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Abstract—This paper introduces an innovative end-to-end
(E2E) framework for screening Specific Language Impairment
(SLI) in children, centralizing phoneme-level mispronunciation
(PLM) detection to enhance the precision and reliability. We have
developed a unique voice-omics representation that translates
PLM predictions into symbolic sequences, yielding significant
phenotyping biomarkers that provide objective and quantifiable
assessments of children’s speech patterns. Through meticulous
fine-tuning of the Connectionist Temporal Classification (CTC)
model on the L2-ARCTIC dataset and rigorous five-fold cross-
validation, our E2E models have demonstrated remarkable ac-
curacy, with Area Under the Curve (AUC) values exceeding 0.71
and a notable recall rate of up to 71.5% on the CHILDES
dataset. Our approach signifies a substantial advancement in
SLI screening, leveraging cutting-edge technology to capture the
complexities of spontaneous speech in children.

Index Terms—SLI Screening; Phoneme-level Mispronunciation
Detection; Symbolic Sequence; Phenotyping Biomarkers; Con-
nectionist Temporal Classification Model.

I. INTRODUCTION

Speech and language development are integral to a child’s
overall growth, underpinning their ability to communicate
effectively and develop linguistic competence. Despite their
importance, speech and language disorders or impairments are
common among children, affecting 3% to 16% in the U.S.,
with prevalence rates fluctuating based on age and diagnostic
criteria. Current evidence indicates that around 2% of children
experience speech and/or language disorders severe enough
to meet clinical standards, posing considerable challenges to
their communication and educational development [1]. Early
identification and intervention are paramount in addressing
these impairments effectively, with a growing emphasis on
the importance of timely screening and tailored therapeutic
approaches [1], [2].

Specific Language Impairment (SLI) is a subtype of speech
or language impairment with a specific focus on language
difficulties that are not due to other developmental conditions.
Identification of SLI in children is a multifaceted and intri-
cate process, lacking a unified reference standard applicable
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to all age groups [1], [3]. Phoneme-level mispronunciation
(PLM) detection has emerged as a valuable tool in the early
screening of SLI. For children at risk, timely identification of
mispronunciations can serve as an early indicator of poten-
tial speech or language issues, enabling prompt intervention
[4]-[6]. Within the realm of automatic speech assessment,
PLM detection is specifically designed for the systematic
identification and categorization of deviations from standard
or expected pronunciations. This technology-driven approach
not only enables a detailed analysis of speech or language
issues but also provides a granular understanding of individual
challenges. Such detailed insights are instrumental in devel-
oping personalized speech therapy programs. Moreover, the
method’s precision allows for ongoing monitoring of a child’s
development, offering valuable feedback on the effectiveness
of therapeutic interventions.

However, developing an effective screening system for SLI
in children is fraught with challenges, given the unique and
dynamic nature of pediatric speech. A primary challenge in
constructing an end-to-end (E2E) screening system for SLI
is ensuring accuracy and reliability [7]. Another significant
hurdle is providing an objective and quantifiable assessment
of a child’s speech. Methods that are based on paralinguistic
features, such as acoustic features, may fail to capture the
subtle complexities of SLI [4]. Lastly, detecting fine-grained
PLM in spontaneous speech is particularly challenging. Cur-
rent datasets predominantly consist of repetitive single or
compound words [8] or involve children reading sentences [5],
which do not adequately represent the unstructured nature of
spontaneous speech.

In this paper, we address these significant challenges by
developing a comprehensive E2E system for early and precise
screening of SLI in children, with a central focus on PLM de-
tection. The introduced PLM detection component utilizes two
methodologies - acoustic features and CTC-based automatic
speech recognition (ASR) - to generate a symbolic sequence
that captures objective and quantifiable phenotyping biomark-
ers from children’s speech, providing a detailed insight into the
speech patterns of children and specific SLI characteristics. A
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pivotal enhancement to the system’s efficiency and accessibil-
ity is the integration of OpenMP for parallel processing across
CPU cores, significantly accelerating the processing speed
and enabling the real-time analysis of spontaneous speech,
making the tool highly suitable for naturalistic speech patterns
and applicable across various settings. Moreover, rigorous
validation is achieved through five-fold cross-validation to
ensure the accuracy and generalizability of the entire E2E
pipeline. This paper, therefore, presents a forward-thinking
approach to SLI screening, merging cutting-edge technology
with practical needs in pediatric speech therapy.

Our contributions are three-folds:

o PLM-based voice-omics representation framework is pro-
posed for E2E SLI screening in children, where trans-
lating PLM prediction sequences into symbolic repre-
sentation yields innovative phenotyping biomarkers for
objective and quantifiable assessments.

PLM detection, as a central component, is constructed
from the perspectives of acoustic features and advanced
CTC-based ASR systems.

Performing a nuanced evaluation in a spontaneous speech
scenario, employing OpenMP for accelerated processing
and five-fold cross-validation for ensuring accuracy and
reliability.

The remainder of this paper is organized as follows: Section
IT outlines the background on SLI, pediatric SLI screening
and PLM detection, Section III describes the proposed E2E
PLM-based voice-omics representation framework, Section IV
delves into the PLM detection aspect of the E2E framework,
Section V presents the benchmarking and modeling for both
the E2E framework and PLM detection, and Section VI
delivers an in-depth analysis of the results. Finally, the paper
contains a brief discussion in Section VII, followed by the
conclusion in Section VIII.

