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ABSTRACT: This paper explores the application of causal discovery
frameworks to infer the topology of industrial chemical processes, which is
crucial for operational decision-making and system understanding. While
traditional data-driven methods entail process interventions, causal discovery
offers a noninvasive approach. Challenges such as temporal aggregation,
subsampling, and unobserved confounders, which can lead to false predictions,
are emphasized in the paper. Through simulation case studies, the performance
of various causal discovery methods under different observation scenarios is
evaluated. Our findings underscore the importance of simultaneously
considering instantaneous and lagged causal relations, highlight the suitability
of structural equation modeling for temporally aggregated processes, and
caution against misinterpretation of subsampled data. Additionally, we demonstrate the utility of the Wiener separation in identifying
unobserved confounders, which is essential for navigating the complexity of industrial processes.

1. INTRODUCTION
Digitalization has significantly increased the amount of available
data in industrial processes, leading to a large data repository.1

Industrial chemical processes are also increasingly reliant on
interconnected and automated systems with integrated
machinery and sensors. Inferring the topology of such systems,
i.e. the influences and interconnections between process
variables, can provide a strong basis for critical operational
decisions.2 For example, knowledge of the system’s topology is
necessary to devise a feasible control strategy.3−5 In addition, it
is critical for maintaining process safety, fault diagnosis, and
mitigation.6−8 Topological information derived from big data
can also help the design and operation of industrial processes by
improving sustainability and market competitiveness.9−11

Data-driven methods, such as system identification and
estimation, are widely applied to historical process data to
identify a suitable process model that encodes the topology of
the process.12−14 However, this approach requires process
intervention that deliberately perturbs the system from normal
operating conditions, leading to downtime and process
inefficiency that can impact operational costs. Furthermore, it
requires inherent knowledge of the system to properly select a
working model from a large class of models. The increasing
complexity and size of chemical processes can make it more
challenging for the user to select a proper model while avoiding
overfitting in the presence of process and measurement noise.
Machine learning-based identification is often employed to
identify system behaviors.15,16 However, frameworks that utilize
black-box models lack interpretability and guarantee of stability,
which makes them unsuitable for risk-sensitive tasks and
decision-making in industrial processes.

The field of causal discovery offers an alternative data-driven
approach to identify the topology of a large and complex system
and has found success in the fields of neuroscience,17−21

medicine,22,23 genetics,24,25 finance,26 and ecology.27−29 Causal
discovery focuses on identifying causal relationships between
process variables beyond correlation, which helps in under-
standing the underlying mechanisms driving a system and how
information propagates throughout the system. The inferred
topology is then represented as a graph consisting of nodes and
directed edges that are easily interpretable. Given the complex
and nonlinear nature of chemical processes, causal discovery
algorithms are ideal for uncovering system connectivity without
process interventions or a-priori model selection.
Previous works have applied causal discovery algorithms to

chemical and industrial processes in the context of root-cause
diagnosis and fault detection. Different classes of causal
discovery frameworks based on Bayesian networks and temporal
causal analysis have been applied to alarms associated with
different parts of processes to identify how disturbances
propagate through the system and apply proper mitigation.30−33

Modified versions of the classical Granger Causality have been
similarly applied to identify system-wide fault propagation.34 In
our study, our main motivation is to utilize causal discovery to
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reconstruct the topology of chemical processes to aid in process
identification and control, emphasizing the importance of
accurate topological prediction. Previous works have applied
causal discovery to temporal observational process data in the
context of topological reconstruction.35−38 However, these
approaches often overlook very fast (essentially instantaneous)
causal effects induced by different process rates and assume
perfect observation of the process.
In dealing with data derived from a real process, one must

account for several factors that can lead to false causal
predictions.36,37,39 Low rates of process observation relative to
the time scale of the process are often expressed as temporal
aggregation or subsampling of the true process, leading to false
causal predictions if not accounted for. Observation of real
systems at low rates may be the result of data storage restrictions
or sensors that observe at low rates. The presence of unobserved
variables can also confound the results of causal discovery. Some
variables in real processes that have causal influences on other
variables might not be directly measurable by the available
sensor array, which may lead to causal misprediction.
Furthermore, if a subset of process variables in the system
evolves at a significantly faster rate than other variables and the
observation rate, the causal relation can appear as instantaneous,
creating a combination of both instantaneous and lagged causal
relations. Simultaneous consideration of both such types of
causal relations is critical to recovering the topology of such a
system accurately. Non-Gaussian noise and certain structures of
the underlying system generating the data, such as control loops
and recycle streams, can also make it more difficult to identify
the true causal structure of the system. In this study, we aim to
address the impact of these factors on the accuracy of the most
common causal discovery frameworks and characterize the
extent to which we can obtain reliable results using each
framework. Through this analysis, we aim to develop guidelines
to guide the implementation of different causal discovery
methods so as to minimize false predictions with a minimum
amount of process knowledge introduced.
The remaining part of this paper is structured as follows:

Section 2 will discuss the basic definition of causality in dynamic
systems and basic graphical terminology. Section 3 presents an
overview of the causal discovery method used in this study.
Section 4 describes the process models of two case studies.
Section 5 presents and analyzes the results of applying the
different causal discovery methods to the two case studies.
Finally, Section 6 summarizes the main conclusions of the paper.

2. GRAPHICAL REPRESENTATION OF CAUSALITY
We will begin by formalizing the basic definition of causality and
its relation with dynamic systems. Given two variables x and y,
we say that a x causes y when interventions on the state of x
induce changes in the state of y.40 In dynamical systems, we are
interested in uncovering system-wide causal relationships using
causal discovery to predict the effects of intervention (whether
deliberate or not). A causal graph summarizes the causal
relationships within a system as a set of nodes representing the
variables connected by directed edges, representing the direction
of causal influence. Causal discovery algorithms take observa-
tional data corresponding to different process elements in the
system as input and output a causal graph representing the
predicted causal influences between every process element.
In a causal graph G⃗ containing a set of N nodes,
= { }v v, . . , N1 , with a set of directed edges E⃗, the causal

