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Abstract. Let A be a commutative algebra equipped with an action of a
group G. The so-called G-primes of A are the equivariant analogs of prime
ideals, and of central importance in equivariant commutative algebra. When
G is an infinite dimensional group, these ideals can be very subtle: for in-
stance, distinct G-primes can have the same radical. In previous work, the
second author showed that if G = GL1 and A is a polynomial representa-
tion, then these pathologies disappear when G is replaced with the supergroup
GL1|1 and A with a corresponding algebra; this leads to a geometric de-
scription of G-primes of A. In the present paper, we construct an abstract
framework around this result, and apply the framework to prove analogous
results for other (super)groups. We give some applications to the isomeric
determinantal ideals (commonly known as “queer determinantal ideals”).
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1. Introduction

1.1. Background. A GL-algebra is a commutative algebra equipped with an ac-
tion of the infinite general linear group GL under which it forms a polynomial rep-
resentation. Over the last decade, mathematicians have realized that these algebras
are well-behaved and widely applicable: for example, modules over the simplest

Date: February 13, 2024.
Key words and phrases. Supergroup, Equivariant prime ideal, Tensor category.
RL was supported by NSF grant DMS-2001992. AS was supported by NSF grant DMS-

1453893.

1



2 ROBERT P. LAUDONE AND ANDREW SNOWDEN

GL-algebra Sym(Q1) are equivalent (via Schur–Weyl duality) to the FI-modules
of Church, Ellenberg, and Farb [CEF]; Sam and the second author [SS2] used GL-
algebras to study the stable representation theory of classical groups; and Draisma
[Dr] proved a topological noetherianity result for these algebras which has been
applied [DLL, ESS] to give new proofs of Stillman’s conjecture.

A GL-prime of a GL-algebra A is a GL-stable ideal p of A that such that
ab ⇢ p implies a ⇢ p or b ⇢ p for GL-stable ideals a and b. These ideals take
the place of ordinary prime ideals in the equivariant theory, and are therefore of
central importance. Any ordinary prime ideal that is GL-stable is GL-prime, but
the converse is not true: for example, if A is the even subalgebra of the exterior
algebra on the standard representation then the zero ideal is GL-prime. This
example shows Spec(A) cannot “see” the GL-primes of A. The second author
solved this problem (in characteristic 0) in [Sn], the antecedent of the present
paper: if one regards A as a polynomial functor then one can evaluate A on the
super vector space Q1|1, and the spectrum of the resulting ring is rich enough to
detect all GL-primes. This provides a geometric basis for studying these ideals.

The purpose of this paper is twofold. First, we abstract and partially ax-
iomatize the results from [Sn]. And second, we apply this framework to study
equivariant primes for other infinite dimensional Lie (super)algebras.

1.2. Abstract results. The results of [Sn] compare the equivariant commutative
algebra of a GL-algebra A to the ordinary commutative algebra of A(Q1|1). In
other words, if ! : Reppol(GL) ! SVec denotes the functor !(M) = M(Q1|1),
then these results compare the commutative algebra of A and !(A), regarded as
algebra objects in the respective categories. This suggests the following general
problem:

Problem 1.1. Let ! : C ! D be a tensor functor and let A be a commutative

algebra object of C. How do commutative algebraic properties of A and !(A) com-

pare?

For example, one may ask more specifically: how do the prime ideals of A
and !(A) compare? (We note that “prime ideal” makes sense for commutative
algebras in any tensor category. The notion of GL-prime discussed above is the
categorical notion of prime for an algebra in Reppol(GL).) In §4.1, we introduce
two conditions (A) and (B) on ! that allow for comparison of certain commutative
algebraic properties. In this language, the main results of [Sn] simply state that the
functor Reppol(GL) ! SVec satisfies (A) and (B). We prove a number of abstract
results about these properties, and give various criteria for establishing them. This
streamlines the task of establishing these properties in concrete situations.

1.3. Lie superalgebras. We consider four infinite dimensional Lie superalgebras:

(1.2) gl1|1, osp1|1, pe1, q1
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(general linear, orthosymplectic, periplectic, and isomeric1; see §5 for definitions).
If g is any one of these algebras, then there is a tensor category Repalg(g) compris-
ing the algebraic representations of g (over a fixed field of characteristic 0). Our
main theorem is the following:

Theorem 1.3. Let g be one of the four Lie superalgebras (1.2). Then the forgetful

functor

Repalg(g) ! SVec

satisfies properties (A) and (B).

We note that this theorem is new even for gl: the above theorem treats
algebraic representations of gl, while [Sn] applies only to the smaller category
of polynomial representations. (The above theorem applies equally well to the
category of polynomial representations of q1.) The most important consequences
of the theorem are spelled out below:

Corollary 1.4. Let g be as above and let A be a commutative algebra in Repalg(g).

(a) Let a and b be g-ideals. Then radg(a) ⇢ radg(b) if and only if rad(a) ⇢
rad(b).

(b) Let a be a g-ideal. Then radg(a) is g-prime if and only if rad(a) is prime.

(c) The construction p 7! rad(p) defines a bijection between minimal g-primes

of A and minimal primes of A.

Now suppose that A is generated over a noetherian coe�cient ring by a finite length

g-subrepresentation. Then we also have:

(d) The g-spectrum Specg(A) of A is a noetherian topological space.

Here radg(a) is the sum of all g-stable ideals c such that cn ⇢ a for some n;
see Definition 2.8. Also, Specg(A) is the set of all g-primes of A, equipped with
the Zariski topology; see Definition 2.11.

In fact, it is possible to prove a more general version of Theorem 1.3 with
our methods. Let g and h be finite products of the algebras in (1.2) and let h ! g
be a homomorphism built out of the various standard homomorphisms between
these algebras. Then the restriction functor Repalg(g) ! Repalg(h) satisfies (A)
and (B).

The above results imply similar results for (non-super) Lie algebras. For ex-
ample, consider the infinite orthogonal Lie algebra o1, and let Repalg(o1) be its
category of algebraic representations (on ordinary vector spaces). The forgetful
functor Repalg(o1) ! Vec does not satisfy (A); this can be seen using the afore-
mentioned exterior algebra example. However, the category Repalg(o1) is (essen-
tially) equivalent to Repalg(osp1|1). Via this equivalence we obtain a functor

Repalg(o1) ! SVec, and it follows from Theorem 1.3 that it satisfies (A) and (B).
Thus the equivariant primes in an o1-algebra A can be understood geometrically
after replacing A with the corresponding superalgebra in Repalg(osp1|1).

1Commonly known as the “queer superalgebra”
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1.4. An application. Let V andW be infinite dimensional isomeric vector spaces,
let U be their half tensor product, and let A = Sym(U) (see §7 for definitions).
We regard A as an algebra object in the category of polynomial representations
of q(V )⇥ q(W ). The algebra A was studied in [NSS3], where its ideal lattice was
determined and a noetherian result established. We apply our theory to deter-
mine the equivariant spectrum of this algebra. We show that the isomeric analog
of determinantal ideals are (q(V ) ⇥ q(W ))-prime, and account for all such prime
ideals.

1.5. Outline. In §2, we introduce elementary concepts of commutative algebra
in tensor categories, and in §3 we discuss the basic ways in which these concepts
interact with tensor functors. In §4, we formulate the properties (A) and (B) and
prove various abstract results about them. In §5, we study commutative algebras
equipped with a Lie algebra action in general tensor categories, and give criteria
for (A) and (B). In §6, we apply the abstract results to prove our main results
on Lie superalgebras. Finally, in §7, we carry out our application to the isomeric
algebra A.

1.6. Index of Terms. The following table lists the most important properties
defined in the body of the article:

Property Section Property Section Property Section

(PI) 3.1 (B) 4.1 (Gen) 4.3

(For) 3.1 (Fin) 4.2 (Stab) 5.2

(A) 4.1 (Rad) 4.3 (UF) 5.3

2. Commutative algebra in tensor categories

2.1. Basic definitions. In this section, we discuss a few aspects of commutative
algebras in tensor categories. We begin by clarifying our notion of tensor category:

Definition 2.1. A tensor category is a symmetric monoidal category (C,⌦) such
that C is a Grothendieck abelian category and ⌦ is cocontinuous in each variable.
(Thus ⌦ is right exact and commutes with all direct sums in each variable.) ⇤

Recall that an object M of an abelian category is finitely generated if the
following condition holds: given a family {Ni}i2I of subobjects of M such that
M =

P
i2I Ni, there exists a finite subset J of I such that M =

P
i2J Ni. This

definition coincides with the usual notion of finite generation in most cases, e.g., if
C is the category of modules over a ring. A general tensor category may not have
enough finitely generated objects, and the tensor product may not interact nicely
with finite generation. We therefore introduce the following refined notion:

Definition 2.2. A tensor category C is admissible if it satisfies the following:

• The unit object 1 is finitely generated.
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• Every object of C is the sum of its finitely generated subobjects.
• The tensor product of two finitely generated objects is finitely generated.

⇤
Fix an admissible tensor category C. For an object M of C, we let [M ] or

[M ]C denote the set of all subobjects of M . (Note: this is a set since Grothendieck
abelian categories are well-powered.) We let [M ]f or [M ]f

C
denote the set of all

finitely generated subobjects of M . We use [M ] or [M ]f as a replacement for the
set of elements of M . Note that if K and N are subobjects of M then K ⇢ N

holds if and only if X 2 [K]f implies X 2 [N ]f (admissibility is crucial here since
we are taking X finitely generated).

We let Comm(C) be the category of commutative (and associative and unital)
algebras in C. For A 2 Comm(C), we let ModA be the category of A-modules in
C. An ideal of A is an A-submodule of A. Let M be an A-module, let X 2 [A],
and let Y 2 [M ]. We define XY 2 [M ] to be the image of the map

X ⌦ Y ! A⌦M ! M,

where the first map is the tensor product of the inclusions X ! A and Y ! M ,
and the second map is the given map for M .

Proposition 2.3. Let A 2 Comm(C) and let M be an A-module.

(a) Let {Xi}i2I be elements of [A] and let {Yj}j2J be elements of [M ]. Then
we have (

P
i2I Xi)(

P
j2J Yj) =

P
i2I,j2J XiYj.

(b) Let X,Y 2 [A] and Z 2 [M ]. Then XY = Y X and (XY )Z = X(Y Z).
(c) If X 2 [A]f and Y 2 [M ]f then XY 2 [M ]f .
(d) Suppose X ⇢ X

0
belong to [A] and Y ⇢ Y

0
belong to [M ]. Then XY ⇢

X
0
Y

0
.

