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AN ANTICHAIN OF MONOMIAL IDEALS

IN A TWISTED COMMUTATIVE ALGEBRA
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(Communicated by Jerzy Weyman)

Abstract. We resolve an open question posed by Nagpal, Sam and Snowden
[Selecta. Math. (N.S.) 22 (2016), pp. 913–937] in 2015 concerning a Gröbner
theoretic approach to the noetherianity of the twisted commutative algebra
Sym(Sym2(C∞)). We provide a negative answer to their question by produc-
ing an explicit antichain. In doing so, we establish a connection to well-studied
posets of graphs under the subgraph and induced subgraph relation. We then
analyze this connection to suggest future paths of investigation.
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1. Introduction

1.1. Statement of results. A twisted commutative algebra (tca) is a commutative
C-algebra with an action of GL∞ by algebra homomorphisms for which it forms
a polynomial representation. In [16], the authors prove that the twisted commuta-
tive algebra Sym(Sym2(C∞)) is noetherian in characteristic 0. They then propose
a different method of proof and ultimately pose the question of whether a partially
ordered set (M,!) is noetherian. Here M is a set of matchings which represent
admissible weight vectors for the action of GL∞ on Sym(Sym2(C∞)). The noethe-
rianity of this poset would imply the noetherianity of the twisted commutative
algebra Sym(Sym2(C∞)) in any characteristic. This question has been open since
2015, the main result of this paper is providing a negative answer by constructing
an infinite antichain in the poset:
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Theorem 1.1. The poset (M,!) described in [16, Question 5.2] (and §3) is not
noetherian.

To construct this counterexample, we establish a connection to graph theory
that, to our knowledge, has not been seen before in investigating noetherianity re-
sults about twisted commutative algebras. Up to this point, all of the noetherianity
results in this vein have relied on some variant of Higman’s lemma, which one can
view as a “one dimensional” result in that it is concerned with words. The use of
graph theory can be seen as an application of “higher dimensional” combinatorics.
We believe such a connection will be necessary if one wishes to use Gröbner and
combinatorial methods to approach noetherianity of higher degree twisted commu-
tative algebras.

1.2. Motivation. Recently, researchers have discovered many large algebraic struc-
tures that have surprising finiteness properties up to natural symmetries. Examples
include FI [8], H [11], as well as the collection of Veronese [19] and Plücker ideals
[12]. Twisted commutative algebras are another class of examples, but are still
largely not understood; see §2.1 for the general definition. In the setting of these
algebraic structures, we often consider sequences of modules Mn that are “com-
patible” in a certain sense and the finiteness properties we seek are some sort of
stabilization as n gets large. In all of these cases, one of the most important finite-
ness properties is noetherianity. For a tca A, there is a notion of a finitely generated
A-module, and A is said to be noetherian if any submodule of a finitely generated
A-module is also finitely generated.

All degree one tca’s are easily seen to be noetherian, for more information on
tca’s and the proof of this fact we refer the reader to [21]. In fact, modules over the
tca Sym(C∞) are equivalent to the FI-modules of [8] under Schur-Weyl duality.
As soon as one starts to consider tca’s generated in degree larger than one, much
less is known. Indeed, only six degree two tca’s are known to be noetherian, see
[16, 17, 22] for details.

All of these results stem from a similar idea. Namely, one studies the torsion
elements in the category of modules for the tca as well as the generic category,
which is the Serre quotient by the torsion subcategory. One then investigates how
both of these pieces glue together to deduce noetherianity. Although the idea is
similar in all cases, the execution is often specific to the example, involved and
characteristic dependent.

Draisma was able to show that all tca’s finitely generated in any degree are
topologically noetherian, i.e. radicals satisfy the ascending chain condition [9].
One could hope that a similar result holds algebraically. This is actually one of the
major open problems in the theory of tca’s. As of now, we seem far from proving
something this strong, and to get there we may need to seek other methods of proof
that are more easily generalizable.

In [16], the authors suggest a potential step in that direction, namely trying to
apply Gröbner methods for proving noetherianity. These methods already have
the benefit of being independent of characteristic and are successfully applied in
[11, 12, 19, 20].

Such an approach also works for simple examples of tca’s, for example Sym(C∞⊕
C∞), and ultimately boils down to an application of Higman’s lemma, but in degree
two more complications arise. We include the details of the Sym(Sym2(C∞)) case
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in §3 but refer the reader to [16, §5] for details about the degree one case. After
outlining this more combinatorial approach to noetherianity of Sym(Sym2(C∞)),
the authors in [16] end with the question of whether a poset they construct is
noetherian, which would ultimately imply noetherianity of Sym(Sym2(C∞)). In
answering this question, even negatively, we hope to provide potential paths for
further research in this direction, as well as motivation to revisit this Gröbner
approach.

1.3. Idea behind the proof. The proof of Theorem 1.1 relies on connecting the
poset (M,!) of matchings ordered under certain allowable moves to the poset of
permutation graphs ordered by what these allowable moves induce on the underly-
ing permutations.

To do this, we first restrict to a subset of all perfect matchings which we connect
to words. We interpret the partial order on perfect matchings in terms of their
word counterparts (Propositions 4.2, 4.3). We can further view these words as word
representations of permutations. We then consider the corresponding permutation
graphs. Following this, we label a well-known antichain of graphs for the subgraph
relation, proving these graphs are permutation graphs and associating to each a
permutation. We argue that these permutations provide an antichain for (M,!) by
studying what happens to the graphs as we change the corresponding permutations.
This allows us to construct an infinite antichain in our original poset.