influence of vj to vi is represented as an arrow pointing from vj to
vi, vj → vi, where we define node vj as the source and node vi as the
target. A causal matrix ×A N N encodes the adjacency of the
causal influences between the variables, where the causal
influence vj → vi is encoded as Aij ≠ 0. If there is a directed
edge from vi to vj, we say vi is a parent of vj and vj is a child of vi. A
sequence of vertices v1, ..., vl is called a path starting from v1 and
ending in vl if an edge exists between every ordered pair (vk−1, vk)
in G⃗. The path is a chain if, for every consecutive pair (vk−1, vk) in
the path, there is a directed edge from vk−1 to vk. If there is a chain
from vi to vj, we say vi is a ancestor of vj and vj is a descendant of vi.
A vertex vk in a path is known as fork if both vk−1 and vk+1 are
children of vk (vk−1 ← vk → vk+1) and a collider if both vk−1 and
vk+1 are parents of vk (vk−1 → vk ← vk+1). We say that a triplet of
nodes vk−1, vk, and vk+1 is a v-structure if vk is a collider with vk−1
and vk+1 as its parents but vk−1 and vk+1 are not connected.
Figures 1a-1d show examples of a chain, fork, collider, and v-
structure triplet. A path is a cycle if the first and last vertex of the
path are equal. We say that the graph G is a Directed Acyclic
Graph (DAG) if G⃗ does not contain any cycles. We obtain the
skeleton graph G of the directed graph by removing all the
directions of every edge in G⃗ to obtain a graph with only
undirected edges. Figures 1e-1g illustrate the differences
between a cyclic graph, a DAG, and their corresponding
skeleton graph.
We associate each node vi to an observational time series

v a r i a b l e w i t h a l e n g t h o f T t ime po i n t s
= [ ] ×x t x x x T( ) (0), (1), . . . , ( )i i i i

T1 . We define a vector
of observational variables at every time point t as

= [ ] ×x t x t x t x t( ) ( ), ( ), . . . , ( )N
T N

1 2
1 and an observatio-

Figure 1. a) A chained triplet. b) A forked triplet. c) A collider structure. d) A v-structure. e) A directed cyclic graphwith the cycle {v1, v3, v4}. f) ADAG.
g) The skeleton graph of Figures 1e and 1f.
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nal matrix as the concatenation of said vector across all time
points = [ ] ×X x x x T(0), (1), . . . , ( ) N T . We can see that
each node vi corresponds to the ith row of x(t) and X.
Furthermore, we define the notation Xrem(i) as the removal of the
ith row of the matrix X. Multiple indices, such as Xrem(ijk), denote
the removal of multiple rows of X.

3. CAUSAL DISCOVERY METHODS
Causal discovery methods attempt to identify causal relation-
ships between the variables of a process given the observation
matrix X generated by the process. The predicted causal
relationships are then expressed as causal graphs. This workflow
is illustrated in Figure 2. The remaining part of this section will
provide an overview of the causal discovery frameworks
considered in this study.
3.1. Temporal Frameworks. Temporal causal discovery

frameworks determine the presence of causal connections
between variables by assessing whether the past values of one
variable can predict the future values of another. Consider a pair
of variables vi and vj that we want to test for possible causal
connection, and the set of variables \{ }Z v v,i j (where the
operation \{ }v v,i j indicates the removal of {vi, vj} from )
that can potentially contain information regarding vi and vj.
Suppose that xi, xj, and = ×X XZ rem ij

N T
( )

( 2) are their
corresponding observed time series variables.
We are interested in identifying whether vj temporally causes

vi while accounting for the information provided by Z by
analyzing their corresponding time series variables xi, xj, and XZ.
The F-test is often used tomeasure the significance of a temporal
causal relation.41 Consider

= ||F x x x X( , , )v v Z t i t j t t p i t t p Z t t p, , 1: , 1: , 1:j i (1)

where |Fv v Zj i
represents the confidence value of the causal

relation vj → vi conditioned on Z. xi,t represents the value of xi at
time t while xi,t−1:t−p, xj,t−1:t−p, and XZ,t−1:t−p represent the values
of xi, xj and XZ from time t − 1 to t − p. The value p is often
known as the ”order” and is typically far smaller than the overall
length of the time series. Here, δt(·|·) is a scalar measure of the
predictive significance of xj,t−1:t−p over xi,t conditioned on
xi,t−1:t−p and XZ,t−1:t−p. Generally, an |Fv v Zj i

value approaching
zero indicates that the past values of vj are irrelevant to future
values of vi, and an |Fv v Zj i

value approaching one indicates that
the past values of vj are significant to future values of vi. A
threshold value α is typically used to generate the final causal
graph, where if >|Fv v Zj i

, then v vj i .

The specific measure of the scalar δt(·|·) varies across different
temporal causal discovery frameworks. For one of the most
widely used temporal causal discovery methods, the Granger
Causality (GC), the scalar δt(xi,t, xj,t−1:t−p|xi,t−1:t−p, XZ,t−1:t−p)
reduces to the ratio of variances of the residuals of two Vector
Auto Regression (VAR) models for xi,t:

| =x x x X
var t
var t

( , , ) 1
( ( ))
( ( ))t i t j t t p i t t p Z t t p

t UM

t RM
, , 1: , 1: , 1:

(2)

where ϵUM(t) is the residual of the VAR model for xi,t that
accounts for xj,t−1:t−p, xi,t−1:t−p, and XZ,t−1:t−p, also known as the
unrestricted model, and ϵRM(t) is the residual of the VAR model
for xi,t that accounts for only xi,t−1:t−p andXZ,t−1:t−p, also known as
the restricted model. vart(ϵUM) and vart(ϵRM) are the variances of
both residuals across time. We see that if vj is temporally relevant
to vi, then vart(ϵUM(t)) ≪ vart(ϵRM(t)), leading to |F 1v v Zj i

which implies xj → xi.
42 Given that GC utilizes VAR models in

its statistical measure, stationarity is a necessary feature of the
observed time series for GC to identify temporal causal relations
accurately. We can see that the set of conditioning variables Z
plays an important role in ruling out spurious causal predictions
by accounting for potential intermediate variables in Z between
vi and vj. For example, consider three variables v1, v2, and v3, and
let x1, x2, and x3 be the corresponding observed time series
variables. Suppose that the underlying process is given by x1(t) =
e1(t), x2(t) = x1(t − 1) + e2(t), and x3(t) = x2(t − 1) + e3(t),
corresponding to a true causal graph v1 → v2 → v3. GC will
predict a spurious causal link v1 → v3 if v2 is not accounted as a
conditioning variable. The computational complexity of
checking for pairwise Granger causality in a process with N
variables, T samples, and a model order p is O(NT3p3).43

However, the problem becomes NP-hard when applied to
processes with multiple time lags since it requires the user to
check for multiple model orders p.

