
This paper is included in the Proceedings of the
33rd USENIX Security Symposium.

August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Proceedings of the

33rd USENIX Security Symposium

is sponsored by USENIX.

Unveiling IoT Security in Reality:
A Firmware-Centric Journey

Nicolas Nino, School of Computing, University of Georgia; Ruibo Lu and

Wei Zhou, School of Cyber Science and Engineering, Huazhong University of Science

and Technology; Kyu Hyung Lee, School of Computing, University of Georgia;

Ziming Zhao, Khoury College of Computer Sciences, Northeastern University;

Le Guan, School of Computing, University of Georgia

https://www.usenix.org/conference/usenixsecurity24/presentation/nino

Unveiling IoT Security in Reality: A Firmware-Centric Journey

Nicolas Nino∗

School of Computing

University of Georgia

Ruibo Lu∗, Wei Zhou

School of Cyber Science and Engineering

Huazhong University of Science and Technology

Kyu Hyung Lee

School of Computing

University of Georgia

Ziming Zhao

Khoury College of Computer Sciences

Northeastern University

Le Guan

School of Computing

University of Georgia

Abstract

To study the security properties of the Internet of Things

(IoT), firmware analysis is crucial. In the past, many works

have been focused on analyzing Linux-based firmware. Less

known is the security landscape of MCU-based IoT devices,

an essential portion of the IoT ecosystem. Existing works

on MCU firmware analysis either leverage the companion

mobile apps to infer the security properties of the firmware

(thus unable to collect low-level properties) or rely on small-

scale firmware datasets collected in ad-hoc ways (thus cannot

be generalized). To fill this gap, we create a large dataset of

MCU firmware for real IoT devices. Our approach statically

analyzes how MCU firmware is distributed and then captures

the firmware. To reliably recognize the firmware, we develop

a firmware signature database, which can match the footprints

left in the firmware compilation and packing process. In total,

we obtained 8,432 confirmed firmware images (3,692 unique)

covering at least 11 chip vendors across 7 known architectures

and 2 proprietary architectures. We also conducted a series of

static analyses to assess the security properties of this dataset.

The result reveals three disconcerting facts: 1) the lack of

firmware protection, 2) the existence of N-day vulnerabilities,

and 3) the rare adoption of security mitigation.

1 Introduction

The Internet of Things (IoT) is an ecosystem of intercon-

nected devices. We are witnessing an increasing number of

IoT devices being deployed in various domains, such as smart

homes, smart cities, and industrial automation. While IoT

makes our lives more convenient, it has also introduced new

security vulnerabilities. Exploiting these vulnerabilities al-

lows adversaries to launch large-scale attacks, including data

exfiltration [21, 28], remote vehicle hijacking [41], illegal

break-in [82], and even disabling medial treatment [58].

Firmware analysis can play a crucial step in understand-

ing the security properties of IoT devices. Previous work has

∗Both authors contributed equally to this work.

shown promising results in large-scale analysis of firmware,

both statically [18, 81] and dynamically [13]. Analysis per-

formed at that scale (e.g., thousands of firmware images) helps

us understand the commonalities of security vulnerabilities

across different devices and thus suggest effective mitigations.

A prerequisite for conducting such research, however, is a

huge collection of firmware images. Prior work addresses this

challenge by developing vendor-specific crawlers to dump

firmware images from top vendors’ websites. The resulting

datasets mainly comprise firmware for home routers, IP cam-

eras, etc., which are all Linux-based.

Besides Linux-based embedded devices, our IoT space also

encompasses a wide range of even smaller gadgets that are

based on microcontrollers (MCUs). Due to hardware limi-

tations, these devices do not run a full-fledged OS, but they

easily outnumber their Linux-based counterparts. With the

small form factor and built-in low-energy wireless commu-

nication capability, MCU-based devices have been widely

adopted in IoT, such as smart homes, smart cities, and indus-

trial automation. Since these devices do not have direct access

to the Internet, they commonly rely on mobile companion

apps to communicate with the user and the cloud.

Compared with research on Linux-based firmware analysis,

less has been done to MCU-based devices, mainly due to

the lack of a large dataset of real-world firmware images. In-

deed, we rarely find the public release of firmware images for

these devices [14]. To overcome this challenge, most existing

works utilize the mobile companion apps to infer the security

properties of the our IoT ecosystem, including the device, the

remote cloud, and the mobile app itself [31, 32, 63, 78, 86].

For example, by analyzing the library artifacts in mobile com-

panion apps, vulnerabilities in the device firmware can be in-

ferred [78]. By reusing the logic of the mobile app, IoTFuzzer

can fuzz the device more effectively [14]. Unfortunately, with-

out access to the firmware, it is difficult, if not impossible, to

reveal the low-level security features, such as the adoption of

attack mitigations. If a bug is found, it is also hard to tell the

root cause.

In this paper, we create a large dataset of firmware for

USENIX Association 33rd USENIX Security Symposium 5609

MCU-based IoT products. This will benefit the IoT commu-

nity in three aspects. First, this dataset will enrich existing

firmware corpus [75], which mainly consists of homemade

samples compiled from chip SDKs or only represents IoT de-

vices with the BLE feature [79]. The proposed dataset broadly

covers firmware of diverse formats, architectures, chips and

application fields, enabling us to uncover common security

vulnerabilities of real-world IoT devices and enhance manu-

facturers’ awareness. Second, the dataset can unleash the full

power of existing firmware analysis tools. For example, when

IoTFuzzer finds a bug, if the firmware is available, we can pos-

sibly explain the root cause via binary analysis. Third, it will

facilitate future research. For example, it can be used to eval-

uate the effectiveness of existing firmware testing techniques

such as rehosting [62]. When these tools fail, investigation

can be done to improve the state of the art. As another exam-

ple, when common vulnerabilities are found in the dataset, it

will push research on defense techniques.

To collect real-world firmware, we leverage the fact that

IoT devices commonly rely on a companion mobile app to

retrieve the latest firmware. Depending on whether the latest

firmware is bundled with the APK release or downloaded

from the cloud via over-the-air (OTA) update, we develop

two tools to capture firmware. First, we retrofit FirmXray

which extracts bundled firmware from APKs. Our tool ad-

ditionally utilizes a list of firmware-related keywords and

extensions, compiled based on our empirical study, to screen

a more diverse set of candidate firmware. Second, we develop

a static analysis tool called OTACap to automatically recover

the URLs that point to the firmware update server and use

them to crawl potential firmware. OTACap relies on Value Set

Analysis (VSA) [11] to track down the source values used

to construct URLs. However, traditional designs may miss

many data flows due to the lack of run-time information and

implicit data flow in Android apps. In particular, the URL may

contain a substring that is dynamically requested from the

device. Observing that although the needed information may

not be directly on the data flow of the URL, it is sometimes

referred to at other places, e.g., for version comparison. By

collecting and solving the constraints of these references, we

can infer the possible value range of the missing information.

