
Research Article 
Foundations of Computer Aided Process Design (FOCAPD 2024) 

Breckenridge, Colorado, USA. July 14-18, 2024 
Peer Reviewed Conference Proceeding 

https://doi.org/10.69997/sct.141495 Syst Control Trans 3:807-813 (2024) 807 

Optimal Transition of Ammonia Supply Chain Networks via 
Stochastic Programming 
Ilias Mitraia, Matthew J. Palysa, and Prodromos Daoutidisa* 
a University of Minnesota, Department of Chemical Engineering and Materials Science, Minneapolis, 55455 MN, US 
* Corresponding Author: daout001@umn.edu.

ABSTRACT 
This paper considers the optimal incorporation of renewable ammonia production facilities into 
existing supply chain networks which import ammonia from conventional producers while account-
ing for uncertainty in this conventional ammonia price. We model the supply chain transition prob-
lem as a two-stage stochastic optimization problem which is formulated as a Mixed Integer Linear 
Programming problem. We apply the proposed approach to a case study on Minnesota's ammonia 
supply chain. We find that accounting for conventional price uncertainty leads to earlier incorpo-
ration of in-state renewable production sites in the supply chain network and a reduction in the 
quantity and cost of conventional ammonia imported over the supply chain transition horizon. 
These results show that local renewable ammonia production can act as a hedge against the vol-
atility of the conventional ammonia market.  

Keywords: Design and Sustainability, Stochastic Optimization, Capacity Expansion, Supply Chain Optimization, 
Green Ammonia 

INTRODUCTION 
Ammonia is one of the most important industrial 

chemicals and serves as the backbone of modern agri-
culture in its use either directly or as a precursor to other 
nitrogen fertilizers. The standard production of ammonia 
is based on the Haber-Bosch process, which uses fossil 
fuels as the feedstock hydrogen source and operates at 
high pressure and temperature [1]. These facilities gen-
erally have capacities greater than 1,000,000 metric tons 
per year (mt/y) to take advantage of economies of scale 
[2]. This production paradigm leads to high transporta-
tion costs and carbon emissions in the operation of the 
supply chain because ammonia is transported through 
national and even global networks of ships, pipelines, rail, 
and trucks from a few production sites to the final cus-
tomers [3]. 

The transition to a more sustainable supply chain 
network can be achieved by reducing the carbon emis-
sions related to the manufacturing and distribution of am-
monia. Renewable or green ammonia production recently 
has been the subject of extensive research and develop-
ment as an alternative to the standard ammonia manu-
facturing paradigm [4]. In this approach, renewable 

resources such as wind and solar are used to produce 
hydrogen via electrolysis and nitrogen via air separation, 
reducing the carbon intensity of producing ammonia. The 
Midwest region of the United States uses the most nitro-
gen fertilizer in the country while also being home to rich 
wind resources [5]. This gives rise to an opportunity to 
produce renewable ammonia closer to where it is used, 
thus reducing the cost and carbon intensity of ammonia 
distribution [6]. Producing ammonia using renewable en-
ergy also offers the potential for ammonia production 
cost stability. The feedstock renewable energy can have 
a close-to-constant price in this production setting, 
whether this energy is sourced through multi-year power 
purchase agreements (PPA) or the ammonia producer 
owns and operates the necessary renewable genera-
tion.  In contrast, ammonia is currently traded on a global 
market and its price is subject to variability due to a num-
ber of factors including natural gas prices, food prices, 
and global conflict (see Figure 1). Given the transforma-
tive potential of renewable ammonia, achieving econom-
ical deployment through optimal design of manufacturing 
facilities and the supply chain network is of critical im-
portance. In this work, we focus on the latter.

The transition of existing ammonia supply chain 
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networks to incorporate renewable production will likely 
occur over multiple years and will be affected by multiple 
sources of uncertainty. Identifying optimal investment 
decisions over a fixed planning horizon is a widely stud-
ied problem in process systems engineering and opera-
tions research and is formally known as the capacity ex-
pansion problem [7]. However, the application of the ca-
pacity expansion formalism to the transition of ammonia 
supply chain networks is rather limited. Recently, we 
have proposed a multiperiod deterministic capacity ex-
pansion model that considers the optimal transition of 
ammonia supply chain networks [8]. The model optimizes 
the investment decisions regarding the installation year 
and capacity, such that the overall net present cost is 
minimized while ammonia fertilizer demand is satisfied.