3.2. SEM-Based Methods. Unlike temporal frameworks,
causal discovery frameworks based on the Structural Equation
Model (SEM) lack a temporal element in their basic definition of
causality. Interactions between variables in SEMs appear as
instantaneous. Given the observational matrix ×X N T ,
consider the linear SEM of the form

= +x t Ax t e t( ) ( ) ( ) (3)

where ×x t( ) N 1 is a vector of N observed variables
corresponding to the tth column of X, ×e t( ) N 1 is a vector
of stationary independent random noise, and ×A N N is the
coefficient matrix that maps the causal relation between
elements of with Aii = 0 for all i = 1, ..., N (no self-loops).

Figure 2. Illustration of the causal discovery workflow.
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In other words, A directly encodes a true directed causal graph
G( , ), where v vj i if Aij ≠ 0. In general, a SEM does
not need to be linear. However, in this section, we will restrict
our discussion only to data generated from eq 3.
Constraint-based algorithms can recover the causal structure of

A by identifying conditional independence relationships
between the observed variables in x. We can summarize
constraint-based algorithms into two general steps: 1)
generation of the skeleton graph by pruning the edges between
conditionally independent variables using conditional inde-
pendence tests, and 2) orientation of the skeleton graph. The
orienting strategy of most constraint-based algorithms generally
builds around identifying v-structures entailed by the inferred
conditional independence relations in the skeleton. The
remaining edges are then generally oriented by avoiding adding
new conditional independence relations not entailed previously.
For data with continuous variables and linear (or close to linear)
relationships (such as the SEM), the partial correlation can be
used to identify conditional independence relationships. For
data with continuous variables and nonlinear relationships,
kernel-based independence tests and information-theoretic
measures such as conditional mutual information can be used
to identify conditional independence relationships.44

One example of a constraint-based algorithm is the Peter Clark
(PC) algorithm.40 Given the skeleton graph inferred from
conditional independence testing, the PC algorithm orients the
undirected edges in the skeleton based on the graphical notion
of independence known as d-separation, where an adjacent
triplet vi − vk − vj in the skeleton is oriented as a v-structure vi →
vk ← vj if vi and vj are disconnected and vk is not a member of the
conditioning set that renders vi and vj independent. The
remaining directed edges are oriented by avoiding new v-
structures and cycles. The PC algorithm returns a Complete
Partially Direced Acyclic Graph (CPDAG), a causal graph
containing both undirected−and directed → edges. The
undirected edges represent edges whose direction cannot be
determined by the PC algorithm, entailing a class of graphs
known as theMarkov Equivalence Class (MEC) of DAGs. Given
the sufficient size of X generated by eq 3 with an A that entails a
DAG and assuming that there are no hidden confounding
variables affecting x, the PC algorithm guarantees to return the
correct MEC given that we infer the correct skeleton graph. The
details of the PC algorithm are given in Algorithm 1 in Section 1
of the Supporting Information document.
There are several powerful extensions of the PC algorithm

that account for potential latent or unobserved confounding
variables, such as Fast Causal Inference (FCI).40 FCI utilizes a
more general notion of graphical independence, known as m-
separation, and a graphical representation containing edge types
beyond undirected and directed edges known as a Partial
Ancestral Graph (PAG) that can capture latent confounders in
an acyclic causal structure. We say that a variable C is a latent
confounder between v1 and v2, if C is a fork element between v1
and v2, and C is not directly observable (e.g., latent). Unlike
CPDAG (the output graph of the PC algorithm), a PAG
encodes ancestral relations between the variables instead of
direct parental relationships (note that all parental relations are
also ancestral, but not all ancestral relations are parental). In a
PAG, there are three kinds of edge points: > , -, and ◦. An edge v1
→ v2 means that v1 is an ancestor to v2, and v2 is not an ancestor
of v1, implying that v2 is a noncause of v1. An edge v1 − v2 means
that both v1 and v2 are ancestors of each other, implying that v1

and v2 are either direct or indirect causes of each other. Finally,
the edge ↔ implies that neither v1 nor v2 are ancestors of each
other, implying that there exist one or more latent confounders
as a common cause for both v1 and v2. A ◦ on either side of an
edge implies that the algorithm cannot tell the proper edge point
assignment. Similar to CPDAG, a PAG also represents a class of
equivalent causal graphs and is theoretically guaranteed to
return the correct class graphs given the correct skeleton graph
and that the faithfulness assumption holds true. Details of the
FCI algorithm are given in Algorithm 2 in Section 1 of the
Supporting Information document. The NP-hard complexity
skeleton discovery step of the constraint-based algorithm
generally dominates the computational cost of the orientation
step, as we must check for all possible combinations of
conditioning variables for every conditional independence test
of all possible pairs of variables. More efficient (but sometimes
less informative) extensions of the aforementioned algorithms
exist for larger but sparser graphs.45−47 Specific properties of the
dynamical interconnection can also be leveraged to improve the
efficiency of uncovering the skeletal structure of a process.48

If the underlying process noise e in eq 3 is independent and
non-Gaussian, the Linear Non-Gaussian Acyclic Model (LiN-
GAM) framework can be leveraged to identify causal relations
between elements of (rows of X).49 Given X generated by eq
3 with non-Gaussian process noise, X can be decomposed into
its independent components X = BS using the Independent
Component Analysis (ICA), where ×S N T is a matrix whose
rows correspond to independent components of X that is
mapped by the matrix ×B N N . By drawing an analogy to eq
3, we can obtain an estimate for A from X = BS by rescaling and
permuting the rows of I − B−1 given that A corresponds to a
DAG. The computational complexity of LiNGAM is generally
dominated by the ICA decomposition step. Typically, the more
efficient fast-ICA is preferred over the ICA to handle larger data
sets or high-dimensional data, reducing the computation
complexity from around O(NcT), where c ∈ [2, 3], to
O(NTr), where r is the number of iterations required for
convergence and is usually significantly smaller than N.50