II. LITERATURE REVIEW

SLI affects effective communications, including speaking,
listening, reading, and writing [3], [9], [10]. Early screening
in children is crucial for improved outcomes [11], traditionally
reliant on subjective clinical assessments by speech-language
pathologists (SLPs) [1], [12]. Recently, there’s been a shift
towards using ASR technology and machine learning for more
objective, efficient screening. These tools analyze children’s
speech for mispronunciations and language difficulties, en-
hancing screening reliability [4]—[8].

While SLI is primarily concerned with difficulties in lan-
guage use, these aspects can influence, and be influenced by,
speech production capabilities. PLM Detection can serve as
an early indicator of underlying language processing issues,
given that accurate pronunciation requires not only motor skills
but also phonological processing, which is a component of
language ability [13]. Also, speech and language develop-
ment are highly interrelated in early childhood [14], [15].
Mispronunciations in young children can sometimes hint at
broader language development issues. Thus, PLM Detection
can indirectly contribute to identifying children who may
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require a comprehensive evaluation for SLI and capture the
multifaceted nature of language impairments.

PLM Detection, vital in early SLI identification in chil-
dren [16], is categorized into two main methodologies. The
first involves decisive feature extraction, such as Goodness
of Pronunciation (GOP) and confidence measures [17]-[19],
which compare extracted acoustic features from speech against
standard models to assess pronunciation quality. The second
method uses Extended Recognition Networks (ERNs) to ex-
pand speech recognition search lattices, allowing a broader
analysis of speech variations for improved mispronunciation
detection [16], [20]. Recently, the field has evolved with the
integration of E2E frameworks in ASR, particularly CTC-
based methods [21], [22], which streamline PLM detection
by directly learning alignments between speech and phonetic
transcriptions, bypassing the need for predefined alignments or
complex linguistic models, thus enhancing detection accuracy
and efficiency.

The current landscape of speech and language assessments
for children, while extensive, presents distinct gaps and lim-
itations, particularly in the nuanced domain of PLM analysis
and its application within speech and language pathology.

A notable limitation in current methodologies in speech
and language assessments, such as those by Black et al. [23]
and Duchateau et al. [24], is the tendency to detect word-
level disfluencies for assessments. This approach overlooks
the complexities at the phoneme level, which are crucial
for a comprehensive understanding and addressing of subtle
speech impairments. Therefore, a shift towards more detailed,
phoneme-specific analysis is essential for accurately evaluating
and intervening in children’s speech or language development.

In the realm of PLM detection for children’s language
assessments, existing research often relies on datasets with
limited scope, mainly focusing on single-word pronunciations
or sentence readings. Studies like Yilmaz et al. [25], Proenca
et al. [5], and Hair et al. [8] have primarily used tasks
involving word and sentence reading to detect pronunciation
errors. However, these datasets fall short of capturing the
complexities of spontaneous speech, which more accurately
reflects children’s natural speech patterns. To address this, our
approach incorporates the CHILDES Clinical English ENNI
Corpus [26], [27], which utilizes narrative elicitation from
storybooks or picture sequences, offering a more holistic and
realistic analysis of children’s speech or language capabilities.

A further limitation lies in the absence of quantifiable and
objective measurement of identification. For example, Shahin
et al. [4] used paralinguistic features in the acoustic area to
directly construct a screener, and Proenca et al. [5] extracted
features with the consideration of variants and coarticulation
rules. However, those features lack insights for SLPs. Essen-
tial information, such as the identification of mispronounced
phonemes or frequency of errors, is often missing. This level
of detail is essential for SLPs to effectively tailor therapy plans
and provide focused intervention, addressing the unique needs
of each child.

We recognize the absence of a unified standard in SLI
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screening and the consequential difficulty in establishing a
direct performance comparison. By identifying several lim-
itations in current methodologies, we propose an objective,
quantifiable, and phoneme-specific analysis on natural speech
for accurately evaluating and intervening in children’s speech
or language development. However, the innovative nature of
our method challenges direct comparisons with traditional
tools, which fail to capture the naturalistic speech patterns
we prioritize. The differences in methodologies and datasets
further diminish the relevance of direct comparisons.

III. E2E FRAMEWORK OVERVIEW

We propose an innovative E2E pipeline, which is a
mispronunciation-based voice-omics representation framework
for screening SLI in children. This framework is meticulously
crafted to offer automated, precise, reliable, and early screen-
ing tailored for pediatric SLI, leveraging PLM detection to
identify distinct phenotyping biomarkers in children’s sponta-
neous speech for enhanced accuracy. As Figure 1 shows, the
framework consists of three integral components:

A. Audio Preprocessing

In the preliminary phase of our framework, raw audio
recordings that capture children engaging in storytelling activi-
ties, prompted by a series of stimuli images, are processed. The
fundamental objective in this stage is to refine these recordings
to focus exclusively on the children’s speech. To achieve this,
we employ advanced speaker diarization techniques, utilizing
the ‘pyannote.audio’ speaker diarization pipeline, specifically
version 2.1 [28], [29]. This technology is adept at discerning
and segregating different speakers within the audio. By apply-
ing this pipeline, we efficiently isolate the children’s speech
from the overall audio mix, which includes the investigator’s
speech and other extraneous sounds [26], [27]. This step also
involves the removal of all silent intervals, including both
silence within the children’s speech and those resulting from
speaker transitions, thereby eliminating any pauses that do
not contribute to the speech content analysis. Finally, speech
segments are concatenated to create an uninterrupted audio
stream for each child, which provides a clean and focused
dataset for the subsequent stages of PLM detection and SLI
screening. This preprocessing is crucial for the accuracy and
reliability of our analysis, as it ensures that our system
evaluates only the relevant speech data, thus enhancing the
overall effectiveness of the screening tool.