(e) Let N be a C-subobject of M . Then N is an A-submodule if and only if

AN ⇢ N .

(f) M is finitely generated as an A-module if and only if there exists X 2 [M ]f

such that M = AX.

(g) Let 1 be the unit object of C, let 1A be the image of the natural map 1 ! A,

and let Y 2 [M ]. Then 1A · Y = Y .

Proof. We leave this to the reader. ⇤
Remark 2.4. Since C is admissible, 1 is finitely generated and so 1A is also
finitely generated. Since A = A · 1A by (b) and (g), we see from (f) that A is
finitely generated as an A-module. Without the admissibility condition, this need
not be true! ⇤
2.2. Prime ideals. Fix an admissible tensor category C and A 2 Comm(C).

Definition 2.5. Let p be an ideal of A. We say that p is prime if XY ⇢ p implies
X ⇢ p or Y ⇢ p for all X,Y 2 [A]. We say that A is integral or a domain if the
zero ideal is prime. ⇤
Proposition 2.6. Let p be an ideal of A. The following are equivalent:
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(a) p is prime.

(b) XY ⇢ p implies X ⇢ p or Y ⇢ p for all X,Y 2 [A]f .
(c) ab ⇢ p implies a ⇢ p or b ⇢ p for all ideals a and b of A.

(d) ab ⇢ p implies a ⇢ p or b ⇢ p for all finitely generated ideals a and b of A.

Proof. We leave this to the reader. ⇤

We say that a prime of A is minimal if it does not strictly contain another
prime. These always exist:

Proposition 2.7. Let p be a prime ideal of A. Then there exists a minimal prime

ideal q of A contained in p.

Proof. Let S be the set of all prime ideals of A contained in p. This set is non-empty
since it contains p. Let {qi}i2I be a descending chain in S, and put q =

T
i2I qi.

We claim that q is prime. Suppose XY ⇢ q for X,Y 2 [A]; we show that X ⇢ q
or Y ⇢ q. If X ⇢ q we are done; suppose this is not the case. Then there is some
i 2 I such that Xi 6⇢ qi, and so X 6⇢ qj for all j � i. Since XY ⇢ qj , we must
have Y ⇢ qj for all j � i. Thus Y ⇢ q, as claimed. Zorn’s lemma now shows that
S has a minimal element, which completes the proof. ⇤

2.3. Radicals. Let C and A 2 Comm(C) be as above.

Definition 2.8. Let a be an ideal of A. The radical of a, denoted rad(a), is the
sum of all X 2 [A] such that X

n ⇢ a for some n. The (nil)radical of A, denoted
rad(A) or radC(A), is the radical of the zero ideal. ⇤

If Xn ⇢ a then (AX)n ⇢ a by Proposition 2.3(b). Thus rad(a) =
P

AX,
where the sum is taken over those X 2 [A] with X

n ⇢ a for some n. Thus rad(a)
is a sum of ideals, and is therefore itself an ideal. If X 2 [rad(a)] then we cannot
conclude that X

n ⇢ a for some n; for example, a need not contain a power of
rad(a). However, the problem disappears when X is finitely generated:

Proposition 2.9. Let a be an ideal of A, and let X 2 [rad(a)]f . Then X
n ⇢ a for

some n.

Proof. Let U be the set of all Y 2 [A] such that Y
n ⇢ a for some n. Then

rad(a) =
P

Y 2U
Y by definition. SupposeX 2 [rad(a)]f . ThenX ⇢

P
Y 2U

Y . Since
X is finitely generated, there is a finite subset V of U such that X ⇢

P
Y 2V

Y .
Let k be such that Y k ⇢ a for all Y 2 V, and let n = k ·#V. Then it follows from
Proposition 2.3(a,b) that Xn ⇢ a. ⇤

The usual relationship between radical and prime ideals holds in full gener-
ality:

Proposition 2.10. Let a be an ideal of A. Then rad(a) is the intersection of the

prime ideals containing a.
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Proof. Passing to A/a, it su�ces to show that rad(A) = q, where q is the inter-
section of all prime ideals of A. Let X 2 [A] satisfy X

n = 0. Then for any prime
p, we have X

n ⇢ p and so X ⇢ p. Since rad(a) is the sum of such X, it follows
that rad(a) ⇢ p. Hence rad(a) ⇢ q.

Now let X 2 [A]f satisfy X
n 6= 0 for all n. We construct a prime p such

that X 6⇢ p. Let S be the set of all ideals a such that X
n 6⇢ a for all n. Then S

is non-empty since it contains the zero ideal. Let {ai}i2I be an ascending chain
in S and let a =

P
i2I ai be the sum. Then a belongs to S: indeed, if Xn ⇢ a

then we would have X
n ⇢ ai for some i since X

n is finitely generated, which is
not the case. By Zorn’s lemma, S has a maximal element p. We claim p is prime.
Suppose ab ⇢ p for ideals a and b, and suppose a 6⇢ p and b 6⇢ p. Then p+ a and
p + b strictly contain p, and therefore do not belong to S. Thus X

n ⇢ p + a and
X

m ⇢ p+b for some n and m, and so X
n+m ⇢ (p+a)(b+b) ⇢ p, a contradiction.

Thus a ⇢ p or b ⇢ p, and so p is prime.
The result now follows. Indeed, let X 2 [q]f . Since X is contained in all

primes, it follows from the previous paragraph that X
n = 0 for some n. Thus

X ⇢ rad(a). Since this holds for all X 2 [q]f , it follows that q ⇢ rad(a). ⇤
2.4. Spectrum. Let C and A 2 Comm(C) be as above.

Definition 2.11. The spectrum of A, denoted Spec(A), is the set of all prime
ideals of A. ⇤

For an ideal a of A, we let V (a) ⇢ Spec(A) be the set of prime ideals con-
taining a. These sets have the usual properties:

Proposition 2.12. We have the following:

(a) V (
P

i2I ai) =
T

i2I V (ai).
(b) V (ab) = V (a \ b) = V (a) [ V (b).
(c) V (a) ⇢ V (b) if and only if rad(b) ⇢ rad(a).

Proof. We leave this to the reader. ⇤
Thanks to the proposition, we can define a topology on Spec(A) by declaring

a set to be closed if it is of the form V (a) for some ideal a; we call this the Zariski

topology. One can show that Spec(A) is quasi-compact (this relies on the fact that
A is finitely generated as an A-module, see Remark 2.4).

2.5. Generic categories. Let C be an admissible tensor category and let A 2
Comm(C) be a domain.

Definition 2.13. We say that an A-module M is torsion if for every Y 2 [M ]f

there exists a non-zero X 2 [A] such that XY = 0. We let ModtorsA be the full
subcategory of ModA spanned by torsion modules. ⇤

Recall that a localizing subcategory of a Grothendieck abelian category is a
Serre subcategory closed under arbitrary direct sums.

Proposition 2.14. ModtorsA is a localizing subcategory of ModA.
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Proof. Suppose that M is torsion. It is clear any submodule of M is torsion. Let
f : M ! N be a surjection of A-modules and let Y 2 [N ]f . Let {Zi}i2I be the
finitely generated subobjects of f�1(N). Since Y is finitely generated, some Zi

surjects onto Y . Let X 2 [A] be non-zero such that XZi = 0. Then XY = 0 as
well, and so N is torsion.

Next, consider a short exact sequence

0 ! M1 ! M2 ! M3 ! 0

where M1 and M3 are torsion. Let Y 2 [M2]f , and let Y
0 be its image in M3.

Since Y 0 2 [M3]f , it follows that there exists X 2 [A] non-zero such that XY
0 = 0;

of course, we can assume that X 2 [A]f . Thus XY ⇢ [M1]f . Hence there exists
X

0 2 [A] non-zero such that X
0(XY ) = 0. Thus (XX

0)Y = 0 and XX
0 2 [A] is

non-zero since A is a domain. This shows that M2 is torsion.
We have thus shown that ModtorsA is a Serre subcategory. In particular, it

is closed under finite direct sums. Let {Mi}i2I be an arbitrary family of torsion
A-modules, let M =

L
i2I Mi, and let Y 2 [M ]f . Since Y is finitely generated, we

have Y ⇢
L

i2J Mi for some finite subset J of I. Since this finite direct sum is
torsion, we have XY = 0 for some X 2 [A] non-zero. Thus M is torsion, which
completes the proof. ⇤
Definition 2.15. The generic category of A, denoted ModgenA , is the Serre quotient
category ModA /ModtorsA . ⇤

Intuitively, ModgenA should be thought of as the module category of the frac-
tion field of A; however, the “fraction field” of A may not actually exist as an alge-
bra object in C. It follows from the general theory of Serre quotients that ModgenA
is a Grothendieck abelian category and that the quotient functor ModA ! ModgenA
is cocontinuous.

3. Fiber functors

3.1. Forgetful functors. Let ! : C ! D be an additive functor of Grothendieck
abelian categories. We consider the following conditions:

(PI) For every family {Mi}i2I of obrjects of C, the natural map !(
Q

i2I Mi) !Q
i2I !(Mi) is injective.

(For) ! is exact, faithful, cocontinuous, and satisfies (PI).

A typical example of a functor satisfying (For) is the forgetful functor from the
category of graded vector spaces to the category of vector spaces; note that this
functor does not commute with products, but does satisfy (PI).

Fix ! : C ! D satisfying (For). We then think of ! as a kind of forgetful
functor, and often writeM! in place of !(M). We will need the following structural
results about !, but omit proofs of the more standard results.

Proposition 3.1. Let M be an object of C such that M
! = 0. Then M = 0.

Proposition 3.2. Let f : M ! N be a morphism in C. Then f is injective (resp.

surjective) if and only if f
!
is injective (resp. surjective).
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Proposition 3.3. Let M be an object of C and let X and Y be subobjects of M .

(a) X
!
is a subobject of M

!
.

(b) X ⇢ Y if and only if X
! ⇢ Y

!
.

(c) X = Y if and only if X
! = Y

!
.

Proposition 3.4. Let M be an object of C and let {Ni}i2I be a family of subob-

jects. Then �X

i2I

Ni

�!
=

X

i2I

N
!
i ,

�\

i2I

Ni

�!
=

\

i2I

N
!
i .

Proposition 3.5. Let M be an object of C and let N be a subobject of M
!
.

