Computers and Chemical Engineering 186 (2024) 108686

journal homepage: www.elsevier.com/locate/cace

Contents lists available at ScienceDirect

Computers and Chemical Engineering

Computers
& Chemical
Engineering

Taking the human out of decomposition-based optimization via artificial

intelligence, Part II: Learning to initialize

Ilias Mitrai, Prodromos Daoutidis

Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, United States of America

ARTICLE INFO ABSTRACT

Keywords:

Algorithm configuration

Decomposition based solution algorithm
Machine learning

Active learning

Supervised learning

Mixed-integer MPC

The repeated solution of large-scale optimization problems arises frequently in process systems engineering
tasks. Decomposition-based solution methods have been widely used to reduce the corresponding computa-
tional time, yet their implementation has multiple steps that are difficult to configure. We propose a machine
learning approach to learn the optimal initialization of such algorithms which minimizes the computational
time. Active and supervised learning is used to learn a surrogate model that predicts the computational
performance for a given initialization. We apply this approach to the initialization of Generalized Benders

Decomposition for the solution of mixed-integer model predictive control problems. The surrogate models are
used to find the optimal initialization, which corresponds to the number of initial cuts that should be added
in the master problem. The results show that the proposed approach can lead to a significant reduction in
solution time, and active learning can reduce the data required for learning.

1. Introduction

Decomposition-based optimization algorithms have been used wid-
ely to solve complex and large-scale optimization problems in a broad
range of applications in chemical engineering, such as production
scheduling and planning, supply chain management, mixed-integer
optimal control, and real-time operation. These algorithms exploit the
underlying structure of a problem and decompose it into a number of
easier-to-solve subproblems. Typical examples include Benders (Ben-
ders, 1962) and Generalized Benders Decomposition (Geoffrion, 1972),
Lagrangian decomposition (Guignard and Kim, 1987), Alternating Di-
rection Method of Multipliers (ADMM) (Boyd et al., 2011), and cross
decomposition (Van Roy, 1983).

Despite the wide success of these algorithms, their efficiency over
monolithic methods is not known a-priory and their implementa-
tion, especially in an online setting, is challenging due to the many
steps involved and the underlying computational complexity of every
step. Automatically determining when to use and how to implement
a decomposition-based solution algorithm can simplify their imple-
mentation and reduce the solution time for complex optimization
problems. In the companion paper (Mitrai and Daoutidis, 2023b) we
proposed a graph classification approach to determine when to use a
decomposition-based solution algorithm. In this paper, we focus on the
implementation of decomposition-based solution methods.

The application of a decomposition-based solution algorithm has
three steps: (1) problem decomposition, (2) coordination scheme, and

* Corresponding author.
E-mail address: daout001@umn.edu (P. Daoutidis).

https://doi.org/10.1016/j.compchemeng.2024.108686

(3) initialization of the algorithm. In the first step, the original problem
is decomposed into a number of easier-to-solve subproblems. This
step requires knowledge of the underlying structure of the problem.
Automatic decomposition approaches either represent the problem as
a graph and employ methods from network science to learn the un-
derlying structure (Allman et al.,, 2019; Mitrai and Daoutidis, 2020;
Mitrai et al., 2022; Mitrai and Daoutidis, 2021; Jalving et al., 2018) or
use machine learning (ML) to analyze the computational efficiency of
different decompositions (Basso et al., 2020; Basso and Ceselli, 2023).
The coordination step determines the exchange of information between
the different subproblems. For distributed algorithms, the coordination
determines the update of the dual variables whereas for hierarchical
algorithms it involves the addition of cuts. Finally, the last step is
the initialization of the algorithm. Unlike monolithic algorithms which
may require an initial guess for the variables, decomposition-based
algorithms require additional information regarding the values of the
dual variables for distributed algorithms or an initial set of cuts for
hierarchical algorithms. The configuration of these steps can have an
important effect on the computational performance of a decomposition-
based solution algorithm, however, determining the best configuration
for a given problem is nontrivial.

These steps can be viewed as hyperparameters of the solution algo-
rithm. Therefore, given an optimization problem and a decomposition-
based solution algorithm, one must find the optimal values of the al-
gorithm parameters such that a desired performance function, e.g., the

Received 1 October 2023; Received in revised form 22 March 2024; Accepted 9 April 2024

Available online 12 April 2024
0098-1354/© 2024 Elsevier Ltd. All rights reserved.

https://www.elsevier.com/locate/cace
https://www.elsevier.com/locate/cace
mailto:daout001@umn.edu
https://doi.org/10.1016/j.compchemeng.2024.108686
https://doi.org/10.1016/j.compchemeng.2024.108686

I. Mitrai and P. Daoutidis

solution time, is optimized. Formally this is known as the algorithm
configuration problem and is stated as follows (Eggensperger et al.,
2019; Schede et al., 2022):

Problem 1 (Algorithm Configuration). Given an optimization problem P,
an optimization algorithm a with parameters n € N, and a performance
function m P x II — M, determine the optimal values of the
parameters n* that optimize m

n* € arg nelar} m(n, P). @
n

The algorithm configuration problem has three components, the
optimization problem P which belongs in some class of optimization
problems P, the parameter space, i.e., all possible values of the parame-
ters represented by N, and the performance space M which is a metric
to compare the different configurations. We note that the version of
the problem presented above is known as the per-instance algorithm
configuration problem since the optimal parameters are determined
only for a given problem P. Alternatively, one can find the optimal
values of the parameters for a class or set of optimization problems. The
algorithm configuration can be either static, i.e., the parameters of the
algorithms remain fixed during the solution process, or dynamic, where
the parameters adapt as the solution procedure evolves. The solution of
the algorithm configuration problem is challenging since optimization
solvers, either monolithic or decomposition-based, have multiple algo-
rithmic steps and each step can have different parameters. Furthermore,
optimization solvers employ a number of heuristics; although these can
accelerate the solution on average, their efficacy for a given problem
is not known a-priory. Therefore, finding the optimal configuration of
an optimization solver is a challenging black-box optimization problem
since the number of possible combinations of parameters can be very
large, their optimal values may change significantly for different classes
of optimization problems, and the evaluation of a given configuration
can be computationally expensive.

Automated algorithm configuration approaches aim to either solve
the algorithm configuration problem in a computationally efficient
way or approximate its solution. In the former approach, Bayesian
optimization and derivative-free methods have been employed to tune
optimization algorithms by optimizing directly the black-box perfor-
mance function (Liu et al.,, 2019; Chen et al.,, 2011; Hutter et al.,
2009, 2011, 2010). In the latter approach, ML tools have been used to
approximate the performance function m with a surrogate one s/ and
then identify the optimal values of the parameters n*. These methods
have been traditionally applied for tuning monolithic solvers, either by
considering all the parameters simultaneously (lommazzo et al., 2020)
or specific algorithmic steps such as branching (Lodi and Zarpellon,
2017; Khalil et al., 2016; Balcan et al., 2018; Di Liberto et al., 2016;
Gupta et al., 2020, 2022; Liu et al., 2022), cutting plane methods (Tang
et al., 2020; Huang et al., 2022; Paulus et al., 2022), estimating active
constraints (Misra et al., 2022; Bertsimas and Stellato, 2021, 2022),
and improving primal heuristics (Ding et al., 2020). ML tools have
also been used to tune decomposition-based solution methods. For
hierarchical decomposition-based methods, such as column generation
and Benders Decomposition, ML is used to aid the cut selection process
using classification techniques (Morabit et al., 2021; Jia and Shen,
2021; Lee et al., 2020), whereas for distributed algorithms, such as
ADMM, machine learning is used to determine the values of the dual
variables and penalty parameters (Biagioni et al., 2020; Zeng et al.,
2022). In both cases, ML is used in the coordination step of these
algorithms.

These ML approaches are based on a handcrafted feature represen-
tation of an optimization problem which is the input to the surrogate
model 4 (Smith-Miles and Lopes, 2012; Hutter et al., 2014; Bengio
et al., 2021; Chen et al., 2021), and involve two steps; the first is offline
where multiple problems are solved for different values of the parame-
ters in order to create a training dataset used to learn a surrogate model
for the performance function. Once the surrogate model is trained, it is

Computers and Chemical Engineering 186 (2024) 108686

used online to identify the best set of parameters for a given problem.
The main limitation of these ML approaches is data availability since
generating a large training data set can be computationally expensive.

In this work, we focus on the initialization of decomposition-based
solution methods. Specifically, we focus on cutting plane-based hier-
archical solution methods, such as Benders and Generalized Benders
Decomposition. These algorithms are based on the observation that
if a subset of the variables, called complicating variables, is fixed
then the problem is either easier to solve or has a special structure.
Thus the original problem is decomposed into two problems; a master
problem which considers the complicating variables and a subproblem
which considers the non-complicating variables and whose solution
depends on the values of the complicating variables. The solution of
the master problem and the subproblem is coordinated via the addition
of optimality and feasibility cuts, which inform the master problem
about the bounds and the feasibility of the problem respectively. In the
standard application of the algorithm, the master problem is initially
solved without any cuts. Since the cuts contain information about the
effect of the complicating variables on the subproblem, the addition
of cuts in the first iteration can potentially lead to a reduction in
the computational time since fewer iterations might be necessary.
However, the addition of a large number of cuts may increase the
computational complexity of the master problem which in turn may
increase the solution time. Hence it is important to identify the number
of cuts that balances the amount of information added to the master
problem with the increase in computational complexity. This balance
is especially important for online applications where an optimization
problem is solved repeatedly to compensate for updated process infor-
mation. Depending on the application, either only the parameters of
the optimization problem change, such as in model predictive control
applications (Tang et al., 2018; Mitrai and Daoutidis, 2023a), or the
parameters and the number of variables and constraints can change,
such as in online scheduling applications (Mitrai and Daoutidis, 2022a;
Risbeck et al., 2019).