B. PLM Detection

The central component of our framework is PLM detec-
tion, which we have segmented into two distinct approaches:
Acoustic-Based Detection (ABD) and Transcription-Based
Detection (TBD). This section offers a preliminary overview,
with comprehensive details to be presented in Section IV.

In our Acoustic-Based Detection (ABD) methodology, we
first transform preprocessed audio into word-level text using
orthographic ASR, followed by forced alignment to obtain
phoneme-level timestamps, converting the audio into phoneme
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segments. We then extract specific acoustic features for each
phoneme and develop a binary classifier to create a voice-
omics representation. Alternatively, the Transcription-Based
Detection (TBD) method utilizes a CTC-based phoneme ASR
technique for direct transcription of audio into phoneme-level
text and phoneme segmentation. The phoneme segments are
converted into the CMU ARPABET format [30], upon which
we construct a comparative model to derive the voice-omics
representation.

In both methods, each phoneme in the audio recordings
receives a binary label, either ‘C” for correct pronunciation or
‘E’ for errors, from the binary classifier or comparative model.
This process creates a mispronunciation detection (MD)-based
phenotyping sequence, offering a detailed view of the child’s
phonemic accuracy.

C. SLI Screener

The right side of our framework delineates the process
employed for screening SLI in children. Building upon the
symbolic sequence from PLM detection, a variety of phenotyp-
ing biomarkers are extracted from several analytical perspec-
tives, including density, run-length encoding, and sequence
complexity. Such a multifaceted approach allows us to capture
a comprehensive profile of each child’s speech pattern, crucial
for an accurate SLI assessment. Finally, these phenotyping
biomarkers are employed to construct and fine-tune Support
Vector Machine (SVM) and Random Forest (RF) models. This
is referred to as Sequence-Based Screening (SBS). These clas-
sifiers are designed to evaluate the likelihood of SLI in children
based on the analyzed speech patterns, which ensures that
the assessment is grounded in objective, quantifiable speech
characteristics. These two classical machine learning models
were selected because they have been the de facto standard
for the classification task, and it would be less challenging
for general users to understand. Also, classical models often
serve as good benchmarks. Consequently, this portion of the
framework is integral to achieving a reliable and effective tool
for early SLI detection in pediatric populations.

IV. PLM DETECTION

This section will elaborate on the specific implementation
details of PLM detection, the core of our E2E framework.

A. Acoustic-Based Detection (ABD)

Figure 2 shows the detailed view of ABD.

1) Phoneme-based Segmentation:

Orthographic ASR: The preprocessed audio signal under-
goes intricate processing steps using Whisper-Medium, an
advanced ASR system developed by OpenAl [31]. This system
is adept at handling extensive audio data, segmenting the entire
audio stream into discrete 30-second chunks for analysis. Each
segment is then meticulously transcribed into orthographic
text, ensuring its accuracy and linguistic correctness.

Forced Alignment: Next, Montreal Forced Aligner (MFA),
a linguistic tool designed for aligning speech audio with its
corresponding text transcription [32], is applied to get precise
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Fig. 2. A detailed view of the acoustic-based detection (ABD) framework

phoneme-level alignment. The MFA processes these inputs by
extracting features from the audio and utilizing a phonetic
dictionary to map words to their phonetic representations.
This process yields timestamps for each phoneme, effectively
segmenting the audio data into distinct phoneme units.

2) Voice-Omics Representation:

Acoustic Feature Extraction: Then, Librosa [33] and Kaldi
[34] are used to extract acoustic features for each phoneme
using the phone-level timestamps produced by the forced
alignment. Kaldi is used to compute GOP, and Librosa is
used to compute the remaining acoustic features described in
Section V-B2.

Binary Classifier: Finally, the acoustic features for each
phoneme are processed through sophisticated machine learn-
ing models, including SVM and RF. These models are em-
ployed to perform binary PLM classification to determine
whether each phoneme is pronounced correctly. These two
models were selected for the same reasons stated in Section
1I-C

B. Transcription-Based Detection (TBD)

Figure 3 shows the detailed view of TBD.

1) Phoneme-based Segmentation:

Phoneme ASR: The preprocessed audio signal undergoes
the phonetic transcription process using XLSR-Wav2Vec2, a
CTC-based ASR created by Facebook [35]. The model was
fine-tuned for the phone-level transcription task in this study,
achieving phone error rates (PER) comparable to state-of-the-
art [36]. The output International Phonetic Alphabet (IPA)
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phones are grouped by space-separated words, which is critical
for the subsequent steps in the pipeline.

2) Voice-Omics Representation:

IPA-to-ARPA Converter: Next, Gruut IPA, a tool for ma-
nipulating IPA pronunciations [37], is used to convert the IPA
transcriptions created in the previous step to CMU ARPABET.
Because each IPA symbol maps to one symbol in CMU
ARPANET (disregarding stress) [30], this process resembles a
traditional mapping operation. This step is necessary to ensure
the phonetic transcription uses the same phonetic alphabet as
the comparison model.

Comparison Model: Finally, each word in the phonetic
transcription is isolated and used to query the CMU Pro-
nouncing Dictionary, which contains pronunciations for over
134,000 English words in CMU ARPABET [30]. The query is
performed by doing a linear scan, parallelized with OpenMP,
over the entire dictionary to locate the word with the closest
pronunciation by Levenshtein distance. An alignment is then
computed between the actual pronunciation and the target’s
closest pronunciation using the Needleman-Wunsch algorithm
[38], labeling each phone as correct if it matches the target in
the alignment and erroneous otherwise.

