Systems .Control
Transactions

Foundations of Computer Aided Process Design (FOCAPD 2024)

Research Article

PSE

Breckenridge, Colorado, USA. July 14-18, 2024
PRESS

Peer Reviewed Conference Proceeding

Optimal Transition of Ammonia Supply Chain Networks via

Stochastic Programming

llias Mitrai?, Matthew J. Palys?, and Prodromos Daoutidis®*

a University of Minnesota, Department of Chemical Engineering and Materials Science, Minneapolis, 55455 MN, US

* Corresponding Author: daout001@umn.edu.

ABSTRACT

This paper considers the optimal incorporation of renewable ammonia production facilities into
existing supply chain networks which import ammonia from conventional producers while account-
ing for uncertainty in this conventional ammonia price. We model the supply chain transition prob-
lem as a two-stage stochastic optimization problem which is formulated as a Mixed Integer Linear
Programming problem. We apply the proposed approach to a case study on Minnesota's ammonia
supply chain. We find that accounting for conventional price uncertainty leads to earlier incorpo-
ration of in-state renewable production sites in the supply chain network and a reduction in the
quantity and cost of conventional ammonia imported over the supply chain transition horizon.
These results show that local renewable ammonia production can act as a hedge against the vol-

atility of the conventional ammonia market.

Keywords: Design and Sustainability, Stochastic Optimization, Capacity Expansion, Supply Chain Optimization,

Green Ammonia

INTRODUCTION

Ammonia is one of the most important industrial
chemicals and serves as the backbone of modern agri-
culture in its use either directly or as a precursor to other
nitrogen fertilizers. The standard production of ammonia
is based on the Haber-Bosch process, which uses fossil
fuels as the feedstock hydrogen source and operates at
high pressure and temperature [1]. These facilities gen-
erally have capacities greater than 1,000,000 metric tons
per year (mt/y) to take advantage of economies of scale
[2]. This production paradigm leads to high transporta-
tion costs and carbon emissions in the operation of the
supply chain because ammonia is transported through
national and even global networks of ships, pipelines, rail,
and trucks from a few production sites to the final cus-
tomers [3].

The transition to a more sustainable supply chain
network can be achieved by reducing the carbon emis-
sions related to the manufacturing and distribution of am-
monia. Renewable or green ammonia production recently
has been the subject of extensive research and develop-
ment as an alternative to the standard ammonia manu-
facturing paradigm [4]. In this approach, renewable
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resources such as wind and solar are used to produce
hydrogen via electrolysis and nitrogen via air separation,
reducing the carbon intensity of producing ammonia. The
Midwest region of the United States uses the most nitro-
gen fertilizer in the country while also being home to rich
wind resources [5]. This gives rise to an opportunity to
produce renewable ammonia closer to where it is used,
thus reducing the cost and carbon intensity of ammonia
distribution [6]. Producing ammonia using renewable en-
ergy also offers the potential for ammonia production
cost stability. The feedstock renewable energy can have
a close-to-constant price in this production setting,
whether this energy is sourced through multi-year power
purchase agreements (PPA) or the ammonia producer
owns and operates the necessary renewable genera-
tion. In contrast, ammonia is currently traded on a global
market and its price is subject to variability due to a num-
ber of factors including natural gas prices, food prices,
and global conflict (see Figure 1). Given the transforma-
tive potential of renewable ammonia, achieving econom-
ical deployment through optimal design of manufacturing
facilities and the supply chain network is of critical im-
portance. In this work, we focus on the latter.

The transition of existing ammonia supply chain
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networks to incorporate renewable production will likely
occur over multiple years and will be affected by multiple
sources of uncertainty. Identifying optimal investment
decisions over a fixed planning horizon is a widely stud-
ied problem in process systems engineering and opera-
tions research and is formally known as the capacity ex-
pansion problem [7]. However, the application of the ca-
pacity expansion formalism to the transition of ammonia
supply chain networks is rather limited. Recently, we
have proposed a multiperiod deterministic capacity ex-
pansion model that considers the optimal transition of
ammonia supply chain networks [8]. The model optimizes
the investment decisions regarding the installation year
and capacity, such that the overall net present cost is
minimized while ammonia fertilizer demand is satisfied.
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Figure 1. U.S. Gulf Coast ammonia price from 2010 to
2022 [9].