In this paper, we propose an ML approach to learn how to initial-
ize Generalized Benders Decomposition. The proposed approach has
two steps. In the first, ML is used to learn a surrogate model that
estimates the solution time of the optimization problem for a given
number of cuts added to the master problem in the first iteration of
the algorithm. In the second step, the surrogate model is used online
to determine the optimal number of cuts that should be added in the
master problem in the first iteration. We apply the proposed approach
to a case study on the real-time operation of process systems, where
a mixed-integer economic model predictive control problem is solved.
Specifically, we assume that the system is an isothermal continuously
stirred tank reactor (CSTR) that can manufacture a number of products,
and multiple disturbances can affect the operation of the system. The
mixed-integer economic model predictive control problem is solved
using a hybrid multicut Generalized Benders Decomposition proposed
in Mitrai and Daoutidis (2022b), initialized using the proposed ap-
proach. The results show that (1) the optimal initialization can be
achieved in an automated way without human intervention, (2) the
proper initialization can lead to a significant reduction in solution time,
and (3) active learning can guide the learning process either during the
initial development of such frameworks or for cases where generating
the training dataset is computationally expensive.

The rest of the paper is organized as follows: In Section 2 we present
the Generalized Benders Decomposition algorithm and the different
acceleration techniques, in Section 3 we pose the initialization of Gen-
eralized Benders Decomposition as an algorithm configuration problem,
in Section 4 we present the proposed approach, and in Section 5 we
present the case study and the numerical results. Finally, in Section 6,
given the results in the first part of this two-series paper (Mitrai
and Daoutidis, 2023b) we present a unified framework for automated
decomposition-based solution algorithm selection and configuration.

I. Mitrai and P. Daoutidis
2. Generalized Benders Decomposition
2.1. Standard implementation

We will assume that the following problem (denoted as P) must be
solved:
P(p) := mir;ixn;ize F1(z.x5py) + fo(x, v py)

subject to g(z,x:;p,) <0

hy(z,x;p,) =0)
8, y;p) <0
hy(x,y;p,) =0
€7, x e R x 7%,y € R™,
where p = [p,,p,]7 are the parameters of the problem, and z €

7", x € R x Z", y € R" are the variables. The solution of this
problem depends on the values of the parameters p. In this problem, we
observe that if the variables z, x are fixed, then the resulting problem
is a continuous optimization problem whose solution depends on the
values of the fixed variables x, which are the complicating variables,
and the parameters p,. Given this structure, we can apply Generalized
Benders Decomposition, by assigning the z, x variables and the associ-
ated constraints in the master problem and the other variables (y) and
constraints in the subproblem. Under this decomposition, parameters
p,, affect only the master problem and parameters p, affect only the
subproblem. The subproblem is

S(x, py) = minimize f5(X, y; py)
X,y

subject to g,(X,y;p,) <0
hy(%,y;ps) =0 3)
Xx=x : A
X € R"iﬂ'g,y e R,
where 4 are the Lagrangian multipliers for the equality constraint x = x.
The solution of this problem depends on the values of the complicating

variables x and the parameters p,, and for a given value of x = x the
value function of the subproblem can be approximated as follows:

S(x,py) = S(%, py) = Ax = X), C)

where 1 is equal to the value of the Lagrangian multiplier at the optimal
solution of the subproblem when solved for x = x. Note that we assume
that the subproblem is always feasible for all values of x. The master
problem is:

M(-) :=minimize f;(z,x;p,)+n
Z,X,1

subject to g{(z,x;p,,) <0
hy(z,x;p,) =0 (5)
n>SE,p)-Mx-xhvier
ze 2, x € RS x 2",

where M(-) = M(p,,, L), | is the iteration number and the set £ denotes
the index of the Benders cuts. The steps of GBD are presented in
Algorithm 1.

2.2. Acceleration techniques for Benders Decomposition

The algorithm alternates between the solution of the master prob-
lem and the subproblem, therefore the computational performance
depends on the complexity of the master problem and subproblem,
i.e., the solution time per iteration, the number of infeasible subprob-
lems that must be solved, and the quality of cuts that are generated
during the solution. Two approaches can be followed to handle these
issues. The first one is based on the theoretical aspects of the algorithm
and the underlying geometry of the problem. Common strategies in

Computers and Chemical Engineering 186 (2024) 108686

Data: Optimization problem
Result: Upper, lower bound and variable values
Set UB = 00, LB = —cx0;
Set tolerance and optimality gap (tol);
Initialize the algorithm;
while (UB — LB)/LB > tol/100 do
Solve the master problem Eq. (5) and obtain LB, x;
Solve the subproblem Eq. (3) and obtain y;
Add Benders cut Eq. (4);
Update the upper bound f/(z, x; p,,) + f2(x, ; p,);
end

© o N o Ul A W N o=

Algorithm 1: Generalized Benders Decomposition

this approach are problem reformulation and decomposition (Crainic
et al., 2016; Magnanti and Wong, 1981), the addition of valid inequal-
ities in the master problem to reduce the number of infeasible sub-
problems (Saharidis et al., 2011), multicut implementation (You and
Grossmann, 2013) for stochastic optimization problems, cut generation
and management (Magnanti and Wong, 1981; Su et al., 2015; Saharidis
and Ierapetritou, 2010; Pacqueau et al., 2012; Varelmann et al., 2022),
and regularization/stabilization of the master problem (Ruszczyriski
and Swietanowski, 1997; Linderoth and Wright, 2003). The second
approach involves the use of ML techniques. For example, ML has
been used to develop a classifier to determine which cuts should be
added in the master problem during the multicut implementation of
the algorithm for the solution of two-stage mixed-integer stochastic
optimization problems (Jia and Shen, 2021; Lee et al., 2020). ML has
also been used to approximate the solution of the subproblem reducing
the solution time for cases where the subproblem is computationally
complex, such as two-stage stochastic optimization problems (Larsen
et al., 2023) and mixed-integer model predictive control problems (Mi-
trai and Daoutidis, 2023a). These acceleration methods, both the ones
based on the underlying geometry and the ones using ML, reduce the
computational time either by reducing the solution time per iteration
or by reducing the number of iterations.

3. Initialization of GBD as an algorithm configuration problem

We will assume that problem P(p) must be solved repeatedly given
new values of the parameters p. The problem that we will address is
the following:

Problem 2. Given an optimization problem P(p) determine the optimal
number of cuts to add in the master problem in the first iteration
of Generalized Benders Decomposition, such that the CPU time is
minimized.

We can pose this as a per-instance algorithm configuration problem
as follows
minimize m(n, P(p)), (6)

NEN curs

where the optimization problem is P(p), the parameter space N,
represents the cuts that can be added, and the performance function
is the solution time M = R,. The solution of the algorithm con-
figuration problem for Generalized Benders Decomposition has three
main challenges. The first, which is common in algorithm configuration
problems, is that the performance function m is not known a-priory. The
second issue is related to the parameter space, i.e., all the cuts that
can potentially be used to initialize the master problem. In general,
selecting which cuts to use is a challenging problem that arises in
the solution of many classes of problems such as quadratic (Baltean-
Lugojan et al., 2019; Marousi and Kokossis, 2022), and mixed-integer
linear programming problems (Morabit et al., 2021; Chi et al., 2022).
Regarding Generalized Benders Decomposition, the number of cuts that

I. Mitrai and P. Daoutidis

ne =3

12

Computers and Chemical Engineering 186 (2024) 108686

ne=4

Fig. 1. Domain discretization for the case study considered in Section 5 for a transition from product 1 to 2 for three and four number of cuts (n,). The solid line is the value
function, x € [2.24,6.73] is the complicating variable, the dotted lines are the value function approximations, i.e., Benders cuts, evaluated ad the points indicated by the dots.

can be evaluated depends on the number and type of complicating
variables. For cases where the complicating variables are integer and »,
cuts must be added, the cut selection process leads to a combinatorial
optimization problem since one must select n, cuts from all possible
cuts. The situation is more complex when the complicating variables
are continuous, since in this case an infinite number of cuts can be
added even for one complicated variable. Finally, all the parameters
of the problem can change simultaneously, thus the cuts must be
evaluated continuously as the parameter of the problem change. Hence,
although the addition of cuts in the master problem might reduce the
number of iterations required for convergence, the solution time might
increase since multiple subproblems must be solved to evaluate the
initial set of cuts.