3.3. Hybrid Methods.Hybrid frameworks account for both
lagged and instantaneous causal effects. An example of a hybrid
framework can be found in,51 where the authors incorporate a
framework to identify conditional independence relations of
dynamically interconnected variables known as the Wiener-
separation. The measure is derived from the mathematics of
Wiener filtration and is coupled with the PC algorithm, allowing
the application of the PC algorithm and other constraint-based
approaches to temporal systems. The PC-Momentary Condi-
tional Conditional Independence (PCMCI) is a similar framework
that accounts for lagged causal effects within the scope of the PC
algorithm.52 These methods open the way for applying more
powerful and robust constraint-based methods, such as the FCI,
to temporal systems.
The LiNGAM framework can also be extended to account for

lagged causal relations. This extension is the Vector Autore-
gressive Linear Non-Gaussian Acyclic Model (VAR-LiNGAM).
VAR-LiNGAM assumes a causal model described by the
Structural Vector Autoregression (SVAR) model

= + +
=

x t A x t A x t e t( ) ( ) ( ) ( )
P

0
1 (4)
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where ×A N N
0 and ×A N N represent the instanta-

neous and lagged interactions between rows of x. Similarly, the
rows of x in eq 4 correspond to a set of variables . The first
term of eq 4 can be interpreted as a SEM defined by eq 3. Given
the observational matrix X generated by eq 4, VAR-LiNGAM
solves for an estimate of A0 and Aτ by initially estimating a VAR
model from x using the least-squares method and then applying
LiNGAM to the residuals of the VAR model. Like LiNGAM,
VAR-LiNGAM assumes that the underlying process noise is
non-Gaussian and that A0 corresponds to a DAG. A more
efficient approach that yields the same result utilizes the
Multichannel blind deconvolution to decompose x into dynam-
ically independent components.49 Similar to VAR-LiNGAM,
the extended Granger causality is a variant of the Granger
causality that determines the direction of instantaneous causal
effects by leveraging the asymmetry of the residuals induced by
non-Gaussian process noise using ICA.53 Hybrid algorithms
show NP-hard complexity with increasing numbers of variables,
observations, and time-lags present in the process. Notably, the
Wiener separation not only requires checking for all possible
combinations of conditioning variables for every conditional
independence test of all possible pairs of variables but also across
all time lags up to the model order of the Wiener filter. The
computational cost of hybrid methods can be significantly larger
than that of either temporal frameworks or SEM-based
frameworks.

4. CASE STUDIES AND PROCESS SIMULATION
We will consider two case studies (one with an acyclic structure
and another containing a cyclic structure) to illustrate and
analyze the effect of several nonideal observation factors on the

reliability of the different causal discovery frameworks reviewed
in the previous section.

4.1. Case Study 1.This case study considers twoContinuous
Stirred Tank Reactor (CSTR) in series with first-order reactions,
operating at steady state. The process schematic is in Figure 3a.
A feed stream with equal concentrations of A and B is fed into
CSTR 1, where A and B react to form the intermediate product
C. The exit stream is fed into CSTR 2, where C further reacts to
form D and E.
The process can be modeled by the following delayed

differential equation system
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where xA1, xB1, and xC1 are the concentrations of A, B, and C in
CSTR 1, and xA2, xB2, xC2, xD2, and xE2 are the concentrations of

Figure 3. a) Process schematic of the first case study. b) True causal graph of the first case study. c) Process schematic of the second case study. d) True
causal graph of the second case study.
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A, B, C, D, and E in CSTR 2. V1 and V2 are the volumes of CSTR
1 and 2, respectively. F1in, F1out, and F2out are the flow rates into
CSTR 1, out of CSTR 1, and out of CSTR 2, respectively. The
inlet flow rate of CSTR 1 F1out contains equal concentrations of
A and B, xA0 = 0.5 and xB0 = 0.5. The coefficients k1 and k2 are the
first-order reaction rate constants for the reaction of A and B into
C in CSTR 1, and k3 is the first-order rate constant for the
reaction of C to produceD and E in CSTR 2. The time delay τFd1out

represents the transport delay through the pipe between the two
CSTRs. Table S1 in Section 2 of the Supporting Information
document summarizes the constants used in eq 6.
4.2. Case Study 2. The process shown in Figure 3c consists

of two CSTRs in series with a first-order reaction network. Two
separate feeds containing pure A and B are fed into CSTR 1,
where A reacts to form B. The product stream of CSTR 1
containing A and B is fed into CSTR 2, where A reacts to form B,
B reacts to formC, and C reacts back to formA, inducing a cyclic
reaction network.
The process can be modeled as the following delayed

differential equation system
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(6)

FA and FB are themeasured inlet flow rates of pure A and B (xA0 =
xB0 = 1) into CSTR 1. The variables xA1 and xB1 are the
concentrations of A and B in CSTR 1, and xA2, xB2, and xC2 are
the concentrations of A, B, and C in CSTR 2. V1 and V2 are the
volumes of CSTR 1 and 2, respectively. The coefficient k1 is the
first-order rate constant for the reaction A → B, while the
coefficients k2, k3, and k4 are the first-order rate constants for the
reactions from A to B, B to C and C to A, respectively. The time
delay constants τF dA

, τF dB
, and τFd1out

represent material transport
delay through pipes at both feed inlets of CSTR 1 and the pipe
connecting CSTR 1 and 2. Table S1 in Section 2 of the
Supporting Information document summarizes the constants
used in eq 6.

4.3. Process Simulation and True Causal Graphs. To
simulate eq 5 and (6) at steady state, the values of x are updated
by solving for x(t)

+ =f x t x t e t( ( ), ( )) ( ) 0 (7)

where f corresponds to the right-hand-side of eqs 5 and 6, and
e t( ) N is process noise sampled from the uniform
distribution with a standard deviation of 0.05. Each process
will be simulated for T time points. Concatenating subsequent
state vectors x(t) for t = 0, ..., T yields the observation matrix

×X N T . For simplicity, we will also let all τ = 1.
The state vector x in eq 7 corresponds to the set of nodes .