In this work, we consider the effect of uncertainty
on the optimal transition of existing ammonia supply
chain networks. The primary sources of uncertainty in an
ammonia supply chain are the ammonia demand and the
market price of ammonia. Although the demand for am-
monia can be predicted from total fertilizer demand esti-
mates, the ammonia price is more volatile. Accounting for
the significant price variability and uncertainty is essen-
tial for the optimal expansion of existing supply chain net-
works.

We propose a two-stage stochastic programming
approach where the uncertainty in price is accounted for
in the form of scenarios [10,11]. Such a conceptual ap-
proach has been previously employed in supply chain op-
timization models in a number of different industries, for
example, waste-to-bioethanol [12], biodiesel production
from wastewater treatment byproducts [13], and coal-to-
liquids [14]. In our model, the installation decisions (the
location, capacity, and construction year for new renew-
able ammonia manufacturing facilities) are the first stage
decisions, and the distribution of ammonia from the in-
stalled renewable sites and the conventional producers
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to the customers for the different ammonia prices (sce-
narios) are the second stage decisions. We consider a
case study on Minnesota’s ammonia supply chain net-
work. The results show that accounting for uncertainty in
the price of ammonia, especially high prices, requires in-
vestments earlier in the planning horizon, compared to
assuming a nominal price. Furthermore, we simulate the
supply chain obtained from the deterministic and sto-
chastic models, and we find that for high ammonia prices,
the design obtained via stochastic programming results
in lower net present costs. These results highlight the
ability of locally-produced renewable ammonia to act as
a hedge against high prices on the conventional ammonia
market. The rest of the paper is organized as follows:
First, we present the two-stage stochastic optimization
model, then we present the case study and, finally, the
numerical results.

TWO-STAGE STOCHASTIC
OPTIMIZATION MODEL

We consider an existing supply chain network that
delivers ammonia to a set of counties € = {1, ..., C} via dis-
tribution centers D = {1, ..., D}. In the original network, the
demand §, at each county is satisfied by purchasing am-
monia from conventional producers P ={1,..,P} with
price a,,. Given a set of candidate locations for renewable
ammonia production facilities R = {1, ..., R}, the goal is to
find the optimal investment decisions over a planning
horizon X, such that the total net present cost of the sup-
ply chain is minimized, demands are met for each period
of the planning horizon, and at the end of the horizon the
entire demand is satisfied using renewable ammonia. We
assume that the capacity investment decisions are made
annually and the planning horizon X is discretized into K
time periods. We define variable x,, as the capacity in-
stalled at candidate renewable site r at time period k, and
binary variable z,, which is equal to one if an investment
is made at candidate site r at time period k and zero oth-
erwise. We assume that the only uncertain parameter is
the price of ammonia imported from conventional pro-
ducers. We model the renewable ammonia production in-
vestment decisions, specifically the time period when an
investment is made z,, and the production capacity x,
at a given candidate location r, as first-stage decisions.
The amount of ammonia sent to each county through a
combination of purchases from conventional producers
routed through distribution centers and from new renew-
able production facilities are the second stage decisions.
We follow a scenario-based formulation and define the
set § ={1,...,S} which represents the scenarios of the
price of ammonia, where each scenario has probability
s, and the price of ammonia for producer p and scenario
S 1S aps.

Given this problem setting,

first, we define
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constraints related to the maximum and minimum capac-
ity that can be installed in each location and time period
by the following constraints

X < XYz VTERKEXK Q)]
Xy = XLz Vr € Rk EX, (2)

where %Y, ¥ are the upper and lower bounds on the size
of renewable sites. Each renewable candidate site has a
certain wind capacity Q,., electrolysis capacity Q,, and a
construction period of two years, which constrain the
maximum capacity that can be installed and the time that
the capacity is available as follows

Z’,ﬁlzlxrk,wrk, <Q. VreRkeEX (3)
ZTER xrkfrk < Ek vk € K. (4)

We define variable y,qs as the amount of ammonia
purchased from conventional producer p and shipped to
distribution center d at time period k and scenario s. We
also define variable y;.s as the amount of ammonia
shipped from distribution center d to county ¢ at time pe-
riod k and scenario s, and the amount of ammonia
shipped from the renewable site r to county ¢ at time pe-
riod k and scenario s is y,.s. The demand satisfaction
constraints are