We will assume that (1) the parameters of the subproblem do not
change, (2) all the complicating variables are continuous, and (3) n,
cuts can be added by discretizing the domain of the complicating
variables (x € [x/®,x**]) into n, uniform points. The first assumption
guarantees that the Benders cuts must be evaluated only once since
even if the parameters of the master problem change, the Benders
cuts are still valid estimators of the value function of the subproblem,
since the parameters of the subproblem do not change. Therefore, the
process of adding these cuts to the master problem does not affect
the total solution time. The second and third assumptions determine
the cut selection strategy. In this work, the number of cuts determines
the number of points that will be used to approximate the value
function of the subproblem via Benders cuts. An example is presented in
Fig. 1, where the value function corresponds to the system discussed in
Section 5 and the approximation with three and four cuts is presented.
This setting enables us to simplify the cut selection process for the case
of continuous complicating variables. Notice that in this setting the cuts
are uniformly distributed in the domain of the complicating variables.

4. Learning to initialize via supervised and active learning

The goal is to learn a surrogate model m which approximates the
solution time and can be used to identify the optimal number of cuts
to add in the master problem,

n* € arg nfgﬂ #i(n, v(P(p))), @

where v(P(p)) are some features of problem P(p). We propose two ML
approaches for learning the surrogate model.

4.1. Supervised learning approach

The estimation of the parameters of a surrogate model requires
data that capture the relation between the features of an optimization
problem v(P(p)) and the number of cuts n with the solution time. Such
data can be generated using the procedure presented in Algorithm 2,
where first random values of the parameters of the master problem
(p,,) are generated based on some underlying probability distribution.
Next, the optimization problem P(p;) is solved for a fixed number of
cuts n;, and the solution time y; is obtained. Finally, the features of
the problem v(P(p;)) are obtained and the tuplet (n;, v(P(p;))) and the
solution time y; are stored. Once this procedure is completed, we obtain
the dataset D = {(n;, vV(P(p;))). y; }i”l”“’. This dataset can be used to learn
the parameters of the surrogate model by optimizing some loss function
such as the squared error between the model prediction and the data.
Once the learning step is completed, the surrogate model can be used
to learn how many cuts to add for online applications as presented
in Algorithm 3, where given new values of the parameters of the
optimization problem, the features of the problem are obtained and the
optimal number of cuts is computed by optimizing the surrogate model.
Finally, the cuts are added to the master problem and Generalized
Benders Decomposition is implemented.

4.2. Active learning approach

The main limitation of the supervised learning approach is the com-
putational time required to generate the training data, since for every
value of the parameters p; and number of cuts n; the problem must
be solved to obtain the solution time. This approach can be computa-
tionally expensive, even intractable for complex optimization problems.
To resolve this we propose the application of active learning (Settles,
2009), a commonly used approach in ML tasks where the features of the
data are known but obtaining their label is costly or time-consuming.
Unlike supervised learning where all the data are available for training,
in active learning the model itself determines which data should be
labeled and thus be used for training the surrogate model.

The active learning paradigm has three components. The first is the
unlabeled data which can be generated de novo (known as membership
query synthesis) (Angluin, 1988), can become available in an online
setting (stream-based selective sampling) (Cohn et al., 1994), or can

~

Mitrai and P. Daoutidis

Data: Optimization problem, number of data points N,,,,
number of discretization points N,,,, upper and lower
bounds for complicating variables x € [x'?, x**],
P = [p4> Ps, Pl

Result: Surrogate model 7

1i=1;

2 while i < Ny, do

3 Generate parameters py, p,, p3 = p; = [P1. P2, D3, Dl;
4 for j=2: N, do

5 Solve problem P(p;) using j cuts for each x;

6 Obtain CPU time y;;

7 Obtain features of the problem s; = (V(P(p;)), /);
8 Append data {s;,y;};

9 end

10 i=i+1;
11 end

—
N

Using data {s;, yi}l"l‘”"(NC””_l) learn parameters of a surrogate
model

Algorithm 2: Learning the relation between number of cuts and
CPU time for a general optimization problem for continuous
complicating variables

be gathered at once (pool-based sampling) (Lewis and Gale, 1995).
The second aspect is the query strategy, which determines which data
should be labeled. This decision is taken by considering the informa-
tiveness of the available unlabeled data. Typical query strategies are
uncertainty sampling (Lewis and Gale, 1995), query by committee (Se-
ung et al., 1992), and expected model change (Settles et al., 2007).
We refer the reader to Settles (2009) for a detailed discussion of the
different sampling methods. The last component is an oracle which
generates the label for a given input. Typical example of an oracle is a
human expert, a computer simulation or the outcome of an experiment.

In this work, we will use the pool-based active learning paradigm
with uncertainty-based sampling, where the data point for which the
model is the least certain is labeled. The basic steps of the application
of active learning for learning the solution time of Generalized Benders
Decomposition are presented in Fig. 2.

4.2.1. Generation of pool of labels and initial training set

For the application of active learning, first, the pool of labels
is created. We generate random values of the parameter p; and for
every parameter the features of the optimization problem v(P(p,)) are
obtained and a number of cuts #; is selected. This forms the pool of fea-
tures C, = {s,-}::”l””’ (s; = {n;, v(P(p;))}). Next, a small set of training data
is obtained by sampling N;,;,;,; data points from the pool and evaluating
the solution time y;. This is the initial training set C = {s;, y,-}i’i”f"“"”
which we will refer to as labeled training set. Given the unlabeled pool
C, and the labeled dataset C, the surrogate model considers all the
data in the pool, and the data point s = {n,, v(P(p,))} for which the

prediction is the least certain about is selected for labeling.

4.2.2. Uncertainty-based sampling using Gaussian processes

The selection of the data point requires quantification of the predic-
tion uncertainty. Gaussian Process Regression (GPR) is a non-
parametric Bayesian approach that can provide uncertainty measures
(Williams and Rasmussen, 2006). GPR is based on the Gaussian Process
which is a stochastic process that defines a distribution over functions.
Specifically, given observations of the input variables X = [x|,...,xy]
and measurements of the output ¥ = [y,,...,yy], the relationship
between X and Y is modeled as a Gaussian multivariate distribution.
GPR seeks to learn a mapping f : X ~ Y, i.e., y = f(x), with mean
m(x) and covariance k(x, x") where (E is the expected value)

m(x) = E[f(x)]

(8)
k(x,x") = E[(f(x) = mO)(f (x") = m(x"))].

Computers and Chemical Engineering 186 (2024) 108686

Training Using f ar find

data point
to be evaluated

Machine Learning

model fAL

Labeled training set
D = {(ni, v(P(m))), yi} iy

Unlabeled pool
Cp = {ni, v(P(pi)) Hy

Data point
to be evaluated

(ni, v(P(p:)))

Generalized Benders
Decomposition

{(na, v(P())) ik L]

Fig. 2. Learning to initialize Generalized Benders Decomposition via active learning
framework.

This is done under the assumption that the data are independent and
the probability to observe an output given the observations can be
factored over cases in the training set. The Gaussian Process, is written
as f(x) ~ GP(m(x), k(x, x")). Different kernel functions (-, -) can be used,
however in this paper we use the Matern kernel given by the following
equation

k(. = ;<‘5d<- A>>VK <@d(- A>> ©
orwt\ ¢ N)

where d(-,) is the Euclidean distance between features s; and s;, I'(-) is
the gamma function, K,(-) is the modified Bessel function, and ¢, v are
tunable hyperparameters. During training the parameters of the mean
and kernel function are estimated based on the available data. This step
estimates the posterior distribution over functions that best explain the
data. This posterior distribution is also Gaussian and is used to make
predictions for a new data point. We refer the reader to Williams and
Rasmussen (2006) for detailed explanation of these steps.

4.2.3. Oracle

The oracle is the Generalized Benders Decomposition algorithm
which given the parameters of an optimization problem and a num-
ber of cuts, solves the optimization problem and returns the solution
time. We note that although here we consider the standard version of
Generalized Benders Decomposition as the oracle, in principle, other
versions can be incorporated, such as multicut implementation, partial
Benders decomposition etc.

4.2.4. Active learning loop

The active learning loop is presented in Fig. 2 and Algorithm 4. The
inputs are the pool of unlabeled data C,, the initial training set C, and
the surrogate model /# which is a Gaussian Process with Matern kernel.
First, the model is trained using the initial training dataset. Next, the
model is used to predict the solution time and uncertainty around the
prediction for all the unlabeled data and identify the datapoint s with
the maximum uncertainty. This data point is passed to the Generalized
Benders Decomposition algorithm and the solution time (the label)
is recorded, the labeled datapoint {s,y} is appended in the training
dataset, and the datapoint with label s is removed form the pool. The
surrogate model is trained again using the new training dataset and this
loop continues until the maximum number of iterations is reached. The
outcome of this approach is the surrogate model #.

Remark 1. In this paper, we used a pool-based active learning
approach with uncertainty-based sampling. However different active
learning paradigms have been proposed. These paradigms can poten-
tially be exploited for learning how to initialize decomposition-based
and monolithic-based solution algorithms for different applications.
For example, stream-based selective sampling can be used for learning
online the surrogate models for the performance function, thus enabling
the online learning of the optimal initialization.