For the first case study, we define the state vector as
= [ ]x x x x x x x x x, , , , , , ,A B C A B C D E

T
1 1 1 1 2 2 2 2 2 and the corre-
s p o n d i n g s e t o f n o d e s

= { }x x x x x x x x, , , , , , ,A B C A B C D E1 1 1 1 2 2 2 2 2 . For the second
c a s e s t u d y , w e d e fi n e t h e s t a t e v e c t o r a s

= [ ]x F F x x x x x, , , , , ,A B A B A B C
T

2 1 1 2 2 2 and the corresponding
set of nodes = { }F F x x x x x, , , , , ,A B A B A B C2 1 1 2 2 2 . Note that
we included FA and FB in x2 and 2 as variables, where their
dynamics are simply a static noisy process sampled from the
uniform distribution with a standard deviation of 0.05 centered
around their nominal values FA* and FB*.
The true causal graph for both case studies can be constructed

by identifying the functional dependencies of the states in eq 5
and eq 6. We adopt the multiarrowed graph representation used
in . 54 We have the causa l re la t ion v vj j i f

= f x t(. . . , ( ), . . . )dx
dt i j

i , i.e. the dynamics of xi explicitly

depend on xj. We have the causal relation v vj j if

= f x t(. . . , ( ), . . . )dx
dt i j

i , i.e. the dynamics of xi explicitly
depend on the τ-lagged values of xj. The true causal graphs for
both case studies, G ( , )true

1 1 1 and G ( , )true
2 2 2 are shown in

Figures 3b and 3d.

5. RESULTS AND DISCUSSION
In this section we demonstrate the application of the
aforementioned causal discovery frameworks to the process
models described in Section 4. We illustrate how spurious
predictions can arise if both instantaneous and lagged causal
relations are not considered and challenges that 1) temporal
aggregation, 2) temporal subsampling, and 3) the presence of
latent confounders introduce into the process of causal
discovery and how they can be addressed by exploiting the

Figure 4.Causal graphs predicted by a) GC, b) LiNGAM, and c) VAR-LiNGAM for the first case study. d) A causal graph predicted by VAR-LiNGAM
for the second case study.
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strengths of different causal discovery frameworks. Furthermore,
we will address the general challenges of causal discovery of
cyclic processes in combination with these nonideal process
observations.
5.1. Simultaneous Consideration of Instantaneous

and Lagged Causal Effects. In real processes, different
variables can evolve and interact at different time scales.55 For
example, due to the sheer size of a reactor, temperature variation
and mixing of the fluid inside the reactor may occur at a much
slower rate than the chemical reactions occurring within the
vessel.56 Such processes can lead to different rates of interactions
between variables of the system, leading to a mix of lagged and
(essentially) instantaneous causal relations. In our case studies,
we model the difference in reaction rates and material transport

rates by using instantaneous causal relations between reactive
components in either CSTR and lagged causal relations between
variables in different CSTRs to account for transport delays.
We simulate the corresponding process models to generate

time series data with T = 100, 000 time points and then apply
GC, LiNGAM, and VAR-LiNGAM. Figure 4a presents a causal
graph predicted by GC for the first case study. We see that GC
can only correctly capture lagged causal connections found in
the first case study (xA1 →→ xA2, xB1 →→ xB2, and xC1 →→ xC2).
Furthermore, it also predicts the spurious lagged causal links xA1
→→ xC2 and xB1 →→ xC2. These spurious causal predictions are
induced by the causal links xA1 → xC1 and xB1 → xC1. The GC
overlooks these instantaneous causal links, resulting in a false

Figure 5. a) AUC vs k curves for GC and LiNGAMwhen applied to the first case study. b) AUC vs k for GC and LiNGAMwhen applied to the second
case study. c) Predicted skeleton graph ofG1

true generated by thresholding a sample partial correlation coefficient inferred from the simulation of the first
case study at k = 30. d) V-structure graph of the first case study. e) Output CPDAG for the first case study. f) Predicted skeleton graph ofG2

true generated
by thresholding a sample partial correlation coefficient inferred from the simulation of the second case study at k = 30. g) V-structure graph of the
second case study. h) Output CPDAG for the second case study.
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perception of a lagged causal connection between xA1 and xB2,
and xC2.
Figure 4b presents a causal graph predicted by LiNGAM for

the first case study. As expected, LiNGAM can only detect
instantaneous causal links (xA1 → xC1, xB1 → xC1, xC2 → xD2, and
xC2 → xE2). However, LiNGAM also predicts two spurious
causal relations (xC2 → xA2 and xC2 → xB2). These spurious
predictions result from the confounding effect of xA1 and xB1. In
G1
true, the information coming from xA1 to both xA2 and xC2 arrives

simultaneously, causing the appearance of an instantaneous
causal link between xA2 and xC2. This also applies to the other
spurious connection xC2 → xB2.
These results highlight the problem of accounting for

instantaneous and lagged effects separately. Hybrid methods,
such as VAR-LiNGAM, can account for instantaneous and
lagged effects simultaneously. Figure 4c represents the causal
graph predicted by VAR-LiNGAM. We can see that VAR-
LiNGAM returns a perfect reconstruction of the true causal
structure for the first case study. However, VAR-LiNGAM is
limited to identifying processes that contain acyclic instanta-
neous causal links. Figure 4d represents the causal graph
predicted by the VAR-LiNGAM for the second case study,
where we can observe the spurious causal prediction xB2 → xA2.
Due to the instantaneous cycle xA2 → xB2 → xC2 → xA2, it
becomes more difficult to distinguish the true causal directions
as the instantaneous information propagation blends the causal
sources and targets of the process. Therefore, similar to
LiNGAM, VAR-LiNGAM requires the instantaneous portion
of the true causal graph to be acyclic to recover the causal
structure accurately. Other hybrid methods face similar
limitations.53,54

5.2. Causal Discovery of Uniformly Aggregated
Observed Data. Industrial historical data are often temporally
aggregated for various purposes, such as data storage reduction,
noise reduction, and ease of reporting.57,58 Readings and queries
from a network of sensors are spatiotemporally aggregated for
ease of analysis and alignment.59 However, such aggregation
muddles temporal sequences and causal relations while also
smoothing out fluctuations.60 This section will address the
effects of temporal aggregation on the accuracy of causal
discovery frameworks and explore how SEM-basedmethods can
be leveraged to identify causal relations from aggregated process
data.
We can represent temporal aggregation as the averages of

k consecutive, nonoverlapping sections of the true
observations. This reduces the total size of the data set for
storage but also produces lower-resolution observations:

= +
=

x t
k

x i t k( )
1

( ( 1) )
i

k

1 (8)

Here, x is the true observation and x̂ is the temporally aggregated
observation. This aggregation will impact the performance of
temporal causal discovery frameworks, such as the GC, as lagged
effects between the variables are diluted with larger k. Gong et al.
have proposed a method to identify the causal structure of a
VAR-like process given an aggregation order k.61 In addition to
the systematic temporal aggregation of sensor data, temporal
aggregation can also be induced by time constants in the process
which are faster than the sensor’s observation rate. In such a case,
the value of k becomes uncertain due to the difference between
the true process rate and the observation rate, limiting the
reliability of such a framework. However, in,61 it is also shown

that if k is large enough, the data-generating process will
resemble instantaneous causal relations found in SEM (eq 3).
Thus, a large enough k allows us to obtain potentially reliable
causal prediction using SEM-based causal discovery frameworks.
We applied uniform aggregation to 100 simulations of the

processes described by eqs 5 and 6 where we consecutively
aggregate k time points for k ∈ [1, 30] (k = 1 refers to
unaggregated simulations) to obtain a set of time series with T =
100, 000 time points. We then apply LiNGAM and GC and
analyze the effects of aggregation based on the performance of
LiNGAM using GC as the reference point. We use receiver
operating characteristic (ROC) curves to assess the accuracy of
both causal discovery frameworks. The ROC curve illustrates
the trade-off between the true and false positive rates for all
possible threshold values α applied to the statistics described by
eq 1. A true positive occurs when a framework correctly predicts
a causal edge, and a false positive occurs when it predicts a causal
edge while such an edge does not exist given α. The area under
the ROC curve (AUC) is a typical metric to quantify the
framework’s performance, where an area of one indicates an
ideal framework. Finally, we will also apply the PC algorithm to a
sample of highly aggregated time series (k = 30) to illustrate its
ability to recover the causal structure of a highly aggregated
process.
In Figure 5a, we present the variations of AUC against

different values of k for both LiNGAM and GC for the first case
study. We can observe that LiNGAM returns perfect predictions
of the causal relations for k ∈ [2, 13]. GC gains a slight
improvement in its prediction as k > 1 due to the ”leaking” of the
information passed by instantaneous effects through averaging
but does not gain significant improvement at larger k. As the
process becomes more similar to a SEM process with higher k,61

LiNGAM is a more reliable alternative than GC when
aggregation is present in the observation of an acyclic process,
as shown by the larger AUC within this range of k. However,
similar to the results of VAR-LiNGAM in section 5.1, LiNGAM
is not as reliable when applied to the simulations of the second
case study. This is evident in Figure 5b, where, unlike the first
case study, the AUC never approaches 1 at any value of k. This is
due to the presence of cycles in the process. Note that, in the
case of temporal aggregation, lagged cycles collapse into
instantaneous cycles at higher k, which can lead to false causal
predictions by temporal methods even when the true underlying
system contains no instantaneous causal relations.
Within the scope of SEM-basedmethods, we can also leverage

constraint-based algorithms to obtain a reliable prediction, even
at large values of k where the process noise becomes closer to
Gaussian. The partial correlation can be used to infer conditional
independent relations between the aggregated variables to
generate skeleton graphs. Similar to eq 1, we test for the presence
of a causal influence between vi and vj by thresholding the
following statistics

F x x Xminimize ( , )v v Z
Z v v

i j Z
,i j

i j

= ||
{ } (9)

where | = |x x X x x X( , ) ( , )i j Z j i Z is the partial correlation
between the vectors xi and xj conditioned on a set of vectors
XZ. However, unlike eq 1, we must search for the set

\{ }Z v v,i j so that |x x X( , )i j Z is minimized to obtain the
measure |Fv v Zi j

. We say the undirected edge v vi j if
>|Fv v Zi j

for some α, where the set is a set of undirected
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edges corresponding to a skeleton graphG ( , )skel . Note that
every disconnected pair {vi, vj} entails a set of conditioning
variables Z̃, which will be important when orienting the skeleton
graph.
Let us consider the application of the PC algorithm to both

case studies. We apply eq 9 to the aggregated observation matrix
X̂ from the simulation results of both case studies corresponding
to k = 30 and threshold each value of |Fv v Zi j

using α = 0.05 to

obtain the predicted skeleton graphs G ( , )skel
1 1 1 and

G ( , )skel
2 2 2 shown in Figures 5c and 5f. The conditioning

sets Ẑ for each independent/disconnected pair of nodes are also
shown in the same figure. We see that the partial correlation
returns the correct skeleton graphs relative to G1

true and G2
true.

Consider the orientation process ofG1
skel. The orientation of v-

structures inferred from the conditional independence relations,
listed in Table S3, is shown in Figure 5d, where the only v-
structure corresponds to xA1 → xC1 ← xB1 as x ZC1
corresponding to the conditionally independent pair xA1 and
xB1 in Table S3. The final output CPDAG of the PC algorithm,
denoted as G1, shown in Figure 5e was obtained after orienting
the remaining edges in Figure 5d by avoiding new v-structures
and cycles. We can see that the output CPDAG correctly
recovers five causal relations with two remaining undirected
edges in the acyclic G1

true, even at k = 30 where the reliability of
GC and LiNGAM are significantly compromised.
Using similar steps, the orientation of the v-structures in the

skeleton using the conditional independence relations listed in
Table S4 yields the partially directed graph in Figure 5g, where
the inferred v-structures are FB → xB1 ← xA1, xA1 → xA2 ← xC2,
and xB1 → xB2 ← xA2. The final output CPDAG G2 shown in
Figure 5h is obtained by orienting xB2 → xC2 to avoid the
additional v-structure xB1 → xB2 ← xC2, leaving one edge being
undirected xA1 − xB1.
By relaxing the acyclicity assumption, the PC algorithm is able

to recovermost of the directed edges inG2
true except for the causal

relation FA → xA1. This flexibility accommodates cyclic
structures, extracting more information from inferred relations
and broadening the identification of causal structures beyond
DAGs. To guarantee maximum information extraction,
constraint-based frameworks that are robust toward cycles
utilize PAGs to express causal relations.47,62,63 Details regarding
PAGs and the orientation rules that follow are beyond the scope
of this study.