 
Figure 1. U.S. Gulf Coast ammonia price from 2010 to 
2022 [9]. 
 

In this work, we consider the effect of uncertainty 
on the optimal transition of existing ammonia supply 
chain networks. The primary sources of uncertainty in an 
ammonia supply chain are the ammonia demand and the 
market price of ammonia. Although the demand for am-
monia can be predicted from total fertilizer demand esti-
mates, the ammonia price is more volatile. Accounting for 
the significant price variability and uncertainty is essen-
tial for the optimal expansion of existing supply chain net-
works. 

We propose a two-stage stochastic programming 
approach where the uncertainty in price is accounted for 
in the form of scenarios [10,11]. Such a conceptual ap-
proach has been previously employed in supply chain op-
timization models in a number of different industries, for 
example, waste-to-bioethanol [12], biodiesel production 
from wastewater treatment byproducts [13], and coal-to-
liquids [14]. In our model, the installation decisions (the 
location, capacity, and construction year for new renew-
able ammonia manufacturing facilities) are the first stage 
decisions, and the distribution of ammonia from the in-
stalled renewable sites and the conventional producers 

to the customers for the different ammonia prices (sce-
narios) are the second stage decisions. We consider a 
case study on Minnesota’s ammonia supply chain net-
work. The results show that accounting for uncertainty in 
the price of ammonia, especially high prices, requires in-
vestments earlier in the planning horizon, compared to 
assuming a nominal price. Furthermore, we simulate the 
supply chain obtained from the deterministic and sto-
chastic models, and we find that for high ammonia prices, 
the design obtained via stochastic programming results 
in lower net present costs. These results highlight the 
ability of locally-produced renewable ammonia to act as 
a hedge against high prices on the conventional ammonia 
market. The rest of the paper is organized as follows: 
First, we present the two-stage stochastic optimization 
model, then we present the case study and, finally, the 
numerical results. 

TWO-STAGE STOCHASTIC 
OPTIMIZATION MODEL 

We consider an existing supply chain network that 
delivers ammonia to a set of counties 𝒞𝒞 = {1, … ,𝐶𝐶} via dis-
tribution centers 𝒟𝒟 = {1, … ,𝐷𝐷}. In the original network, the 
demand 𝛿𝛿𝑐𝑐 at each county is satisfied by purchasing am-
monia from conventional producers 𝒫𝒫 = {1, … ,𝑃𝑃} with 
price 𝛼𝛼𝑝𝑝. Given a set of candidate locations for renewable 
ammonia production facilities ℛ = {1, … ,𝑅𝑅}, the goal is to 
find the optimal investment decisions over a planning 
horizon 𝒦𝒦, such that the total net present cost of the sup-
ply chain is minimized, demands are met for each period 
of the planning horizon, and at the end of the horizon the 
entire demand is satisfied using renewable ammonia. We 
assume that the capacity investment decisions are made 
annually and the planning horizon 𝒦𝒦 is discretized into K 
time periods. We define variable 𝑥𝑥𝑟𝑟𝑟𝑟 as the capacity in-
stalled at candidate renewable site 𝑟𝑟 at time period 𝑘𝑘, and 
binary variable 𝑧𝑧𝑟𝑟𝑟𝑟 which is equal to one if an investment 
is made at candidate site 𝑟𝑟 at time period 𝑘𝑘 and zero oth-
erwise. We assume that the only uncertain parameter is 
the price of ammonia imported from conventional pro-
ducers. We model the renewable ammonia production in-
vestment decisions, specifically the time period when an 
investment is made 𝑧𝑧𝑟𝑟𝑟𝑟 and the production capacity 𝑥𝑥𝑟𝑟𝑟𝑟 
at a given candidate location 𝑟𝑟, as first-stage decisions. 
The amount of ammonia sent to each county through a 
combination of purchases from conventional producers 
routed through distribution centers and from new renew-
able production facilities are the second stage decisions. 
We follow a scenario-based formulation and define the 
set 𝒮𝒮 = {1, … , 𝑆𝑆} which represents the scenarios of the 
price of ammonia, where each scenario has probability 
𝓅𝓅𝑠𝑠, and the price of ammonia for producer 𝑝𝑝 and scenario 
𝑠𝑠 is 𝛼𝛼𝑝𝑝𝑝𝑝. 