1.4. Outline. In §2 we provide all the relevant background material on tca’s, rep-
resentations of GL, and graph theory. In §3 we recall the setup from [16, §5.3] for
the question we answer. In §4, we describe all the necessary setup for the counterex-
ample. This is the section where we establish the connection between the poset of
perfect matchings ordered by certain allowable moves and the poset of permuta-
tions and their corresponding permutation graphs. In §5 we use the connection
in the previous section to construct an explicit counterexample, showing the poset
(M,!) is not noetherian. Finally, in §6 we outline future directions of research we
are actively investigating that could stem from the techniques established in this
paper to prove noetherianity of higher degree tca’s via Gröbner methods.

2. Background

2.1. Important definitions. By GL∞, we mean
⋃

n≥1 GLn. A representation
of GL∞ is polynomial if it is a subquotient of a possibly infinite direct sum of
representations of the form (C∞)⊗k. Polynomial representations of GL∞ are semi-
simple and all the simple modules are indexed by partitions. That is, the simple
modules are precisely Sλ(C∞), where Sλ is the Schur functor associated to the
partition λ. A polynomial representation is said to be finite length if it is a direct
sum of finitely many simple representations. We refer the reader to [21] for details.

A twisted commutative algebra (tca) is a commutative unital C-algebra A equip-
ped with an action of GL∞ by C-algebra homomorphisms such that A forms a
polynomial representation of GL∞.

2.2. Admissible weights. A weight of GL∞ is a sequence of non-negative inte-
gers w = (w1, w2, . . . ) such that wi = 0 for i # 0. The classical results about
weight space decomposition of polynomial representations for GLn carry over to
the infinite setting. Namely, if V is any polynomial representation of GL∞ then
we have V =

⊕
w Vw where Vw is the weight space of weight w. A weight w is
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admissible if all the wi are either 1 or 0. An admissible weight vector is an element
of Vw where w is an admissible weight. We will make use of the following fact: if
V is a polynomial representation of GL∞ then V is generated, as a representation,
by its admissible weight vectors.

2.3. Permutation graphs. We assume the reader has a basic background in graph
theory and combinatorics. For a permutation σ of n, we define the permutation
graph Gσ to have vertex set V = [n] and edge set E(G) = {(σ(j),σ(i)) | i <
j,σ(i) > σ(j)}. A permutation graph is not a directed graph, but following the
convention of Kho and Ree we write an edge (σ(j),σ(i)) ∈ E, i.e. as an ordered
pair instead of writing {σ(i),σ(j)} ∈ E. We call such a pair (σ(j),σ(i)) with i < j
but σ(i) > σ(j) an inversion in σ. When we focus on a single element σ(i), we say
that another element σ(j) is an inversion with σ(i) if (σ(j),σ(i)) is an inversion.

We note that our definition of a permutation graph is somewhat non-standard,
but is really a matter of labeling and still produces the same as the usual definition
graph for a given permutation. Given a permutation σ in one-line notation, σ =
w1 · · ·wn, with our notation the edge (wj , wi) appears in the permutation graph if
i < j but wi > wj . Usually, one would include the edge (i, j) instead. We prefer
(wj , wi) because we feel it more naturally corresponds to the one-line notation,
recording the letters themselves instead of their positions. This will make some
proofs much clearer. The resulting graphs are isomorphic, though, because we
merely have to apply the permutation σ to the labels of the normal permutation
graph to recover the graph defined in this paper.

Not every graph is a permutation graph. Koh and Ree in [7, Theorem 3.2] showed
that permutation graphs are completely characterized by the following properties
(we translate their theorem to fit our notation):

(P1) E is transitive, i.e., if (σ(k),σ(j)) ∈ E and (σ(j),σ(i)) ∈ E, then (σ(k),σ(i))
∈ E.

(P2) If (σ(k),σ(i)) ∈ E and i < j < k for some j, then it must hold that
(σ(j),σ(i)) ∈ E of (σ(k),σ(j)) ∈ E.

This characterization allows one to show a graph is a permutation graph by
constructing an appropriate labeling of its vertices satisfying (P1) and (P2).

2.4. Well-quasi-ordering. Let (P,≤) be a partially ordered set (poset). When
discussing a poset we will often suppress the partial order and just write P. An
antichain in P is a (potentially infinite) sequence of elements of P, p1, p2, p3, . . . ,
such that pi ! pj for any j > i. We say that P is well-quasi-ordered, also referred
to as noetherian, if P is well founded and does not have an infinite antichain with
respect to ≤. Equivalently, P is noetherian if any infinite sequence of elements
p1, p2, . . . in P contains some increasing pair pi ≤ pj with i < j.

When proving a poset is noetherian, one often proves that any infinite sequence
has two elements that are comparable. When disproving noetherianity, one con-
structs an infinite antichain.

3. Gröbner approach to noetherianity

In [16, §5.3], the authors propose a Gröbner theoretic approach to proving
noetherianity of the tca Sym(Sym2(C∞)). This paper is concerned with providing
a negative answer to a question they pose after setting up this approach, so we will
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include the setup. Let A = Sym(Sym2(C∞)). Let xi,j , with i ≤ j, be a basis for
Sym2(C∞), so that A = C[xi,j ].

Let M be the set of undirected matchings Γ on N. Given Γ,Γ′ ∈ M, we define
Γ → Γ′ if one of the following two conditions holds,

• Γ′ is obtained from Γ by adding a single edge.
• There exists an edge (i, j) in Γ such that j+1 is not in Γ, and Γ′ is obtained

from Γ by replacing (i, j) with (i, j + 1). (Here i < j or j < i).

The authors in [16] call Γ → Γ′ a Type I move. We refer to the first bullet point
as a Type I(a) move and the second as a Type I(b) move. They define Γ ≤ Γ′ if
there is a sequence of type I moves transforming Γ to Γ′. This partially orders M.
On the level of graphs, Type I moves allow you to add edges connecting valence 0
vertices and to shift existing edges up by one vertex if the next vertex is empty.