5.3. Causal Discovery of Subsampled Observed Data.
In addition to aggregation, temporal subsampling also produces
lower-resolution data and is commonly used in the storage of
large process monitoring data sets. Similar to temporal
aggregation, the use of subsampling is often driven by practical
considerations such as the capabilities of sensors, the capacity of
data storage systems, and the computational resources required
for analysis. High-frequency observation of a process may
generate an overwhelming amount of data, straining both
computational capabilities and storage capacity. Hence,
subsampling is a pragmatic approach to managing technological
and resource constraints. However, it can also obscure
important causal relationships that exist at finer temporal
resolutions, leading to causal misprediction.
For a set of N observed variables V = {v1, ..., vN}, systematic

subsampling of the corresponding time-series variables
= [ ] ×X x x x k T(1), (2), . . . ( ) N k T with length k′T at

the rate k′ is defined as = [ ] ×X x x x T(1), (2), . . . , ( ) N T ,
where = +x t x t k( ) (1 ( 1) ) for t = 1, ..., T is the subsampled
observation. Assuming that x(t) is generated by a first-order
VAR process, x(t) = Ax(t − 1) + e(t), the observed process
becomes

+ = + +
=

x t A x t A e k t l( 1) ( ) (1 )k

l

k
l

0

1

(10)

The resulting observation of x̂(t) can induce misleading causal
predictions by temporal methods such as GC. Theorem 1 in64

states that given a large sample size T, the causal relations
observed by GC will be given by the graph G ( , )k k , where

v vj i k if {Akd′}ij ≠ 0, which contains different directed

edges from the true graph G( , ). Based on this theorem,
there are several implications regarding the apparent causal
structure. First, the causal structure of Ak′ for k′ > 1 encodes
ancestral causal relations instead of direct causal relations.
Second, following the first implication, if the true adjacency
matrix A corresponds to a DAGGwith no self-loop (i.e.,Aii = 0),
then Ak′ will be a zero matrix, leading to an empty graphGk′, if k′
that is equal to or larger than the longest path in G. Finally,
specific structures of G can induce spurious instantaneous
connections that can confound methods that account for
instantaneous causal connections.65 These implications com-
plicate the inference of the underlying causal relations in G.
We simulate both case studies to obtain a time series of length

k′T, where T = 100, 000 for some k′ (k′ = 1 indicates no

Figure 6. a)Multiarrowed causal graphs predicted by VAR-LiNGAMof the first case study when k′ = 2.Multiarrowed causal graphs predicted by VAR-
LiNGAM of the second case study when b) k′ = 2 and c) k′ = 3.
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subsampling) and apply eq 10 to each time series to obtain a
subsampled observation matrix Xk . We then apply GC and
VAR-LiNGAM to each Xk and threshold the resulting F values
using α = 0.05. For conciseness, we will only display VAR-
LiNGAM’s predicted causal graphs since the results for GC are
identical to the lagged causal relations predicted by VAR-
LiNGAM.
Consider the results for the first case study. Figure 6a presents

a causal graph predicted by VAR-LiNGAM with k′ = 2. We see
that neither VAR-LiNGAM nor GC predicts lagged causal
relations. By observing G1

true, we can see that by subsampling at
the rate k′ > 1, all single lag causal relations present in the system
are not identifiable, causing the false negative predictions by
VAR-LiNGAM and GC. Although the VAR-LiNGAM correctly
predicts all the instantaneous causal links in G1

true, it also predicts
spurious instantaneous causal links xA1 → xC1 and xA1 → xC1.
Note that this graph is identical to the predicted graph generated
by LiNGAMwhen applied to the mixed lag process (Figure 4b).
These spurious predictions can be explained using the same
reasoning as the spurious predictions found in Figure 4b: The
variables xA1 and xB1 have a confounding effect between xA2 and
xC2, and xB2 and xC2, respectively. Applying hybrid methods to
subsampled processes produces the same effect as employing
SEM-based methods on the original process, as the lagged
effects of the process are either lost due to the subsampling or
not accounted for. Higher values of k′ would yield the same
causal graph in Figure 6a.
Now consider the results for the second case study, where an

instantaneous cyclic structure is present. Figure 6b shows the
causal graph predicted by VAR-LiNGAM for k′ = 2. Similar to
the results in Figure 4d, the VAR-LiNGAM predicts one
spurious edge xA2 → xB2 since the VAR-LiNGAM can only
accurately recover processes without instantaneous cycles. Due
to the subsampling, the VAR-LiNGAM could not capture the
single lag causal relations FA → xA1, FB → xB1, xA1 → xA2, and xB1

→ xB2 in G2
true. In addition, VAR-LiNGAM also falsely predicts

lagged causal links from FA and FB to every member of the cycle
{xA2, xB2, xC2} as each member of the cycle is two-time steps
away from both FA and FB. A higher subsampling rate k′ > 2
eliminates all lagged causal predictions by VAR-LiNGAM, as
seen in the predicted causal graph in Figure 6c.
These results show that causal predictions of subsampled

processes represent ancestral relations instead of parental
relations. Therefore, unknowingly applying GC and VAR-
LiNGAM to acyclic subsampled processes results in ancestral
and false instantaneous causal relations that can be easily
misinterpreted as direct causal links.