Yrer Yrcks + 2dep Yacks = Scx Vs € S,c € Ck € K (5)
Ypep Ypaks = Xeec Vacks VS €S, d€DkeXK  (6)
YaenYpaks < Ap VSES,pEPKEXK 7)
YeeeVreks S S Xy VSESTERKEX  (8)

Ypep Xaep Ypaks =0 Vs € S. (9)

The objective function is the net present cost of the
supply chain transition over the planning horizon. It can
be partitioned into two terms. The first term, Z,, is the
sum of the capital CAP, and operating costs OP, which
depends only on the first-stage decisions, and are com-
puted as follows

1
CAP, = 5 Yrer Y1 Xrki O + Zeter Vi (10)

0P = Yrexr Zﬁ’:lxrklzrkr . (1

The capital cost of a renewable production facility is
modeled as a piece-wise affine function of the installed
capacity, with slope g, and intercept y,,, to capture the
effect of economies of scale. These parameters vary with
both renewable site r and time period k to capture the
effects of varying renewable potential and expected
technology cost reductions respectively. The capital cost
is annualized using scaled plant lifetime 6 which is equal
to 10.23 y'. The operating cost is assumed to scale line-
arly with the installed capacity with proportionality con-
stant ¢,,. This parameter is assumed to remain constant
after installation and also varies with renewable site and
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period to capture the effects described above.

The second term in the objective, Z,, is the sum of
the distribution of renewable ammonia DR, transporta-
tion of ammonia from the conventional producers to the
distribution centers T Cy,, and distribution of conventional
ammonia DCy,. The individual costs are equal to

DPys = Yrer Xcee YreksTre Vk €K, s €S (12)
PCys = Yipep XiaeD YpaksAps Yk EXH,s €S (13)
TCys = Ypep Laep YpaksTpa YK EK,SES (14)
DCys = Laep Xcee VacksTac Yk €K, s €S (15)
Z, = CAPy + OP, VK €KX (16)

Zys = DCys + PCis + TCis + DCys VK E K, s €S. (17)

The two-stage optimization problem is

min Yresxe PrZi + Lses #s Ckex Pr Zis)
s.t.Eq.1—-9 (18)
X = 0,7, € {0,1}
Yreks = 0,Yacks = 0, Ypaks = 0

The parameter ¢, is the discounted value of cost contri-
butions in time period k.

CASE STUDY

We herein provide a concise description of the case
study on Minnesota’s ammonia supply chain. For a more
detailed case study description, please refer to our pre-
vious work [8]. We consider a supply chain planning hori-
zon from 2024 to 2032. We consider an 8.5% discount
rate as it pertains to cost flows beyond 2024. Minnesota
has 82 counties in which ammonia demand must be met
for each period of the supply chain transition optimiza-
tion. In 2024, the total ammonia demand assumed to be
795,000 mt/y and this is assumed to increase by 0.5%
per year. This ammonia can be purchased from 10 con-
ventional producers which are located outside of Minne-
sota. The average conventional ammonia price from 2010
to 2022 was $500/mt. Ammonia purchased from these
producers is routed through one of three distribution
centers in Minnesota. Conventional producers located
further from Minnesota have higher associated costs to
transport ammonia to a given distribution center. Pro-
ducer-to-distribution transportation costs range from
$59/mt to $141/mt, while distribution center-to-county
transportation costs range from $1/mt to $36/mt.

We consider 26 candidate locations for new in-state
renewable ammonia production. Capital costs of a given
facility are incurred two years before renewable produc-
tion begins to represent a two year construction period.
The operating cost includes renewable power purchases
from PPAs with wind generators assumed to be co-
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located with the renewable ammonia production facility.
The operating cost also includes revenue from hydrogen
production tax credits (PTCs) contained in the U.S. fed-
eral government Inflation Reduction Act [15]. These cred-
its provide $3/kg of hydrogen produced for the first 10
years of facility operation. Renewable ammonia is as-
sumed to be transported from new production facilities
directly to counties. These transportation costs range
from $1/mt to $47/mt. The capacity of each new renew-
able ammonia facility is constrained to a maximum asso-
ciated wind generation capacity of 250 MW (Eq. 3). The
total installed capacity of renewable ammonia production
across all facilities in a given year is constrained by elec-
trolysis availability, which increases from 250 MW in
2024 to 850 MW in 2032 (Eq. 4). The optimization model
is implemented in Pyomo [16] and is solved using Gurobi
10.0.2.0 [17] on an Apple MacBook Pro M1 with 8 physical
cores and 16 GB of RAM.