(a) There exists a unique maximal subobject X of M such that X
! ⇢ N .

(b) There exists a unique minimal subobject Y of M such that N ⇢ Y
!
.

Proof. (a) Let U be the set of all subobjects T of M such that T
! ⇢ N , and let

X =
P

T2U
T . By Proposition 3.4, we have X

! =
P

T2U
T

! ⇢ N , and so X 2 U.
Clearly, X is the unique maximal member of U.

(b) Let V be the set of all subobjects T of M such that N ⇢ T
!, and let

Y =
T

T2U
T . By Proposition 3.4, we have Y

! =
T

T2V
T

! � N , and so Y 2 V.
Clearly, Y is the unique minimal member of V. ⇤
Definition 3.6. Let M be an object of C and let N be a subobject of M!.

(a) We write bNcC, or simply bNc, for the maximal object in Proposition 3.5(a).
(b) We write dNeC, or simply dNe, for the minimal object in Proposition 3.5(b).

⇤
Example 3.7. Let G be a group, let k be a field, let C = Repk(G), let D = Veck,
and let ! : C ! D be the forgetful functor. Let M 2 C and let N be a subobject
of M!; thus M is a representation of G, and N is a vector subspace of M . In
this case, bNc =

T
g2G gN is the maximal subrepresentation contained in N , and

dNe =
P

g2G gN is the subrepresentation generated by N . ⇤
Proposition 3.8. Let M be an object of C and let {Ni}i2I be a family of subobjects

of M
!
. Then ⌅\

i2I

Ni

⇧
=

\

i2I

bNic,
⌃X

i2I

Ni

⌥
=

X

i2I

dNie.

Proof. Let X = b
T

i2I Nic and Y =
T

i2IbNic. We have X
! ⇢

T
i2I Ni, and so

X ⇢ Ni for each i. Thus, by definition, we haveX ⇢ bNic for each i, and soX ⇢ Y .
By Proposition 3.4, we have Y

! =
T

i2IbNic! ⇢
T

i2I Ni. Thus, by definition, we
have Y ⇢ X. The proof for sums is similar. ⇤
Proposition 3.9. Let M be an object of C, and let N be a finitely generated

subobject of M
!
. Then dNe is finitely generated.

Proof. Suppose that dNe =
P

i2I Ki for subobjects Ki of M . Appealing to Propo-
sition 3.4, we find N ⇢ dNe! =

P
i2I K

!
i . Since N is finitely generated, it follows

that there is a finite subset J of I such that N ⇢
P

i2J K
!
i = (

P
i2J Ki)!. Thus,

by definition, we have dNe ⇢
P

i2J Ki, and so dNe is finitely generated. ⇤
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3.2. Fiber functors. In the theory of Tannakian categories, a fiber functor is a
symmetric monoidal functor to vector spaces that is exact and faithful. We will
use the term in a slightly di↵erent sense:

Definition 3.10. Let C and D be tensor categories. A fiber functor ! : C ! D is
a symmetric monoidal functor that satisfies (For). ⇤

Fix a fiber functor ! : C ! D and A 2 Comm(C).

Proposition 3.11. Let M be an A-module, and let X ⇢ A and Y ⇢ M be

subobjects. Then (XY )! = X
!
Y

!
.

Proof. By definition, XY is the image of the map X ⌦ Y ! M . We thus see that
(XY )! is the image of the map X

!⌦Y
! = (X⌦Y )! ! M

!, which is X!
Y

!. ⇤

Proposition 3.12. Suppose p is an ideal of A such that p! is a prime ideal of

A
!
. Then p is a prime ideal of A.

Proof. Let X and Y be subobjects of A such that XY ⇢ p. Then X
!
Y

! ⇢ p!.
Since p! is prime, it follows that X

! ⇢ p! or Y
! ⇢ p!. By Proposition 3.3, we

find X ⇢ p or Y ⇢ p, and so p is prime. ⇤

Proposition 3.13. Let a be an ideal of A. Then (rad a)! ⇢ rad(a!).

Proof. Write rad a =
P

i2I Xi where eachXi is finitely generated. Then (rad a)! =P
i2I X

!
i by Proposition 3.4. It thus su�ces to show that X!

i ⇢ rad(a!) for each
i. Thus fix i 2 I. Since Xi is finitely generated and contained in rad(a), we have
X

n
i ⇢ a for some n. We thus see that (X!

i )
n = (Xn

i )
! ⇢ a!, and so X

!
i ⇢ rad(a!).

This completes the proof. ⇤

Proposition 3.14. Let M be an A-module, and let N be an A
!
-submodule of

M
!
. Then bNc is an A-submodule of M .

Proof. We have

(AbNc)! = A
!(bNc)! ⇢ A

!
N ⇢ N,

and so AbNc ⇢ bNc, i.e., bNc is an A-submodule of M . ⇤

In particular, we see that if a is an ideal of A! then bac is an ideal of A. This
construction should be thought of as a kind of contraction. The following provides
evidence for this:

Proposition 3.15. Let q be a prime ideal of A
!
. Then bqc is a prime ideal of A.

Proof. Let X and Y be subobjects of A such that XY ⇢ bqc. Thus X
!
Y

! =
(XY )! ⇢ q. Since q is prime, we see that X

! ⇢ q or Y
! ⇢ q. Thus X ⇢ bqc or

Y ⇢ bqc, and so bqc is prime. ⇤

We thus have a function Spec(A!) ! Spec(A) given by q 7! bqc. One easily
sees that it is continuous.
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4. Abstract comparison results

4.1. The main properties. Let ! : C ! D be a fiber functor of admissible tensor
categories. We consider the following conditions:

(A) Let A 2 Comm(C) and let a and b be ideals of A. Then rad(a) ⇢ rad(b) if
and only if rad(a!) ⇢ rad(b!).

(B) Let A 2 Comm(C) and let a be an ideal of A. Then rad(a) is prime if and
only if rad(a!) is prime.

These are properties that are both useful and reasonable to expect in many situa-
tions. We observe that these properties imply that ! behaves well with respect to
minimal primes (improving on [Sn, Theorem C]):

Proposition 4.1. Suppose ! satisfies (A) and (B), and let A 2 Comm(C). Then
we have mutually inverse bijections

{minimal primes of A}
� // {minimal primes of A

!}
 

oo

given by �(p) = rad(p!) and  (q) = bqc.

Proof. For any ideal a of A, let �(a) = rad(a!), and for any ideal b of A! let
 (b) = bbc. Then � takes primes to primes by (B), and  takes primes to primes
by Proposition 3.15.

Let q be a minimal prime of A!. Let p =  (q), and let p0 ⇢ p be a minimal
prime. Since p! ⇢ q, we have rad(p!) ⇢ q. Thus �(p0) ⇢ �(p) ⇢ q, and so all
three coincide by the minimality of q. By (A), we see that rad(p0) = rad(p), and
so p = p0, i.e., p is a minimal prime. Thus  maps minimal primes to minimal
primes, and � � is the identity on minimal primes. In particular, � is surjective
on minimal primes.

Now let p be a minimal prime of A. Let q ⇢ �(p) be a minimal prime. By
the previous paragraph, we have q = �(p0) for some minimal prime p0 of A. The
containment �(p0) ⇢ �(p) implies p0 ⇢ p, by (A), and so p = p0 by the minimality
of p. Thus �(p) is a minimal prime. Since  maps minimal primes to minimal
primes, we see that  (�(p)) is a minimal prime of A. Since p! ⇢ rad(p!) = �(p),
we have p ⇢  (�(p)). By minimality of  (�(p)), we must have equality. Thus
 � � is the identity on minimal primes, which completes the proof. ⇤

4.2. Generalities on property (A). Given A 2 Comm(C), we say that X 2 [A]
is locally nilpotent if X ⇢ rad(A). Consider the following property on ! : C ! D:

(A1) Let A 2 Comm(C) and let X 2 [A]. Then X is locally nilpotent if and only
if X! is locally nilpotent.

(A2) For A 2 Comm(C) we have brad(A!)c = rad(A).

Proposition 4.2. We have (A) () (A1) () (A2).

Proof. Fix A 2 Comm(C) throughout the proof.
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Assume (A). Let X 2 [A]. Applying (A) with a being the ideal generated by
X and b = (0), we see that X is locally nilpotent if and only if X! is. Thus (A1)
holds.

Now suppose that (A1) holds. Then an ideal a is locally nilpotent if and only
if a! is; thus a ⇢ rad(A) if and only if a! ⇢ rad(A!). Now let a and b be two
ideals of A. Let a be the image of a in A = A/b. Then a ⇢ rad(A) if and only if
a! ⇢ rad(A!), and so a + b ⇢ rad(b) if and only if a! + b! ⇢ rad(b!). It follows
that a ⇢ rad(b) if and only if a! ⇢ rad(b!), and so rad(a) ⇢ rad(b) if and only if
rad(a!) ⇢ rad(b!). Thus (A) holds.

Finally, suppose X 2 [A]. Then X is locally nilpotent if and only if X ⇢
rad(A), and X

! is locally nilpotent if and only if X! ⇢ rad(A!), which in turn is
equivalent to X ⇢ brad(A!)c. We thus see that (A1) is equivalent to (A2). ⇤

Consider the following property:

(Fin) ! carries finitely generated objects to finitely generated objects.

Proposition 4.3. We have (Fin) =) (A).

Proof. Let A 2 Comm(C) and let X 2 [A] be a subobject with X
! locally nilpo-

tent. Write X =
P

i2I Xi where each Xi is finitely generated. Then X
!
i is finitely

generated, by (Fin), and locally nilpotent, and thus nilpotent (Proposition 2.9).
Hence Xi is nilpotent too, and so X is locally nilpotent. ⇤

Proposition 4.4. Suppose ! : C ! D and ⌘ : D ! E are fiber functors satisfying

(A). Then ⌘ � ! also satisfies (A).