~

Mitrai and P. Daoutidis

Data: Surrogate model 7, Optimization problem P, value of
parameters p
Result: Problem solution
1 Compute the features of the problem v(P(p));
2 Determine the optimal number of cuts
nhs = arg minneN[m m(N, v(P(p)));
3 Add n* _ cuts in the master problem;

cuts
4 Solve the optimization problem using Algorithm 1;

Algorithm 3: Regression based initialization of Generalized
Benders decomposition

Data: Number of evaluations N, initial labeled dataset
C = {s,y}, Pool of labels C,, Surrogate model 7
Result: Surrogate model 7~
1 Train surrogate model / on the initial dataset C;
2 while i < N do
3 Select a data point with features s from pool C, based on
maximum uncertainty sampling strategy
s € argmaxec, o(s);
Evaluate label y for s using GBD;
Append data {s,y} inset C =CU {s,y};
Remove data-point s from pool C, = C, \ {s};
Train surrogate model 7 using set C;
i=i+1;
end

O o N o u b

Algorithm 4: Learning surrogate model for solution time via
active learning

5. Application to mixed-integer economic model predictive con-
trol for real-time operation of chemical processes

In this section, we apply the proposed method for learning to
initialize Generalized Benders Decomposition for the solution of mixed-
integer economic model predictive control problems that arise in the
operation of chemical processes. Specifically, we consider a continu-
ous manufacturing system whose operation can be affected by distur-
bances in the scheduling, e.g., change in demand, and control level,
e.g., change in the inlet conditions of the process, as presented in Fig. 3.
Once a disturbance affects the system an optimization problem is solved
to determine the production sequence and the transitions between
the products. In this section, we present the optimization model, the
decomposition-based solution approach, the data generation process,
and the evaluation of the different learning approaches.

5.1. Optimization model

5.1.1. Scheduling model

We will consider the case where an isothermal CSTR is used to
produce N, products over a time horizon of H hours which is dis-
cretized into N slots (N; = N,). We will assume that while the system
is following a nominal schedule a disturbance affects the system at
time T, as presented in Fig. 3. Under this setting, every slot k except
the first one has two regimes; a production regime where a product
is manufactured and a transition regime where a transition occurs
from the operating point of the product manufactured at slot k to the
operating point of the product manufactured at slot k + 1. The first slot
has three regimes; a transition regime that captures the transition from
some intermediate state (where the system is due to the disturbance)
to the operating point of the product manufactured in the first slot, a
production regime, and another transition regime which considers the
transition from the product manufactured at the first slot to the product
manufactured in the second slot.

Computers and Chemical Engineering 186 (2024) 108686

We define a binary variable W}, which is equal to one if product i
is manufactured in slot k and zero otherwise. Also, we define a binary
variable Z,;, which is equal to one if a transition occurs from product
to j in slot k, and variable Z[which is equal to one if a transition occurs
from an intermediate state to product i in the first slot. At every time
point, only one product can be manufactured. The logic constraints are:

N,
W, =1Vk=1,...,N,
i=1 (10)

The starting time of slot k is T}, the ending time T?, the production
time of product i in slot k is ©;;, and the transition time in slot is 6;.
The timing constraints are:

N,

»
TE=T +) Oy +0, Vk=1,...,N,
i=1

TS, =T¢{Vk=1,...,N,—1
Tlflg =H-T,
O <HW, Vi=1,...,N, k=1,...,N,
N, N, N, an
91 = Zijleijl + Z i0;
i=1 j=1 i=1
NI’ Nﬁ
0= 3 Zjb Vk=2,...,N,
i=1 j=1
Ok 2 671" Vi, j k
0, > 6™ vi

where 6, is the transition time from product i to j in slot &, 6; is the
transition time from an intermediate state to the steady state of product
i, 0;:!"" is the minimum transition time from product i to j, and @;""" is
the minimum transition time from the intermediate state to the steady
state of product i. The production rate of product i is r;, the production
amount of product i in slot k is ¢;;, and the inventory of product i in
slot k is I;,. The production constraints are

L= Ty +10y =Sy Vi=1,...,N, k=2,...,N,

o ’ 12
Ip=I'+r0; —S; Vi=1,..,N, k=1,

i

where I,,O is the initial inventory of product i. The demand of product
i is d; and the due date for every product is in the end of the time
horizon. The demand satisfaction constraints are

Sy, 2d; Yi=1,....N, 13)

5.1.2. Dynamic model
We will assume that the system is described by a system of differ-
ential equations

% = F(x,u), a4

where x € R", u € R™ are the state and manipulated variables,
and F : R™ x R — R" are vector functions. We will consider
simultaneously all transitions between the products and discretize the
differential equations using the method of orthogonal collocation on
finite elements (using N, finite elements and N, collocation points).
We define state variable x;;,,. and manipulated variable u;; . for a
transition from product i to j in slot k, finite element f and collocation
point c. We also define variable %;,. and manipulated variable &, ,, for
a transition from the intermediate state to product i in finite element
f and collocation point ¢ in the first slot. The discretized differential

I. Mitrai and P. Daoutidis

Products n

Disturbance ‘

Scheduling ‘

Computers and Chemical Engineering 186 (2024) 108686

horizon ‘ ’

Updated
scheduling
horizon o

Fig. 3. Schematic of rescheduling.

equations for transitions between products are
Xijkfe = Fd(xijkfc’ Uijkfeo Hijk) Vi, j.k, f.c
Xijki1 = x}° Vi, j k
XijknyN, =X Vi j. k 15)
wp =u; Vi, j.k
UijkN,/N, = ut Vi, j. k
and the equations for the transition from the intermediate state to
product i are:

= Fy(%;f0 07,0 0;) Vi, 1

X =x" Vi
XingN, =X Vi 16)
Q; =u* Vi

N s s
diN,N, = Y; Vi
where x7°, ui* are the steady state values of the state and manipu-

lated variables of product i. A detailed expression for the discretized
differential equations can be found at Mitrai and Daoutidis (2022b).

5.1.3. Objective function

The objective function has three terms; the first is the profit @, the
second is the transition cost between products @,, and the third is the
transition cost from the intermediate state @®;. These terms are equal
to:

— oper inv trans
D, = ZPikSik—C,-k g —C Iik_zc,jk Zijk
ik ijk

D, = 2 Zij% <Z N ufck AN, Wijpere = “YS)2> a7)

ijk
_ 4 —12d
@, = Zziau<z N7 A
i fe

where p;, C/” are the price and operating cost of product i, C™" is the
inventory cost, C‘.’; is the transition cost from product i to j, a, is a
weight coefficient, and A is the collocation matrix.

A 552
cNC(ui_fc - u/) >
u

5.1.4. Mixed-integer model predictive control problem and decomposition-
based solution
The mixed-integer MPC problem is:

P(p) : minimize @ —®, — D,

18)
subject to Egs. (10), (11), (12), (13), (15), (16).

. N,N N N,
where p = {(d b IOV, To, (0010 0,1 s 2

{u; }‘ 1,x *}. This problem has three sets of parameters, the ones related
to the scheduling part of the problem p = {{d, }l ' {IO}' " Tos
{6 "”"}l 1/ Iy {9,-}[.11"1, {r[};:”1 }, ones related to the dynamlc behavior of
the system for transitions between products p = {{x;*} " s {ul® Z"l IR
and the ones related to the transition from the 1ntermed1ate state to
the steady state of the different products j = x*.

We will rewrite the mixed-integer economic MPC problem (Eq. (18))
as follows

maximize @ (w) - Z,kadyn(w,jk, 0,1) — Z 2, (@, 0)
ijk
subject to gsched(w Gijk,éi;ﬁ) <0 19)
Uk (auk’ ,,Uﬁ) <0Vijk
& 0. dyi:p) < O Vi

where w = (W, Ziy. 2, T}, T, 04, 0;, Sy} are scheduling variables,

@i = {XjjferUijkpe) aTe varlables assoc1ated with the dynamic behav-
ior of the system for a transition from product i to product j in slot k,
and &; = (., 8.} are variables associated with the dynamic behavior
of the system for a transition from the intermediate state to the product
i. 8cneq are the scheduling constraints (Egs. (10), (11), (12), (13)),
gldji" are the discretized differential equations for transitions between
products (Eq. (15)), and £ “iy" are the discretized differential equations
for transition from the 1ntermediate state to product i (Eq. (16))

If we fix the scheduling variables w and the transition times 6, b;
then the dynamic optimization problems for all the transitions can be
solved independently. We define as ¢;;, the value function of the dy-
namic optimization problem for a transition from product i to product
Jj in slot k. The dynamic optimization problem for this transition is

qbuk(é'uk) = minimize fdyn(wljk’ uk)
o;jk-0;jk

(20)

subject to gdy,,(é,-jk,w,-jk) <0

Ok = Opjic © Aiji-
where 4, is the Lagrangian multiplier for the equality constraint.
Similarly, we define the value function for a transition from the inter-
mediate state to product i, ¢;, and the dynamic optimization problem
for this transition is

7% @,)

¢;(0;.p) := minimize f

@;,0;

subject to <0 (€2Y)

I. Mitrai and P. Daoutidis

Data: Number of data points N,,,, Maximum number of

discretization points N_,,, upper and lower bounds for
complicating variables 6,;, € [01.’;5"”, 59,.’;‘,"”], Demand
distribution for every product, Distribution of inlet
concentration in the reactor, Scheduling horizon H