The reconstructed URLs do not always directly point to the

firmware. Sometime, they can return an intermediate text file

that contains the actual firmware distribution point. Since the

text format is unpredictable and sometimes contains creden-

tials associated with the links, we empower our crawler with

large language models (LLM) to automatically reason about

the text structure and extract firmware links (and associated

credentials if any).

The candidate firmware images have a high false positive

rate, making them unsuitable for reliable analysis. To confirm

a firmware image, we look for the footprints left in the image

during firmware compilation and packing. Particularly, we

find that the chip architecture, vendor toolchain, and firmware

bootloader/packer offer distinctive artifacts, making them ex-

cellent choices for firmware signatures. Thus, we manually

identify 39 signatures to match 4 categories of firmware ar-

tifacts. Applying them to the candidate images, we obtained

8,432 confirmed firmware images, out of which 3,692 are

unique. Our dataset contains firmware from at least 11 chip

vendors across 7 known architectures and 2 proprietary archi-

tectures, offering a diverse firmware dataset.

Our analysis of this dataset reveals several disconcerting

findings. First, 99.43% of these images are in plaintext, allow-

ing for reverse engineering. Second, by library matching, we

found 14 N-day vulnerabilities that affect 191 firmware im-

ages. Lastly, the adoption of security mitigations is rare. For

example, the adoption rates of memory protection unit (MPU)

and stack canary are only 1.56% and 0.11%, respectively.

In summary, our contributions are as follows:

• We developed OTACap, the first static analysis tool to re-

cover URLs used in firmware update from Android apps.

• To fully exploit the recovered URLs, we developed an in-

telligent crawler to download potential MCU firmware.

• Leveraging the footprints left in the firmware compilation

and packing process, we identified 39 signatures to reliably

recognize real MCU firmware.

• With the developed tools, we collected 3,692 unique MCU

firmware images, representing a diverse dataset of real-

world firmware, facilitating future research.

• Our analysis of the dataset reveals several disconcerting

findings, suggesting future remediation efforts.

2 Background

MCU-based IoT Device. A vital component of IoT is billions

of small interconnected embedded devices that are powered

by MCU chips. An MCU integrates a processor, RAM, and

other peripheral functions into a single chip, aiming to reduce

cost, form factor, and power consumption. The peripherals

are memory-mapped into the system address space, and their

registers are accessed via normal memory access instructions

(i.e., memory-mapped I/O or MMIO). The software that runs

on MCUs, named firmware, either runs on the bare-metal or

with a real-time operating system (RTOS). To better utilize

the limited resources (100+ MHz CPU, ~256 KB SRAM, ~1

MB flash), MCU firmware is typically programmed using

the unsafe C/C++ programming languages. Over the past

years, we have witnessed numerous vulnerabilities targeting

the firmware of IoT devices [30, 33, 34, 44, 65].

An MCU chip typically implements a RISC instruction set

architecture (ISA), with Arm being the dominating ISA. The

device manufacturers (e.g., Amazon), after finding a suitable

MCU chip to implement the designed functionality, assemble

parts together, including the PCB, sensors, actuators, and most

importantly, the MCU chip. In this process, the ISA vendor

is at the top of the supply chain, followed by the chip vendor

5610 33rd USENIX Security Symposium USENIX Association

URL Reconstruction

Firmware Extraction from APK

• Arm Vector Table

• UF2

• MCUBoot

• ESP32

• TI SimpleLink

• Microchip PIC32 header

• etc.

{“Arch”:

“Arm”

“Vendor”:

“ST”}

JSON

{“Arch”:

“Arm”

“Vendor”:

“ST”}

JSON

{“Arch”:

“Arm”

“Vendor”:

“ST”}

JSON

FWFW
FW

Arch Decomposition

Vendor Decomposition

Complexity Analysis

Library Matching

N-day Vulnerability

Mitigation Detection

Mobile-IoT
APKs Candidate Firmware

Signature Database

Firmware Metadata

Disassemblable Binaries

Firmware Crawler

§4: Firmware Collection

§5: Firmware Unpacking§7: Firmware Analysis

Figure 1: System Overview.

(e.g., Nordic), who fabricates chips that implement an ISA,

and then the device manufacturer. While some chip vendors

develop their own ISAs (e.g., PIC32 by Microchip), most

others, such as NXP and Nordic obtain a license to use a

certain ISA. It is worth noting that a chip vendor may offer

chips across various series, each employing a different ISA.

Many MCU-based devices run low-energy wireless pro-

tocols such as Bluetooth. As such, they rely on companion

mobile apps to interact with the user and the cloud.

Over-the-Air Update. To fix software bugs or add new fea-

tures, many IoT devices support firmware updates. The new

firmware can be distributed to the device via two methods.

First, the companion app periodically checks for updates from

the remote server. If an update is available, the companion app

fetches the latest firmware and then pushes it to the device via

the low-energy protocol. This process is commonly referred to

as OTA update. Second, the firmware can be bundled with the

companion app. When the app is updated, the device can also

be updated. Different from traditional Linux-based embedded

devices such as home routers, the firmware of MCU-based

IoT devices is rarely released via vendor websites.

3 Overview

An overview of our system is illustrated in Figure 1. We first

design and develop tools to automatically collect firmware

images from mobile companion apps (§4). Besides extracting

firmware images from APKs, following the method originally

proposed in FirmXray [79] (§4.1), we develop an Android

static analysis tool (named OTACap) to reconstruct URLs that

are used to download the firmware via OTA update (§4.2).

OTACap enhances state-of-the-art string value analysis tech-

niques [63, 86] by incorporating more accurate and effective

data flow tracking, such as support for inferring hardware-

related fields. Utilizing the reconstructed URLs, our intelli-

gent crawler simulates the OTA update process of real-world

mobile-IoT applications to gather firmware images. Through-

out this process, we successfully extracted 43,231 candidate

firmware images from 40,675 Mobile-IoT APKs.