Given this problem setting, first, we define 
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constraints related to the maximum and minimum capac-
ity that can be installed in each location and time period 
by the following constraints 

𝑥𝑥𝑟𝑟𝑟𝑟 ≤ 𝑥̅𝑥𝑈𝑈𝑧𝑧𝑟𝑟𝑟𝑟  ∀𝑟𝑟 ∈ ℛ, 𝑘𝑘 ∈ 𝒦𝒦    (1) 

𝑥𝑥𝑟𝑟𝑟𝑟 ≥ 𝑥̅𝑥𝐿𝐿𝑧𝑧𝑟𝑟𝑟𝑟  ∀𝑟𝑟 ∈ ℛ, 𝑘𝑘 ∈ 𝒦𝒦,    (2) 

where 𝑥̅𝑥𝑈𝑈, 𝑥̅𝑥𝐿𝐿 are the upper and lower bounds on the size 
of renewable sites. Each renewable candidate site has a 
certain wind capacity Ω𝑟𝑟, electrolysis capacity Ω𝑘𝑘, and a 
construction period of two years, which constrain the 
maximum capacity that can be installed and the time that 
the capacity is available as follows 

∑ 𝑥𝑥𝑟𝑟𝑟𝑟′𝜔𝜔𝑟𝑟𝑟𝑟′
𝑘𝑘
𝑘𝑘′=1 ≤ Ωr  ∀𝑟𝑟 ∈ ℛ, 𝑘𝑘 ∈ 𝒦𝒦   (3) 

∑ 𝑥𝑥𝑟𝑟𝑟𝑟𝜉𝜉𝑟𝑟𝑟𝑟𝑟𝑟∈ℛ ≤ Ξk  ∀𝑘𝑘 ∈ 𝒦𝒦.    (4) 

We define variable 𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 as the amount of ammonia 
purchased from conventional producer 𝑝𝑝 and shipped to 
distribution center 𝑑𝑑 at time period 𝑘𝑘 and scenario 𝑠𝑠. We 
also define variable 𝑦𝑦𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 as the amount of ammonia 
shipped from distribution center 𝑑𝑑 to county 𝑐𝑐 at time pe-
riod 𝑘𝑘 and scenario 𝑠𝑠, and the amount of ammonia 
shipped from the renewable site 𝑟𝑟 to county 𝑐𝑐 at time pe-
riod 𝑘𝑘 and scenario 𝑠𝑠 is 𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. The demand satisfaction 
constraints are 

∑ 𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟∈ℛ + ∑ 𝑦𝑦𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑d∈𝒟𝒟 ≥ δck  ∀𝑠𝑠 ∈ 𝒮𝒮, c ∈ 𝒞𝒞, k ∈ 𝒦𝒦 (5) 

∑ 𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝∈𝒫𝒫 ≥ ∑ 𝑦𝑦𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑c∈𝒞𝒞   ∀𝑠𝑠 ∈ 𝒮𝒮, d ∈ 𝒟𝒟, k ∈ 𝒦𝒦  (6) 

∑ 𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑∈𝒟𝒟 ≤ Λp  ∀𝑠𝑠 ∈ 𝒮𝒮, p ∈ 𝒫𝒫, k ∈ 𝒦𝒦   (7) 

∑ 𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑐𝑐∈𝒞𝒞 ≤  ∑ 𝑥𝑥𝑟𝑟𝑟𝑟′k−2
k′=1   ∀𝑠𝑠 ∈ 𝒮𝒮, r ∈ ℛ, k ∈ 𝒦𝒦  (8) 

∑ ∑ 𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑∈𝒟𝒟𝑝𝑝∈𝒫𝒫 = 0  ∀𝑠𝑠 ∈ 𝒮𝒮.    (9) 