They then define a total order ' on M. First, suppose that i < j and k < #
are elements of N. Define (i, j) ' (k, #) if j < #, or j = # and i ≤ k. They then
expand this definition to a lexicographic order on M. Explicitly, let Γ and Γ′ be two
elements of M with e1 ' e2 ' · · · ' en and e′1 ' e′2 ' · · · ' e′m their edges listed in
increasing order. Then Γ ' Γ′ if n < m, or if n = m and (e1, . . . , en) ' (e′1, . . . , e

′
m)

under the lexicographic order reading from right to left, to stay consistent with the
definition on single edges.

Given Γ ∈ M, we define mΓ =
∏

(i,j)∈Γ xi,j . Every admissible weight vector is
a sum of mΓ’s, and every polynomial representation of GL∞ is generated by its
admissible weight vectors (§2.2), so we can restrict our attention to these elements.
Using ', we let the initial element of any f ∈ A be the largest Γ under ' such that
mΓ appears with non-zero coefficient in f . We denote the initial variable by in(f).

For any ideal I of A, let in(I) = {in(f) | f ∈ I} be the set of initial elements
in I. In [16], the authors observe that in(I) is closed under Type I moves, and
therefore forms a poset ideal of the poset (M,≤). But this poset is not noetherian.
This leads to the introduction of more “types” of moves to hopefully remedy this
situation. All of these moves come from allowing GL∞ to act in a way that respects
the total order ' and therefore preserves the initial ideal in(I). Each new type of
move is finding a slightly more complex action.

The next type of moves the authors define as follows. We include pictures illus-
trating the moves and refer the reader to [16] for the explicit definition. We do this
because the pictures are generally a much clearer illustration of the moves and it is
not hard to translate between the perfect matchings and monomials.

(3.1)
a b c d =⇒ a b c d

a b c d =⇒ a b c d ,

where a < b < c < d and the dotted lines indicate that any element there is either
not an edge or is connected to a number larger than c. We also note that in (3.1),
we only ever change the edges present in the picture. Write Γ =⇒ Γ′ to indicate
that Γ′ is related to Γ by a sequence of any of the two modifications in (3.1). These
are called “Type II” moves. We refer to the first move as a Type II(a) move and
the second as Type II(b). One can then place a new partial order ! on M where
Γ ! Γ′ if there exists a sequence of moves (of any type) taking Γ to Γ′. The authors
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2302 ROBERT P. LAUDONE

observe that these moves respect the initial ideal so that in(I) is still a poset ideal
of (M,!). They pose the following question:

Question 3.1. Is the poset (M,!) noetherian?

This question has been open since 2015. The remainder of this paper is dedicated
to answering this question in the negative. We produce an explicit counterexample
to the noetherianity of this poset. In doing so, we establish a connection between
this poset and a poset of graphs.

4. Setting up the counterexample

We begin by restricting ourselves to a particular subset of matchings. We say
a matching (i1, j1), . . . , (in, jn) is intertwined if min(j1, . . . , jn) > max(i1, . . . , in).
We will often use visual representations of these matchings in terms of graphs. An
important property of intertwined matchings is that they do not have a subgraph
of the following type:

a b c d,

with a < b < c < d. One reason for our restriction to this class is we will never
make use of the Type II(b) move in [16] because this would create a non-intertwined
matching, and once a matching is non-intertwined none of the moves can make it
intertwined again.

Our counterexample will make use of perfect intertwined matchings on 2n letters.
These matchings are easily encoded by words on the alphabet [n], all with distinct
letters. Indeed, a perfect intertwined matching with edges (wn, n + 1), . . . , (w1, 2n)
corresponds bijectively to the word w1 · · · wn. The opposite direction is clear.

Intuitively, to read off the corresponding word from a perfect intertwined match-
ing you work from right to left and write down the number of the origin vertex
connected to each terminal vertex in your matching. For a perfect intertwined
matching Γ, we denote its corresponding word by wΓ.

Example 4.1. To illustrate this bijection consider the following perfect intertwined
matching on six vertices,

1 2 3 4 5 6.

This corresponds to the word 213. It is also not hard to go in the other direction.
For example, the word 312 corresponds to

1 2 3 4 5 6.

Now we wish to understand Type I and II moves in terms of the words corre-
sponding to perfect intertwined matchings. First, we must make a definition. For a
word w = w1 · · · wn with distinct letters in [m] with m ≥ n, we let the reduced word
of w denoted red(w) be the word where we replace the letters wi1 < wi2 < · · · < win

with 1 < 2 < · · · < n. For example, the reduced word of 364 is 132. Type I moves
correspond to order preserving injections and adding additional letters to the word.
More explicitly, we say one word w1 · · ·wn is order isomorphic to a subword of
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another word s1 · · · sm with m ≥ n if there exists si1 · · · sin , sij ≥ wj for 1 ≤ j ≤ n,
with red(si1 · · · sin) = red(w1 · · ·wn). Then we have

Proposition 4.2. A perfect intertwined matching Γ can be transformed into an-
other perfect intertwined matching Γ′ via Type I moves if and only if wΓ is order
isomorphic to a subword of wΓ′ .

Proof. Suppose first that we have Γ → Γ′. Let (wn, n + 1) ' (wn−1, n + 2) ' · · · '
(w2, 2n− 1) ' (w1, 2n) be the edges of Γ listed in the lex order described in §3. We
can write the edges in this way because the matching is perfect and intertwined.
Notice that we obtain the corresponding word wΓ as w1w2 · · ·wn.

Consider each of these edges in Γ and where they are sent in Γ′ after applying
the Type I moves. We note that after each Type I move, the matching may no
longer be a perfect matching, but the final result, i.e. Γ′ will be. Importantly,
though, if a chain of Type I moves results in a perfect intertwined matching, any
intermediate matching must have been intertwined as well. This is because once a
matching is not intertwined, it will remain non-intertwined after any other move.
So, since Γ′ is a perfect intertwined matching, this means every Type I move we
perform to transform Γ into Γ′ must result in another intertwined matching.

