ [10, 15] Km as time passes and is accurate for
𝑡 = 820, 852 s. For 𝑡 = 900 s though, instabilities arise in the PODI solution for 𝑥 < 5 Km.

For a more quantitative comparison, we show the time evolution of 𝐿2 error (37) in Fig. 8. Although qualitatively the HDMD
solution compares well with the FOM solution (See Fig. 7), we see that both DMD and HDMD do a poor job in predicting the future
behavior of the system in the 𝐿2 norm. Our suspicion that HDMD captures the shape of the flow structures well, but not their
propagating speed, is confirmed with this test: the large 𝐿2 error for HDMD is mainly due to the fact that the front propagation
slows down in comparison to the FOM solution. In fact, in the FOM solution the front is located around 𝑥 = 15 Km at 𝑡 = 900 s, while
in the HDMD solution is around 𝑥 = 14 Km at the same time. Their accuracy of DMD and HDMD is even worse than for the previous
benchmark, as it is clear from comparing Fig. 8 to the bottom panel of Fig. 4. Specifically, the 𝐿2 error (37) for DMD increases from
bout 60% to around 140%, while the error for HDMD increases from 22% to about 60%. This is a further confirmation that it is
ore challenging to capture the flow dynamics in the density current test than the thermal rising bubble test. On the other hand,
hanks to the interpolatory approach the PODI solution maintains a good accuracy throughout the entire time interval, oscillating
round 1% during fall of the bubble and reaching a maximum of about 3% in the horizontal convection phase.
To acknowledge the fact that this benchmark features mainly vertical dynamics before mainly horizontal dynamics, we now

estrict the database to the computed solutions for 𝑡 ≥ 280 s, i.e., we discard the snapshots associated to the mainly vertical motion.
his idea, which is intended to improve the results in Figs. 7 and 8, is inspired from [65,66]. The first snapshot of the new database
coincides with the computed 𝜃′ field at 𝑡 = 280 s shown in the right panel of Fig. 5 and the total number of snapshots is 155. We
use the 85% of the snapshots as training set, following time order for DMD and HDMD and randomly for PODI. We will refer to
this subset of the database as the second training set. The choice of taking 85% of the database (i.e., 133 snapshots) is to have the
same prediction time for DMD and HDMD as before, i.e., 𝑡 = [808, 900] s. This will make the comparison with the results in Figs. 7
and 8 fair for DMD/HDMD.

Fig. 9 shows the cumulative energy 𝐸 in (18) for all the ROMs. We set again the energy threshold 𝛿 to 99%, i.e., we retain
49 modes for DMD, 96 modes for HDMD and 52 modes for PODI. Since we are considering only the front propagation phase, the
12

number of modes is less than in the bottom row of Table 3.
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Fig. 8. Density current: time evolution of the 𝐿2 error (37) for DMD, HDMD, and PODI for 𝛿 = 99%.

Fig. 9. Density current, second training set: cumulative energy 𝐸 in (18) for the three ROM approaches under consideration.

Fig. 10. Density current, second training set: comparison of evolution of 𝜃′ given by the ROMs (first 3 columns) and the FOM (last column) for 𝛿 = 0.99.

Now that the basis functions have been identified, we proceed with a qualitative comparison reported in Fig. 10. Just like in
Fig. 7, the top two rows in Fig. 10 correspond to solutions belonging to the training set. We see an improved system identification for
DMD and PODI, with none of the instabilities observed in the first two rows of Fig. 7. By looking at the bottom three rows in Fig. 10,
we observe an improvement also in the system prediction, especially in the case of PODI whose solutions are oscillations-free and
very similar to the FOM solutions. The DMD solutions, although improved with respect to Fig. 7, are still affected by instabilities
or 𝑥 < 5 Km that especially evident for 𝑡 = 820 s and 𝑡 = 900 s.
Finally, let us take a look at the time evolution of 𝐿2 error (37) in Fig. 11. The improvement in accuracy is clearly observable

y comparing Fig. 11 with 8. The DMD algorithm shows a significant improvement, with its performance getting very close to the
13
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Fig. 11. Density current, second training set: time evolution of the 𝐿2 error (37) for DMD, HDMD, and PODI for energy threshold 𝛿 = 0.99%.

Fig. 12. Density current, parametric study: cumulative energy 𝐸 in (18) as 𝑁𝜃′ varies.