The objective function is the net present cost of the 
supply chain transition over the planning horizon. It can 
be partitioned into two terms. The first term, 𝑍𝑍𝑘𝑘, is the 
sum of the capital 𝐶𝐶𝐶𝐶𝑃𝑃𝑘𝑘 and operating costs 𝑂𝑂𝑃𝑃𝑘𝑘 which 
depends only on the first-stage decisions, and are com-
puted as follows 

𝐶𝐶𝐶𝐶𝑃𝑃𝑘𝑘 = 1
𝜃𝜃
∑ ∑ 𝑥𝑥𝑟𝑟𝑟𝑟′𝜎𝜎𝑟𝑟𝑟𝑟′ + 𝑧𝑧𝑟𝑟𝑟𝑟′𝛾𝛾𝑟𝑟𝑟𝑟′𝑘𝑘

𝑘𝑘′=1  r∈ℛ   (10) 

𝑂𝑂𝑃𝑃𝑘𝑘 = ∑ ∑ 𝑥𝑥𝑟𝑟𝑟𝑟′𝜁𝜁𝑟𝑟𝑟𝑟′𝑘𝑘
𝑘𝑘′=1  r∈ℛ .   (11) 

The capital cost of a renewable production facility is 
modeled as a piece-wise affine function of the installed 
capacity, with slope 𝜎𝜎𝑟𝑟𝑟𝑟 and intercept 𝛾𝛾𝑟𝑟𝑟𝑟, to capture the 
effect of economies of scale. These parameters vary with 
both renewable site 𝑟𝑟 and time period 𝑘𝑘 to capture the 
effects of varying renewable potential and expected 
technology cost reductions respectively. The capital cost 
is annualized using scaled plant lifetime 𝜃𝜃 which is equal 
to 10.23 y-1. The operating cost is assumed to scale line-
arly with the installed capacity with proportionality con-
stant 𝜁𝜁𝑟𝑟𝑟𝑟. This parameter is assumed to remain constant 
after installation and also varies with renewable site and 

period to capture the effects described above. 
The second term in the objective, 𝑍̅𝑍𝑘𝑘𝑘𝑘, is the sum of 

the distribution of renewable ammonia 𝐷𝐷𝑅𝑅𝑘𝑘𝑘𝑘, transporta-
tion of ammonia from the conventional producers to the 
distribution centers 𝑇𝑇𝐶𝐶𝑘𝑘𝑘𝑘, and distribution of conventional 
ammonia 𝐷𝐷𝐶𝐶𝑘𝑘𝑘𝑘. The individual costs are equal to 

𝐷𝐷𝑃𝑃𝑘𝑘𝑘𝑘 = ∑ ∑ 𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝜏𝜏𝑟𝑟𝑟𝑟𝑐𝑐∈𝒞𝒞r∈ℛ   ∀𝑘𝑘 ∈ 𝒦𝒦, 𝑠𝑠 ∈ 𝒮𝒮 (12) 

𝑃𝑃𝐶𝐶𝑘𝑘𝑘𝑘 = ∑ ∑ 𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝛼𝛼𝑝𝑝𝑝𝑝𝑑𝑑∈𝒟𝒟p∈𝒫𝒫   ∀𝑘𝑘 ∈ 𝒦𝒦, 𝑠𝑠 ∈ 𝒮𝒮 (13) 

𝑇𝑇𝐶𝐶𝑘𝑘𝑘𝑘 = ∑ ∑ 𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝜏𝜏𝑝𝑝𝑝𝑝𝑑𝑑∈𝒟𝒟p∈𝒫𝒫   ∀𝑘𝑘 ∈ 𝒦𝒦, 𝑠𝑠 ∈ 𝒮𝒮 (14) 

𝐷𝐷𝐶𝐶𝑘𝑘𝑘𝑘 = ∑ ∑ 𝑦𝑦𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝜏𝜏𝑑𝑑𝑑𝑑𝑐𝑐∈𝒞𝒞d∈𝒟𝒟   ∀𝑘𝑘 ∈ 𝒦𝒦, 𝑠𝑠 ∈ 𝒮𝒮 (15) 