NUMERICAL RESULTS

Deterministic case

First, we solve a deterministic model using a
$500/mt historical average conventional ammonia price,
i.e., using the two-stage model with one scenario with
probability one and price $500/mt. The optimization
problem has 22,194 (234 binary and 21960 continuous)
variables, 1,803 constraints and is solved in 6.7 seconds.
The total net present cost is $3,002 million (MM) and re-
newable ammonia production is installed at eight new
sites, as presented in Table 1. Three renewable ammonia
facilities are installed in 2027, meaning that in-state pro-
duction does not begin until 2029 and all ammonia is pur-
chased from the conventional market for the first five
years of the planning horizon (see Figure 3).

Table 1: Installation year, location, and capacity for new
renewable ammonia production in the deterministic case.
Annual average wind capacity factors for each selected
candidate location are provided in parentheses to de-
scribe wind potential.

Year Location Capacity
(1,000 mt/y)

2027 Lake Wilson (52%) 121.4

2027 Chandler (52%) 121.4

2027 Worthington (52%) 55.2

2028 Luverne (52%) 121.2

2028 Wilmont (52%) 110.4

2028 Worthington (52%) 66.0

2030 Blue Earth (47 %) 116.1

2030 Winnebago (47 %) 114.8

Three additional facilities are installed in 2028.
These first six facilities are all located in Southwest
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Minnesota, which has the highest wind capacity factors
at 52%. In both 2027 and 2028, 575 MW of electrolysis is
procured, the maximum allowable amount in each year.
This is the reason that two smaller facilities are installed
in Worthington in consecutive years. The final facilities
are installed in 2030 to ensure that all ammonia is ob-
tained via renewable production by 2032. These are both
installed in Southeast Minnesota, which also has a high
wind capacity factor at 47%. With the exception of the
two smaller facilities in Worthington, all others use at
least 225 MW of co-located wind generation in an at-
tempt to achieve economies of scale.

Stochastic case

We use the data presented in Figure 1 and generate
the histogram presented in Figure 2 using ten bins, and
obtain the price at the edge of each bin and the number
of data points in each bin. Given these data, we generate
the scenarios where the price of ammonia in scenario s is
set equal to the edge price in the bin s and the probability
ps is the number of data points in the bin s divided by the
total number of data points.

0.019 0.019 0.019
0.006

600 800 1000 1200 1400
Ammonia price ($/mt)

Figure 2. Histogram of U.S. Gulf Coast ammonia prices
from 2010 to 2022. The width of each histogram bin is
$117.5/mt. In the stochastic optimization model, the
probability of the conventional ammonia price being
within each bin is listed above that bin.

The optimization problem has 217,566 (234 binary
and 217332 continuous) variables, 11,927 constraints,
and the solution time is 78 seconds. The total net present
cost is $3,230MM and the renewable sites installed are
presented in Table 2. As with the optimal solution of the
deterministic model, eight new renewable production fa-
cilities are installed. However, these installations occur
earlier in the optimal stochastic supply chain transition.

One new facility each is installed in 2024 and 2025,
which allows some market penetration of renewable am-
monia by 2026 (see Figure 3). Both of these facilities are
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installed in locations with the highest wind potential and
use the maximum allowable 250 MW of co-located wind
generation capacity. In 2027, three additional facilities
are added and these cumulatively use 575 MW of elec-
trolysis, the upper bound for that year. The facilities in
both Luverne and Worthington use 250 MW of wind gen-
eration. We point out that these facilities have slightly
higher production capacity than those in Lake Wilson
(2024) and Chandler (2025) due to the more efficient
electrolysis expected to be available in future years. The
third 2027 facility is located in Southeast Minnesota de-
spite its lower wind potential, unlike in the deterministic
supply chain. This enables another facility which uses
250 MW wind to be installed in Wilmont in 2028; all five
facilities with the highest wind potential (52% capacity
factor) use this maximum amount of wind capacity to
achieve economies of scale. Another facility is installed in
Southeast Minnesota in 2028, also at the 2050 MW scale.
Finally, a smaller facility is installed in Southeast Minne-
sota in 2030 to ensure a fully renewable supply chain by
2032.

Table 2: Installation year, location, and capacity for new
renewable ammonia production in the two-stage sto-
chastic case. Annual average wind capacity factors for
each selected candidate location are provided in paren-
theses to describe wind potential.