5.4. Causal Discovery in the Presence of Latent
Confounders. In dealing with real systems, the complexity
and limited knowledge of the process andmaterials lead to many
influential variables contributing to process behavior that can
not be directly measured or observed. When attempting to
identify the causal structure of such systems, it is crucial to
account for the potential existence of unobserved factors to
avoid spurious causal predictions. In the causal discovery
literature, such factors are known as latent/unobserved
variables. In chemical processes, latent variables can take the
form of unmeasured intermediate species concentrations in
reaction networks, leaks, and exogenous factors such as feed
impurities and environmental effects.
As discussed in section 3.2, the FCI algorithm is a viable SEM-

based framework in the presence of latent confounders.
Together with the notion of Wiener-separation, we can extend
the application of the FCI algorithm to processes beyond SEMs.
This is particularly useful when analyzing complex dynamical
processes with potential latent confounders. To illustrate this,
we will apply the FCI to a modified first case study with latent
confounding variables using the Wiener separation.
Suppose that a compound Ψ is unknowingly introduced into

CSTR 2 (potentially from remaining residue from previous
reactor usage or impurities introduced from the inlet feed),

Figure 7. a) True causal graph of the first case study with a latent confounder xΨ between xA2 and xB2. b) A causal graph predicted by GC. c) Skeleton
graph of the first case study predicted by the Wiener separation. d) V-structure graph of the FCI algorithm. e) Predicted PAG of the first case study by
the FCI algorithm.
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where Ψ undergoes a first-order reaction to form both
compounds A and B with rate constants k4 and k5, respectively.
eq 5 then can be rewritten as
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where the C is a pseudoconstant source of Ψ in CSTR 2. Due to
the difference in speed of formation, the formation of A and B
from Ψ appears to be delayed at different time lags τk d4

and τkd5
,

respectively. In this example, we let τk d4
= 2 and τk d5

= 1, with the
other coefficients and time constants remaining the same. The
corresponding causal graph for eq 11 is shown in Figure 7a,
where xΨ is a latent confounder. We then apply GC and Wiener
separation to 100 simulations of eq 11, each with T = 100, 000
time points.
The predicted causal graph for GC is shown in Figure 7b,

where we can observe a spurious causal link xB2 → xA2 predicted
by GC. This spurious link is caused by xΨ imparting information
earlier to xB2 than xA2. Therefore, it is interpreted by GC as a
lagged causal connection from xB2 to xA2 without being able to
condition on xΨ. Similarly, the skeleton graph predicted by the
Wiener separation also contains an undirected edge between xA2
and xB2, as shown in Figure 7c. However, by applying the FCI
algorithm, we can identify which causal edges correspond to the
presence of confounding variables.
The FCI algorithm assigns undirected edges with ◦ on either

end of the edges. Similar to the partial correlation, by applying
the Wiener separation to process simulation of eq 11, we obtain
a list of all conditionally independent pairs listed in Table S5 that
is used to generate the skeleton graph shown in Figure 7c by
removing edges between pairs that are conditionally independ-
ent. Next, by identifying v-structures from Z̃ of every pair of
conditionally independent pairs in Table S5, we obtain the
collider graph shown in Figure 7d, where xA1 → xC1 ← xB1, xA1 →
xA2 ← xB2, and xA2 → xB2 ← xB1 are the only identified v-
structures.
The remaining edges are oriented by avoiding additional v-

structures to obtain the final output PAG shown in Figure 7e.
From the final PAG, we can see that the FCI correctly predicts
the location of the latent confounder xΨ, indicated by the edge
xA2 ↔ xB2. Unlike the CPDAG, PAGs allow more freedom in
interpreting the information derived from conditional inde-
pendence relations. If we were to apply the PC algorithm to the
data set, the rigidity of a CPDAG would not allow the

orientation xA2 ↔ xB2 given the same skeleton since it only
represents direct parental relationships. However, the generality
of PAGs also comes with a cost. The remaining ◦ edge points
imply that the FCI cannot tell the ancestral relation between the
variables. Therefore, in the equivalence class for PAGs, the edge
xA1◦ → xA2 can either mean that a latent confounder is present in
between them (xA1 ↔ xA2) or that xA1 is a strict ancestor of xA2
(xA1 → xA2). Nevertheless, we have shown that the detection of
latent confounders in dynamic processes is possible by
implementing Wiener separation in the FCI algorithm.

6. CONCLUSIONS
In this study, we have introduced broad classes of causal
discovery frameworks that can be applied to dynamical
processes and addressed several factors that can impact their
accuracy. Using two chemical process case studies with both
instantaneous and lagged causal relations to emulate different
time constants within the system, we have highlighted the
importance of simultaneously accounting for instantaneous and
lagged causal relations and quantified the performance of the
different causal discovery frameworks under multiple nonideal
observations: temporally aggregated and subsampled process
data, and latent confounding variables. Our results provide
several insights into how different frameworks can be leveraged
appropriately under different nonideal observations:

• Simultaneously accounting for instantaneous and lagged
causal relations is crucial to avoid spurious predictions.

• SEM-based methods are viable alternatives for the causal
discovery of temporally aggregated processes.

• Causal discovery of subsampled processes reflects
ancestral causal relations instead of direct causal relations.

• Subsampling of process data can result in the appearance
of spurious instantaneous causal links, emphasizing the
need for caution in interpreting predictions.

• Unobserved confounding variables can lead to misleading
topology of the process. Using the Wiener separation, we
were able to apply the FCI algorithm to identify
unobserved confounders, which is invaluable when
considering the complexity and vastness of industrial
chemical processes.

A key characteristic of chemical process systems that is not
addressed in this work is the often nonlinear and nonstationary
data. Most algorithms used in this study are only suitable for
linear processes and nonlinear processes whose dynamics are
close to a steady state. Additionally, the identifiability of causal
relations can present significant challenges in causal discovery.
For example, weak causal relations can be easily weeded out even
when low threshold values α are used to prune the causal graph.
The effects of nonlinearity and nonstationarity, in combination
with low-frequency observation, latent confounders, and
instances of difficult-to-identify causal relations, will be studied
in our future work using more complex benchmark systems to
capture more insights on the application of causal discovery on
real systems.
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■ GLOSSARY

causal discovery

Causal discovery is the process of
identifying and understanding
direct causeand-effect relation-
ships between variables in a data
set.

causal graph A mathematical abstraction used
to represent causal relationships
between variables with nodes
depicting variables and directed
edges indicating causal influences.

constraint-based algorithms A class of causal discovery algo-
rithms that identifies causal rela-
tionships by testing for condi-
tional independence between var-
iables of the data.

d-separation A notion of conditional independ-
ence in a graph by assessing the
blocking of all paths between all
the nodes.

directed edges Arrows indicating the direction of
causal influence from one node to
another.

nodes Element of a graph representing
variables of the system. source
Origin variable of the causal effect.

stationarity Refers to the statistical property of
a signal with constant mean and
variance.

target The affected variable.
v-structure A collider structure where there

are no edges between the parent
nodes.
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