𝑍𝑍𝑘𝑘 = CAPk + OPk  ∀𝑘𝑘 ∈ 𝒦𝒦   (16) 

𝑍̅𝑍𝑘𝑘𝑘𝑘 = DCks + PCks + TCks + DCks  ∀𝑘𝑘 ∈ 𝒦𝒦, 𝑠𝑠 ∈ 𝒮𝒮. (17) 

The two-stage optimization problem is 

min∑ 𝜙𝜙𝑘𝑘𝑍𝑍𝑘𝑘𝑘𝑘∈𝒦𝒦 + ∑ 𝓅𝓅𝑠𝑠(∑ 𝜙𝜙𝑘𝑘  𝑍̅𝑍𝑘𝑘𝑘𝑘𝑘𝑘∈𝒦𝒦 )𝑠𝑠∈𝒮𝒮    

     s. t. Eq. 1 − 9    (18) 

       𝑥𝑥𝑟𝑟𝑟𝑟 ≥ 0, 𝑧𝑧𝑟𝑟𝑟𝑟 ∈ {0,1}    

       𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ≥ 0, 𝑦𝑦𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ≥ 0, 𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ≥ 0   

The parameter 𝜙𝜙𝑘𝑘 is the discounted value of cost contri-
butions in time period 𝑘𝑘. 

CASE STUDY 
We herein provide a concise description of the case 

study on Minnesota’s ammonia supply chain. For a more 
detailed case study description, please refer to our pre-
vious work [8]. We consider a supply chain planning hori-
zon from 2024 to 2032. We consider an 8.5% discount 
rate as it pertains to cost flows beyond 2024. Minnesota 
has 82 counties in which ammonia demand must be met 
for each period of the supply chain transition optimiza-
tion. In 2024, the total ammonia demand assumed to be 
795,000 mt/y and this is assumed to increase by 0.5% 
per year. This ammonia can be purchased from 10 con-
ventional producers which are located outside of Minne-
sota. The average conventional ammonia price from 2010 
to 2022 was $500/mt. Ammonia purchased from these 
producers is routed through one of three distribution 
centers in Minnesota. Conventional producers located 
further from Minnesota have higher associated costs to 
transport ammonia to a given distribution center. Pro-
ducer-to-distribution transportation costs range from 
$59/mt to $141/mt, while distribution center-to-county 
transportation costs range from $1/mt to $36/mt. 

We consider 26 candidate locations for new in-state 
renewable ammonia production. Capital costs of a given 
facility are incurred two years before renewable produc-
tion begins to represent a two year construction period. 
The operating cost includes renewable power purchases 
from PPAs with wind generators assumed to be co-
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located with the renewable ammonia production facility. 
The operating cost also includes revenue from hydrogen 
production tax credits (PTCs) contained in the U.S. fed-
eral government Inflation Reduction Act [15]. These cred-
its provide $3/kg of hydrogen produced for the first 10 
years of facility operation. Renewable ammonia is as-
sumed to be transported from new production facilities 
directly to counties. These transportation costs range 
from $1/mt to $47/mt. The capacity of each new renew-
able ammonia facility is constrained to a maximum asso-
ciated wind generation capacity of 250 MW (Eq. 3). The 
total installed capacity of renewable ammonia production 
across all facilities in a given year is constrained by elec-
trolysis availability, which increases from 250 MW in 
2024 to 850 MW in 2032 (Eq. 4).  The optimization model 
is implemented in Pyomo [16] and is solved using Gurobi 
10.0.2.0 [17] on an Apple MacBook Pro M1 with 8 physical 
cores and 16 GB of RAM. 

NUMERICAL RESULTS 

Deterministic case 
First, we solve a deterministic model using a 

$500/mt historical average conventional ammonia price, 
i.e., using the two-stage model with one scenario with 
probability one and price $500/mt. The optimization 
problem has 22,194 (234 binary and 21960 continuous) 
variables, 1,803 constraints and is solved in 6.7 seconds. 
The total net present cost is $3,002 million (MM) and re-
newable ammonia production is installed at eight new 
sites, as presented in Table 1. Three renewable ammonia 
facilities are installed in 2027, meaning that in-state pro-
duction does not begin until 2029 and all ammonia is pur-
chased from the conventional market for the first five 
years of the planning horizon (see Figure 3).  