More formally, Levenshtein distance describes the minimum
number of operations required to convert a source string to a
target string, where valid operations are insertion, removal, and
substitution. Levenshtein distance LD(s,t) can be described
by the following recursive definition, where s is the source
string of length n, ¢ is the target string of length m, and x;
indicates the character at position ¢ in string x:
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Then, given a word s from the source ARPABET tran-
scription, we compute the target pronunciation ¢ as follows,
where D is the set of all pronunciation strings in the CMU
Pronouncing Dictionary:

t = argmin LD(s, t*).
t*eD

(@)

Finally, we perform the Needleman-Wunsch algorithm to
compute an alignment between s and ¢. The resulting aligned
strings s’ and t’ have equal length [, and each character is
either in the set of ARPABET phones or is the blank character.
Then, we label each phone p; as follows, where 1 < i <I:

|

V. BENCHMARKING AND MODELING

c

E  otherwise

AT
s =1t

3

This section describes the configuration for all of our
benchmarking and modeling. The first part focuses on our
E2E SLI screening framework, and the second part is for our
core PLM detection component. We introduce datasets, feature
spaces, model configurations, and evaluation metrics for each
part.

A. E2E framework

1) Datasets: CHILDES Clinical English ENNI Corpus
[26], [27] has been used for benchmarking our E2E SLI
screening framework. It encompasses a diverse range of nar-
rative data from English-speaking children. This includes both
typically developing (TD) children and those with SLI, which
is compiled from a cohort of children aged 4 to 9, comprising
77 participants with SLI and 300 TD participants. This rich
corpus consists of narrative samples elicited from children
through a series of picture stimuli, specifically designed to
encourage storytelling, which provides a natural context for
studying children’s narrative skills and makes this corpus cru-
cial for understanding various aspects of language acquisition
and identifying language disorders in children.
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For our specific research purposes, we focused on the subset
of the dataset that included audio recordings. This decision was
necessitated by the fact that some children in the corpus were
represented only through transcripts without corresponding
audio. Consequently, our analysis incorporated data from 67
children diagnosed with SLI and 288 TD children, forming the
basis for our E2E pipeline and the model training and testing
for the SLI Screener component. Each selected speaker in
this subset contributed one audio recording. These recordings,
spanning several minutes, encompass not only the speech of
the child but also the interactions with the investigator.

2) Feature Space - Phenotyping Biomarkers: Phenotyping
biomarkers are extracted from the symbolic sequence gener-
ated by PLM detection stage, which is a string containing
the characters ‘C’ and ‘E’, where ‘C’ indicates a correctly
pronounced phoneme and ‘E’ indicates the mispronounced
phoneme. These phenotyping biomarkers are designed to
provide objective and quantifiable speech characteristics for
effectively screening SLI in children.

The detailed information and equations for each phenotyp-
ing biomarker are shown below, where S represents a length
n string of ‘C’ and ‘E’ characters, and S; is the character
at position ¢ such that 1 < ¢ < n. Note that functions
¢c: S — {S}and e : S — {S} are defined as taking a
string .S and returning a list of all contiguous ‘C’ and ‘E’ sub-
sequences respectively. Additionally, should the expression for
any metric be undefined (e.g. ACE when there are no errors),
it is treated as 0. Finally, we adopt the Iverson bracket notation
[39] which is defined as follows:

{

o Mispronunciation Density (MPD): MPD describes the
relative frequency of mispronunciations in a section of
speech. It is designed from the density perspective, where
a high MPD value indicates high anomalies or variations
during speech. We expect children with SLI to have a
positive correlation value on this biomarker.

1

0 otherwise

if P is true

1P| = @)

1 n
MPD = n;[SZ_E}
Normalized Transition Count (NTC): NTC describes
how frequently the speaker transitions between mispro-
nounced and correctly pronounced phones. NTC is de-
signed from the sequence complexity perspective, where
this biomarker indicates the information flow or sequence

(&)
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dynamics. A high NTC value means more frequent
changes or shifts, and we expect children with SLI to
have a positive correlation value on this biomarker.

D [Si#8i]

=2

1
NTC = —
n

(6)

o Average Common Correct (ACC): ACC describes the
average number of successive phones the speaker pro-
nounces correctly. It’s designed from the sequence com-
plexity perspective. We expect to see a negative cor-
relation between this biomarker and children with SLI
because we believe children with SLI will have less
correctly pronounced phones (greater MPD) and more
transitions (greater NTC) in a section of the speech.

1 n

Acc G ; S, = C] @)

o Average Common Error (ACE): ACE describes the aver-
age number of successive phones the speaker pronounces
incorrectly. Similar to ACC, ACE is also designed from
a sequence complexity perspective. It’s challenging to
hypothesize about the correlation between ACE and chil-
dren with SLI because they are expected to have more
incorrectly pronounced phones and transitions in a section
of speech.

1 n

ACE o) ; [S; = E] ®)

o Longest Common Correct (LCC): LCC describes the
maximum number of successive phones the speaker
pronounces correctly. LCC is designed from the run
length encoding perspective, where a higher LCC value
potentially indicates fewer errors in a section of speech.
We expect to see a negative correlation between LCC and
SLI.