Any Type I(a) move adds a single edge to Γ, but does not change the order of
the edges in the original matching Γ, i.e. the listed edges do not swap in the lex
order. Any Type I(b) move performed on one of the edges from Γ sends (i, j) to
(i, j + 1) or (i + 1, j) but only if j + 1 or i + 1 respectively is valence zero. This
again does not change the order of the edges in Γ. Since the order of the edges in
Γ was not changed, if we consider the subword corresponding to the image of the
edges of Γ in wΓ′ , we recover a word that is order isomorphic to wΓ.

Conversely, suppose we have wΓ order isomorphic to a subword of wΓ′ for some
perfect intertwined matchings Γ and Γ′. This means there is an order preserving
injection of the letters of wΓ into the letters of wΓ′ . This corresponds to shifting
edges up, i.e. Type I(b) moves. We then fill in the remaining letters of wΓ′ using
Type I(a) moves. !

Type II(a) moves are a bit more subtle.

Proposition 4.3. Applying a Type II(a) move to a perfect intertwined matching Γ
corresponds to swapping two letters i < j if i appears before j and all the numbers
between i and j appear before j when reading from left to right.

Proof. It is clear from translating the definition of a Type II(a) move to the word
representation of a perfect matching that we are allowed to apply a Type II(a) move
if and only if the corresponding letters we wish to swap are i < j with i appearing
before j. Furthermore, the restriction that any element between the vertices labeled
with a and b in (3.1) must be connected to a vertex larger than c means that every
number strictly between i and j must appear before j. !

Words corresponding to perfect intertwined matchings on 2n vertices can be
thought of as permutations of [n] in one-line notation, this is also sometimes called
the word representation of a permutation. We note that we think of this connection
on the level of posets. We will adopt this viewpoint because well-quasi-orders on
permutations have received a good amount of attention since the early 2000s, and
we would like to use techniques and results from this area.
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Type I moves in this setting then correspond to the well-studied pattern contain-
ment order, which is also known to not be well-quasi-ordered. Numerous examples
exist to demonstrate this which arise in various settings, to name a few: Laver
[14], Pratt [18] and Speilman and Bóna [24]. For a straight-forward antichain, we
particularly recommend Speilman and Bóna’s paper. In this way, we find many
other counterexamples to perfect matchings with just Type I moves being well-
quasi-ordered.

The addition of Type II moves and the partial order it induces on permutations
has, to our knowledge, not received any attention in the literature; especially in the
context of combining Type I and Type II moves to compare permutations of any
length. We use ≤i to denote this partial order on permutations and pΓ to denote
the permutation corresponding to Γ. Explicitly,

Definition 4.4. If σ and τ are permutations, then we say σ ≤i τ if there are
intertwined perfect matchings Γ,Γ′ satisfying Γ ! Γ′ such that σ = pΓ and τ = pΓ′ .

Remark 4.5. This partial order is closely related to the Bruhat order, indeed it is
strictly weaker than the Bruhat order when we restrict to permutations of a specific
size. The (strong) Bruhat order allows you to swap i < j with i appearing before
j if all the numbers between i and j appear before i or after j.

When constructing infinite antichains for permutation classes, it is often conve-
nient to work instead with the corresponding permutation graph. When working
with permutation graphs, we will consider the graphs as having vertices labeled by
{1, . . . , n}, but when comparing these graphs under the induced subgraph or sub-
graph relation, the labelings are irrelevant. We are only concerned with the graph
itself. It is well known, and not hard to show,

Proposition 4.6. If σ is order isomorphic to a subpermutation of τ then Gσ is an
induced subgraph of Gτ

Proof. See for example [3, §1]. !
The converse is not true because the map from permutations to their graphs is

many-to-one. For example the permutation graphs corresponding to the permuta-
tions 231 and 312 are isomorphic to P3, the path on three vertices, but 231 is not
order isomorphic to 312.

This correspondence, though, is used to either construct counterexamples on
the graph theoretic side that carry over to counterexamples of permutations, or to
prove that a class of permutation graphs is well-quasi-ordered by showing that the
corresponding class of permutations is well-quasi-ordered [3].

Now we are ready to see a few properties that Type II(a) moves have in the
graph theoretic picture,

Proposition 4.7. Applying a Type II(a) move to σ always increases the number of
edges in the corresponding permutation graph, while keeping the number of vertices
the same.

Proof. We break this proof into cases depending on the positioning of certain el-
ements of the permutation. For this purpose, suppose we are going to swap the
letters a and b in σ, with a < b and σ(a) < σ(b). We break the remaining letters
into the following categories

(A) All elements less than a,
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(B) All elements between a and b,
(C) All elements larger than b.

And we section off the places these elements could appear in σ in the following way

(i) Appearing before a,
(ii) Appearing between a and b,
(iii) Appearing after b.

Notice that based on the restriction of when we can apply a Type II(a) move, we
can never have elements in (B) appearing in (iii). We examine what happens to
the graph for each possible pairing when we swap a and b. This accounts for all
the possible changes to the graph as every element of σ falls into some pairing of
these categories. We first consider all the elements in (A), i.e. those less than a.

– (A) and (i): Before the swap, these vertices were not connected to a or b, after
the swap this stays the same so there are no additional edges.

– (A) and (ii): Before the swap, these vertices were connected to a but not b. After
the swap, we remove all the edges from these vertices to a and add edges from
these vertices to b.

– (A) and (iii): We do not have to change anything because all of these vertices
are connected to both a and b before and after the swap.

We similarly consider all the other possible vertex pairings

– (B) and (i): No additional edges. All of these vertices are connected to a and
not b. They stay this way after the swap.