Result: Pool of unlabeled data C,

1C,={}

2 i=0;

3 while i < Ny, do

4 Select at random a time point T, ~ U(0, H);

5 Introduce a disturbance in the inlet concentration of the

rector ¢, ~ U(0.8,1.2);

6 Generate new demand for every product d; ~ U (g,.,d‘,.);
7 Compute inventory I, at time T;
8 Get the value of the concentration in the reactor x*;
9 | Obtain minimum transition times §™" from x* to x!*;
10 Form and solve the master problem;
1 if Master problem is feasible then
12 forn=2: N, do
13 Add n cuts to add in the master problem;
14 Compute features s and append the data point in
the pool C,;
15 end
16 else
17 The demand cannot be satisfied at the end of the time
horizon due to the disturbance, data point is not
considered
18 end
19 end

Algorithm 5: Unlabeled data generation procedure for creating
the pool of unlabeled data for active learning

We note that these dynamic optimization problems are always feasible,
since the transition times are bounded from below by the minimum
transition times, ie., 6, > 6", §, > 6. The value functions
bijks ¢, can be approximated with Benders cuts given by the following
equations (Geoffrion, 1972)

Mijic 21k (B)50) = Ay Oy = 6,1

. = o oA % (22)
i, 2,(0)) — AL, - 0)),

where /| € £ denotes the number of points used to approximate the
value functions. The original problem can be reformulated as
maximize @ (w)— Z ZijiMiji — Z Z#;

ijk i
subject 10 gqpeq (W, 0,4 0;) <0 (23)
Mijk 2 ¢£jk(é1(jk) - ’lzl'jk(eijk - éz{jk) Vi.j. k.1
i = $i(6) — 2@, — 8% vi, 1.

To solve the problem we use a hybrid multicut Generalized Benders
Decomposition algorithm proposed in Mitrai and Daoutidis (2022b).
In this algorithm the solution of the master problem provides the
production sequence and the transition times, and Benders cuts are
added to approximate the transition cost. In this case, the dynamic
optimization problems between the products depend only on the tran-
sition time, whereas the transition from the intermediate state depends
on the transition time and the concentration of the intermediate state.
Therefore, the initialization of the algorithm considers only the optimal
number of cuts added to approximate the transitions between the
products, i.e. how many points should be used to approximate ¢,;,. We
use the same number of cuts for all transitions.

Computers and Chemical Engineering 186 (2024) 108686
5.2. Application of active learning approach

For the application of active learning, first, we generate the pool
of unlabeled data as presented in Algorithm 5. We assume that at a
random time point 7, between 0 and the end of the scheduling horizon,
the demand of all the products and the inlet concentration of the reactor
change simultaneously based on some probability distributions. The
statistics of the demand are presented in Table 2 and we assume that
the inlet concentration follows a uniform distribution with a low value
of 0.8 and a high value of 1.2. Once the disturbance occurs, we compute
the inventory, based on the realization of the initial schedule that was
followed for T;, hours and the concentration x* inside the reactor. Next,
the minimum transition time from the intermediate state x* to the
steady state x;* is computed for all the products. Given this information,
we formulate a new master problem where the scheduling horizon is
H — T, and check its feasibility. If the master problem is infeasible,
then the disturbance that was generated cannot be rejected such that
the system can meet the demand at the end of the scheduling horizon. If
the master problem is feasible, then different numbers of cuts are added
to the master problem, as presented in lines 12-14 in Algorithm 5, and
the features of the problem and the number of cuts are added in the
unlabeled pool C,. Note that the feasibility of the mixed-integer MPC
problem can be determined by the feasibility of the master problem
without any cuts since the subproblems are always feasible and the
only source of infeasibility in the mixed-integer MPC problem is due
to the inability to satisfy the demand.

The features of the problem, in this case, are the time point Tj,, the
concentration in the reactor x*, the inlet flowrate Q, the demand of
the products {d,-}i”l’”", inventory of the products {I,.O}f:”l’”", state of the
system, i.e., production or transition, and the number of cuts added
n..s- For the state of the system, we use one-hot encoding, i.e., state €
{0, 1}. Overall the features s; for data point i are:

N,

prod ¢ 10y Nprod
i=1 {[I }i:1

§; = [T07X*7Q7 {d;} , state, Nyl

N, . .
These features form the pool C, = {s,-}l.z"l””’ of data points with N, =

49000. Next, we generate a small number of data points (N,,;;,; = 10)
and evaluate the CPU time. We allow 100 evaluations N = 100, i.e., 100
data points are labeled. The computational time for obtaining the data
is 726 s. The active learning approach is implemented using scikit-
learn (Pedregosa et al., 2011) and the multicut Generalized Benders
Decomposition is implemented in Pyomo (Hart et al., 2017), the master
problem is solved using Gurobi (Gurobi Optimization, LLC, 2021) and
the subproblem is solved with IPOPT (Wéchter and Biegler, 2006). We
note that the solution returned by Generalized Benders Decomposition
is not guaranteed to be globally optimal since the problem in Eq. (18)
is a non-convex MINLP.

5.3. Active learning results

We compare the proposed active learning approach, denoted as GP-
AL, with a random sampling of 110 points from the pool using different
surrogates models such as Gaussian Process (GP) with Matern kernel,
Neural Network (NN), Random Forest (RF) and Decision Tree (DT).
The hyperparameters of the Gaussian Process, Random Forest, and the
Decision Tree were set equal to their default values while the neural
network has 3 layers, 150 neurons per layer, and tanh as activation
function.

We generate 100 new disturbances that are not part of the pool and
were not used for training in either the active or supervised learning
approach. The solution time statistics for the different models are pre-
sented in Table 1. From the results, we observe that the active learning
approach leads on average to 66.5% reduction in CPU time compared
to the standard application of Generalized Benders Decomposition,
whereas the Gaussian process, Neural Network, Random Forest, and
Decision Tree lead to 53%,43%,51% and 33% reduction respectively.

I. Mitrai and P. Daoutidis

Additionally, for the 100 random disturbances considered, the solu-
tion time obtained from the active learning approach is always lower
than the solution time without the addition of cuts. The minimum
percentage reduction in solution time for the active learning approach
is 0.09%, whereas for the surrogate models learned via random sam-
pling, the minimum reduction is negative, i.e., the solution time of the
proposed approach is higher than the original implementation of Gen-
eralized Benders Decomposition. These results indicate that the optimal
number of cuts identified by optimizing the surrogate model trained via
random sampling is highly suboptimal. Although these results can be
justified by the fact that only 110 data points were used for training,
they also highlight the importance of selecting the proper data points to
label in cases where obtaining the labels is computationally expensive.

5.4. Application of supervised learning

We also consider the case where the labeling cost is not significant.
Specifically, for every data point in the pool C, with features s; gen-
erated in the previous section, we solve the optimization problem and
obtain the solution time y;, leading to a data set D = {s;, y; };‘2?00. We
use this data set for training three surrogate modes; a Decision Tree,
a Random Forest, and a Neural Network using scikit-learn (Pedregosa
et al., 2011). For the Decision Tree and the Random Forest, we used
the default values of the hyperparameters. The Neural Network had 3
layers with 150 neurons, the activation function was tanh, the learning
rate was equal to 104, and the regularization parameter a was set
equal to 0.01. Note that in this case, we do not train Gaussian Processes
since the dataset has 49 000 data points and Gaussian Processes have
cubic complexity on the number of samples.

Once the surrogate models were trained, we generate 100 random
disturbances that change simultaneously the demands and the inlet
concentration as in the previous section. These disturbances are dif-
ferent than the disturbances generated in the previous section. We
solve the optimization problem for every disturbance by initializing
the Generalized Benders Decomposition algorithm using the number
of cuts suggested by optimizing the different surrogate models. The
total CPU time for the different disturbances is presented in Fig. 4 and
the solution time statistics in Table 3. From the results, we observe
that the average total CPU time without the addition of cuts (No
cuts) is 14.7 s. The selection of the optimal number of cuts to add
to the master problem leads to a 70% reduction in CPU time. From
the three surrogate models, the Neural Network shows the maximum
improvement in total CPU time, although the average reduction is
similar for all surrogate models. Furthermore, the minimum reduction
is positive for all models, indicating that the solution time with the
proposed initialization is lower than the original implementation of the
algorithm without cuts. From Fig. 4 we observe that the variance in
the solution time for the proposed approach is small. This indicates
that the surrogate models extract information from the feature space
when predicting the solution time. An initialization strategy where a
random number of cuts is added will have a higher variance than
the proposed approach since the solution time can vary between the
minimum solution time and the solution time without any cuts. Finally,
the time presented in Table 3 is the total time required to determine
the optimal number of cuts and solve the problem. For case study
considered, the time to determine the optimal number of cuts is in the
order of 1072 s for the decision tree and the neural network and in the
order of 10! s for the random forest. Thus, the process of determining
the number of cuts and adding them is significantly smaller than the
solution time.

6. Conclusions and discussion
The repeated solution of large-scale decision-making problems

arises frequently in the operation of process systems. The efficient
solution of such problems with monolithic optimization algorithms can

Computers and Chemical Engineering 186 (2024) 108686

Table 1
Computational time for the proposed approach for different surrogate models. NC refers
to solving the problem without the addition of cuts in the first iteration.