LCC = max |5
S*ec(S)

(€))

o Longest Common Error (LCE): LCE describes the max-
imum number of successive phones the speaker pro-
nounces incorrectly. Similar to LCC, LCE may indicate
continuous error presence and a high LCE can reveal
strong connections or associations of the errors. We
expect to see a positive correlation between LCE and
SLI

LCE = max |S7|

10
S*ece(S) (10

3) Model Configurations for SLI Screener: When selecting
model configurations for the SLI screener, we applied five-
fold cross-validation and selected the hyperparameters that
maximized AUC. This helps us ensure the accuracy and
generalizability of the models across different subsets of data.
For the ABD SBS SVM, the best configuration was a linear
kernel with a C of 0.01. For the TBD SBS SVM, the best
configuration was a linear kernel with a C of 100. For the
ABD SBS RF, we used 40 estimators with a maximum depth
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of 5. Finally, for the TBD SBS RF, we used 5 estimators with
a maximum depth of 5.

4) Evaluation Metrics for SLI Screener: SLI screeners were
evaluated using AUC, accuracy, precision, recall, and F1. A
sample with SLI was considered positive, and a sample with
TD was considered negative. For this task, we considered the
most important metrics to be AUC and recall because AUC
provides a global view of the model’s performance across all
thresholds, and recall gives insight into how effectively the
model avoids false negatives. High values for these metrics
reduce the probability of missing SLI-positive children with
the screener, which is one of our main aims.

B. PLM Detection

1) Datasets: The L2-ARCTIC speech corpus, designed for
voice and accent conversion research as well as mispronun-
ciation detection, is instrumental in our PLM detection stage
[40]. Comprising high-quality audio from 24 non-native En-
glish speakers across six languages (Hindi, Korean, Mandarin,
Spanish, Arabic, and Vietnamese) and providing orthographic
and forced-aligned phonetic transcriptions, the corpus also
includes 150 manually annotated utterances per speaker. These
annotations, identifying common mispronunciation errors like
substitutions, deletions, and insertions, enhance the dataset’s
utility for pronunciation training and speech recognition accu-
racy. We leverage this detailed subset for fine-tuning, training,
and testing in PLM detection, treating phonemes marked as
errors as mispronunciations.

It is important to mention that the dataset presented an
imbalance with a majority of phonemes labeled as correctly
pronounced. To counteract this and ensure effective model
training and evaluation, we employed random downsampling
to attain a balanced dataset, with an equal count of 8017 cor-
rectly and mispronounced phonemes. For the training phase,
we allocated 6413 correctly pronounced and 6414 mispro-
nounced phonemes, reserving the rest for testing. Furthermore,
the extensive quantity of phonemes presented a computational
challenge for conventional classifiers like SVM, potentially
impeding their ability to converge swiftly. Through selection
and equalization of phoneme quantities, we optimized the
classifiers’ performance, thereby enhancing the precision and
dependability of our PLM detection results.

2) Feature Space - Acoustic Features: Several acoustic
features are extracted for each phoneme by acquiring the
phone-level timestamps (either from labels or MFA), slicing
the audio at each phoneme, and computing the corresponding
features on the audio signal. These acoustic features are used
for the ABD method in this PLM detection component. The
detailed information for each acoustic feature is shown below.

o First three formants (F1, F2, and F3): Formants are
resonant frequencies of the vocal tract, and they play a
significant role in characterizing how vowels sound.

o The first 13 Mel-Frequency Cepstral Coefficients
(MFCCs): MFCCs are the representations of the short-
term power spectrum of a sound, which are essential
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in speech recognition, speaker identification, and audio
classification.

Spectral contrast (7 bands): This feature analyzes the
amplitude differences between peaks and valleys in an
audio spectrum across seven distinct frequency bands.
Spectral bandwidth: It quantifies the range of frequencies
encompassing the majority of a sound signal’s energy,
highlighting the frequency spread within a sound.

GOP score: GOP score offers a numerical assessment of
pronunciation quality, comparing how closely a sound or
phoneme matches standard or native pronunciation. It’s
computed by taking the log of the posterior probability
of phone p given evidence O”) and then normalizing the
result.

GOP(p) = [log(P(p|0")| / NF (p)

P(OW®
%P%( ()

maxgeq P(OW]q)

3) Model Configurations for PLM Detection:

ASR Models: An XLSR-Wav2Vec2 model was used for
phonetic transcription in TBD. This CTC model was selected
for its effectiveness in phoneme-level mispronunciation de-
tection. It is preferred because it directly learns alignments
between speech and phonetic transcriptions, bypassing the
need for predefined alignments or complex linguistic models.
This improves detection accuracy and efficiency. Also, this
model was fine-tuned on the L2-ARCTIC dataset to improve
recognition accuracy for phoneme-level variations and mispro-
nunciations in children’s speech. The decision to fine-tune a
model on L2-ARCTIC was motivated by the fact that the TBD
pipeline requires transcriptions of exactly what a speaker said,
rather than their intent. Existing XLSR-Wav2Vec2 models are
trained on phonetic labels that do not include mispronunciation
information [41]. Because we needed to capture mispronunci-
ations in the transcription for TBD to work, a model tuned on
L2-ARCTIC was more theoretically sound. To fine-tune the
model, the manually annotated utterances from L2-ARCTIC
were divided into a 90/10 train/test split, with 3224 training
utterances and 359 testing utterances. The training utterances
were then used to fine-tune the base XLSR-Wav2Vec2 model,
and the testing utterances were used to evaluate the model.

Binary Classifier Models: Similar to the SLI screener clas-
sifiers, the SVM and RF model configurations for PLM detec-
tion were selected by applying a five-fold cross-validated grid
search across their common hyperparameters and choosing
the configuration that maximized AUC on their respective
datasets to ensure accuracy and generalizability. For the SVM,
this was the radial basis function kernel with C of 10 and
an automatically scaled gamma. For the RF, this was 200
estimators with an infinite depth. Finally, all features were
standardized to unit mean and variance before training and
evaluation.