– (B) and (ii): Before the swap, these vertices were not connected to a or b. After
the swap, we must add edges from these vertices to both a and b.

– (B) and (iii): Not allowed.

Finally,

– (C) and (i): Before the swap there were edges from these vertices to both a and
b, this stays the same after the swap.

– (C) and (ii): Before the swap there were edges from these vertices to b but not
a. After the swap, we must remove all the edges to b and add edges from each
of these vertices to a instead.

– (C) and (iii): Before the swap these vertices were not connected to a or b, after
the swap this stays the same.

In all of these cases the number of edges either stays the same, or increases. But
when we swap a and b in σ, we also have to add an edge between a and b. As a
result, the number of edges in the graph that results from applying a Type II move
to σ has strictly more edges than Gσ. !

Example 4.8. We include examples of how Proposition 4.7 works. Consider
2143 ≤i 3142. These permutations correspond to the following graphs

•1

•4 •2

•3

=⇒

•1

•4 •2

•3 .
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We include the labels to illustrate how one constructs permutation graphs. It is not
hard to see here that the graph on the right has more edges than the graph on the
left. Furthermore, we can obtain the graph on the right by following the procedure
outlined in Proposition 4.7. 1 is in category (A) and (ii), so we must remove the
edge (1, 2) and add the edge (1, 3). 4 is in category (C) and (ii), so we must remove
the edge (3, 4) and add the edge (2, 4). Finally, we always add the edge (2, 3) and
we obtain the new graph.

Now let us look at an example comparing two permutations of different sizes.
Consider 2143 ≤i 34152. We can realize this relation by 2143 =⇒ 3142 → 34152
where we first apply a Type II move to swap 2 and 3, then apply Type I moves
sending 1 → 1, 2 → 2, 3 → 3 and 4 → 5 and adding 4 into the second position.
This corresponds to the following picture on graphs,

•

• •

•

=⇒

•

• •

•

→

•

• •

• •

.

It is not hard to see that the second graph is an induced subgraph of the final graph,
we colored it red for clarity. Notice, also, that the first graph is not an induced
subgraph of the last. This is because we need more than Type I moves to realize
the connection between their corresponding perfect matchings.

Proposition 4.9. Type I and Type II moves preserve cycles in permutation graphs.
That is, if G is a permutation graph with a cycle, after any application of Type I and
II moves to any permutation associated to G, the resulting graph will still contain
a cycle.

Proof. Let w = w1w2 · · ·wm be any permutation associated to G. Any Type I move
will maintain a cycle by Proposition 4.6, so it remains to argue that Type II moves
also preserve cycles. Pick any cycle in the graph. Suppose that the cycle is given
by (wj1 , wj2 , . . . , wjn , wj1) where {j1, j2, . . . , jn} = {i1, i2, . . . , in} as unordered sets.
Here we are walking along the cycle and reading off the labelings on the vertices.
If we apply any Type II move that does not involve these elements, the cycle is
clearly still present. Now there are a few cases to consider.

The first case is if we apply a Type II move to some wi and wj both present in
the cycle, with wi < wj and i < j. If we are allowed to swap wi and wj they could
not appear consecutively in the cycle because they do not have an edge between
them. Suppose we have (wi, wα1 , · · · , wαm , wj) as the path between wi and wj in
the cycle. We may assume that neither wi, nor wj are at the beginning of the cycle
because we can start our cycle from anywhere. There are six subcases to consider:

(i) If m>1 and wi <wα1 and wj <wαm we have a new cycle (wi, wα1 , . . . , wαm , wi).
(ii) If m = 1 and wi < wα1 and wj < wα1 we have a new cycle (wi, wα1 , wj , wi).
(iii) If m>1 and wi >wα1 and wj >wαm we have a new cycle (wj , wα1 , . . . , wαm , wj).
(iv) If m = 1 and wi > wα1 and wj > wα1 we have a new cycle (wj , wi, wα1 , wj).
(v) For any m ≥ 1, if wi < wα1 and wj > wαm ,

we have a new cycle (wi, wα1 , . . . , wαm , wj , wi).
(vi) For any m ≥ 1, if wi > wα1 and wj < wαm ,

we have a new cycle (wj , wα1 , . . . , wαm , wi, wj).
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The second case is if we apply a Type II move to some wi present in the cycle
and some other element wj not in the cycle, we either have wi < wj with i < j
or wj < wi with j < i. Both cases are similar, so we only discuss the first one.
Suppose · · ·wα1wiwα2 · · · is the part of the cycle where wi appears. We may assume
without loss of generality that wi is not the beginning of our cycle because we can
start the cycle from anywhere. Once again there are four subcases to consider:

(i) If wi > wα1 and wi > wα2 , then we can replace (wα1 , wi, wα2) in the cycle
with (wα1 , wj , wα2).

(ii) If wi > wα1 and wi < wα2 , then we can replace (wα1 , wi, wα2) in the cycle
with (wα1 , wj , wi, wα2).

(iii) If wi < wα1 and wi > wα2 , then we can replace (wα1 , wi, wα2) in the cycle
with (wα1 , wi, wj , wα2).

(iv) If wi < wα1 and wi < wα2 , then we can just keep (wα1 , wi, wα2) in the cycle.

This handles all possible cases and shows that whenever we apply a Type I or
Type II move, if a graph contains a cycle, it will still contain one after the move. !
Example 4.10. Consider the permutation 3214. This has the following permuta-
tion graph

•1

•4 •2

•3

.

We can write the cycle as (3, 2, 1, 3). Say we wish to apply the Type II move
swapping 2 and 4. We are taking w2 and swapping it with w4 which is not in the
cycle. As a result, we fall into the second case of Proposition 4.9. The part of the
cycle we are concerned with directly to the left and right of 2 is (3, 2, 1). We see
that 2 < 3 but 2 > 1, so we fall into sub-case (iii). The proof of the Proposition tells
us that the resulting permutation 3412 will contain the cycle (3, 2, 4, 1, 3), which is
indeed the case

•1

•4 •2

•3

.