For the next step, we analyze the collected image files to

identify and verify MCU firmware. To facilitate this, we de-

veloped a signature-based firmware unpacker. It processes

images to detect firmware artifacts present within firmware

images (e.g., magic numbers in firmware headers or the ar-

chitectural metadata essential for firmware execution). This

approach not only assists in confirming real MCU firmware

but also retrieves metadata for further analysis (§5). In par-

ticular, we leverage the collected metadata to decompose the

IoT market by major architecture vendors and chip vendors

(§7.1). The firmware metadata, which includes information

about the instruction set architecture (ISA), load address and

entry point, is also crucial in disassembling the firmware and

performing binary analysis. This analysis reveals low-level se-

curity properties. Specifically, we locate all the recognizable

functions, match them with existing IoT libraries, and report

whether they contain any known vulnerabilities. Besides, we

examine the adoption of security mechanisms such as stack

canary in the wild (§7.2).

4 Firmware Collection

Considering the common practice of distributing firmware

through mobile apps by device manufacturers, we develop

two methods for collecting firmware images: 1) extracting

firmware images directly from APKs and 2) reconstructing

URLs through APK analysis to collect firmware images dur-

ing the OTA update process. This step is designed to maxi-

mize the collection of firmware images while simultaneously

filtering out non-firmware images. We conduct additional ver-

ification of the firmware images using various artifacts, as

detailed in §5.

4.1 Extracting Firmware from APKs

It has been observed that some IoT device manufacturers bun-

dle firmware images in their companion apps [2, 52]. When

the app is updated, the device firmware can also be updated

with the latest version that comes with the app. For exam-

ple, MiBand firmware is typically stored in the assets di-

rectory of unzipped APKs [52]. This way of firmware dis-

tribution has been leveraged by FirmXray [79] to collect

firmware of BLE-related devices using Nordic or TI chips.

Since our goal is to measure the general IoT security land-

scape with no bias towards any specific wireless protocol

(e.g., BLE) or application field (e.g., home security), we de-

velop general rules to recognize firmware beyond Nordic

and TI based on our empirical study of how firmware is

stored and named. Concretely, our tool examines the file

name, including its path, name, and extension. We use both

firmware-related keywords (e.g., ªfirmwareº and ªotaº)

and self-developed heuristics as filters. For example, we found

that many firmware images are named after the hash val-

ues of the file content. Therefore, we also include files with

USENIX Association 33rd USENIX Security Symposium 5611

names that are comprised of consecutive hexadecimal dig-

its (e.g., 3f4c38fc366c44d3b399d3951ab719b4.zip). The

list of keywords we use to match file names is provided in Ta-

ble 11. For the file extension, we follow the common conven-

tions of manufacturers (e.g., .bin and .fw). The complete list

of firmware extensions and their explanations are provided

in Table 12. If a file matches any of the rules, it is considered

a candidate firmware image.

4.2 Firmware Capture via OTA Update Simu-

lation

Another popular method for distributing firmware images is

using OTA updates, where the firmware is downloaded from

the server on demand. To tackle this, we develop OTACap

to reconstruct the URLs for downloading firmware images

by statically analyzing Android APKs. In essence, OTACap

employs Value Set Analysis (VSA) [11] on the string parame-

ters of Android network functions to obtain URLs, and then

it applies keyword-based filters to exclude irrelevant links.

In this section, we first introduce the basic string recon-

struction solution (§4.2.1). Then we discuss the challenges

encountered in applying it to the URL reconstruction prob-

lem and propose solutions for a comprehensive and precise

analysis of URL-related strings (§4.2.2). Finally, we present

an AI-powered crawler that uses the reconstructed URLs to

simulate OTA update for firmware downloading (§4.2.3).

4.2.1 String Analysis for Android

VSA is a powerful binary analysis technique to over-

approximate the set of values that each data object can hold at

each program point [11]. It has been used to analyze strings

in Android apps for different purposes [20, 63, 86, 87]. For

example, LeakScope [86] recovers URLs from the apps to

uncover data leakage in the cloud. IoTFlow [63] analyzes the

data flow among the app, the device, and the cloud via internet

addresses reconstruction. Many of these works perform static

analysis on top of the Jimple Intermediate Representation (IR)

of the target APK, which simplifies the analysis by exposing

to the analysis tools a non-stack-based and non-nested pro-

gram representation [1]. These tools construct a call graph of

the target APK in Jimple IR. Then, they perform a backward

data flow analysis to trace how a string is constructed. Finally,

based on the recorded backward execution trace, a forward

simulation is conducted to recover the string. We describe fur-

ther details on the backward analysis and forward simulation

steps of the techniques mentioned above as follows.

Backward Analysis. Starting from the target string param-

eter, the tool locates the calling method (called a sink) and

taints the string parameter, which is termed a ValuePoint.

Each ValuePoint contains information such as the method

it is located in, the beginning statement (e.g., the call to the

sink method), and the target parameter(s). From this point,

the tool moves backward, storing each statement (with its

context) that uses or modifies the values of tainted parameters

and propagates the taint to relevant variables in the new state-

ments. When the first instruction of a method is reached, the

tool finds all its call sites, branches the analysis to each of the

callers, and continues backward analysis through each branch

sequentially. When the definition of the tainted data (called

a source) is reached, the analysis stops. Here, the definition

could be an assignment from immediate values, a global vari-

able with default values, or values from Android resource

files. If the tool does not find the source and cannot move

backward further, it fails to reconstruct the target string.

Forward Simulation. At the end of backward analysis, if the

tool finds the sources of the target string, it also maintains

a list of execution traces from the source to the sink. The

tool then starts from the source, simulates the execution of

statements, and updates the register values until the sink is

reached. At this point, the tool has reconstructed the target

string. Note that since one sink-source pair can have multiple

execution traces, the tool may generate multiple values for

the target string.

4.2.2 Enhancing Data Flow Tracking

We create a list of Android native or third-party network func-

tions as sinks, focusing on the HTTP GET, FTP and MQTT

protocols since they are the most common in OTA update.

Important parameters such as URLs, credentials and MQTT

topics are tainted, which are to be recovered via the afore-

mentioned string analysis. We initially used the existing im-

plementations of LeakScope [86] and IoTFlow [63]. How-

ever, while effective in their respective tasks, we found that

they commonly fall short in recovering information needed

in OTA update. A significant reason is that they may lose

track of essential data flow information due to IoT specificity

or incomplete implementation. Below, we present why exist-

ing tools fail to capture the intended data flow and how we

address them with OTACap.

Missing Definition of Hardware-Related Variables. As

mentioned before, the backward analysis succeeds when

the definition of a tainted value (i.e., the source) is found.