4) Evaluation Metrics for PLM Detection: For PLM de-
tection, ABD and TBD were evaluated in a slightly different

an

)|/xv)
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manner, which was necessitated by differences in the ways
each approach generated predictions.

For ABD, the evaluation was straightforward, using the
same metrics as the SLI screeners. This included AUC, accu-
racy, precision, recall, and F1, defined in Section V-A4. The
positive class label indicated a correctly pronounced phone,
and the negative class label indicated a mispronounced phone.

For TBD, the evaluation was broken into two components.
The first component was the transcription performance of the
ASR models. This was measured in terms of the word error
rate (WER) and phone error rate (PER) between predicted
sequences and actual sequences.

The second component was the detection performance of
the comparison model. This was measured using the same
metrics as ABD with the exception of AUC, which could
not be obtained for TBD since it did not use a variable
decision boundary. Additionally, unlike ABD, the predicted
CE sequence for TBD p could have a different length than the
labeled CE sequence y. Thus, to evaluate TBD, we aligned
sequences p and y using the Needleman-Wunsch algorithm
to produce sequences p’ and y’ with equal length [. We then
used all 1786 pairs from the testing dataset where y, = E
and randomly sampled 1786 pairs where y, = C, applying
the following rule to each pair of p} and y, where 1 <i <:

TP y;=C=p;
TN y;=E=p]
FP y,=E+p, 2
FN y;=C#p;

As a final note, some papers break down true rejections (in
this case, TN) for PLM detection into subcategories ‘correct
diagnosis’ and ‘diagnosis error’ [16]. That is not done in this
paper because phones are only labeled ‘C’ or ‘E’, meaning
errors are not diagnosed in this work.

VI. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we present results for both the E2E SLI
screening framework and PLM detection. For the E2E frame-
work, we focus on highlighting its performance using phe-
notyping biomarkers compared with a baseline, followed by
a statistical analysis of these biomarkers. In PLM detection,
we evaluate the binary classification performance of ABD and
assess the transcription accuracy of the fine-tuned ASR model
and the performance of the comparison model in TBD.

A. E2E Framework

1) SLI Screener Performance: To establish a baseline for
SLI screening, we first implemented acoustic-based screening
(ABS). Differing from sequence-based screening (SBS), ABS
predicts for each pronounced phone whether or not it was
produced by a speaker with SLI and computes the final label
of a speaker based on a majority vote over a set of phones.
Afterwards, we developed E2E SLI screening models using
SVM and RF techniques, utilizing the phenotyping biomarkers
detailed in Section V-A2. These models were built on the
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symbolic sequences generated respectively by the RF classifier
of ABD and TBD. This choice was informed by our PLM
performance analysis, which will be elaborated in Section
VI-B. This structured approach ensures a comprehensive and
methodical evaluation of SLI screening methodologies.

The performance for all the screeners is shown in Table
I. Two baselines (ABS SVM and ABS RF) have distinctive
performances. Specifically, the ABS RF screener has better
AUC, accuracy, and precision, while the ABS SVM has
better recall and F1 score. For E2E SLI screeners, our model
demonstrates robust and consistent performance in terms of the
AUC, with the ABD SBS SVM model achieving the highest
AUC at 0.725. Furthermore, the SVM models applied to both
ABD SBS and TBD SBS have exhibited superior recall rates.
Notably, the TBD SBS SVM model has attained the highest
recall, reaching 0.715.

TABLE I
SLI SCREENER PERFORMANCE SUMMARY
AUC  Accuracy  Precision  Recall F1
ABS SVM 0.669 0.670 0.305 0.567  0.396
ABS RF 0.701 0.792 0.426 0.266  0.304
ABD SBS SVM | 0.725 0.662 0.319 0.674  0.430
ABD SBS RF 0.716 0.707 0.326 0.466  0.375
TBD SBS SVM | 0.710 0.608 0.286 0.715  0.408
TBD SBS RF 0.710 0.746 0.345 0.357  0.348

We also show the five-fold cross-validated ROC curves for
E2E ABD SBS and E2E TBD SBS in Figure 4 and Figure 5
respectively. The AUC values for the SVM models seem more
variable across the folds, which might indicate a sensitivity to
the data distribution in each fold. The RF models appear to
be more robust with less variation in AUC, especially in TBD
SBS settings. The variance in AUC scores across different
folds suggests that model performance may be influenced by
the particular characteristics of the data in each fold, which
could include the distribution of SLI and non-SLI cases or the
complexity of the speech samples.

One thing to note is that while the ABS RF model shows
better performance on some metrics, these metrics are less
important for the SLI screening task. For SLI screening, it is
most important to catch all SLI-positive children (i.e., avoid
false negatives). Since the ABS RF model has the worst
recall, it is clearly a poor choice for this task. In addition,
our proposed SBS method improves model interpretability
and explainability, since sequence features like LCE are more
understandable and quantifiable than acoustic features like 13
MFCCs. Therefore, our SBS method surpasses the baseline in
key metrics and enhances understandability, making it a highly
valuable approach.

Furthermore, for SBS models, the ABD SBS SVM stands
out with the highest AUC and F1 score, suggesting it’s the
most effective for SLI screening, balancing SLI detection
(recall), and minimizing false positives (precision). Despite
lower precision and accuracy, the TBD SBS SVM exhibits the
highest recall, making it superior in identifying positive cases
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Fig. 4. Five-fold cross-validated ROC curves in E2E ABD SBS setting
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of SLI, a critical factor in contexts where missing a diagnosis
is costly.