Proof. Let A 2 Comm(C) and let X 2 [A]. Then X is locally nilpotent if and only
if X! is locally nilpotent, since ! satisfies (A1). Similarly, X! is locally nilpotent
if and only if (X!)⌘ is locally nilpotent, since ⌘ satisfies (A1). We thus see that
X is locally nilpotent if and only if (X!)⌘ is, and so ⌘ � ! satisfies (A1), and thus
(A). ⇤

4.3. Property (A) for generic categories. Consider the following property on
a fiber functor ! : C ! D:

(Gen) There exists an integral algebra R 2 Comm(C) and an ideal m ⇢ R
! such

that
(i) the natural map 1D ! R

!
/m is an isomorphism

(ii) the functor ModR ! D given by M 7! M
!
/mM

! is exact and kills
ModtorsR

(iii) the induced functor ModgenR ! D is an equivalence

Suppose ⌘ : D ! E is a second fiber functor. We consider the following property:

(Rad) Let A 2 Comm(C), let b be an ideal of A!, and let a = bbcC. Then we
have brad(b⌘)cC = brad(a!⌘)cC.

Example 4.5. Suppose H ⇢ G are groups, ! : Rep(G) ! Rep(H) is the re-
striction functor, and ⌘ : Rep(H) ! Vec is the forgetful functor. Then (Rad) says
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the following: if A is an algebra on which G acts and b is an H-stable ideal thenT
g2G g rad(b) = rad(

T
g2G gb), where here rad means the ordinary radical. ⇤

Proposition 4.6. Suppose (Rad) holds, ! satisfies (Gen), and ⌘ �! satisfies (A).
Then ⌘ satisfies (A).

Proof. Let B 2 Comm(D) and let X 2 [B] be a subobject with X
⌘ locally nilpo-

tent; thus X ⇢ brad(B⌘)c. Choose a commutative R-algebra A in C such that
B ⇠= A

!
/mA

! and A is R-torsionfree. (One can construct A by lifting a pre-
sentation for B and killing torsion.) Let Y be an R-submodule of A such that
Y

!
/mY

! = X. Let b = mA
! and let a = bbcC. Then Y

!⌘ ⇢ rad(b⌘), and so
Y ⇢ brad(b⌘)cC. Thus by (Rad), we have Y ⇢ brad(a!⌘)cC. Since ⌘ � ! satisfies
(A), this means Y ⇢ rad(a). We claim that a = 0. Indeed, we have a! ⇢ mA

!,
and so the map a!/ma! ! A/mA

! is the zero map. By (Gen), this means that
the map a ! A is zero in ModgenR . Since A is R-torsionfree, it follows that a = 0,
as claimed. We thus see that Y ⇢ rad(A), and so X ⇢ rad(B), as required. ⇤
4.4. Generalities on property (B). Consider the following property:

(B1) Let A 2 Comm(C) and let X,Y 2 [A!]f satisfy XY = 0. Then dXnedY e =
0 for some n � 1.

Proposition 4.7. Let A 2 Comm(C) and let a be an ideal of A.

(a) Suppose ! satisfies (A) and rad(a!) is prime. Then rad(a) is prime.

(b) Suppose ! satisfies (B1) and rad(a) is prime. Then rad(a!) is prime.

Proof. Passing to A/a, it su�ces to treat the case where a = 0.
(a) Let XY ⇢ rad(A) with X and Y subobjects of A. Then X

!
Y

! ⇢
(radA)! ⇢ rad(A!), where the second containment comes from Proposition 3.13.
Since rad(A!) is prime, we have X

! ⇢ rad(A!) or Y
! ⇢ rad(A!). Suppose the

former holds. Then X
! is locally nilpotent, and so X is locally nilpotent by (A).

Thus X ⇢ rad(A), and so rad(A) is prime.
(b) Let XY ⇢ rad(A!) with X,Y 2 [A!]f . Then X

k
Y

k = 0 for some k � 1.
By (B1), we find dXnkedY ke = 0 for some n � 1. Since rad(A) is prime, we
see that dXnke or dY ke is nilpotent (note that both are fintiely generated by
Proposition 3.9). Thus either X or Y is nilpotent, and so X ⇢ rad(A!) or Y ⇢
rad(A!). Thus rad(A!) is prime. ⇤
Corollary 4.8. We have (A) ^ (B1) =) (B).

5. Abstract results for Lie algebras

5.1. Representations of Lie algebras in tensor categories. Let V be an ad-
missible tensor category and let g be a Lie algebra in V. Recall that a Lie algebra
in V is a object L equipped with a morphism called the Lie bracket from L⌦L ! L

satisfying the Jacobi identity and skew-symmetry. We can then consider the cate-
gory Rep(g) of representations of g in V. This admits a natural tensor product, and
is a tensor category in the sense of Definition 2.1. (It is not necessarily admissible,
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see Example 5.9.) We are typically interested in subcategories of Rep(g). Since we
want to work with admissible categories, we introduce the following notion:

Definition 5.1. An admissible subcategory of Rep(g) is a full subcategory C sat-
isfying the following conditions:

(a) If M 2 C then any subquotient of M in Rep(g) belongs to C.
(b) C is closed under arbitrary direct sums.
(c) C is closed under tensor products.
(d) If M and N are finitely generated g-modules that belong to C then M ⌦N

is finitely generated as a g-module. ⇤

Proposition 5.2. Let C be an admissible subcategory of Rep(g). Then C (with the

induced tensor product) is an admissible tensor category. Furthermore, an object

of C is finitely generated if and only if it finitely generated as a g-module.

Proof. By (a) and (b), C is an abelian subcategory of Rep(g), and is cocomplete;
furthermore, colimits in C can be computed in Rep(g), and so filtered colimits in
C are exact. Let E be a generator for C, and let {Fi}i2I be the set of g-module
quotients of U(g)⌦E that belong to C. We claim that {Fi} is a generating set for C.
Let M be an object of C and let K be a proper subobject. We can then find a map
E ! M in C with image not contained in K. We thus get a map U(g)⌦ E ! M

of g-modules with image not contained in K. The image of this map is isomorphic
to some Fi. Thus we have a map Fi ! M with image not contained in K, which
verifies the claim. We thus see that C is a Grothendieck abelian category. Since
colimits and tensor products in C can be computed in Rep(g), it follows that ⌦ is
cocontinuous in each variable on C. Thus C is a tensor category.

Let M be an object of C. By (a), the subobjects of M in C are the same
as the subobjects of M in Rep(g). Since finite generation is defined in terms of
subobjects, we see that M is finitely generated in C if and only if it is finitely
generated in Rep(g). Since M is the sum of its finitely generated subobjects in
Rep(g), it follows that the same holds in C. By (d), we see that the tensor product
of two finitely generated subobjects of C is again finitely generated. We thus see
that C is an admissible tensor category. ⇤

Proposition 5.3. Let C be an admissible subcategory of Rep(g). Then the inclu-

sion C ! Rep(g) satisfies (PI).

Proof. Let i : C ! Rep(g) be the inclusion functor and let j : Rep(g) ! C be the
functor assigning to each g-module the maximum submodule that belongs to C.
Then i is left adjoint to j. (This shows that C is a “mono-coreflexive” subcategory
of Rep(g).) Let {Mi}i2I be a family of objects in C. Let

Q
Mi be their product

in Rep(g) and
Q

C
Mi their product in C. Since j is is continuous, it preserves

products, and so
Q

C
Mi = j(

Q
Mi). We thus see that

Q
C
Mi is a subobject ofQ

Mi in Rep(g), and so the natural map
Q

C
Mi !

Q
Mi is injective. ⇤
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Definition 5.4. Let h be a Lie subalgebra of g. Let C ⇢ Rep(g) and D ⇢ Rep(h)
be admissible subcategories. We say that C and D are compatible if the restriction
functor Rep(g) ! Rep(h) carries C into D. ⇤
Proposition 5.5. Let h ⇢ g be Lie algebras and let C ⇢ Rep(g) and D ⇢ Rep(h)
be compatible admissible subcategories. Then the restriction functor ! : C ! D is

a fiber functor.

Proof. It is clear that ! is exact and faithful. Since direct sums in C and D can be
computed in the underlying category V, it follows that ! is compatible with direct
sums, and therefore cocontinuous. Let {Mi}i2I be a family of objects in C. Then
we have the following commutative triangle in V

Q
V
Mi

Q
C
Mi

::

//
Q

D
Mi

dd

where the superscripts denote the category in which the product is formed. By
the definition of admissible subcategory, the vertical morphisms are injective. It
follows that the horizontal morphism is injective, and so ! satisfies (PI). We thus
see that ! satisfies (For). Since tensor products in C and D are computed in V,
it follows that ! is naturally a symmetric monoidal functor. Thus ! is a fiber
functor. ⇤

Taking h = 0 and D = V, we obtain the following:

Corollary 5.6. Let C ⇢ Rep(g) be an admissible subcategory. Then the forgetful

functor C ! V is a fiber functor.

Definition 5.7. Let C be an admissible subcategory of Rep(g). We say that C

satisfies (A) or (B) (or any other property of fiber functors) if the forgetful functor
C ! V does. ⇤
Proposition 5.8. Let h ⇢ g be Lie algebras and let C ⇢ Rep(g) and D ⇢ Rep(h)
be compatible admissible subcategories. Let M 2 C and let N be an h-submodule of

M .

(a) We have dNe = U(g)N .

(b) bNc is the sum of all g-submodules of M contained in N . If X is a subobject

of M then X ⇢ bNc if and only if U(g)X ⇢ N .

Proof. (a) We have N ⇢ U(g)N , and so dNe ⇢ U(g)N . If K is any g-submodule
of M containing N then K contains U(g)N ; thus U(g)N ⇢ dNe.

(b) The first statement is exactly how we constructed bNc. As for the second,
if X is contained in bNc then U(g)X ⇢ bNc ⇢ N , the first inclusion coming from
the fact that bNc is a g-submodule. Conversely, if U(g)X ⇢ N then U(g)X is a
g-submodule of M contained in N , and so X ⇢ U(g)X ⇢ bNc. ⇤
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Example 5.9. Let k be a field and let V = Veck be the category of vector spaces.
Let g = k be the one-dimensional abelian Lie algebra over k. Then U(g) = k[x], and
so g-modules are the same as k[x]-modules. Of course, U(g) is a finitely generated
module, but U(g)⌦ U(g) ⇠= k[x, y] is not. Thus Rep(g) is not admissible. ⇤
5.2. Property (A). Let h ⇢ g be Lie algebras in V. Let C ⇢ Rep(g) and D ⇢
Rep(h) be compatible admissible subcategories, let ! : C ! D be the restriction
functor, and let ⌘ : D ! V be the forgetful functor. We suppose the following
condition holds:

(Stab) Let M 2 C and let X ⇢ M be a finitely generated V-subobject. Then
there exists a Lie subalgebra p of g such that g = p + h, and the p-
submodule of M generated by X is finitely generated as a V-object.