However, we found many failed cases where the tainted

value cannot be further traced back statically because it

is defined by information that is only known at run-time,

potentially from the IoT device. We demonstrate such

an example in Listing 1, which contains the decompiled

Java Code of the app vstc.vscam.client. As shown

in lines 14-18, part of the URL is a concatenation of

three strings in strArr. Except for ªfirmwareº, both

sFUA.this.language and sFUA.this.LocalSysver are

values obtained from the IoT device at run-time. Specifically,

the function ªCallBack_CameraStatusParamsº queries

the device about its current firmware version and stores

it in sFUA.this.LocalSysver (line 22). Using the con-

5612 33rd USENIX Security Symposium USENIX Association

structed URL, VscamApi.runGet is called to send the current

firmware version to the cloud endpoint and obtain a JSON file

containing real links to the updated firmware images. Since

ªsFUA.this.LocalSysverº is only available with a real de-

vice, it is impossible to recover it statically.

1 boolean checkSpecialFirmware(String str){

2 if (str.length() < 11)

3 return false;

4 String[] split = str.split("\\.");

5 if (split.length >= 3 && split[0].equals("48") &&

split[1].equals("50") && split[2].equals("64") &&

Integer.parseInt(split[3]) < 49)

6 return true;

7 return false;

8 }

9 void handleMessage(Message message){

10 if (!sFUA.checkSpecialFirmware(sFUA.LocalSysver))

11 return;

12 }

13 void run(){

14 String[] strArr = {"firmware", sFUA.this.

LocalSysver , sFUA.this.language};

15 StringBuffer buffer = new StringBuffer();

16 for (int i = 0; i < 3; i++)

17 buffer.append(strArr[i]);

18 VscamApi.runGet(connectionURLNew + buffer.toString

());

19 }

20 void CallBack_CameraStatusParams(String str, String

str2 , String str3 , String str4){

21 ...

22 this.LocalSysver = str2;

23 }

Listing 1: URL construction using hardware-related

information.

Fortunately, we observe that sometimes these valuesÐ

while cannot be directly recoveredÐcan be inferred to

some extent at other places. For example, the function

checkSpecialFirmware takes in LocalSysver as input and

splits it with the delimiter ª\\.º (line 4). Then, it compares

each part with a constant value (line 5). Although this func-

tion does not directly influence the value of LocalSysver,

nor does it determine the execution of VscamApi.runGet,

we can infer some constraints about it, with which we can

guess its possible values. For example, the version number

48.50.64.48 would return true while 48.50.64.49 would

return false.

Solution: For a tainted value whose source is determined at

run-time, OTACap searches for its references beyond the re-

covered data flow. From there, OTACap performs a symbolic

execution to build the constraints along the execution path.

Each constraint will be solved to a concrete value, which is

used as the source value of the tainted variable. In this exam-

ple, we would have six constraints and correspondingly six

value candidates for LocalSysver.

Implicit Data Flow in AsyncTask. Firmware downloading

usually takes time. Therefore, app developers commonly use a

background task to complete it without blocking the UI. In An-

droid, the most popular library to achieve this is AsyncTask,

which simplifies background task execution and allows up-

dating the UI thread with the task results. AsyncTask must

be subclassed, and the type information for the parameter of

the background task is passed as the first parameter to the

constructor of an AsyncTask. Then, the doInBackground

method, which must be overridden, takes an array of parame-

ters of the same type from the execute method and performs

the background task.

In Listing 2, we show how AsyncTask is used in

com.rhodonite.hms_ione_6630 to download firmware.

The class HttpDownload is a subclass of AsyncTask, and the

doInBackground method takes a string array as download

URLs. The type information (i.e., String) is specified

by the parameter for the HttpDownload constructor (line

5). In line 3, the background task is started by calling the

execute method using MainActivity.this.file_url

+ ªdir.txtº as argument, which is passed to the

doInBackground method (line 6). Unfortunately, the

backward analysis does not recognize such implicit data flow

since there is no edge in the call graph.

1 class BluetoothProcess extends Handler {

2 public void handleMessage(Message msg)

3 new HttpDownload().execute(MainActivity.this.

file_url + "dir.txt");

4 }

5 class HttpDownload extends AsyncTask <String , ...> {

6 public String doInBackground(String... f_url){

7 URL url = new URL(f_url[0]);

8 }

9 }

Listing 2: Firmware Download in Background with

AsyncTask.

Solution: After the initial call graph is built, we analyze all the

doInBackground method definitions and look for any sink

methods. If so, we ensure the tainted value can be traced back

to its parameter. Then, all the invocations to the constructor

of this class are located to find the matching execute invoca-

tions. Finally, an implicit edge is created in the call graph for

each pair of execute and doInBackground.

It is worth mentioning that the AsyncTask class

has been deprecated since Android API level 30 [29].

Google recommends using the low-level thread control

API java.util.concurrent to handle asynchronous tasks.

Based on our research, using the recommended Executor in-

terface, the parameter of the worker thread is explicitly passed

from the createWorker method. In other words, the recom-

mended API does not need special treatment. Interestingly,

our evaluation never encountered the use of recommended

API in firmware downloading. We expect more uses of the

Executor API as AsyncTask becomes abandoned entirely.

Additional Challenges. In addition to the aforemen-

tioned challenges and our solutions, we also identify fur-

ther obstacles and describe our strategies to address them.

1) Implicit Call of toString: Many primitive types such as

Integer, Long, Boolean, Byte and Array have a toString

method that is implicitly called when they are concate-

nated to another string. Existing tools [63, 86] simply ig-

nore these cases, causing incompletely constructed URLs or

the premature termination of analysis. Our forward execu-

USENIX Association 33rd USENIX Security Symposium 5613

tion simulates such implicit conversions for common prim-

itive types. 2) String Processing Methods: Neither IoTFlow

nor LeakScope provides comprehensive support for string

processing methods, leading to incorrect string value recov-

ery. These missing methods such as relpace and split

were frequently encountered during our experiments and are

addressed in OTACap. 3) Loops: Existing solutions do not

support loops. We partially address this by simply unrolling

the loop when the number of iterations is statically known.

4) Intent: Intent is a heavily used Inter-Component

Communication (ICC) mechanism in Android. Similar to

AsyncTask, it involves implicit data flow. While IoTFlow [63]

handles them, we found some implementation bugs which

prevent it from capturing the correct data flow when the

ªkeyº and ªvalueº parameters of Intent.putExtra are

global variables. 5) URLs in Resource Files: Android apps

commonly use resource files to store static content such as

bitmaps, layout definitions, user interface strings, etc. Some-

times, resource strings are used as URLs. Although our string

analysis supports recovering URLs from resource strings, it

may miss some. Therefore, we explicitly include URL-format

resource strings in the list of candidate URLs.