HDMD. Indeed, the maximum error for DMD decreases from about 120% to about 70%, which is still unacceptable though. The
error for PODI remains around 1% throughout the entire time interval. We remark that PODI showed comparable accuracy for the
rising thermal bubble when 𝛿 = 0.99 (see Fig. 4, bottom panel).

4.2.2. Parametric reconstruction
As mentioned in Section 3, time is the parameter the DMD and HDMD methods were designed to handle, while PODI can be

used for computational studies involving physical parameters too. Hence, in this subsection we investigate the accuracy of PODI in
a parametric study involving parameter 𝜃𝑠 in (38).

Let 𝜃𝑠 ∈ [5, 10] K. Like in the case of time, we choose a uniform sample distribution for 𝜃𝑠 with 11 sampling points. For each of
these 11 values of 𝜃𝑠, we run a simulation for the entire time interval of interest, i.e., [0, 900] s and collect snapshots every 4 s. The
total number of snapshots in the database is 2475. Once again, we randomly select 90% of them (i.e., 2227) for the training set.
The remaining snapshots are used for validation.

Fig. 12 shows cumulative energy 𝐸 in (18) as 𝑁𝜃′ varies. We truncated the graph at 𝑁𝜃′ = 1200 since 𝐸 increases very steeply
and gets over 99% for rather small values of 𝑁𝜃′ . Indeed, to retain 99% of the energy we only need 120 modes.

To evaluate the accuracy of PODI in the parametric study, we consider two values that are not associated to snapshots in the
training set: 𝜃𝑠 = 6.25 and 𝜃𝑠 = 8.75. A qualitative comparison between the PODI and FOM solutions is shown in Fig. 13, together
with the difference between the two in absolute value. We see that the difference in the FOM and PODI solutions, which does not
exceed 1.5 K in absolute value, is localized and confined to the region of the main flow structures. We also observe that the difference
in absolute value is smaller during the vertical fall of the bubble (top row in both panels) than during the front propagation (bottom
three rows in both panels).

The time evolution of 𝐿2 error (37) for 𝜃𝑠 = 6.25 and 𝜃𝑠 = 8.75 reported in Fig. 14 confirms that the error is smaller initially
(i.e., during the fall of the bubble) and increases at later time instances (i.e., when during the front propagation). We remark that
for both values of 𝜃𝑠 the error is lower than 10% for the entire time interval. This accuracy can be improved upon by discarding
the snapshots associated to the fall of the bubble from the database, as shown in Section 4.2.1.

4.3. 3D rising thermal bubble

The aim of this section is to demonstrate that the applicability of the ROMs under consideration is not limited to problems in
2D. For this purpose, we consider a tree-dimensional variant of the rising thermal bubble benchmark in Section 4.1 [62]. We will
14

restrict the focus to HDMD and PODI, given the poor accuracy of the DMD results presented in the previous two sections.
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Fig. 13. Density current, parametric study: FOM solutions (left column), PODI solutions (center column), and difference between the two in absolute value
third column) for 𝜃𝑠 = 6.25 (top panel) and 𝜃𝑠 = 8.75 in (bottom panel).

Fig. 14. Density current, parametric study: evolution of the 𝐿2 error (37) for 𝜃𝑠 = 6.25 (left) and 𝜃𝑠 = 8.75 (right).
15
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Fig. 15. 3D rising thermal bubble: comparison of 𝜃′ computed by HDMD (left), PODI (center), and FOM (right) for 𝑡 = 320 s (top) and 𝑡 = 480 s (bottom). We
set 𝛿 = 0.99.

The computational domain for this benchmark is 𝛺 = [0, 1600]× [0, 1600]× [0, 4000] m3 and the time interval of interest is (0, 500]
. We start from a neutrally stratified atmosphere with uniform background potential temperature 𝜃0=300 K perturbed by a spheric
ubble of warmer air. The initial temperature field is

𝜃0 = 300 + 2
[

1 − 𝑟
𝑟0

]

if 𝑟 ≤ 𝑟0 = 500 m, 𝜃0 = 300 otherwise, (39)

where (𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐 ) = (1600, 1600, 500) m is the center and 𝑟 =
√

(𝑥 − 𝑥𝑐 )2 + (𝑦 − 𝑦𝑐 )2 + (𝑧 − 𝑧𝑐)2 the radius of the spheric perturbation.
The initial density is given by (35), while the initial specific enthalpy is (36). The initial velocity field is zero everywhere. We impose
impenetrable, free-slip boundary conditions on all the boundaries.