2) Phenotyping Biomarkers Analysis: Next, we performed
statistical analysis on the phenotyping biomarkers described
in Section V-A2, where sequences were generated using RF
ABD and TBD. We performed this analysis by calculating
the Point-Biserial Correlation Coefficient (» value) for each
biomarker with respect to SLI status and chose p = .050
as a cutoff for statistical significance. Point-Biserial Testing
is a special case of the Pearson correlation coefficient and
measures the strength and direction of the association between
a continuous variable and a binary categorical variable. The
correlation coefficient can range from -1 to 1, where values
close to -1 or 1 indicate a strong relationship, and values near
0 indicate a weak relationship. The r and p values for each
feature are shown in Table II and Table III.

TABLE 1T
ABD PHENOTYPING BIOMARKER CORRELATION

MPD NTC LCC ACC LCE ACE
rvalue | 0312  -0.085 -0.199 -0.297 0.149 0.300
p value | 1.87E-9  0.109 1.64E-4 1.10E-8 4.84E-3 1.90E-9
TABLE III
TBD PHENOTYPING BIOMARKER CORRELATION
MPD NTC LCC ACC LCE ACE
r value 0.298 0.306 -0.267 0.104 0.104  0.023
p value | 1.00E-8 3.81E-9 3.17E-7 991E-8 0.050 0.662

The results show that most phenotyping biomarkers (MPD,
LCC, ACC, LCE) are statistically significant for both ABD and
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TBD. In addition, our expectations for correlation direction
have been verified for MPD, ACC, and LCE, indicating that
the phenotyping biomarkers we constructed from sequence
density and run-length encoding are effective and reliable.
The three biomarkers built from the perspective of sequence
complexity show some fluctuations, such as high p value or
inconsistency in the direction of coefficients on ABD and
TBD, due to the complexity of the speech.

B. PLM Detection

We conducted independent evaluations of our ABD and
TBD methods, thereby gaining a thorough insight into the per-
formance of this pivotal component within the E2E framework.

1) ABD: The results for the ABD approach, which used the
features from Section V-B2, are shown in Table IV, where the
RF model outperformed the SVM model on all key metrics.

TABLE IV
ABD PERFORMANCE
AUC Accuracy Precision Recall F1
SVM 0.663 0.619 0.617 0.628 0.623
RF 0.697 0.644 0.632 0.689 0.659
2) TBD: For TBD, we first conducted error analysis where

we identified the rate of inaccuracies introduced by the ASR
system. It involved comparing ASR-generated transcriptions
with manually verified transcriptions to quantify the misin-
terpretation rate. We fine-tuned XLSR-Wav2Vec2 on the L2-
ARCTIC manually annotated subset to alleviate the possibility
of the ASR model misinterpreting incorrect pronunciations

302

as errors in transcription. The evaluation achieved a WER
of 42.5% and a PER of 12.8%, comparable to state-of-the-
art on the TIMIT dataset [36]. The WER suffered due to the
absence of a language model, which typically improves WER
through contextual prediction. We omitted this integration to
avoid masking mispronunciation data, prioritizing clarity in
phonetic analysis.

In TBD performance evaluation, the model achieved a
detection accuracy of 0.604 and precision of 0.846 but showed
lower recall and F1 scores of 0.255 and 0.392, respectively.
The suboptimal results may be linked to the large pronun-
ciation lexicon. The CMU Pronunciation lexicon, containing
many rarely used words, especially in children’s speech, can
cause mismatches with mispronounced words, leading to a
skewed ‘C’ label prediction and increased false positives. A
potential solution is to condense the lexicon to words more
frequently used by children.

To speed up TBD, we parallelized the lexicon search over
multiple CPU cores using OpenMP and benchmarked the
process on an Intel Core i5-12600K Processor. The mean
runtime for each lexicon search was calculated for child #413
(SLI) in the CHILDES dataset, as benchmarking the entire
dataset was time-intensive. Results are detailed in Table V.

TABLE V
LEXICON SEARCH PERFORMANCE

Mean Runtime (s) Mean Speedup
Python 1.215 1.0
C 0.051 22.1
C + OpenMP 0.035 34.7

VII. DISCUSSION AND FUTURE PLAN
A. Discussion and Insights

In this study, we developed an E2E screening system for SLI
in children, with a focus on PLM detection. This automated
tool excels in extracting objective, quantifiable phenotyping
biomarkers from children’s speech, particularly emphasizing
the analysis of detailed speech patterns in spontaneous speech.
This method provides a nuanced and comprehensive approach
to SLI screening in pediatric populations.

1) PLM-based Voice-Omic Representation Framework:

Innovative Phenotyping Biomarkers: Our study intro-
duces novel phenotyping biomarkers for children’s speech,
derived from the symbolic sequences in PLM detection. Most
of the biomarkers have shown statistical significance with p-
values below 0.05, affirming their reliability and validating
the effectiveness of our E2E framework in pinpointing SLI
characteristics.

Core PLM Detection Component: The core of our sys-
tem, PLM detection, was built from distinct ABD and TBD
methodologies. This dual approach, incorporating both acous-
tic feature analysis and transcription, enables thorough speech
pattern assessment. Utilizing a cutting-edge CTC-based model,
our framework proficiently processes and analyzes speech at
a phoneme-specific level, facilitating precise SLI screening in
children.
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2) Accurate, Reliable and Generalized E2E SLI Screening
Pipeline:

Performance of E2E Models: Our four E2E models for
SLI screening demonstrated robust performance, with each
achieving an AUC value over 0.71, indicating strong accuracy
and predictive power. Notably, the TBD SBS SVM model
exhibited a high recall rate of 71.5%, crucial for effectively
identifying SLI cases.