Solution statistics Initialization strategy

NC GP-AL GP NN RF DT
Aver. CPU time 13.7 4.31 6.22 7.67 6.34 9.11
Aver. red. - 66.5 53.44 43.52 51.61 33.64
Aver. fold red. - 3.33 2.49 2.18 2.38 1.75
Max. red. (%) - 81.3 81.41 79.57 81.96 77.55
Min. red. (%) - 0.09 —2.66 —-0.02 -26.47 -18.82
Max fold red. - 5.35 5.38 4.48 5.54 4.45
Min fold red. - 1.00 0.97 0.99 0.79 0.84
Table 2

Distribution of the demand.

Product Nominal value Distribution (Uniform)
Low High

1 600 -100 100
2 550 -15 15

3 600 -30 30

4 1200 -20 20

5 2000 —400 400

Table 3

Computational time for the proposed approach for different surrogate models trained
via supervised learning.

Solution statistics Initialization strategy

No cuts Neural Random Decision
networks forests trees
Average CPU time (s) 14.7 3.63 3.78 3.74
Average reduction (%) - 71.71 70.50 70.53
Average fold reduction - 4.23 4.01 4.10
Max. reduction (%) - 84.85 83.88 86.40
Min. reduction (%) - 25.66 17.30 21.13
Max fold reduction - 6.60 6.20 7.35
Min fold reduction - 1.34 1.20 1.26
20.0 o e ® No cuts
¢ Neural network
®» o0 owm © e e
17541 @ e o o «* @Y+ _ Random forest
[L] isi
L 150 ° s * D:osmn trie.
E ° L *® o [° °
S5 ® ¢ o Coe o ° e °
s -2
o []
; 10.0 A e o
° [] L) L)
F o754 ® . e ° .z b °
e +) * B +,
0l b d ;’a»ﬁ £ i .y {té" .
ﬁt#’?f M@;&""#;v’% WAL Wy
2.5 LR N LAAL N M A L g
v ¢ ¢
0 20 10 60 80 100
Data point

Fig. 4. Solution time of the proposed approach with different surrogate models for
49000 training data points.

be challenging, especially in online settings. Although decomposition-
based solution methods have been widely used to solve large-scale
optimization problems, their off-the-shelf implementation is nontrivial.
In this work, we proposed a ML-based approach for optimally initializ-
ing cutting plane-based decomposition-based solution algorithms, such
as Generalized Benders. We use active learning to guide the generation
of labeled data for learning a surrogate model that predicts the solution
time of Generalized Benders Decomposition for a given problem and the
initial set of cuts added in the master problem. The proposed approach
is applied to a case study of mixed-integer economic model predictive
control. The numerical results show that the optimal initialization of

I. Mitrai and P. Daoutidis

Computers and Chemical Engineering 186 (2024) 108686

Optimization
problem

Decomposition-based
solution approach

Solution

Algorithm selection

Py :min fi(z)
z
s.t. gi(z) <0
r € X

Monolithic
solution

VX -
\Decomposition
based solution

s Py :min fy(z)
Py :min fo(z) B
z s.t. gi(z) <0 Coordination
s.t. go(x) <0 SR SC TN ’C(,P} ... schemel Labeled training set ‘ Unlabeled pool
P Lol # I n—— D = {s;, yHii" Cp={si}
o € Xy Primin folz) - / Coordination {s’wy’ ot » {‘s} 1
s.t. ga(2) <0 ‘. scheme 2 — —
T2 € Xy S A Decomposition-based J DOy
{n} algorithm to be labelled

Algorithm configuration

Problem decomposition
DecODe

-

Benders AN
decomposition

Core periphery structure

\
\
|

SBM . 1

* I

|

|

| Constraint graph Community structure Lagrangean !

: » decomposition

] = I

i SBM L !

|

\\\» //
Coordination Initialization

Training

Machine Learning
model far

Fig. 5. Framework for automated decomposition-based solution algorithm selection and configuration via artificial intelligence and network science.

the algorithm can significantly reduce the solution time up to 70 % and
the computation of the optimal number of cuts using the learn surrogate
model does not incur additional computational cost. These results
highlight the ability of active learning to guide the data generation
process for cases where obtaining the solution time is computationally
expensive.

In general, the solution of an optimization problem with decompo-
sition-based solution methods poses four questions: (1) Whether a
decomposition-based method should be selected over a monolithic one,
(2) how to decompose the optimization problem, (3) which coordina-
tion scheme should be used, and (4) how to initialize the algorithm. The
results presented in this paper and in Mitrai and Daoutidis (2023b), in
tandem with our previous work on learning the underlying structure
of an optimization problem (Allman et al., 2019; Mitrai et al., 2022;
Mitrai and Daoutidis, 2021), show that artificial intelligence tools in
combination with network science can be used to create an automated
framework for decomposition-based solution algorithm selection and
configuration.

The overall framework is presented in Fig. 5 and has two parts.
The first focuses on algorithm selection, where given an optimiza-
tion problem graph classification techniques can be used to determine
whether, and potentially which, decomposition-based solution algo-
rithm should be used. In the second part, the configuration of the
selected decomposition-based solution algorithm is considered. The
configuration has three aspects, problem decomposition, coordination,
and initialization. For the problem decomposition, structure detec-
tion algorithms can be implemented to learn the underlying structure
of the problem and use it as the basis for the application of the
decomposition-based solution algorithm using DecODe (Mitrai et al.,
2022).

Regarding the coordination, although it was not considered in this
paper or in Mitrai and Daoutidis (2023b), it is a critical aspect of
decomposition-based solution. For hierarchical decomposition-based
methods, the coordination is done via cuts and the different coordina-
tion schemes correspond to different cut generation and management
techniques. For distributed algorithms, the coordination considers dif-
ferent methods to update the dual variables or the Lagrangian mul-
tipliers. Consider for example the case of Lagrangian decomposition,
where the dual variables can be updated using subgradient, cutting

10

plane, bundle, and trust region methods (Conejo et al., 2006). The
choice of which coordination scheme is the best, especially for mixed-
integer nonlinear programming problems is not obvious. ML tools such
as classification and regression, possibly coupled with geometric deep
learning, might aid the selection of the coordination scheme as pre-
sented in Fig. 5. Finally, for the initialization, supervised learning can
be used to learn surrogate models for the computational performance
of the algorithm which can subsequently be used to optimally initialize
the algorithm.

This framework, and any ML-based approach, requires data for
learning the parameters of the surrogate models used in the differ-
ent tasks. Although multiple libraries of optimization problems ex-
ist (MINLPLib, 2018; NLP, 2022; Gleixner et al., 2021), these are
unlabeled data since for a given problem the solution time for a
given algorithm and a given configuration is not known. Building a
library where not only the optimization problem but also the solution
time and possibly other information regarding the solution is stored
would significantly reduce the required time for building such ML-
based approaches for decomposition-based solution algorithms. Finally,
the computational effort required to obtain the labels can be reduced
either via active learning or semi-supervised learning (Balestriero et al.,
2023).

CRediT authorship contribution statement

Ilias Mitrai: Conceptualization, Data curation, Formal analysis,
Investigation, Methodology, Software, Validation, Visualization, Writ-
ing — original draft, Writing — review & editing. Prodromos Daou-
tidis: Conceptualization, Formal analysis, Funding acquisition, Inves-
tigation, Methodology, Project administration, Resources, Supervision,
Validation, Writing — review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

I. Mitrai and P. Daoutidis
Data availability

Data will be made available on request.
Acknowledgments

Financial support from NSF-CBET (award number 2313289) is
gratefully acknowledged.

References

Allman, A., Tang, W., Daoutidis, P., 2019. DeCODe: a community-based algorithm for
generating high-quality decompositions of optimization problems. Optim. Eng. 20
(4), 1067-1084.

Angluin, D., 1988. Queries and concept learning. Mach. Learn. 2 (4), 319-342.

Balcan, M.-F., Dick, T., Sandholm, T., Vitercik, E., 2018. Learning to branch. In:
International Conference on Machine Learning. PMLR, pp. 344-353.

Balestriero, R., Ibrahim, M., Sobal, V., Morcos, A., Shekhar, S., Goldstein, T., Bordes, F.,
Bardes, A., Mialon, G., Tian, Y., et al., 2023. A cookbook of self-supervised learning.
arXiv preprint arXiv:2304.12210.

Baltean-Lugojan, R., Bonami, P., Misener, R., Tramontani, A., 2019. Scoring positive
semidefinite cutting planes for quadratic optimization via trained neural networks.
preprint: http://www.optimization-online.org/DB_HTML/2018/11/6943.html.

Basso, S., Ceselli, A., 2023. A data driven Dantzig-Wolfe decomposition framework.
Math. Prog. Comput. 15 (1), 153-194.

Basso, S., Ceselli, A., Tettamanzi, A., 2020. Random sampling and machine learning to
understand good decompositions. Ann. Oper. Res. 284, 501-526.

Benders, J.F., 1962. Partitioning procedures for solving mixed-variables programming
problems. Numer. Math. 4 (1), 238-252.