4.2.3 Simulating OTA Firmware Downloads

With a list of candidate URLs, we connect to the endpoints

via the corresponding protocols (HTTP, FTP or MQTT) to

download firmware. A connection may fail for three reasons.

First, OTACap suffers from accuracy issues as with other static

analysis methods. Second, sometimes the HTTP URL needs

credential query strings which can only be obtained from a

real registration (e.g., ?token= and ?deviceid=). Third, the

endpoint might be temporarily or permanently down.

For a successful connection, we observe that sometimes

it does not directly return a firmware image. Instead, a text-

format datastream (e.g., XML, JSON, or even unstructured

text) is obtained, pointing to the real OTA URL. The initial

URL can be viewed as a permanent distribution point for new

firmware, requiring the app to parse and process its dynamic

response in a multi-round fashion. For example, when ana-

lyzing the app com.linkiing.firesign, OTACap recovers

a URL pointing to a JSON file which in turn contains links to

the newest firmware URLs. Emulating the same app logic to

download firmware is challenging since it requires accurate

static analysis to decide the code slices to run. We therefore

approximate the problem to a crawling problem. Specifically,

we treat the initial set of URLs as the seeds and recursively

crawl the server with the returned new links. To avoid connect-

ing to irrelevant endpoints, in each round, we use the keyword

lists in Table 11 and Table 12 to filter the new links.

As aforementioned, the returned text might be unstructured

and sometimes contains credentials to make a successful con-

nection. Missing the original app logic to parse the text, we

leverage the powerful reasoning capability of LLM to auto-

SDK Artifacts

Nordic [51] (1)

TI SimpleLink [72], [73] (7)

Espressif ESP-SDK [26] (2)

Microchip [37], [38], [39] (3)

Infineon/Cypress [19] (2)

Qualcomm CSR102x [55] (1)

Dialog SmartBond [61] (2)

TeLink [70] (1)

Renesas RX Core [60] (3)

CSR BlueCore [56] (3)

Opulinks [53] (1)

Silicon labs [66] (1)

STM32 [67], [68] (2)

Ubisys [77] (1)

Bootloader Artifacts

UF2 [40] (1)

MCUBoot [35] (1)

Zigbee ZCL [85] (1)

UPG [4] (1)

Encoding Artifacts

Intel HEX [8] (1)

Motorola S-Record [43] (1)

TI-TXT [74] (1)

Tektronix [74] (1)

Architecture artifacts Arm Interrupt Vector Table (1)

Table 1: Firmware signatures in groups. The number in the

parentheses indicates the number of signatures.

matically extract the needed information from unforeseen text.

In Appendix B, we provide a real example of unstructured

text we captured, the prompt we used, and the result.

5 Signature-Based Firmware Recognization

Even though we applied filters during firmware collection, a

high rate of false positives is expected due to the nature of

the crawling process. To further reduce false positives, we

implement a signature-based firmware recognition method.

The idea is to collect the artifacts that are left to the firmware

during the development process and then craft rules to recog-

nize these artifacts. We categorize firmware artifacts into four

groups: SDK artifacts, bootloader artifacts, encoding artifacts,

and architecture artifacts. These artifacts can not only help us

confirm firmware but also play an essential role in firmware

analysis due to the firmware metadata contained in it. For ex-

ample, some firmware headers include fields that indicate the

chip information, encryption status, or even the SDK version.

We summarize all 39 signatures that we have identified in 4

categories in Table 1. The number in the parentheses indicates

the number of signatures for that artifact since a vendor SDK

may have multiple versions.

SDK Artifacts. To attract developers, it is common practice

that chip vendors provide Software Development Kits (SDKs)

to ease the development. Consequently, device manufacturers

using these chips often reuse the SDKs shipped with the chip.

These SDKs typically include a full toolchain for building

firmware images. The use of them leaves diverse footprints

in the compiled firmware which are observable via different

means. For example, TI designed a firmware update protocol

called Over the Air Download (OAD) [71]. When a firmware

5614 33rd USENIX Security Symposium USENIX Association

image supports OAD, its header must start with the magic

string ªCC26x2R1º, ªCC13x2R1º, or ªOAD IMGº. Some chips

have unique file extensions (e.g., .cyacd for Cypress), while

some organize firmware in specific ways (e.g., Nordic’s De-

vice Firmware Update, or DFU image is compressed into a zip

file along with some metadata [51]). More generally, a ven-

dor’s SDK includes bootstrap code that is commonly shared

by all its chips. Since the bootstrap code handles low-level

initialization process and has to be written in assembly, the

translated machine codeÐregardless of the compiler being

usedÐcan reliably serve as fingerprint of the SDK. To collect

SDK artifacts, we manually downloaded and investigated the

SDKs of top MCU vendors [54]. Then we summarized the

invariances.

Bootloader Artifacts. Beside chip-exclusive firmware for-

mats, we observe a trend of adopting open-source bootloaders

to wrap the real firmware. These initiatives will greatly sim-

plify the maintenance and distribution of firmware. Similar to

how the U-Boot Image wrapper (uImage) is used to support

different OSs (e.g., Linux) that are loaded by U-Boot [64],

several bootloaders for MCU firmware are gaining popular-

ity. For example, the USB Flashing Format (UF2) [40] is

developed by Microsoft for flashing MCUs over MSC (Mass

Storage Class). It has been adopted by the Adafruit commu-

nity and gains native in-silicon support on the popular Rasp-

berry Pi RP2040 chips. Another example is MCUBoot [35],

an open-source secure bootloader for 32-bit MCUs, which

can be used in by Zephyr, Mbed OS, RIOT, etc. Finally, the

ZigBee alliance also standardized a bootloader for different

ZigBee-compatible devices to cooperate with each other with

its ZigBee Cluster Library (ZCL) specification [85].

Encoding Artifacts. The firmware conveys binary data that

can be understood by the MCU hardware. However, when

transmitted or stored, the binary format cannot be easily car-

ried on certain media such as paper tape, punch cards, etc.

To address this issue, specially designed encoding schemes

are used to represent the binary data in a human-readable

ASCII text form. These encodings, as exemplified by Intel

HEX [8] and Motorola S-record [43], almost certainly suggest

firmware.