In the above condition, the algebra p can be thought of as an “approximate stabi-
lizer,” and so the condition can be intrepreted as saying that elements of M have
su�ciently large stabilizer relative to h.

Proposition 5.10. We have (Stab) =) (Rad).

Proof. Let A 2 Comm(C); we think of A as a commutative algebra in V on which
g acts by derivations. Let b be an ideal of A!, i.e., an ideal of A that if h-stable,
and let a = bbc. Thus a is the maximal g-submodule of b. We must show that
brad(b)cC = brad(a)cC, where on both sides rad is computed in V. Explicitly, this
means that if V is a C-subobject of A then V ⇢ rad(a) if and only if U(g)V ⇢
rad(b). Of course, it su�ces to treat the case where V is finitely generated.

First suppose that V ⇢ rad(a). Then U(g)V ⇢ rad(a) since rad(a) is g-stable.
Since rad(a) ⇢ rad(b), we see that U(g)V ⇢ rad(b), as required.

Now suppose that U(g)V ⇢ rad(b), with V finitely generated. Per (Stab),
write g = h+ p where p is a Lie subalgebra of g such that W = U(p)V is V-finite.
Since W ⇢ U(g)V ⇢ rad(b) and W is V-finite, we have W

n ⇢ b for some n. We
thus find U(p)Wn ⇢ b, since W

n is p-stable, and so U(h)U(p)Wn ⇢ b, since b is
h-stable. Since U(g) = U(h)U(p), we see that U(g)Wn ⇢ b, and so W

n ⇢ a, and
so W ⇢ rad(a). Since V ⇢ W , we find V ⇢ rad(a), which completes the proof. ⇤

Corollary 5.11. Working in the above setting, suppose that C satisfies (A), !

satisfies (Gen), and (Stab) holds. Then D satisfies (A).

Proof. This follows from Proposition 4.6. ⇤

Remark 5.12. Suppose that g corresponds to a group G and h to a subgroup
H. Intuitively, (Gen) means that G acts on some variety and there is a point with
dense orbit that has stabilizer H. ⇤
5.3. Property (B). Let g be a Lie algebra in V. Let U = U(g). For n � 0, let
Un = Un(g) be the sum of the images of the maps g⌦k ! U for 0  k  n.

Proposition 5.13. Let A 2 Comm(Rep(g)). Let X,Y ⇢ A be V-subobjects such

that XY = 0. Then we have X
n+1 · UnY = 0 for any n � 0.
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Proof. We first prove the proposition when V is the category of abelian groups;
thus A is an ordinary commutative ring, g is an ordinary Lie ring acting on A by
derivations, and X and Y are Z-submodules of A. We proceed by induction on n.
The n = 0 case is given. Suppose now that we have shown X

n+1 ·UnY = 0. Thus
for x 2 X

n+1, y 2 Y , and a 2 Un, we have x · (ay) = 0. Let E 2 g. Applying E

to this equation, we find (Ex)(ay)+x · (Eay) = 0. Since x is a sum of (n+1)-fold
products of elements of X and E acts by derivations, we see that Ex 2 X

n. Thus
if w 2 X is any element then w ·Ex 2 X

n+1, and thus annihilates ay. Multiplying
the previous equation by w, we therefore find wx · (Eay) = 0. Since this holds for
all choices of w, x, y, a, and E, we find X

n+2 · Un+1Y = 0, as required.
We now treat the general case, using a functor of points approach. For an

object T of V, let A(T ) = HomV(T,A) and g(T ) = HomV(T, g). Then A(T ) is
a commutative ring and g(T ) is a Lie ring acting on A(T ) by derivations. Let
T = X � Y � g. Let x 2 A(T ) be the map T ! X ! A, where the first map
is the projection and the second is the inclusion, and define y 2 A(T ) similarly.
Then xy = 0. By the previous paragraph, we have x

n+1 · Un(g(T ))y = 0. In
particular, letting a 2 g(T ) be the projection map T ! g, we find x

n+1 · aky = 0
for 0  k  n. Regarding x

k+1 ·aky as a morphism T ! A, its image is Xn+1 ·gkY ,
where gk is the image of g⌦k in U. We thus see that Xn+1 ·gkY = 0 for 0  k  n,
which completes the proof. ⇤

Fix an admissible subcategory C of Rep(g). We consider the following condi-
tion:

(UF) Let M 2 C be finitely generated. Then M = UnX for some n and some
X 2 [M ]f .

Proposition 5.14. Suppose C satisfies (UF). Let M 2 C be finitely generated,

and let X be a subobject generating M . Then M = UnX for some n.

Proof. By definition, we have M = UmY for some m and some finitely generated
subobject Y of M . Since X generates M , we have M = UX =

P
k�0

UkX. Since
Y is contained in

P
k�0

UkX and finitely generated, we have Y ⇢ UkX for some
k. Thus M = UmUkX ⇢ Um+kX. We can therefore take n = m+ k. ⇤

Proposition 5.15. If C satisfies (UF) then it satisfies (B1).

Proof. Let A 2 Comm(C), and suppose XY = 0 for X,Y 2 [A]f . By Proposi-
tion 5.14, we have UY = UnY for some n. Thus by Proposition 5.13, we have
X

n+1 ·UY = 0. It follows that (UXn+1) ·(UY ) = 0, which completes the proof. ⇤

Corollary 5.16. If C satisfies (UF) and (A) then it satisfies (B).

For the next two results, we fix a Lie subalgebra h ⇢ g and an admissible
subcategory D ⇢ Rep(h) that is compatible with C.

Proposition 5.17. Suppose that D satisfies (UF) and the restriction functor C !
D satisfies (Fin). Then C also satisfies (UF).
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Proof. Let M 2 C be finitely generated. Then M is finitely generated as an h-
representation, and so by (UF) we have M = Un(h)X for some finitely generated
subobject X of M . Since Un(h) ⇢ Un(g), we have M = Un(g)X. Thus C

satisfies (UF). ⇤

Proposition 5.18. Suppose that D satisfies (UF) and (A), and the functor C ! D

satisfies (Fin). Then C satisfies (A), (B) and (UF).

Proof. Since C ! D satisfies (Fin) it also satisfies (A) by Proposition 4.3; thus
C ! V satisfies (A) by Proposition 4.4. Proposition 5.17 shows that C satisfies
(UF), and so C ! V satisfies (B) by Corollary 5.16. ⇤

6. Applications to Lie superalgebras

6.1. General remarks. Fix a field k of characteristic 0 throughout this section.
Recall that a super vector space over k is a Z/2-graded vector space V = V0 � V1.
Given two super vector spaces V and W , a linear map f : V ! W is homogeneous

of degree d 2 Z/2 if f(Vi) ⇢ Wi+d for all i 2 Z/2. We let SVec be the category
whose objects are super vector spaces and whose morphisms are homogeneous
morphisms of degree 0. Given a super vector space V = V0�V1, we let V [1] be the
super vector space given by V [1]i = Vi+1; thus (�)[1] switches the even and odd
pieces. There is a natural isomorphism V ! V [1] that is homogeneous of degree 1;
note, however, that this does not count as an isomorphism in our category SVec.
Given two super vector spaces V and W , their tensor product V ⌦W is just their
usual tensor product as graded vector spaces. We let V ⌦ W ! W ⌦ V be the
isomorphism defined by x ⌦ y 7! (�1)|x||y|y ⌦ x, where |x| 2 Z/2 denotes the
degree of the homogeneous element x 2 V . This defines a symmetry on the tensor
product. In this way, SVec is an admissible tensor category.

Let g be a Lie superalgebra, that is, a Lie algebra object of SVec. We let
Rep(g) be the category of representations of g on super vector spaces over k.
As in the previous paragraph, the morphisms in this category are required to be
homogeneous of degree 0. There is a natural forgetful functor Rep(g) ! SVec.

Let C be an admissible subcategory of Rep(g). Suppose A is a commutative
algebra in C and let a be an ideal of A. We say that a is g-prime if it is a prime
ideal in C. We write radg(a) for the radical of a in C, and refer to this as the
g-radical ; we let rad(a) be the usual radical of a in the ring A. We let Specg(A) be
the spectrum of A as an algebra in C (i.e., the set of g-primes), and we let Spec(A)
denote the spectrum of the ordinary ring A.

Proposition 6.1. Suppose the following two conditions hold:

• Every finitely generated object of C has finite length.

• If M 2 C is simple then M = Un · V for some n and some finite dimen-

sional subspace V of M .

Then C satisfies (UF).
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Proof. Say that M 2 C is good if M = Un · V for some n and some finite
dimensional subspace V of M . Thus all simple objects are good, and to show that
C satisfies (UF) we must show that all finite length objects are good. It thus su�ces
to show that if

0 ! M1 ! M2 ! M3 ! 0

is a short exact sequence in C with M1 and M3 good then M2 is good. Thus
suppose such a sequence is given. Write M1 = UnV and M3 = UmW . Let fW
be a finite dimensional subspace of M2 surjecting onto W . Given x 2 M2, we can
find y 2 UmW such that x and y have the same image in M3. Thus x� y 2 M1,

and so x � y = z for some z 2 UnV . We thus find M2 = Umax(n,m)(V + fW ),
which completes the proof. ⇤

We now describe a method of constructing admissible subcategories. Let S be
a set of g-modules. Let S1 be the set of all g-modules of the form X1⌦· · ·⌦Xr with
X1, . . . , Xr 2 S. Let S2 be the class of all g-modules of the form

L
i2I Mi with

Mi 2 S1. Finally, let S3 be the class of all g-modules that occur as a subquotient
of a g-module in S2. We define the tensor subcategory of Rep(g) generated by
S to be the full subcategory of Rep(g) spanned by S3. It is easily seen to be a
Grothendieck abelian category and closed under tensor product. Furthermore, if
every object in S1 has finite length, then it is an admissible subcategory of Rep(g),
as defined in Definition 5.1.

6.2. Polynomial representations of gl. Let

gl = gl1|1 =
[

n�1

gln|n, V = C
1|1 =

[

n�1

C
n|n

.

Then V is naturally a representation of gl, and we call it the standard representa-

tion. In this section, we review the polynomial representation theory of g; we refer
to [CW, §3.2] for more detailed information.