Bengio, Y., Lodi, A., Prouvost, A., 2021. Machine learning for combinatorial op-
timization: a methodological tour d’horizon. European J. Oper. Res. 290 (2),
405-421.

Bertsimas, D., Stellato, B., 2021. The voice of optimization. Mach. Learn. 110 (2),
249-277.

Bertsimas, D., Stellato, B., 2022. Online mixed-integer optimization in milliseconds.
INFORMS J. Comput..

Biagioni, D., Graf, P., Zhang, X., Zamzam, A.S., Baker, K., King, J., 2020. Learning-
accelerated ADMM for distributed DC optimal power flow. IEEE Control Syst. Lett.
6, 1-6.

Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., et al., 2011. Distributed opti-
mization and statistical learning via the alternating direction method of multipliers.
Found. Trends Mach. Learn. 3 (1), 1-122.

Chen, T., Chen, X., Chen, W., Heaton, H., Liu, J., Wang, Z., Yin, W., 2021. Learning
to optimize: A primer and a benchmark. arXiv preprint arXiv:2103.12828.

Chen, W., Shao, Z., Wang, K., Chen, X., Biegler, L.T., 2011. Random sampling-based
automatic parameter tuning for nonlinear programming solvers. Ind. Eng. Chem.
Res. 50 (7), 3907-3918.

Chi, C., Aboussalah, A.M., Khalil, E.B., Wang, J., Sherkat-Masoumi, Z., 2022. A deep
reinforcement learning framework for column generation. arXiv preprint arXiv:
2206.02568.

Cohn, D., Atlas, L., Ladner, R., 1994. Improving generalization with active learning.
Mach. Learn. 15, 201-221.

Conejo, A.J., Castillo, E., Minguez, R., Garcia-Bertrand, R., 2006. Decomposition
Techniques in Mathematical Programming: Engineering and Science Applications.
Springer.

Crainic, T.G., Rei, W., Hewitt, M., Maggioni, F., 2016. Partial Benders Decomposition
Strategies for Two-Stage Stochastic Integer Programs, vol. 37, CIRRELT.

Di Liberto, G., Kadioglu, S., Leo, K., Malitsky, Y., 2016. Dash: Dynamic approach for
switching heuristics. European J. Oper. Res. 248 (3), 943-953.

Ding, J.-Y., Zhang, C., Shen, L., Li, S., Wang, B., Xu, Y., Song, L., 2020. Accelerating
primal solution findings for mixed integer programs based on solution prediction.
In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 34, pp.
1452-1459.

Eggensperger, K., Lindauer, M., Hutter, F., 2019. Pitfalls and best practices in algorithm
configuration. J. Artificial Intelligence Res. 64, 861-893.

Geoffrion, A.M., 1972. Generalized benders decomposition. J. Optim. Theory Appl. 10,
237-260.

Gleixner, A., Hendel, G., Gamrath, G., Achterberg, T., Bastubbe, M., Berthold, T.,
Christophel, P., Jarck, K., Koch, T., Linderoth, J., et al., 2021. MIPLIB 2017:
data-driven compilation of the 6th mixed-integer programming library. Math. Prog.
Comput. 13 (3), 443-490.

Guignard, M., Kim, S., 1987. Lagrangean decomposition: A model yielding stronger
Lagrangean bounds. Math. Prog. 39 (2), 215-228.

Gupta, P., Gasse, M., Khalil, E., Mudigonda, P., Lodi, A., Bengio, Y., 2020. Hybrid
models for learning to branch. Adv. Neural Inf. Process. Syst. 33, 18087-18097.

Gupta, P., Khalil, E.B., Chetélat, D., Gasse, M., Bengio, Y., Lodi, A., Kumar, M.P., 2022.
Lookback for learning to branch. arXiv preprint arXiv:2206.14987.

11

Computers and Chemical Engineering 186 (2024) 108686

Gurobi Optimization, LLC, 2021. Gurobi optimizer reference manual. URL https://www.
gurobi.com. Accessed: 2021-08-31.

Hart, W.E., Laird, C.D., Watson, J.-P., Woodruff, D.L., Hackebeil, G.A., Nicholson, B.L.,
Siirola, J.D., 2017. second ed. Pyomo-Optimization Modeling in Python, vol. 67,
Springer Science & Business Media.

Huang, Z., Wang, K., Liu, F., Zhen, H.-L., Zhang, W., Yuan, M., Hao, J., Yu, Y.,
Wang, J., 2022. Learning to select cuts for efficient mixed-integer programming.
Pattern Recognit. 123, 108353.

Hutter, F., Hoos, H.H., Leyton-Brown, K., 2010. Automated configuration of mixed
integer programming solvers. In: International Conference on Integration of Ar-
tificial Intelligence (AI) and Operations Research (OR) Techniques in Constraint
Programming. Springer, pp. 186-202.

Hutter, F., Hoos, H.H., Leyton-Brown, K., 2011. Sequential model-based optimization
for general algorithm configuration. In: International Conference on Learning and
Intelligent Optimization. Springer, pp. 507-523.

Hutter, F., Hoos, H.H., Leyton-Brown, K., Stiitzle, T., 2009. ParamILS: an automatic
algorithm configuration framework. J. Artificial Intelligence Res. 36, 267-306.
Hutter, F., Xu, L., Hoos, H.H., Leyton-Brown, K., 2014. Algorithm runtime prediction:

Methods & evaluation. Artificial Intelligence 206, 79-111.

Iommazzo, G., d’Ambrosio, C., Frangioni, A., Liberti, L., 2020. Learning to configure
mathematical programming solvers by mathematical programming. In: International
Conference on Learning and Intelligent Optimization. Springer, pp. 377-389.

Jalving, J., Cao, Y., Zavala, V.M., 2018. Graph-based modeling and simulation of
complex systems. arXiv preprint arXiv:1812.04983.

Jia, H., Shen, S., 2021. Benders cut classification via support vector machines for solving
two-stage stochastic programs. INFORMS J. Comput. 3 (3), 278-297.

Khalil, E., Le Bodic, P., Song, L., Nemhauser, G., Dilkina, B., 2016. Learning to branch
in mixed integer programming. In: Proceedings of the AAAI Conference on Artificial
Intelligence. Vol. 30.

Larsen, E., Frejinger, E., Gendron, B., Lodi, A., 2023. Fast continuous and integer
L-shaped heuristics through supervised learning. INFORMS J. Comput..

Lee, M., Ma, N., Yu, G., Dai, H., 2020. Accelerating generalized benders decomposition
for wireless resource allocation. IEEE Trans. Wirel. Commun. 20 (2), 1233-1247.

Lewis, D.D., Gale, W.A., 1995. A sequential algorithm for training text classifiers:
Corrigendum and additional data. In: ACM SIGIR Forum, vol. 29, ACM New York,
NY, USA, pp. 13-19.

Linderoth, J., Wright, S., 2003. Decomposition algorithms for stochastic programming
on a computational grid. Comput. Optim. Appl. 24 (2), 207-250.

Liu, D., Fischetti, M., Lodi, A., 2022. Learning to search in local branching. In:
Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 36, pp.
3796-3803.

Liu, J., Ploskas, N., Sahinidis, N.V., 2019. Tuning BARON using derivative-free
optimization algorithms. J. Global Optim. 74 (4), 611-637.

Lodi, A., Zarpellon, G., 2017. On learning and branching: a survey. Top 25 (2),
207-236.

Magnanti, T.L., Wong, R.T., 1981. Accelerating benders decomposition: Algorithmic
enhancement and model selection criteria. Oper. Res. 29 (3), 464-484.

Marousi, A., Kokossis, A., 2022. On the acceleration of global optimization algorithms
by coupling cutting plane decomposition algorithms with machine learning and
advanced data analytics. Comput. Chem. Eng. 163, 107820.

2018. MINLPLib: A library of mixed-integer and continuous nonlinear programming
instances. URL http://www.minlplib.org/.

Misra, S., Roald, L., Ng, Y., 2022. Learning for constrained optimization: Identifying
optimal active constraint sets. INFORMS J. Comput. 34 (1), 463-480.

Mitrai, 1., Daoutidis, P., 2020. Decomposition of integrated scheduling and dynamic
optimization problems using community detection. J. Process Control 90, 63-74.

Mitrai, I., Daoutidis, P., 2021. Efficient solution of enterprise-wide optimization
problems using nested stochastic blockmodeling. Ind. Eng. Chem. Res. http://dx.
doi.org/10.1021/acs.iecr.1c01570.

Mitrai, I., Daoutidis, P., 2022a. An adaptive multi-cut decomposition based algorithm
for integrated closed loop scheduling and control. In: Computer Aided Chemical
Engineering, vol. 49, Elsevier, pp. 475-480.

Mitrai, 1., Daoutidis, P., 2022b. A multicut generalized benders decomposition approach
for the integration of process operations and dynamic optimization for continuous
systems. Comput. Chem. Eng. 107859.

Mitrai, I, Daoutidis, P., 2023a. Computationally efficient solution of mixed in-
teger model predictive control problems via machine learning aided benders
decomposition. arXiv preprint arXiv:2309.16508.

Mitrai, 1., Daoutidis, P., 2023b. Taking the human out of decomposition-based opti-
mization via artificial intelligence: Part I. Learning when to decompose. Comput.
Chem. Eng. http://dx.doi.org/10.1016/j.compchemeng.2024.108688.