Architecture Artifacts. The processor architecture some-

times necessitates specific structures of code or data that can

be used as signatures. A classic example is the Arm Cortex-M

series’s Nested Vectored Interrupt Controller (NVIC). Ac-

cording to the Arm architecture manual [7], the NVIC needs

a vector table that is mapped at the beginning of the firmware.

This table contains the reset value of the stack pointer fol-

lowed by exception vectors that specify the entry points of the

exception handlers, including the reset handler, the entry point

of the firmware. Since the stack pointer must point to a valid

RAM range, it should be within 0x20000000-0x20200000

and aligned on a word boundary. Besides, each entry in the

vector table has to point to a valid address and must be odd

since Arm MCUs only support Thumb mode. These sim-

ple constraints can quickly screen NVIC vector tables, thus

identifying images that are likely to be Arm firmware. To

further confirm the result, we ran a chip-generic version of

FirmXRay [79], similar to FirmXRay-M used in FirmLine [5],

to try to calculate the base address of the firmware. If no mean-

ingful base address can be found, the firmware is discarded.

We discuss our improved FirmXRay in §6.1.

6 Firmware Collection Results

6.1 Implementation

The data flow analysis module of OTACap is based on IoT-

Flow [63], which itself is based on LeakScope [86]. The sym-

bolic execution engine reuses the tainting system of data flow

analysis and relies on JavaSMT [80] to solve the collected

constraints. All the new features were implemented with 2.4k

lines of Java code.

Our intelligent crawler is based on Scrapy [88], an open-

source web crawling written in Python. We improved it with

better FTP support and the integration of the Paho MQTT

client [22]. To extract URLs and credentials from unstructured

text, our prototype uses a quantized 8B Llama 3 LLM [36]

but it can be easily replaced by other more advanced models.

Regarding the firmware signature, our tool now supports

39 firmware signature rules, corresponding 30 SDK artifacts,

4 bootloader artifacts, 4 encoding artifacts, and 1 architecture

artifact. We implemented these rules as custom signatures

for Binwalk [59], the de facto standard of firmware recog-

nition. In particular, the majority of newly developed signa-

tures were written in the libmagic file format. However,

when the libmagic is not expressive enough to support a

signature (e.g., in the case of Arm vector table recognition),

we used the plugin system of Binwalk, which is written in

Python. Since the detection of Arm vector table requires Fir-

mXRay [79], our Python plugin also invokes FirmXRay as

an external program. FirmXRay was originally implemented

for Nordic and TI firmware; however, the idea of using ab-

solute addresses to resolve the base address is general. Our

implementation removes all the chip-specific knowledge, sim-

ilar to FirmLine [5], but retains all the original constraints

as much as possible, including indirect calls, string pointers

and vector table entries. If all these constraints are found use-

less during analysis, our tool outputs an invalid base address

and discards the firmware. In contrast, the original FirmXray

would output a default base value (0x00) since it was built

on the assumption that the firmware is either TI for Nordic.

Therefore, our modification not only finds the base address

for general Arm firmware, but also verifies the Arm signature

to reduce false positives. In addition, we fixed some bugs

of FirmXRay, which for example might resolve an odd base

USENIX Association 33rd USENIX Security Symposium 5615

address occasionally1.

To facilitate firmware analysis, we also developed a

pipeline to extract firmware metadata from its artifacts and

prepare a firmware copy ready to be loaded into Ghidra. If

a compressed image is detected, we decompress it using the

built-in extraction rules of Binwalk and only analyze the de-

compressed files. When a candidate image matches a signa-

ture, we extract the metadata and store it in a JSON file, with

entries containing information about firmware architecture,

chip vendor/model, base address, entry point, CRC protec-

tion, encryption status, etc. Note that not all of these metadata

are available on every firmware image. When unsure, the

corresponding field is left empty. The text-based firmware

(e.g., Intel HEX) is also converted into binary format. The

implementation is integrated into Binwalk as extraction rules

using an external tool, srec_cat [42].

6.2 Dataset

The mobile-IoT Android apps were collected from three

sources. In IoTSpotter [32], the authors developed a ma-

chine learning-based system that collected a dataset of 37,783

mobile-IoT Android apps to conduct a market-scale security

analysis of consumer IoT products. We supplemented this

dataset with the APKs used in IoTProfiler [45] (6,208) and

another study [47] (455), resulting in a combined dataset of

40,675 unique mobile-IoT APKs. After retrieving the pack-

age names of these apps, we downloaded a snapshot of these

APKs from Androzoo [6] on July 28, 2023.

6.3 Performance of OTACap

As far as we know, there is no prior work that can reconstruct

firmware download URLs by analyzing mobile companion

apps. The closest work to OTACap is IoTFlow [63], which

analyzes mobile apps to automatically reveal how the app

communicates with IoT devices and remote cloud backends.

It, therefore, necessitates reconstructing the Internet addresses

of the involved entities, including the cloud backends. In fact,

our implementation is based on it. In this section, we evaluate

how solving the challenges explained in §4.2.2, including

inferring hardware informationÐa piece of critical informa-

tion for the OTA protocolÐcan improve our capability in

URL reconstruction. We used the same configuration for

both tools to ensure a fair comparison, including the timeout,

maximum number of backward iterations/contexts, and the

network sinks. These configurations are necessary because

they prevent the analysis from spending too much time on a

single backward path. No filtering was performed since we

focused on evaluating the URL recovery capability instead of

the firmware collection capability.

Our experiments ran on a server equipped with two Intel

Xeon Silver 4110 CPUs, 46 GB of RAM, and a 14 TB hard

1https://github.com/OSUSecLab/FirmXRay/pull/4

Time Breakdown in Seconds (mean/SD) URL #

CFG Backward Forward Symbolic All Reachable

IoTFlow 152.7 (253.7) 283.4 (597.3) 4.33 (7.4) ± 50,538 1,681

OTACap 155.0 (253.0) 297.8 (628.3) 4.74 (8.3) 20.54 (45.4) 61,629 2,103

Table 2: Performance of URL Recovery.

0

20,000

40,000

60,000

80,000

Valid URLs Candidates Decompressed Confirmed Unique Analyzable

OTA-DS EXT-DS

Figure 2: Firmware collection progress.

disk. The used dataset is a subset of the IoTSpotter dataset,

comprising 1,000 randomly selected Mobile-IoT APKs. Since

a URL might be incorrectly constructed, we also tested com-

munication via the constructed URLs and checked the status

code to verify the result. As shown in Table 2, OTACap and

IoTFlow are on par regarding the execution speed despite the

overhead caused by the symbolic execution engine. There

was a high deviation (indicated by standard deviation or SD)

in execution time, ranging from five seconds to an hour. The

time breakdown indicates that the majority of the time was

spent on control flow graph (CFG) construction and backward

analysis. OTACap found 11,091 more URLs and 422 more

reachable URLs compared to IoTFlow. This means OTACap

can potentially find 25.10% more firmware.