Let Repnpol(gl) be the tensor subcategory of Rep(g) generated by V. We
refer to representations in this category as narrow polynomial representations.
(Note: “narrow” is not standard terminology.) Since the tensor powers of V are
finite length, this is an admissible subcategory. In fact, Repnpol(gl) is a semisimple
abelian category, and every simple object has the form S�(V) for a partition �;
here S� denotes the Schur functor. It follows that Repnpol(gl) is equivalent (as a
tensor category) to the classical category of polynomial representations of gl1 on
(non-super) vector spaces.

Let Reppol(gl) be the tensor subcategory of Rep(gl) generated byV andV[1].
We refer to representations in this category as wide polynomial representations,
but we often omit the word “wide” (which, again, is non-standard terminology.)
This is an admissible subcategory, and semi-simple. The simple objects are now of
the form S�(V) or S�(V)[1]. Thus, as an abelian category, Reppol(gl) is equivalent
to a direct sum of two copies of Repnpol(gl).

Proposition 6.2. The category Reppol(gl) satisfies (UF).
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Proof. Let {ei}i�1 be a basis for the even part of V, and let v = e1 ⌦ · · · ⌦ en 2
V

⌦n. One easily sees that V
⌦n = Unv. Thus, in the terminology of the proof

of Proposition 6.1, the representation V
⌦n is good. Since S�(V) is a quotient of

V
⌦n, with n = |�|, we see that S�(V) is good. It follows that S�(V)[1] is also

good. Thus (UF) holds by Proposition 6.1. ⇤

Proposition 6.3. The category Reppol(gl) satisfies (A).

Proof. In [Sn], it is shown that Repnpol(gl) satisfies (A). We deduce the present
result from this. Let A be a commutative algebra in Reppol(gl). We then have a
canonical decomposition A = A0 �A1 in Reppol(gl) where A0 is a sum of S�(V)’s
and A1 is a sum of S�(V)[1]’s. Note that A0 is not the degree 0 piece of the
super vector space A: the representation S�(V) always has even and odd elements
(for � non-empty). One easily sees that A0 is a subalgebra of A, and A1 is an
A0-submodule satisfying A

2
1
⇢ A0.

Let X be a finite length subrepresentation of A consisting of nilpotent el-
ements. Write X = X0 � X1 as above; of course, every element of X0 or X1 is
nilpotent. We can regard A0 as an object in Repnpol(gl). Thus, by [Sn], we see that
X0 is nilpotent, i.e., Xn

0
= 0 for some n. Since X

2
1
is a subobject of A0 consisting

of nilpotent elements, it too is nilpotent; thus X2m
1

= 0 for some m. We therefore
find that Xn+2m = 0, and so X is nilpotent. This completes the proof. ⇤
Corollary 6.4. The category Reppol(gl) satisfies (B).

Proof. This follows from Corollary 5.16. ⇤
Let gln = gl⇥ · · ·⇥ gl, where there are n copies of gl. We define Repnpol(gln)

and Reppol(gln) in the obvious manner.

Proposition 6.5. The category Reppol(gln) satisfies (UF), (A) and (B).

Proof. Regard gl as the diagonal subalgebra of gln. Then the restriction functor
Reppol(gln) ! Reppol(gl) satisfies (Fin); this follows from the fact that the tensor
product of two finite length representations of gl is again finite length. Thus the
result follows from Proposition 5.18. ⇤
6.3. Algebraic representations of gl. Let V⇤ =

S
n�1

(Cn|n)⇤ be the so-called

restricted dual of V. It is naturally a representation of gl. We define Repnalg(gl),
the category of narrow algebraic representations, to be the tensor subcategory of
Rep(gl) generated by V and V⇤. Similarly, we define Repalg(gl), the category of
(wide) algebraic representations, to be the tensor subcategory of Rep(gl) gener-
ated by V, V[1], V⇤, and V⇤[1]. The category Repnalg(gl) is equivalent to the
category of algebraic representations of gl1 studied in [DPS, PSe, PSt, SS2]. It is
not semisimple. It is not di�cult to show that if V and W are narrow algebraic
representations then Homgl(V,W [1]) = 0. Thus every wide algebraic representa-
tion canonically decomposes as V �W [1] with V and W narrow, and so Repalg(gl)
is equivalent to a direct sum of two copies of Repnalg(gl).



EQUIVARIANT PRIME IDEALS FOR INFINITE DIMENSIONAL SUPERGROUPS 21

Let i : gl ! gl⇥gl be the map i(X) = (X,�X
t). Then i is an injective homo-

morphism of Lie superalgebras; we refer to i(gl) as the twisted diagonal subalgebra

of gl⇥gl. Let V1 and V2 be copies of V on which gl⇥ gl act through the first and
second projections. Then the restriction of V1 via i is V, while the restriction of
V2 is V⇤. It follows that polynomial representations of gl⇥ gl restrict to algebraic
representations of gl via i. In particular, we see that Reppol(gl⇥gl) and Repalg(gl)
are compatible admissible subcategories.

Proposition 6.6. Condition (Stab) holds.

Proof. Let b be the standard Borel subalgebra of gl. If V is a polynonimal represen-
tation of gl, then the b-submodule generated by any element is finite dimensional.
The same applies to gl ⇥ gl and b ⇥ b. Since gl ⇥ gl = (b ⇥ b) + i(gl), the result
follows. ⇤
Proposition 6.7. The restriction functor Reppol(gl ⇥ gl) ! Repalg(gl) satisfies

(Gen).

Proof. Let {ei, fj} be a basis for V, where the e vectors are even and the f vectors
are odd. Let R = Sym(V1⌦V2), regarded as an algebra object in Reppol(gl⇥ gl).
Let

xi,j = ei ⌦ ej , x
0
i,j = fi ⌦ fj , yi,j = ei ⌦ fj , y

0
i,j = fi ⌦ ej .

Then R is the super polynomial algebra in these variables; note that the x and x
0

variables are even, while the y and y
0 variables are odd. Let m ⇢ R be the ideal

generated by the elements

xi,j � �i,j , x
0
i,j � �i,j , yi,j , y

0
i,j .

Of course, R/m ⇠= k and so (i) of (Gen) holds. The ideal m is stable under the
twisted diagonal subalgebra i(gl). It follows that if M is a module object for R

in the category Reppol(gl⇥ gl) then M/mM is a gl-module, necessarily algebraic.
In [NSS1, §3.5], it is shown (ii) and (iii) of (Gen) hold. (Actually, [NSS1] only
works with narrow polynomial representations of gl1, but the same arguments
apply in the present situation, essentially because R itself is a narrow polynomial
representation.) ⇤

Proposition 6.8. The category Repalg(gl) satisfies (UF).

Proof. We use the “good” terminology from the proof of Proposition 6.1. Let
{ei, fj} be as in the previous proof, and let {e⇤i , f⇤

j } be the dual basis of V⇤. We
let [r] = {1, . . . , r} for r  1.

We claim that Vn,m = V
⌦n ⌦V

⌦m is good. Let r = n+m and for T 2 [1]r

put
eT = eT1 ⌦ · · ·⌦ eTn ⌦ e

⇤
Tn+1

· · ·⌦ e
⇤
Tn+m

.

Since Vn,m has finite length, there is some s such that the eT with T 2 [s]r generate
it. Let W be the span of these eT ’s. We thus have Vn,m =

S
k�1

Uk ·W . We can
thus find a single integer k such that eT 2 Uk · W for any T 2 [r + s]r. Given
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any T , there exists a permutation � of [1] fixing 1, . . . , s such that �T 2 [r+ s]r.
Since e�T 2 Uk ·W and Uk and W are stable by �, we find eT 2 Uk ·W . Thus
Vn,m = Uk ·W , and so the claim follows.

Since Vn,m is good, so is Vn,m[1]. Any simple object is a quotient of some
such representation, and therefore good. Thus (UF) follows from Proposition 6.1.

(We now explain the claim about simple objects. Let R be as in the previous
proof, and let T : ModR ! ModgenR be the quotient functor. Let L be a simple
object of Repalg(gl), and let T (M) be the corresponding simple object of ModgenR ,
where M is an R-module. Since M is a polynomial representation of gl ⇥ gl, we
can find a surjection R ⌦ V ! M , where V is a sum of representations of the
form (V⌦n

1
⌦V

⌦m
2

)[k]. We thus have a surjection T (R⌦V ) ! T (M). Since T (M)
is simple, it follows that some summand maps surjectively to it, that is, we have
a surjection T (R ⌦ (V⌦n

1
⌦V

⌦m
2

)[k]) ! T (M). Passing through the equivalence
ModgenR

⇠= Repalg(gl), this yields a surjection Vn,m[k] ! L, as required.) ⇤

Corollary 6.9. The category Repalg(gl) satisfies (A) and (B).

Proof. We obtain (A) from Corollary 5.11 and (B) from Corollary 5.16. ⇤
Proposition 6.10. Let A be a commutative algebra in Repalg(gl). Suppose A is

generated over a noetherian coe�cient ring by a finite length subrepresentation.

Then Specgl(A) is a noetherian topological space.

Proof. Let g ⇢ gl1|1 be the diagonal gl1 inside of the even subalgebra of gl, and
let B = A/ rad(A). The ideal rad(A) is not gl1|1-stable, but it is g stable, and

so B is a g-algebra. One easily sees that B belongs to Repalg(g) and that it is
equivariantly finitely generated. A variant of Draisma’s theorem [Dr] for algebraic
representations, proved in [ES], implies that radical g-ideals of B satisfy the as-
cending chain condition. Suppose now that a1 ⇢ a2 ⇢ · · · is an ascending chain of
gl-radical ideals of A. Then rad(a1) ⇢ rad(a2) ⇢ · · · is (or, rather, corresponds to)
an ascending chain of radical g-ideals of B, and thus stabilizes. Thus, by (A), the
original chain stabilizes. This establishes the result. ⇤
6.4. The isomeric algebra. Let C

1|1 have basis ✏0, ✏1 and let � : C1|1 ! C
1|1

be the map defined by �(✏i) = ✏i+1. Let W = V ⌦ C
1|1, and let ↵ : W ! W

be the map idV ⌦ �. The isomeric Lie superalgebra
2 q is the subalgebra of gl(W)

consisting of those elements that supercommute with ↵. (Here gl(W) means the
copy of gl1|1 associated to W.) We define the category Reppol(q) of polynomial

representations to be the subcategory of Rep(q) generated by W. This category is
semisimple, and somewhat similar to the category of polynomial representations of
gl; see [CW, §3]. We define the category Repalg(q) of algebraic representations to
be the subcategory generated by W and W⇤. This category was studied in [GS].