Year Location Capacity
(1,000 mt/y)

2024 Lake Wilson (52%) 117.7

2025 Chandler (52%) 117.7

2027 Luverne (52%) 121.14
2027 Worthington (52%) 121.14
2027 Winnebago (47 %) 50.71

2028 Wilmont (52%) 121.24
2028 Blue Earth (47 %) 111.11
2030 Fairmont (47 %) 65.34

Comparison between deterministic and
stochastic cases

The optimal transition in the stochastic case results
in less conventional ammonia purchases and more in-
state renewable production over the planning horizon
compared to the deterministic transition. This difference
leads to a reduction in the total amount of ammonia pur-
chased leading to lower cumulative purchase, transpor-
tation, and distribution costs for conventional ammonia
over the planning horizon (see Figure 4). Conversely, the
capital cost for renewable ammonia production is higher
in the stochastic transition even though the same total
capacity of renewable production is installed in both
cases. This is due to earlier installation using more ex-
pensive constituent technologies in the stochastic case.
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This also contributes to higher renewable ammonia oper-
ating costs over the planning horizon, though these are
also higher simply because more renewable ammonia is
being produced. Overall, the net present cost of the sup-
ply chain transition is 7.6% (228 MMS$) higher in the sto-
chastic case than the deterministic case.
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Figure 3. Amount of ammonia (mt) in each time period
from conventional purchases (black bar) and in-state
renewable ammonia production (gray bar) for the
deterministic (top figure) and stochastic (bottom figure)
cases.
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Figure 4. Cost contributions to optimal net present cost
for the deterministic and stochastic cases. The cost
acronyms are defined as follows: CAP - Renewable
capital, OP - Renewable operating, DR - Renewable
distribution, PC - Conventional purchase, TC -
Conventional transportation to Minnesota, DC -
Conventional distribution.

We compare the supply chain configurations ob-
tained via the deterministic and stochastic transition op-
timizations for different conventional ammonia prices to
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elucidate the benefit of the stochastic approach. Specif-
ically, we discretize the ammonia price uniformly in 100
points between $214/mt and $1389/mt, and for each
price, we fix the investment decisions (timing of invest-
ments, i.e., binary variables and installed capacity) and
compute the net present cost of supply chain transition
(see Figure 5). We observe that for high prices of con-
ventional ammonia (above $700/mt), the net present cost
of the supply chain obtained via stochastic programming
is meaningfully lower than the cost of the deterministic
design, whereas if the price is low (below $400/mt) the
design obtained by the deterministic model has a mean-
ingfully lower net present cost. This difference can be at-
tributed to the different investment strategies for the sto-
chastic and deterministic cases (i.e., more ammonia is
manufactured in-state for the stochastic case) as dis-
cussed in the previous paragraph.
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Ammonia price $/mt

Figure 5. Levelized cost for the deterministic and
stochastic design as a function of ammonia price.

CONCLUSIONS

In this work, we focused on quantifying the effect of
uncertainty in conventional ammonia prices on Minne-
sota’s transition from importing fossil-derived ammonia
from out-of-state conventional producers to in-state re-
newable ammonia production. We used a two-stage sto-
chastic programming approach to determine the optimal
investment profile for in-state renewable ammonia pro-
duction over a fixed planning horizon such that the de-
mand of ammonia is satisfied while the net present cost
is minimized. The results show that when accounting for
uncertainty in the conventional ammonia price, invest-
ments are made earlier in the planning horizon compared
to a deterministic supply chain transition model. This
leads to a reduction in the amount of ammonia purchased
from conventional producers. This can bring significant
cost savings for higher-than-average ammonia prices.
Overall, the stable production cost afforded by in-state
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renewable ammonia production can act as a hedge
against conventional ammonia price uncertainty and the
possibility of very high prices on the conventional ammo-
nia market.

This work used a two-stage approach to account for
conventional price uncertainty, but in practice these
prices could evolve different multi-year trajectories. Fu-
ture work will therefore develop multi-stage stochastic
programming models for the supply chain transition
problem. Furthermore, technology cost reductions are
also subject to uncertainty, especially further into a given
planning horizon. For example, electrolysis costs are ex-
pected to decrease, but the magnitude of this reduction
is not well-established at present. Thus, these types of
uncertainties will also be incorporated into future supply
chain transition models.
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