6.4 Result Summary

Considering the massive number of 40,675 APKs, we threw

the workload of OTACap to six AWS nodes, each having

four CPU cores and 32 GB of RAM. It took six days to

complete the URL reconstruction. Other processing steps,

including validating the URLs, crawling the firmware images,

extracting firmware from APKs, and signature recognition,

took negligible time compared with OTACap, typically within

a few hours. In total, we recovered over 100k URLs after

filtering. Among them, 2,221 are valid, with which we crawled

18,516 candidate firmware images. On the contrary, with the

APK extraction method, we collected another 24,715 unique

candidates. As we will discuss soon, the majority of them are

false positives with a .bin extension name. We distinguish

the two firmware datasets collected via different methods.

• OTA-DS: Firmware collected via OTACap.

• EXT-DS: Firmware collected via APK extraction.

The majority of the OTA-DS dataset consists of firmware

from the HTTP GET or FTP protocol. But we did obtain 130

5616 33rd USENIX Security Symposium USENIX Association

images thanks to the 44 valid MQTT endpoints we recovered.

Ideally, firmware download should be protected via the unique

topic names to subscribe to or additional authentication [76].

However, we found 3 MQTT endpoints that allowed us to

connect to the wildcard topic # without any authentication,

returning trunks of firmware data or the real firmware distri-

bution points. Additionally, one developer used the test broker

Mosquitto [23] to send OTA URLs.

Figure 2 shows the progress of processing the candi-

date firmware. For each dataset, starting with the candidate

firmware images (marked as Candidates in the figure), we

first scanned for zipped files and decompressed them. This

leads to a rise in numbers (marked as Decompressed). Then,

the signature matching was conducted to get the confirmed

number of firmware (marked as Confirmed). We found that

this set of firmware images contains some Linux/Solaris-

based images, which were identified by the existing signatures

of Binwalk. We excluded them from our dataset since our

focus is on MCU firmware. Also, lots of duplications were

observed. After excluding Linux/Solaris-based and duplicated

images, we obtained the number of unique MCU firmware

images (marked as Unique). Finally, with the metadata from

signature matching, we identified the number of analyzable

firmware images to the best of our capability (marked as An-

alyzable). Here, analyzable means that the instruction set of

the firmware is known, and the firmware is not encrypted or

compressed. Eventually, we obtained 718 and 2,974 unique

MCU-based firmware images in OTA-DS and EXT-DS, re-

spectively.

As shown in the figure, EXT-DS includes way more con-

firmed images than OTA-DS (6,862 vs 1,570). We attribute

this to two reasons. First, to reduce the cost of maintaining

an OTA server, device manufacturers tend to choose bundling

firmware within the APKs and rely on Google Play Store to

distribute firmware. Second, OTACap suffers from the inher-

ent limitation of static analysis (see §8).

We can see a significant drop from Candidates to Con-

firmed, indicating the effectiveness of our signature matching

mechanism. A high number of .bin files were discarded since

they are used to store application data instead of code. The

developed signatures are extremely accurate. We did not find

any false positives in our experiments, as explained in §7.2.

We also found a non-negligible duplication rate in both

datasets. The most common reason is shared bootloaders

among different devices. For example, the same Nordic

SoftDevice firmware image [50], which includes drivers for

Nordic radio peripherals, is found multiple times. Some devel-

opers release apps with very similar functionality under differ-

ent names, which in turn lead to duplicated firmware images.

For example, both com.nextys.mobile.powermaster and

com.nextys.dcu20.mobile.powermaster are developed

by Nextys. The two APKs contain identical firmware under

/com/nextys/lib/resources/firmwares/_nef210-boot

loader-rel.hex. Interestingly, we did not find any duplica-

Protection Encrypted or Compressed (High Entropy) CRC Not Protected

OTA-DS 10 6 702

EXT-DS 11 157 2,806

Table 3: Firmware protection level.

tion across the two datasets, indicating that developers tend

to stick with one approach of firmware distribution.

Regarding the slight drop from Unique to Analyzable, it

is because of encryption or compression that is applied to the

firmware or the use of proprietary instruction sets. We found

many images with CRC integrity protection (4.41%), but only

0.57% are crypto- or compression-protected (Table 3). This

means that at least 99.43% of the collected images are in

plaintext and subject to firmware analysis. Moreover, there

are 21 images with proprietary instruction sets.

7 Characterizing the IoT Ecosystem

With the large firmware dataset, we conducted two types of

analyses. In §7.1, we aim to decompose the IoT market by

analyzing the major players in the market. §7.2 is security

oriented binary-level analysis. First, we reveal the complex-

ity of firmware datasets, including size and function count.

Second, we applied function signature recognition to detect

the utilization of IoT libraries and to reveal N-day vulnerabil-

ities. Third, we scanned for the adoption of common attack

mitigation. The results are alarming.

7.1 IoT Decomposition

With the signature metadata, we analyze major players in

the IoT market by chip vendors and architectures over the

unique images. Since artifacts follow diverse formats convey-

ing custom information defined by the respective developers,

we procured the needed information on a best-effort basis.

By Chip Vendor. Recall that we developed four kinds of

firmware artifacts (§5). If an image is recognized by a vendor

artifact, it is naturally counted towards that vendor. If a boot-

loader artifact is used, we examine the fields contained in the

bootloader header. Typically, it contains fields indicating the

chip information. For example, in the UF2 bootloader, there is

a familyID field at offset 28, which clearly reveals the device

chip information2. If an encoding artifact is used, we first

convert the firmware into binary format and then try to match

it with SDK artifacts and bootloader artifacts. Architecture

artifacts typically do not provide vendor information.

We summarize the results in Table 4. The vendor distribu-

tions in the two datasets are not consistent. We found more

uses of Microchip and Renesas chips in OTA-DS while EXT-

DS has more Nordic, TI, Espressif, and Telink chips. Top Arm

MCU vendors such as NXP and STMicroelectronics do not

2https://github.com/microsoft/uf2/blob/master/utils/

uf2families.json

USENIX Association 33rd USENIX Security Symposium 5617

Vendor Nordic TI Espressif Telink Cypress/Infineon Microchip Dialog Qualcomm Renesas CSR Opulinks Arm∗ Total

OTA-DS 16 4 150 1 18 29 6 10 31 1 1 451 718

EXT-DS 875 164 244 450 78 14 24 9 1 1 - 1,114 2,974

Table 4: Firmware distribution by chip vendor (unique images). Arm∗ means firmware that matches with the general Arm

architecture signature but without any vendor signature. This potentially includes other major players such as NXP and STM32.