We mention one other fact about how these moves affect permutation graphs
because we implicitly use it, so thought it worth explicitly mentioning:

Proposition 4.11. If two vertices in a permutation graph were connected before
an application of a Type I or II move to the underlying permutation, they remain
connected after. In particular, neither type of move can disconnect a connected
component.

Proof. For Type I moves, this follows immediately from Proposition 4.6.
For Type II moves we just have to notice that if wi and wj are adjacent to each

other, there is still a path between them after an application of Type II moves. We
cannot apply a Type II move between wi and wj because they are connected. If we
apply a Type II move to wi and some other wk at least one of wi or wk is connected
to wj (one can see this from Proposition 4.7), so we still have a path from wi to
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wj because wi and wk are connected. An identical argument shows we still have
a path from wi to wj if we swap wj and some wk. Finally, if we apply a Type II
move to two vertices neither of which are wi or wj , then wi and wj are still clearly
connected.

Now, if wi and wj are connected by some path (wi, wα1 , . . . , wαn , wj), iterating
the above argument for each edge in the path shows wi and wj are still connected
after any Type II move. !

5. The counterexample

We are now ready to present the counterexample to the noetherianity of the poset
(M,!). The idea behind the counterexample is as follows. By definition, two perfect
matchings Γ,Γ′ are comparable, i.e. Γ " Γ′, if and only if their corresponding
permutations pΓ, pΓ′ are comparable, i.e. pΓ ≤i pΓ′ (Definition 4.4).

So to prove that (M,!) is not noetherian, it suffices to produce an infinite chain
of graphs G1, G2, . . . , prove that these graphs are permutation graphs by labeling
them, and argue that for any Gi and Gj with i < j, we cannot transform Gi

into Gj by applying Type I and II moves to the underlying permutations. We
use graphs, because it is much easier to work with what Type I and II moves
induce on the graph theoretic side, than to work with the permutations themselves.
Furthermore, we make this connection to graph theory because there are many
well-studied antichains on graphs and we will use one such antichain to produce an
antichain in (M,!).

Theorem 5.1. The poset (M,!) is not noetherian.

We break this proof into many small pieces to make it easier to follow. We begin
by presenting a chain of graphs. We argue these graphs are permutation graphs and
associate a permutation to each one. Then we present each piece of the proof that
these permutations are not comparable under ≤i as Lemmas and use this to show
the chain we start with is an antichain. Throughout this proof, when we speak of
applying a Type II move to two vertices in a graph, we mean applying the Type
II move to the labels in the underlying permutation and tracking what this does
to the permutation graph. We are always actually working with the permutations,
but using the graphs to keep track of the inversions in the permutations.

Proof. A well-known antichain for the subgraph order on graphs is the fork an-
tichain F1, F2, . . . where Fk is the graph

• •

• • . . . • •

• •
i.e. the path on k vertices with an additional two vertices connected to both the
beginning and end of the path. We call the degree 3 vertices at the beginning and
end of the fork the left and right fork vertices respectively, and the degree 1 vertices
the leaves of the fork. We will also use this as an antichain for our poset.

Lemma 5.2. Let F2n represent the fork on 2n + 4 vertices. Each F2n is a permu-
tation graph, and to it we can associate a permutation p2n.
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Proof. We find p2n by labeling the vertices of F2n. This both proves F2n is a
permutation graph and associates a particular permutation to F2n.

Permutation graphs are characterized by [7, Theorem 3.2], so it suffices to show
there is a labeling of the vertices in the fork that satisfies (P1) and (P2) as seen in
§2.3. One such labeling for F2n is given by: leaves on the left fork vertex labeled
by 1 and 2, leaves on the right fork vertex labeled by 2n+3, 2n+4 and the path in
between the fork vertices alternating with the pattern 4, 3, 6, 5, . . . , 2n + 2, 2n + 1
from left to right.

Indeed, this labeling satisfies (P1) because there is no increasing path of length
3 or greater in the graph. That is, for any edge (i, j) with i < j there is never an
edge (j, k) with j < k, so we trivially satisfy the transitivity property.

As for (P2) one can first verify that the forks satisfy this property. The left leaves
are always labeled with 1 and 2 and the left fork connected to them is labeled 4.
But the edges (3, 4) and (2, 4) are in the graph, so (P2) is satisfied here. The exact
same analysis shows (P2) is satisfied by the right fork. As for the path connecting
the fork vertices, for 2 ≤ k ≤ n + 1, there are edges of the form (2k, 2k − 1) and
for 2 ≤ k ≤ n there are edges of the form (2k − 1, 2k + 2). The first type of edge
trivially satisfies (P2). For the second type of edge, notice that for 2 ≤ k ≤ n,
2k − 1 is always connected to 2k, and 2k + 2 is connected to 2k + 1. This shows
(P2) is also satisfied for these vertices. This covers all possible cases. !

Throughout this proof, F2n will represent the fork graph on 2n + 4 vertices and
p2n will represent the permutation associated to F2n in Lemma 5.2. There is a
similar labeling for F2n+1, but the even forks suffice to produce an antichain.

We will argue that we cannot transform F2n into any F2m using Type I or II
moves on the corresponding permutations. We will often make use of the fact that
Type I moves imply the induced subgraph relation and that Type II moves strictly
increase the number of edges while maintaining the number of vertices.

To get from F2n to F2m we must perform 2(m−n) Type I moves, to add 2(m−n)
vertices, since Type II moves do not add vertices. The number of Type II moves
we are allowed to perform is bounded above by 2(m−n)−β where β is the number
of edges we gain from the Type I moves. This follows from Proposition 4.7 because
Type II moves always increase the number of edges. We now need a result about
which Type I moves add a vertex without adding any edges.