Table 1: Installation year, location, and capacity for new 
renewable ammonia production in the deterministic case. 
Annual average wind capacity factors for each selected 
candidate location are provided in parentheses to de-
scribe wind potential. 

Year Location Capacity  
( mt/y) 

 Lake Wilson (%)  
 Chandler (%)  
 Worthington (%)  
 Luverne (%)  
 Wilmont (%)  
 Worthington (%)  
 Blue Earth (%)  
 Winnebago (%)  

 
Three additional facilities are installed in 2028. 

These first six facilities are all located in Southwest 

Minnesota, which has the highest wind capacity factors 
at 52%. In both 2027 and 2028, 575 MW of electrolysis is 
procured, the maximum allowable amount in each year. 
This is the reason that two smaller facilities are installed 
in Worthington in consecutive years.  The final facilities 
are installed in 2030 to ensure that all ammonia is ob-
tained via renewable production by 2032. These are both 
installed in Southeast Minnesota, which also has a high 
wind capacity factor at 47%. With the exception of the 
two smaller facilities in Worthington, all others use at 
least 225 MW of co-located wind generation in an at-
tempt to achieve economies of scale. 

Stochastic case 
We use the data presented in Figure 1 and generate 

the histogram presented in Figure 2 using ten bins, and 
obtain the price at the edge of each bin and the number 
of data points in each bin. Given these data, we generate 
the scenarios where the price of ammonia in scenario 𝑠𝑠 is 
set equal to the edge price in the bin 𝑠𝑠 and the probability 
𝓅𝓅𝑠𝑠 is the number of data points in the bin 𝑠𝑠 divided by the 
total number of data points. 

 

Figure 2. Histogram of U.S. Gulf Coast ammonia prices 
from 2010 to 2022. The width of each histogram bin is 
$117.5/mt. In the stochastic optimization model, the 
probability of the conventional ammonia price being 
within each bin is listed above that bin. 

The optimization problem has 217,566 (234 binary 
and 217332 continuous) variables, 11,927 constraints, 
and the solution time is 78 seconds. The total net present 
cost is $3,230MM and the renewable sites installed are 
presented in Table 2. As with the optimal solution of the 
deterministic model, eight new renewable production fa-
cilities are installed. However, these installations occur 
earlier in the optimal stochastic supply chain transition. 

One new facility each is installed in 2024 and 2025, 
which allows some market penetration of renewable am-
monia by 2026 (see Figure 3). Both of these facilities are 
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installed in locations with the highest wind potential and 
use the maximum allowable 250 MW of co-located wind 
generation capacity. In 2027, three additional facilities 
are added and these cumulatively use 575 MW of elec-
trolysis, the upper bound for that year. The facilities in 
both Luverne and Worthington use 250 MW of wind gen-
eration. We point out that these facilities have slightly 
higher production capacity than those in Lake Wilson 
(2024) and Chandler (2025) due to the more efficient 
electrolysis expected to be available in future years. The 
third 2027 facility is located in Southeast Minnesota de-
spite its lower wind potential, unlike in the deterministic 
supply chain. This enables another facility which uses 
250 MW wind to be installed in Wilmont in 2028; all five 
facilities with the highest wind potential (52% capacity 
factor) use this maximum amount of wind capacity to 
achieve economies of scale. Another facility is installed in 
Southeast Minnesota in 2028, also at the 2050 MW scale. 
Finally, a smaller facility is installed in Southeast Minne-
sota in 2030 to ensure a fully renewable supply chain by 
2032. 

Table 2: Installation year, location, and capacity for new 
renewable ammonia production in the two-stage sto-
chastic case. Annual average wind capacity factors for 
each selected candidate location are provided in paren-
theses to describe wind potential.  