Fine-Tuning of the CTC Model: Fine-tuning the CTC
model on the L2-ARCTIC dataset was vital to meet the E2E
pipeline’s needs, which necessitates accurate transcriptions of
what was spoken, as opposed to speaker intent. This step
inherently introduces a level of linguistic diversity into the
model as the L2-ARCTIC dataset comprises speakers across
six different native languages, making it more robust against
variations in pronunciation that could be attributed to cultural
or linguistic backgrounds. It also significantly enhanced the
model’s capability to accurately reflect the speech of children
with SLI, especially in spontaneous speech.

Reliability through Cross-Validation: We employed five-
fold cross-validation across all experiments to guarantee the
robustness and wider applicability of our findings, which can
be seen as a step toward generalization. Each fold likely
contains a variety of speech patterns, which helps ensure
reliable performance metrics and that the model does not
overfit to a particular subset of data and can generalize across
different speech types or to diverse populations.

Evaluated in Spontaneous Speech: The CHILDES dataset,
which was used for benchmarking, includes narrative samples
elicited from children through picture stimuli, encouraging
natural speech. This real-world application of the model to
spontaneous narrative speech can enhance its ability to gen-
eralize across different cultural and linguistic backgrounds, as
storytelling often reveals deep-seated linguistic structures.

B. Future Plan

In our future work on E2E SLI screening for children, we
plan to implement two key strategies:

Enhanced Phenotyping Biomarkers Based on Sequence
Analysis: Our current work has laid a foundation by extracting
phenotyping biomarkers from the overall view of the symbolic
sequence. Moving forward, we aim to delve deeper and
explore these biomarkers from the segmented perspective of
correct and error phonemes, which may uncover nuanced and
neglected speech patterns indicative of SLI in children. We will
also investigate the distribution of correct and error phonemes,
their trends, and cyclical patterns within speech data. This
approach is anticipated to reveal intricate speech patterns that
are characteristic of SLI, thereby enriching our phenotyping
palette and potentially enhancing the diagnostic precision of
our framework.

Innovative Sequence Generation Strategies: In our exist-
ing framework, the sequences are generated based on the CE
symbolic sequence without accounting for temporal dynamics.
We intend to evolve our sequence generation strategy by in-
corporating a time-series dimension. This forthcoming models
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will incorporate actual time information, thereby transitioning
from a solely symbolic to a time-sequenced analysis of speech.
By embedding time-series data, we anticipate capturing the
temporal dynamics of speech or language formation and usage
in SLI children.

Reliability Assessments and Enhancements of ASR: The
inherent challenge arises when the ASR model potentially
misinterprets incorrect pronunciations as errors in transcrip-
tion, leading to inaccurately labeled data. We intend to assess
how these transcription inaccuracies affect our framework’s
ability to accurately identify SLI firstly. This may involve re-
evaluating our dataset with manually verified labels to mea-
sure any significant changes in the framework’s performance
metrics. Also, to mitigate the impact of ASR inaccuracies,
we would like to explore the feasibility of customizing and
retraining the ASR model on a dataset more representative of
our target demographic (children’s speech, including common
mispronunciations and speech impairments), to reduce the
model’s misinterpretation of incorrect pronunciations.

Generalization Enhancement to Cultural and Linguistic
Diversity: We plan to include more varied datasets that capture
a broader spectrum of cultural and linguistic backgrounds.
This expansion aims to enhance the model’s ability to learn
and generalize speech patterns across diverse populations. And
future iterations of the model could focus on incorporating
culturally sensitive approaches (like adaptive layers) that ac-
count for variations in language use and expressions. The
phenotyping biomarkers that were derived from the symbolic
sequences in PLM detection could be further analyzed to
determine if certain patterns are universally indicative of SLI
across cultures and languages, or if new biomarkers need to
be developed to account for cultural and linguistic diversity.

VIII. CONCLUSION

In conclusion, our E2E mispronunciation-based voice-omics
representation framework represents a significant leap forward
in the early screening of SLI in children. By harnessing the
power of PLM detection and innovative symbolic represen-
tation and phenotyping biomarkers, we have unveiled new
dimensions in the objective and quantifiable assessment of
children’s speech and achieved the AUC of 0.71 and recall
of 71.5% in the E2E TBD SBS SVM model. Our dual-
method approach for core PLM detection, encompassing both
acoustic and transcriptional analyses, has enabled a fine-
grained, phoneme-specific evaluation that aligns with natural-
istic speech patterns, especially in the spontaneous speech sce-
nario. The statistical significance of our phenotyping features
(such as MPD, LCC, ACC, and LCE) demonstrated through
extensive analysis confirms the robustness and reliability of
our E2E framework. Furthermore, the fine-tuning of our CTC
model on the L2-ARCTIC dataset and the validation through
five-fold cross-validation on both PLM detection and E2E SLI
screening underscore the accuracy and generalizability of our
screening pipeline. As we reflect on our contributions, we
stand on the cusp of a new era in pediatric speech therapy,
one that is informed by precise, reliable, and technologically
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enriched tools designed to better the lives of children with
SLI. Our work not only offers a forward-thinking solution for
SLI screening but also sets the stage for future innovations
that can build upon our foundational research.
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