Mitrai, 1., Tang, W., Daoutidis, P., 2022. Stochastic blockmodeling for learning the
structure of optimization problems. AIChE J. 68 (6), e17415.

Morabit, M., Desaulniers, G., Lodi, A., 2021. Machine-learning-based column selection
for column generation. Transp. Sci. 55 (4), 815-831.

2022. NLP and MINLP test problems. URL https://minlp.com/nlp-and-minlp-test-
problems.

Pacqueau, R., Soumis, F., Hoang, L.-N., 2012. A Fast and Accurate Algorithm for
Stochastic Integer Programming, Applied to Stochastic Shift Scheduling. Groupe
d’Etudes et de Recherche en Analyse des Décisions.

http://refhub.elsevier.com/S0098-1354(24)00104-2/sb1
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb1
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb1
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb1
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb1
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb2
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb3
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb3
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb3
http://arxiv.org/abs/2304.12210
http://www.optimization-online.org/DB_HTML/2018/11/6943.html
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb6
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb6
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb6
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb7
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb7
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb7
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb8
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb8
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb8
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb9
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb9
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb9
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb9
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb9
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb10
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb10
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb10
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb11
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb11
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb11
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb12
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb12
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb12
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb12
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb12
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb13
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb13
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb13
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb13
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb13
http://arxiv.org/abs/2103.12828
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb15
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb15
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb15
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb15
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb15
http://arxiv.org/abs/2206.02568
http://arxiv.org/abs/2206.02568
http://arxiv.org/abs/2206.02568
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb17
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb17
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb17
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb18
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb18
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb18
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb18
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb18
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb19
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb19
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb19
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb20
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb20
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb20
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb21
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb21
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb21
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb21
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb21
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb21
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb21
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb22
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb22
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb22
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb23
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb23
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb23
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb24
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb24
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb24
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb24
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb24
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb24
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb24
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb25
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb25
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb25
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb26
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb26
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb26
http://arxiv.org/abs/2206.14987
https://www.gurobi.com
https://www.gurobi.com
https://www.gurobi.com
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb29
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb29
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb29
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb29
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb29
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb30
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb30
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb30
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb30
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb30
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb31
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb31
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb31
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb31
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb31
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb31
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb31
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb32
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb32
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb32
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb32
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb32
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb33
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb33
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb33
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb34
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb34
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb34
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb35
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb35
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb35
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb35
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb35
http://arxiv.org/abs/1812.04983
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb37
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb37
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb37
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb38
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb38
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb38
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb38
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb38
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb39
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb39
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb39
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb40
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb40
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb40
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb41
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb41
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb41
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb41
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb41
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb42
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb42
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb42
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb43
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb43
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb43
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb43
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb43
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb44
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb44
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb44
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb45
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb45
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb45
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb46
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb46
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb46
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb47
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb47
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb47
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb47
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb47
http://www.minlplib.org/
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb49
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb49
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb49
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb50
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb50
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb50
http://dx.doi.org/10.1021/acs.iecr.1c01570
http://dx.doi.org/10.1021/acs.iecr.1c01570
http://dx.doi.org/10.1021/acs.iecr.1c01570
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb52
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb52
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb52
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb52
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb52
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb53
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb53
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb53
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb53
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb53
http://arxiv.org/abs/2309.16508
http://dx.doi.org/10.1016/j.compchemeng.2024.108688
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb56
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb56
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb56
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb57
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb57
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb57
https://minlp.com/nlp-and-minlp-test-problems
https://minlp.com/nlp-and-minlp-test-problems
https://minlp.com/nlp-and-minlp-test-problems
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb59
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb59
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb59
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb59
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb59

I. Mitrai and P. Daoutidis

Paulus, M.B., Zarpellon, G., Krause, A., Charlin, L., Maddison, C., 2022. Learning to cut
by looking ahead: Cutting plane selection via imitation learning. In: International
Conference on Machine Learning. PMLR, pp. 17584-17600.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E., 2011. Scikit-learn: Machine
learning in python. J. Mach. Learn. Res. 12, 2825-2830.

Risbeck, M.J., Maravelias, C.T., Rawlings, J.B., 2019. Unification of closed-loop
scheduling and control: State-space formulations, terminal constraints, and nominal
theoretical properties. Comput. Chem. Eng. 129, 106496.

Ruszczyfiski, A., Swietanowski, A., 1997. Accelerating the regularized decomposition
method for two stage stochastic linear problems. European J. Oper. Res. 101 (2),
328-342.

Saharidis, G.K., Boile, M., Theofanis, S., 2011. Initialization of the benders master
problem using valid inequalities applied to fixed-charge network problems. Expert
Syst. Appl. 38 (6), 6627-6636.

Saharidis, G.K., lerapetritou, M.G., 2010. Improving benders decomposition using
maximum feasible subsystem (MFS) cut generation strategy. Comput. Chem. Eng.
34 (8), 1237-1245.

Schede, E., Brandt, J., Tornede, A., Wever, M., Bengs, V., Hiillermeier, E., Tierney, K.,
2022. A survey of methods for automated algorithm configuration. arXiv preprint
arXiv:2202.01651.

Settles, B., 2009. Active learning literature survey.

Settles, B., Craven, M., Ray, S., 2007. Multiple-instance active learning. Adv. Neural
Inf. Process. Syst. 20.

Seung, H.S., Opper, M., Sompolinsky, H., 1992. Query by committee. In: Proceedings
of the Fifth Annual Workshop on Computational Learning Theory. pp. 287-294.

12

Computers and Chemical Engineering 186 (2024) 108686

Smith-Miles, K., Lopes, L., 2012. Measuring instance difficulty for combinatorial
optimization problems. Comput. Oper. Res. 39 (5), 875-889.

Su, L., Tang, L., Grossmann, LE., 2015. Computational strategies for improved MINLP
algorithms. Comput. Chem. Eng. 75, 40-48.

Tang, Y., Agrawal, S., Faenza, Y., 2020. Reinforcement learning for integer program-
ming: Learning to cut. In: International Conference on Machine Learning. PMLR,
pp. 9367-9376.

Tang, W., Allman, A., Pourkargar, D.B., Daoutidis, P., 2018. Optimal decomposition for
distributed optimization in nonlinear model predictive control through community
detection. Comput. Chem. Eng. 111, 43-54.

Van Roy, T.J., 1983. Cross decomposition for mixed integer programming. Math. Prog.
25, 46-63.

Varelmann, T., Otashu, J.I., Seo, K., Lipow, A.W., Mitsos, A., Baldea, M., 2022. A
decoupling strategy for protecting sensitive process information in cooperative
optimization of power flow. AIChE J. 68 (1), e17429.

Wichter, A., Biegler, L.T., 2006. On the implementation of an interior-point filter line-
search algorithm for large-scale nonlinear programming. Math. Program. 106 (1),
25-57.

Williams, C.K., Rasmussen, C.E., 2006. Gaussian Processes for Machine Learning, vol.
2, MIT Press, Cambridge, MA.

You, F., Grossmann, LE., 2013. Multicut benders decomposition algorithm for process
supply chain planning under uncertainty. Ann. Oper. Res. 210 (1), 191-211.
Zeng, S., Kody, A., Kim, Y., Kim, K., Molzahn, D.K., 2022. A reinforcement learning
approach to parameter selection for distributed optimal power flow. Electr. Power

Syst. Res. 212, 108546.

http://refhub.elsevier.com/S0098-1354(24)00104-2/sb60
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb60
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb60
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb60
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb60
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb61
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb61
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb61
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb61
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb61
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb61
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb61
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb62
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb62
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb62
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb62
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb62
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb63
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb63
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb63
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb63
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb63
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb64
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb64
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb64
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb64
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb64
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb65
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb65
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb65
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb65
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb65
http://arxiv.org/abs/2202.01651
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb67
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb68
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb68
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb68
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb69
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb69
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb69
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb70
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb70
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb70
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb71
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb71
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb71
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb72
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb72
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb72
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb72
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb72
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb73
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb73
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb73
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb73
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb73
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb74
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb74
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb74
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb75
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb75
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb75
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb75
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb75
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb76
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb76
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb76
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb76
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb76
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb77
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb77
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb77
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb78
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb78
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb78
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb79
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb79
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb79
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb79
http://refhub.elsevier.com/S0098-1354(24)00104-2/sb79

	Taking the human out of decomposition-based optimization via artificial intelligence, Part II: Learning to initialize
	Introduction
	Generalized Benders Decomposition
	Standard implementation
	Acceleration techniques for Benders Decomposition

	Initialization of GBD as an algorithm configuration problem
	Learning to initialize via supervised and active learning
	Supervised learning approach
	Active learning approach
	Generation of pool of labels and initial training set
	Uncertainty-based sampling using Gaussian Processes
	Oracle
	Active learning loop

	Application to mixed-integer economic model predictive control for real-time operation of chemical processes
	Optimization model
	Scheduling model
	Dynamic model
	Objective function
	Mixed-Integer Model Predictive Control problem and decomposition-based solution

	Application of active learning approach
	Active learning results
	Application of supervised learning

	Conclusions and discussion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