If X is an element of gl(V) then X ⌦ 1 is an endomorphism of W that
supercommutes with ↵, and thus is an element of q. This defines an embedding of

2Commonly known as the “queer lie superalgebra”
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Lie superalgebras gl = gl(V) ! q. By putting an appropriate order on the basis
of W, this embedding is given in terms of matrices by

✓
A B

C D

◆
7!

0

BB@

A 0 0 B

0 D C 0
0 B A 0
C 0 0 D

1

CCA .

Here the source matrix is decomposed into blocks according to the decomposition
of V into its even and odd pieces. We have:

Proposition 6.11. The restriction function Repalg(q) ! Repalg(gl) satisfies (Fin).

Proof. It su�ces to check that the generators of Repalg(q) are finitely generated
as gl-representations. The representation W of q restricts to the representation
V �V[1], while W⇤ restricts to V⇤ �V⇤[1]. Thus the result follows. ⇤
Theorem 6.12. The category Repalg(q) satisfies (A), (B) and (UF).

Proof. This follows from applying Proposition 5.18 to the restriction functor
Repalg(q) ! Repalg(gl). The necessary conditions are satisfied via Propositions
6.11, 6.8 and Corollary 6.9. ⇤
Proposition 6.13. The category Repalg(qn) satisfies (A), (B), (UF).

Proof. Regard q as the diagonal subalgebra of qn. Then the restriction functor
Repalg(qn) ! Repalg(q) satisfies (Fin); this follows from the fact that the tensor
product of two finitely generated representations of q is again finitely generated.
Thus, the result follows from Theorem 6.12 in combination with Proposition 5.18.

⇤
Proposition 6.14. Let A be a commutative algebra in Repalg(q). Suppose A is

generated over a noetherian coe�cient ring by a finite length subrepresentation.

Then Specq(A) is a noetherian topological space.

Proof. Let a1 ⇢ a2 ⇢ · · · be an ascending chain of q-radical ideals of A. Since
A is finitely generated as a gl-algebra, it follows from Proposition 6.10 that the
chain radgl(a•) stabilizes. Thus the chain rad(a•) = rad(radgl(a•)) stabilizes, and
so, by (A), the chain a• stabilizes. (Note: we are essentially just applying (A) for
the functor Repalg(q) ! Repalg(gl) here.) The result follows. ⇤
Remark 6.15. The more obvious restriction functor Repalg(q) ! Repalg(gl1),
where gl1 is the even subalgebra of q, is not su�cient for our purposes because
Repalg(gl1) does not satisfy (A). ⇤
6.5. The orthosymplectic algebra. Let W = V � V⇤. This space carries a
canonical even symmetric bilinear form. The orthosymplectic Lie superalgebra osp
is the stabilizer of this form inside of gl(W). We define the category Repalg(osp) of
(wide) algebraic representations of osp to be the subcategory of Rep(osp) generated
by W. As in the gl case, there is also a narrow category, which is equivalent to
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the category of algebraic representations of the infinite orthogonal category; this
category was studied in [DPS, PSe, PSt, SS2].

Any element of gl = gl(V) acts on W = V � V⇤ and preserves the form.
This induces an embedding gl ! osp of Lie superalgebras. In terms of matrices,
this embedding is given (in a suitable basis) by

✓
A B

C D

◆
7!

0

BB@

A 0 B 0
0 �A

t 0 �C
t

C 0 D 0
0 B

t 0 �D
t

1

CCA ,

As before, we have:

Proposition 6.16. The restriction functor Repalg(osp) ! Repalg(gl) satisfies

(Fin).

Proof. Since the generator W of Repalg(osp) restricts to V�V⇤, which is a finite
length representation, the result follows. ⇤
Theorem 6.17. The category Repalg(osp) satisfies (A), (B) and (UF).

Proof. This follows from applying Proposition 5.18 to the restriction functor
Repalg(osp) ! Repalg(gl). The necessary conditions are satisfied via Propositions
6.16, 6.8 and Corollary 6.9. ⇤
Proposition 6.18. Let A be a commutative algebra in Repalg(osp). Suppose A is

generated over a noetherian coe�cient ring by a finite length subrepresentation.

Then Specosp(A) is a noetherian topological space.

Proof. The proof is identical to that of Proposition 6.14 ⇤
6.6. The periplectic algebra. Let W = V�V⇤[1]. This space carries a canoni-
cal odd symmetric bilinear form. The periplectic Lie superalgebra pe is the stabilizer
of this form inside of gl(W). We define the category Repalg(pe) of algebraic repre-

sentations of pe to be the subcategory of Rep(pe) generated by W. This category
was studied in [Se].

Every element of gl = gl(V) induces an map of W that is compatible with
the pairing, and so there is an embedding gl ! pe. In terms of matrices, it is given
by

✓
A B

C D

◆
7!

0

BB@

A 0 0 B

0 �D
t

B
t 0

0 �C
t �A

t 0
C 0 0 D

1

CCA .

As in the other cases, we have:

Proposition 6.19. The restriction function Repalg(pe) ! Repalg(gl) satisfies

(Fin).

Proof. The generator W of Repalg(pe) restricts to the finite length representation
V �V⇤[1], and so the result follows. ⇤
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Theorem 6.20. The category Repalg(pe) satisfies (A), (B) and (UF).

Proof. This follows from applying Proposition 5.18 to the restriction functor
Repalg(pe) ! Repalg(gl). The necessary conditions are satisfied via Propositions
6.19, 6.8 and Corollary 6.9. ⇤

Proposition 6.21. Let A be a commutative algebra in Repalg(pe). Suppose A is

generated over a noetherian coe�cient ring by a finite length subrepresentation.

Then Specpe(A) is a noetherian topological space.

Proof. The proof is identical to that of Proposition 6.14 ⇤

6.7. Additional comments. We deduced (A) and (B) for Repalg(gl) from cor-
responding properties for Reppol(gl) via the criterion in §5.2. We then deduced
the properties for q, osp, and pe from the Repalg(gl) case. Instead, one can also
establish the properties for q, osp, and pe in a parallel fashion to the Repalg(gl)
case. (In the q case, this requires first establishing the properties for Reppol(q); this
follows easily from properties of the restriction functor Reppol(q) ! Reppol(gl).)
The key input required to carry this out is summarized in Figure 6.7.

g h E

I. gl⇥ gl gl V ⌦V

II. gl osp Sym2(V)

III. gl pe Sym2(V)[1]

IV. q⇥ q q 2�1(V ⌦V)

Figure 1. In each case, there is a restriction functor Reppol(g) !
Repalg(h) that satisfies (Gen). The algebra R in Reppol(g) is
Sym(E). Cases I and II are established in [NSS1]; case III in
[NSS2]; and case IV in [NSS3].

7. An example

7.1. Background. In this section, we apply our theory to classify the equivariant
primes in the isomeric algebra A studied in [NSS3]. We begin by briefly recalling
some background material; we refer to [NSS3, §2] for a more detailed discussion and
to [CW, §3] for general background on the isomeric algebra and its representations.

Recall that a isomeric vector space is a pair (V,↵) where V is a super vector
space and ↵ is an odd degree automorphism of V squaring to the identity (an
isomeric structure). Given such a space, the isomeric Lie superalgebra q(V ) is the
subalgebra of gl(V ) consisting of endomorphisms X that are compatible with ↵

(i.e., X↵ = (�1)|X|
↵X for X homogeneous). We say that a representation of q(V )

is polynomial if it occurs as a subquotient in a direct sum of tensor powers of V . We
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let Reppol(q(V )) be the category of polynomial representations. It is a semisimple
abelian category (even if dim(V ) = 1).

The simple polynomial representations can be constructed uniformly, as fol-
lows. Consider the tensor power V ⌦n. The symmetric group Sn acts by permuting
the tensor factors. Furthermore, for each 1  i  n, we can consider the endo-
morphism ↵i induced by ↵ on the ith tensor factor; note that for i 6= j, the
endomorphisms ↵i and ↵j supercommute. The Cli↵ord algebra Cln is the super-
algebra generated by n supercommuting odd elements that square to 1, and the
Hecke–Cli↵ord algebra Hn is the semi-direct product algebra Sn n Cln. The Sn

action and ↵i’s described above endow V
⌦n with the structure of an Hn-module.

The simple Hn-modules are indexed by strict partitions of n (i.e., partitions with
no repeated parts). Given a simple Hn-module L�, we let T�(V ) = V

⌦n ⌦Hn L�.
If dim(V ) < `(�) then this space is 0. If dim(V ) � `(�) then T�(V ) is an irre-
ducible polynomial representation of q(V ). Moreover, any irreducible polynomial
representation is isomorphic to T�(V ) for a unique � with `(�)  dim(V ). The
construction T�(V ) is functorial in V (with respect to maps of isomeric vector
spaces), and T� can be seen as a isomeric analog of a Schur functor.

If V is an irreducible finite dimensional representation of a Lie superalgebra
g then Endg(V ) is either one-dimensional (“type M”) or two-dimensional (“type
Q”); in the latter case, the endomorphism ring is generated by a isomeric sturcture.
The irreducible T�(V ) is type M if `(�) is even and type Q if `(�) is odd; in fact,
this continues to hold if V is infinite dimensional.

If (V,↵) and (W,�) are two isomeric vector spaces then ↵ ⌦ � is an even
automorphism of V ⌦ W squaring to �1. The half tensor product of V and W ,
denoted 2�1(V ⌦W ), is the ⇣4-eigenspace of ↵⌦ � on V ⌦W , where ⇣4 is a fixed
square root of �1. If g and h are Lie superalgebras and V and W finite dimensional
irreducible representations then V ⌦W is an irreducible representation of g⇥ h if
at least one of V or W has type M; if V and W both have type Q then 2�1(V ⌦W )
is an irreducible representation of g ⇥ h of type M (see [CW, §3.1.3]). This also
holds for polynomial representations of q(V ) in the infinite dimensional case.