Lemma 5.3. The only Type I moves we can perform to p2n that do not also add
an edge to the permutation graph are when we shift all the elements up by # and
add 12 · · · # to the beginning of the permutation, or add (2n+5)(2n+6) · · · (2n+ k)
to the end of the permutation.

Proof. Since F2n is connected, if we try to add an element somewhere in the middle
of the permutation, the only way this new vertex would have valence 0 is if all the
elements to the left of it in the permutation were less than it and all the elements
to the right of it were larger than it. However, this implies the corresponding
permutation graph is disconnected, which is not true for any F2n. !

We call these new degree 0 vertices we can add via Type I moves pivot vertices.
To summarize, the number of Type II moves we are allowed to perform is bounded
above by the number of pivot vertices we add, and all pivot vertices are necessarily
labeled by elements either strictly smaller or strictly larger than all the original
elements from F2n.
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We cannot use Type I moves to transform F2n into F2m because F2n is not an
induced subgraph of F2m, indeed it is not even a subgraph of F2m. So we must
perform Type II moves at some point.

This implies we must add some pivot vertices to F2n. But then we need to
perform Type II moves to connect these vertices to the pre-existing graph. We can
actually say something stronger,

Lemma 5.4. Whenever we apply a Type II move, it must involve two vertices that
are not connected by any path.

Proof. If we performed a Type II move on two vertices which are connected by a
path, this means they are both part of a connected subgraph. Consider the maximal
connected subgraph they are a part of. Suppose this subgraph has N vertices. Since
it is connected, it has at least N − 1 edges. A Type II move increases the number
of edges in the subgraph. We therefore create a cycle in this subgraph. Proposition
4.9 then implies any subsequent Type I or II moves will preserve this cycle, so
the resulting graph could not be a tree, i.e. the resulting graph could not be any
F2m. !

An immediate corollary is that whenever we perform a Type II move, it must
involve at least one pivot vertex because all other vertices are automatically part
of F2n and therefore part of the same connected subgraph and there is no way to
separate these vertices (Proposition 4.11).

The key observation, now, is that we cannot use Type I or Type II moves to re-
move or change the fork vertex at the beginning or end of the graph. By symmetry,
it suffices to consider the right fork. These forks correspond to the subpermutation
(2n + 2)(2n + 3)(2n + 4)(2n + 1). When we add pivot vertices, the end of the
permutation becomes

(2n + 2)(2n + 3)(2n + 4)(2n + 1)(2n + 5)(2n + 6) · · · (2n + k).

It is clear that Type I moves do not change or remove the fork vertex. When we
apply an allowable Type II move involving at least one of the pivot vertices, 2n+1
will still always have three larger entries appearing before it. Indeed, if we tried to
swap (2n + 1) with a pivot vertex added at the beginning of the permutation, that
pivot vertex would become connected to every other vertex in F2n. This clearly
creates a cycle, which cannot occur by Proposition 4.9. If we swap (2n + 1) with a
pivot vertex added at the end of the permutation, this only increases the number
of larger entries appearing before (2n + 1). Any Type II move applied to a vertex
other than (2n + 1) with a pivot vertex can only increase the number of larger
entries appearing before (2n+1), since the only way to move an entry that is larger
than (2n + 1) to its right is to replace it with an even larger entry.

This means after any application of allowable Type I and II moves, the image of
(2n + 1) will have valence at least 3. A similar argument shows that the image of 4
will also have valence 3. Only two vertices in any fork graph have this property, the
fork vertices. This implies that using Type I and II moves, we must always send
the fork vertices to fork vertices. As a result, the only way to send F2n to F2m is
to extend the path between the two fork vertices.

To do this, we must perform a Type II move on one of the vertices in the path
between the two fork vertices and a pivot vertex. Indeed, we cannot accomplish
this with just Type I moves because F2n is not an induced subgraph of F2m. This
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implies we must use both Type I and II moves. We showed that when we apply a
Type II move, it must involve at least one pivot vertex in Lemma 5.4. If the Type II
move did not involve a vertex from the path between the two fork vertices, the path
of length 2n between the two pivot vertices in F2n would remain, but the minimal
path between the two fork vertices in any F2m is length 2m > 2n. However,

Lemma 5.5. If we try to apply a Type II move swapping any pivot vertex with any
vertex in the path between the fork vertices, this will create a cycle.

Proof. If we try to swap a pivot vertex α added to the end of the permutation with
a vertex in between the fork vertices, we have the subpermutation α(2n + 3)(2n +
4)(2n+1) with α larger than all the vertices from F2n, so in particular α > 2n+4.
This contains the cycle α(2n + 1)(2n + 3)α. A similar argument works for a pivot
vertex added to the beginning of the permutation. !

As a result, we cannot perform a Type II move between any pivot vertex and a
vertex between the fork vertices by Proposition 4.9. As we already mentioned, in
any fork graph F2m, the minimal path between the two fork vertices is length 2m.
Lemma 5.5 shows we can never lengthen the path between two fork vertices using
a combination of Type I and II moves, and we also cannot change the fork vertices
using Type I or II moves. As a result, we can never transform the permutation
corresponding to F2n into the permutation corresponding to F2m. Stated another
way, this chain of permutations is indeed an antichain. !

We follow this proof with many examples to illustrate the phenomenon appearing
in the proof and to explore the counterexample itself.

Example 5.6. We show a few of the labeled even forks, F2 is

•2 •6

•4 •3

•1 •5

.

This is the permutation graph for 412563. This then corresponds to the perfect
matching

1 2 3 4 5 6 7 8 9 10 11 12.
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The next even fork, F4, is

•1 •7

•4 •3 •6 •5

•2 •8

,

which is the permutation graph for 41263785, which corresponds to the perfect
intertwined matching,

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16.