We generate a uniform structured mesh with mesh size ℎ = 𝛥𝑥 = 𝛥𝑦 = 𝛥𝑧 = 40 m and set the time step set to 𝛥𝑡 = 0.1 s. We
et 𝜇𝑎 = 12.5 and 𝑃𝑟 = 1 in (8)–(9). These values allow us to get comparable results to those obtained the variational multiscale
ethod in [62].
To generate the reduced basis, we collect a database of 100 snapshots, i.e., the computed 𝜃′ every 5 s. The training set contains

0% of the snapshots (i.e., 80 snapshots) while the validation set contains the remaining 20% (i.e., 20 snapshots). In the case of
ODI, the 80 snapshots in the training set are selected randomly from the entire time interval. For HDMD, the training set contains
16
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Fig. 16. 3D rising thermal bubble: evolution of the 𝐿2 error (37) for HDMD and PODI with energy threshold 𝛿 = 0.99%.

the first 80 snapshots and we set 𝑀 = 40, which is larger that the value we used for the corresponding 2D benchmark. Notice that
we have double the length of the prediction window, which was 10% of the total time interval for the 2D warm bubble.

We set the energy threshold 𝛿 to 99%, corresponding to 45 modes for HDMD and 22 modes for PODI. Fig. 15 compares
the potential temperature perturbation given by HDMD and PODI with the FOM solution for two time steps: 𝑡 = 320 s (system
identification) and 𝑡 = 480 s (prediction). We observe that both HDMD and PODI interpolate well the dynamics of the system. On
the other hand, unlike the 2D case, HDMD completely fails at predicting the solution.

To quantify the agreement between the ROM solutions and the FOM solution, we plot in Fig. 16 the time evolution of 𝐿2 error
(37). We see that HDMD does a very poor job in predicting the future behavior of the system in the 𝐿2 norm: the magnitude of the
error at the end of the time interval is around 96%, about 5 times greater than the 2D case. On the other hand, the error for PODI
remains around 1% throughout the entire time interval.

5. Concluding remarks

With the goal of reducing the computational time to forecast regional atmospheric flow, we considered three data driven reduced
order modeling techniques: a ROM specifically designed for system prediction called DMD, an improvement of DMD called HDMD,
and an interpolatory ROM called PODI. PODI has the advantage over DMD and HDMD to allow for parametric studies, i.e., it
can handle physical parameters in the same way it handles time. We applied the three ROMs to two well-known 2D benchmarks
for mesoscale flow and compared their accuracy in system identification and prediction of the system behavior, and in terms of
computational time. In addition, we present preliminary results in 3D. Since the use of ROMs for the prediction of atmospheric
flow is still in its infancy, our work in this paper has a few distinguishing elements: (i) the ROMs are applied to the simulation of
mesoscale flow, which features higher resolution than the simulation of global circulation; (ii) the ROMs are used for both system
identification and prediction; and (iii) one ROM is used for a parametric study.

In the case where time is the only parameter of interest, our results show that all three ROMs are accurate in the identification of
the system dynamics, although local instabilities are seen in the DMD and PODI solutions. The price to pay for the lack of oscillations
and increased accuracy in the HDMD solutions is a substantial increase in computational time: the time of a HDMD simulation is
two orders of magnitude larger than the time of a DMD or PODI simulation. Although DMD and HDMD are intended for forecasts,
the accuracy in the prediction of the system dynamics is low even when 99% of the eigenvalue energy is retained and the snapshots
in the database are tailored to the problem at hand. Thanks to the interpolatory approach, PODI maintains a good level of accuracy
during the entire time interval of interest. This is true also when a physical parameter is varied within a parametric study and for
a 3D test case.

Given the promising results obtained with PODI, interesting future research directions for this method include more complex
problems, longer prediction windows, and high-dimensional parameter space. In addition, we believe that the results presented in
this paper can be improved upon by using Machine Learning-based techniques that can better detect and reproduce the nonlinear
behavior exhibited by the full order model. In particular, Convolutional Autoencoders and Long-Short Time Memory could improve
both the accuracy and efficiency of the methods in this paper [67–70].
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