Year Location Capacity  
( mt/y) 

 Lake Wilson (%)  
 Chandler (%)  
 Luverne (%)  
 Worthington (%)  
 Winnebago (%)  
 Wilmont (%)  
 Blue Earth (%)  
 Fairmont (%)  

 

Comparison between deterministic and 
stochastic cases 

The optimal transition in the stochastic case results 
in less conventional ammonia purchases and more in-
state renewable production over the planning horizon 
compared to the deterministic transition. This difference 
leads to a reduction in the total amount of ammonia pur-
chased leading to lower cumulative purchase, transpor-
tation, and distribution costs for conventional ammonia 
over the planning horizon (see Figure 4). Conversely, the 
capital cost for renewable ammonia production is higher 
in the stochastic transition even though the same total 
capacity of renewable production is installed in both 
cases. This is due to earlier installation using more ex-
pensive constituent technologies in the stochastic case. 

This also contributes to higher renewable ammonia oper-
ating costs over the planning horizon, though these are 
also higher simply because more renewable ammonia is 
being produced. Overall, the net present cost of the sup-
ply chain transition is 7.6% (228 MM$) higher in the sto-
chastic case than the deterministic case. 

 

Figure 3. Amount of ammonia (mt) in each time period 
from conventional purchases (black bar) and in-state 
renewable ammonia production (gray bar) for the 
deterministic (top figure) and stochastic (bottom figure) 
cases. 

 

Figure 4. Cost contributions to optimal net present cost 
for the deterministic and stochastic cases. The cost 
acronyms are defined as follows: CAP - Renewable 
capital, OP - Renewable operating, DR - Renewable 
distribution, PC - Conventional purchase, TC - 
Conventional transportation to Minnesota, DC - 
Conventional distribution. 

We compare the supply chain configurations ob-
tained via the deterministic and stochastic transition op-
timizations for different conventional ammonia prices to 
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elucidate the benefit of the stochastic approach. Specif-
ically, we discretize the ammonia price uniformly in 100 
points between $214/mt and $1389/mt, and for each 
price, we fix the investment decisions (timing of invest-
ments, i.e., binary variables and installed capacity) and 
compute the net present cost of supply chain transition 
(see Figure 5). We observe that for high prices of con-
ventional ammonia (above $700/mt), the net present cost 
of the supply chain obtained via stochastic programming 
is meaningfully lower than the cost of the deterministic 
design, whereas if the price is low (below $400/mt) the 
design obtained by the deterministic model has a mean-
ingfully lower net present cost. This difference can be at-
tributed to the different investment strategies for the sto-
chastic and deterministic cases (i.e., more ammonia is 
manufactured in-state for the stochastic case) as dis-
cussed in the previous paragraph. 

 

Figure 5. Levelized cost for the deterministic and 
stochastic design as a function of ammonia price. 

CONCLUSIONS 
In this work, we focused on quantifying the effect of 

uncertainty in conventional ammonia prices on Minne-
sota’s transition from importing fossil-derived ammonia 
from out-of-state conventional producers to in-state re-
newable ammonia production. We used a two-stage sto-
chastic programming approach to determine the optimal 
investment profile for in-state renewable ammonia pro-
duction over a fixed planning horizon such that the de-
mand of ammonia is satisfied while the net present cost 
is minimized. The results show that when accounting for 
uncertainty in the conventional ammonia price, invest-
ments are made earlier in the planning horizon compared 
to a deterministic supply chain transition model. This 
leads to a reduction in the amount of ammonia purchased 
from conventional producers. This can bring significant 
cost savings for higher-than-average ammonia prices. 
Overall, the stable production cost afforded by in-state 

renewable ammonia production can act as a hedge 
against conventional ammonia price uncertainty and the 
possibility of very high prices on the conventional ammo-
nia market.  

This work used a two-stage approach to account for 
conventional price uncertainty, but in practice these 
prices could evolve different multi-year trajectories. Fu-
ture work will therefore develop multi-stage stochastic 
programming models for the supply chain transition 
problem. Furthermore, technology cost reductions are 
also subject to uncertainty, especially further into a given 
planning horizon. For example, electrolysis costs are ex-
pected to decrease, but the magnitude of this reduction 
is not well-established at present. Thus, these types of 
uncertainties will also be incorporated into future supply 
chain transition models.   
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