As one can see, trying to just work with these perfect matchings is rather difficult.
It is not clear how one might argue that no sequence of moves could transform the
previous diagram into this one, but this is the case.

Example 5.7. If we again consider F2, we will now explore the content of Lemma
5.4. If we attempt to apply any Type II move to 412563, Lemma 5.4 implies we
will create a cycle. Indeed, suppose we try to swap 2 and 3. We then end up with
the permutation 413562 which corresponds to the graph

•2 •6

•4 •3

•1 •5

.

This clearly contains the cycle 2432.
Now let us consider Lemma 5.5. We will add a pivot vertex to F4, say we do

this and get the permutation 412637859. If we try to apply a Type II move with 9
and any vertex on the path between the forks we necessarily get a cycle. Suppose
we tried to use a Type II move to swap 9 and 6. We end up with the permutation
412937856 which corresponds to the graph

•1 •9 •7

•4 •3 •6 •5

•2 •8

,
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which has many cycles. Indeed, the only Type II moves that do not create a cycle
involving 9 are to swap it with 5 or 8 which respectively correspond to the graphs,

•1 •7

•4 •3 •6 •5 •9

•2 •8

,

•1 •7

•4 •3 •6 •5

•2 •9 •8

.

This is the overarching idea behind the proof. We must end up with a connected
tree, but because Type I and II moves preserve cycles, and Type II moves always
add edges, many Type II moves on a tree would create a cycle, which severely limits
when we can use them.

6. Going forward

The proof that this chain of graphs yields a counterexample relies heavily on the
fact that we do not have a move that maintains both the number of vertices and the
number of edges. Type I moves always add vertices, and potentially edges. They
are also very rigid in that they preserve the order of the original permutation. Type
II moves always add more edges, but do not add any vertices. This suggests that
additional moves are necessary to make (M,!) noetherian. In particular, one needs
to add moves that do not add edges or vertices, but merely swap edges around. Such
moves have the potential to break Proposition 4.9 and therefore potentially break
the counterexample.

For example, we believe the move 2341 → 4123 preserves initial ideals, which
corresponds to

•1

•4 •2

•3

→

•1

•4 •2

•3

.

Another move that we believe preserves initial ideals is 231 → 312. This is similar
to the previous new move in that it relates two permutations with the same per-
mutation graph. This move would immediately break the counterexample because
it would allow us to send 412563, which is the permutation corresponding to F2, to
412635 which has permutation graph

•2 •6

•4 •3

•1 •5

.

This graph is easily seen to be an induced subgraph of F4. It still remains to prove
such a move respects initial ideals.

6.1. Equivariant initial ideals. Initial ideals have played an important role in
classical commutative algebra. One can often derive many important properties
of ideals and algebras from their initial counterparts. One key example of this is
determinantal ideals, see [6] for a nice survey.

Recently, researchers have been investigating how classical areas of commutative
algebra behave in an equivariant setting (often the equivariant analogues behave
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2314 ROBERT P. LAUDONE

differently). For example, Snowden investigated GL-prime ideals, i.e. prime ideals
in tca’s, and discovered an effective method for analyzing them [23]. The author
and Snowden then expanded this to describe an effective method for analyzing
equivariant prime ideals for infinite dimensional supergroups [13]. Bik, Draisma,
Eggermont and Snowden are also currently investigating GL-varieties [5].

Sam and Snowden laid the foundations for an equivariant Gröbner theory in [20],
but as we have seen these methods will need to be expanded to apply more generally.
Taking cues from classical commutative algebra, if one wanted to develop a robust
equivariant Gröbner theory, it would also be important to understand equivariant
initial ideals. Indeed, one way to classify all possible moves is to understand the
structure of initial ideals in Sym(Sym2(C∞)), and in tca’s more generally. Each
move is a partial picture of the initial ideal structure.

We are currently investigating exactly this for the tca Sym(Sym2(C∞)). We now
outline some other potential avenues for future work stemming from this paper.

6.2. Are intertwined matchings enough? The noetherianity of the subposet
of perfect intertwined matchings is an easier problem to approach than the noethe-
rianity of M. We actually believe the noetherianity of this subposet is a good
indicator for the noetherianity of the original poset. In particular, we pose the
following question,

Question 6.1. If the class of perfect intertwined matchings under some extension
of ! is well-quasi-ordered, then is M also well-quasi-ordered?

When we say some extension, we mean adding additional types of moves. At
the very least, when one introduces new types of moves it should be easier to test
whether the subposet of perfect intertwined matchings becomes noetherian. This
could then be a good indicator that these moves are enough to make the poset
(M,!) noetherian.

6.3. Permutation classes. The subposet of perfect intertwined matchings is order
isomorphic as a poset to the poset of permutations with the partial order induced
by ! (Proposition 4.4), so if one could prove that the corresponding class of permu-
tations is well-quasi-ordered under allowable moves, this would imply the perfect
intertwined matchings were well-quasi-ordered as well.

Indeed, a byproduct of adding more moves seems to be forbidding certain pat-
terns. For example, Type II moves forbid the permutation #(# − 1) · · · 21 from
occurring in any element of an antichain that begins with a permutation of length
# because we can turn any permutation of length # into this one, then use Type I
moves to embed to this subpermutation. So one approach to proving noetherianity
of at least the perfect intertwined matchings is introducing enough moves to forbid
enough permutations so that the allowable permutations fall into a class that is
known to be well-quasi-ordered.

Over the course of many years, researchers have developed various techniques
for proving permutation classes are well-quasi-ordered. See the following papers for
reference [1–4, 10, 15, 25]. We will not elaborate further, we merely point this out
and include references because there is a rich and ongoing theory concerned with
proving classes of permutations forbidding certain patterns are well-quasi-ordered.
This paper suggests there is a connection between the noetherianity of tcas and
this branch of combinatorics which is worth exploring further.
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