7.2. The ring A. Let (V,↵) and (W,�) be isomeric vector spaces, and let U be
their half tensor product. We let A = Sym(U), which we regard as an algebra
object in Reppol(q(V ) ⇥ q(W )). We are most interested in the case where V and
W are infinite dimensional, though we also make use of the finite dimensional
case. At times we treat A as a functor of (V,W ). We have an analog of the Cauchy
decomposition for A:

A =
M

�

2��(�)(T�(V )⌦T�(W )),

where the sum is over all strict partitions �. We let A� be the � summand in
the above expression. This is an irreducible q(V ) ⇥ q(W ) representation, and if
� 6= µ then A� and Aµ are non-isomorphic. Thus A =

L
A� is multiplicity free.
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As explained in [NSS3, §2.8], A is a polynomial superalgebra in even variables xi,j

and odd variables yi,j , with i, j � 1.
We let I� be the ideal of A generated by A�. By [NSS3, Theorem 1.2], we

have

I� =
M

�⇢µ

Aµ.

In particular, we see that I� ⇢ Iµ if and only if µ ⇢ �.
We let Spec(A) be the spectrum of the ring A. This space has the structure

of a superscheme. If T is a superalgebra then a T -point of Spec(A) is a T -linear
map

h, i : VT ⌦T WT ! T

(where VT = T ⌦ V ) of degree 0 that is compatible with the isomeric structures,
in the sense that

h↵(v),�(w)i = (�1)|v|⇣4hv, wi,
where |v| 2 Z/2 denotes the degree of the homogeneous element v 2 V . (We refer
to such a map as a isomeric pairing.) As a topological space, Spec(A) coincides
with the spectrum of the reduced ring Ared, which is an ordinary commutative ring.
From the above, we see that aC-point of Spec(A) is a isomeric pairing V ⇥W ! C.
Since the pairing is even, Vi and Wi+1 must pair to 0. Furthermore, compatibility
with the isomeric structures implies that the pairing is determined by its restriction
to V0 ⇥W0. We thus see that Spec(A) is identified with Spec(Sym(V0 ⌦W0)) as
a topological space. The isomeric supergroup Q(V ) ⇥Q(W ) does not act on the
latter space, but its even subgroup GL(V0)⇥GL(W0) does, and the identification
is compatible with this action. We let Spec(A)r be the locus consisting of points
of rank  r (meaning the pairing V0 ⇥ W0 ! C has rank  r). We also put
Spec(A)1 = Spec(A).

7.3. Isomeric determinantal ideals. Let �(r) be the “staircase partition” with
r rows, i.e., (r, r�1, . . . , 1), and let Ir = I�(r+1). (We also put I1 = 0.) We refer to
Ir as the isomeric determinantal ideal of rank r. From the general decomposition
of I�, we find

A/Ir =
M

`(�)r

A�.

This decomposition will be important to what follows.
Fix r < 1. We now study the ideal Ir in more detail. Let E be a isomeric

space of dimension r|r. Put

B = Sym(2�1(V ⌦ E)� 2�1(W ⌦ E
⇤)).

This is a superalgebra on which q(V )⇥ q(W )⇥ q(E) acts.

Proposition 7.1. The invariant space B
q(E)

is (not necessarily naturally) iso-

morphic to A/Ir as a representation of q(V )⇥ q(W ).
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Proof. Appealing to the isomeric analog of the Cauchy decomposition, we have

B = Sym(2�1(V ⌦ E))⌦ Sym(2�1(W ⌦ E
⇤))

=
M

�,µ

2�`(�)(T�(V )⌦T�(E))⌦ 2�`(µ)(Tµ(W )⌦Tµ(E
⇤)).

The sum is taken over all strict partitions � and µ with  r rows. For � 6= µ,
the irreducible representations T�(E) and Tµ(E) are non-isomorphic, and so the
q(E)-invariant space of T�(E) ⌦ Tµ(E⇤) vanishes. Since the half tensor product
is associative and commutative up to isomorphism (see [SS4, §7]), we have

B
q(E) ⇠=

M

`(�)r

2�`(�)(T�(V )⌦T�(W ))⌦ 2�`(�)(T�(E)⌦T�(E
⇤))q(E)

.

The invariant space above is one-dimensional, and so the result follows. ⇤
In particular, we see that the irreducible U = 2�1(V ⌦ W ) appears with

multiplicity one in B
q(E) (assuming r > 0). Since U has type M, there is a unique

map of (q(V )⇥ q(W ))-representations U ! B
q(E), up to scaling. Thus, up to this

ambiguity, there is a unique equivariant ring homomorphism A ! B
q(E). Since

all representations in B
q(E) have  r rows, this map factors through A/Ir, and

induces a homomorphism A/Ir ! B
q(E). The above proposition suggests this map

might be an isomorphism, which is confirmed by the following proposition.

Proposition 7.2. We have the following:

(a) V (Ir) ⇢ Spec(A) is the rank  r locus Spec(A)r.

(b) We have a natural isomorphism A/Ir ! B
q(E)

of (q(V )⇥ q(W ))-algebras.

Proof. First suppose that V and W be finite dimensional. Let QGrr(V ) be the
isomeric Grassmannian, parametrizing isomeric quotients of V of dimension r|r,
and let Q be the tautological bundle on it. Let C = Sym(Q ⌦W ), regarded as a
quasi-coherent sheaf of algebras on QGrr(V ), and let Isom(Q, E) denote the space
of isomorphisms of the isomeric vector bundle Q with the trivial isomeric bundle
on E. Consider the diagram

QGrr(V )⇥ Spec(C)

↵

✏✏

QGrr(V )⇥ Spec(B)⇥ Isom(Q, E)
�oo

�

✏✏
Spec(A) Spec(B)

�
oo

To describe the maps, let T be a superalgebra. A T -point of Grr(V ) ⇥ Spec(C)
consists of a isomeric quotient VT ! T

r|r and a isomeric pairing T
r|r ⇥WT ! T .

Composing, we get a isomeric pairing VT⇥WT ! T , which is a T -point of Spec(A).
This is the map ↵. A T -point of Spec(B) consists of a isomeric map WT ! ET

and a isomeric pairing VT ⇥ ET ! T . Again, the composition gives a isomeric
pairing VT ⇥WT ! T , which is a T -point of A, and this is the map �. The map �

is simply the projection map. Finally, a T -point of the top right space consists of
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a isomeric quotient VT ! T
r|r, a isomeric pairing T

r|r ⇥W ! T , and a isomeric
isomorphism T

r|r ! ET . Out of this data we can naturally build a T -point of
Spec(B), and this is the map �. It follows from the descriptions of the maps on
T -points that the diagram commutes.

The map � is q(E)-invariant, and thus coresponds to a ring homomorphism
�
⇤ : A ! B

q(E). Since every representation of q(V ) ⇥ q(W ) appearing in B
q(E)

has  r rows, it follows that �⇤ factors through A/Ir. Thus � � � = ↵ � � factors
(scheme-theoretically) through Spec(A/Ir). Since � is simply a projection map, it
follows that ↵ similarly factors.

We claim that the map ↵
⇤ on global functions is injective modulo Ir. Since ↵

is equivariant for the actions of the isomeric groups, the kernel of ↵⇤ is a (q(V )⇥
q(W ))-ideal of A/Ir. Since every representation appearing in A/Ir has  r rows,
it su�ces to prove injectivity in the case where V = W = C

r|r. But in this case
QGrr(V ) is a point, C = A, and ↵ is the identity map. Thus the claim follows.

It follows from the previous paragraph that im(↵) is Zariski dense in V (Ir).
Since the image of ↵ on C-points is the points of rank  r, claim (a) follows.

The map �
⇤ on functions is clearly injective. Thus �⇤��⇤ = �

⇤�↵⇤ is injective
modulo Ir. In particular, we see that �

⇤ : A/Ir ! B
q(E) is injective. Since A/Ir

and B
q(E) are isomorphic as representations, and all multiplicity spaces are finite

dimensional, this map is necessarily an isomorphism. Thus (b) follows.
The infinite dimensional case follows from the finite dimensional case. In-

deed, (a) can be rephrased as saying that rad(Ir) coincides with some (GL(V0)⇥
GL(W0))-ideal, and since the algebra is a polynomial representation of GL(V0)⇥
GL(W0) we can check such an equality after evaluating on finite dimensional
spaces. Similarly, the map in (b) can be checked to be an isomorphism after eval-
uating on finite dimensional spaces. ⇤
Lemma 7.3. Suppose V and W are infinite dimensional. Then the algebra

Sym(V �r �W
�s) is (q(V )⇥ q(W ))-integral.

Proof. Let f and g be non-zero elements of the algebra. By picking bases, we
can identify this algebra with a super polynomial ring. All zero divisors in this
ring stem from odd degree variables squaring to 0. Since V and W are infinite
dimensional, the representation generated by f will contain a non-zero element
f
0 that has no variables in common with g. Thus f

0
g 6= 0, which establishes the

result. ⇤
Remark 7.4. A similar argument shows that A itself is (q(V ) ⇥ q(W ))-integral.

⇤
Proposition 7.5. The ideal Ir is (q(V )⇥ q(W ))-prime.

Proof. By Lemma 7.3 the algebra B is (q(V )⇥ q(W ))-integral; indeed, note that
B is a subalgebra of Sym(V ⌦ E � W ⌦ E

⇤), which has the form considered in
the lemma. It follows that the subalgebra B

q(E) is also (q(V )⇥q(W ))-integral. By
Proposition 7.2, we see that A/Ir is (q(V )⇥ q(W ))-integral, and so Ir is (q(V )⇥
q(W ))-prime. ⇤
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7.4. Classification of primes. We now come to our main result. We suppose
that V and W are infinite dimensional, and put g = q(V )⇥ q(W ) for brevity.

Theorem 7.6. We have the following:

(a) The ideal Ir is g-prime for all 0  r  1.

(b) Every g-prime of A is one of the Ir, for 0  r  1.

(c) Every g-radical ideal of A is g-prime, and thus also one of the Ir.

Proof. (a) We have already proved this (Proposition 7.5 for r < 1, and Remark 7.4
for r = 1).

(b) Suppose now that p is some g-prime of A. Since p is stable by the group
GL(V0)⇥GL(W0), so is the locus V (p). It follows from basic linear algebra that
the only GL(V0) ⇥ GL(W0) stable closed subsets of Spec(A) are the rank loci
Spec(A)r. We thus see that V (p) = V (Ir) for some r. Since Reppol(g) ! SVec
satisfies (A) (Proposition 6.13, note that (A) passes to subcategories), we see that
radg(p) = radg(Ir). But since p and Ir are g-prime, they are equal to their g-
radicals, and so p = Ir.

(c) A g-radical ideal is an intersection of g-prime ideals. Since the g-primes
are totally ordered under inclusion by (b), the claim follows. ⇤
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