Arch. Arm MIPS PIC Xtensa RISC-V RX Core Prop. Total

OTA-DS 496 18 11 150 1 31 11 718

EXT-DS 2,255 12 2 244 450 1 10 2,974

Table 5: Firmware distribution by architecture (unique im-

ages). PIC includes PIC18/24/32. Prop. refers to proprietary.

have an entry in the table since we did not find many reliable

artifacts from their SDKs. Instead, we observe a large number

of general Arm images in both datasets, which were detected

by the architecture artifact. We speculate that a large portion

of this group should be attributed to NXP or STM32 chips.

Conversely, we also observed some Arm firmware (mainly TI

chips) that is not detectable by the Arm architecture artifact.

By Architecture. To get architecture information, we mainly

use the chip information. As expected, Arm dominates the

market (74.51%), followed by RISC-V and Xtensa. Surpris-

ingly, no TI firmware corresponds to the MSP430 chip, which

was popular and runs a proprietary instruction set developed

by TI. Xtensa’s high share mainly comes from the popu-

larity of ESP32 series chips by Espressif, while RISC-V

mainly comes from Telink. Microchip is responsible for the

PIC18/23/32 architectures. We also observe 21 images us-

ing proprietary architectures. They come from Qualcomm’s

CSR102x chips [55] and the legacy Cambridge Silicon Radio

(CSR) BlueCore chips [56]. Both follow a proprietary 16-bit

RISC architecture.

7.2 Binary-Level Analysis

To understand the IoT security landscape, unlike previous

work that uses the companion apps as the analysis tar-

get [14, 31, 32, 63, 86], we directly study the firmware to re-

veal its binary-level properties, thanks to the large real-world

firmware dataset we have collected. Due to their popularity in

the market, we selectively conducted static analysis for 2,631

Arm and 394 Xtensa firmware images.

We primarily employed general static analysis techniques

to cover a broad range of firmware and identify common prop-

erties. While it is feasible to conduct more sophisticated anal-

ysis to study a particular firmware property, this requires ex-

tensive domain knowledge to properly set up the environment.

For instance, techniques like firmware rehosting necessitate

an understanding of the device’s memory map. If the con-

figuration is wrong, the result might be unreliable. Although

this is not done in this paper, domain experts can utilize ad-

vanced firmware analysis projects, such as Fuzzware [62] and

HEAPSTER [30], to study firmware samples of interest.

Arm Xtensa

Mean Median SD Mean Median SD

Func. # 789.96 539.00 3,317.15 3,799.04 3,106.50 3,337.91

Size (KB) 541.90 85.54 6,912.09 951.82 648.88 863.88

Table 6: Statistics of function count and firmware size.

0 25 50 75 100
Percentage(%)

ARM

Xtensa

7%(185) 83%(2180) 10%(266)

9%(35) 17%(68) 74%(291)

1-100 100-1500 >1500

Figure 3: Distribution of function number.

0 25 50 75 100
Percentage(%)

ARM

Xtensa

23%(600) 33%(873) 44%(1158)

8%(33) 92%(361)

<50KB 50KB-100KB >100KB

Figure 4: Distribution of firmware size.

7.2.1 Complexity Analysis

We loaded firmware images to Ghidra for automatic analysis

and count the firmware size and the number of functions in

each image. The distribution of function count in Figure 3

and Figure 4 indicates that Arm-based firmware samples gen-

erally have fewer functions and smaller sizes, with more than

90% having less than 1,500 functions. In contrast, over 74%

of Xtensa-based firmware images have more than 1,500 func-

tions. We hypothesize that this is because Arm chips are more

diverse with customizable peripheral configurations. As a re-

sult, many of them are not as powerful as Espressif’s ESP32

series chips, which provide a one-stop wireless solution suit-

able for a wide range of applications. Consequently, firmware

running on Xtensa-based ESP32 MCUs often contains more

functionalities. Table 6 shows statistics of function count and

5618 33rd USENIX Security Symposium USENIX Association

firmware size, including mean, median, and standard devia-

tion. We can see that the deviation in Arm-based firmware is

more significant than that in Xtensa-based firmware, agreeing

with our hypothesis before.

7.2.2 Library Adoption Analysis

To reduce time to market and streamline firmware develop-

ment, it is common practice for device manufacturers to inte-

grate open-source middleware (e.g., communication protocol

libraries), RTOS libraries (e.g., FreeRTOS, Mbed OS), and

chip SDKs/BSPs into the firmware stack. By fingerprinting

these libraries in our dataset, we can uncover the prevalent

libraries used in the IoT ecosystem.

Library Dataset. For Arm, we collected commonly used

MCU middleware, RTOS libraries and chip SDKs/BSPs.

For Xtensa, we mainly used the Espressif IoT Development

Framework (ESP-IDF) [25], which provides a one-stop repos-

itory for developing firmware for ESP32 SoCs. Notably, it

conveniently maintains not only Espressif’s own driver code

but custom copies of third-party libraries. We collected all

the libraries of latest versions at the time of writing. In total,

our dataset includes 1,435,788 Arm functions and 1,239,283

Xtensa functions.

Fingerprinting Libraries. Matching a function is the first

step towards library matching. There are two flavors for func-

tion matching. The ID-based solution calculates a unique iden-

tification signature for each function. For example, Ghidra’s

Function ID [46] implementation hashes the masked function

bytes to generate the ID. Here, masked means that the address

information is removed to make the result independent of the

function address. The other flavor is based on similarity. That

is, for a pair of functions, a similarity score ranging from 0-1

is calculated. Graph isomorphism is widely adopted in this

direction, e.g., BinDiff [27].

The Function ID method can be fast and accurate. How-

ever, it cannot tolerate trivial differences in library version

and compiler selection. That is, to match a library, we would

have to build a dataset for all the historical versions using all

possible compilers (and options). With the similarity-based

method, we can use only the latest library version to poten-

tially match outdated versions. This is particularly relevant

for matching functions in IoT firmware, which rarely updates

its third-party libraries.

Conducting pairwise similarity-based matching is time-

consuming, especially when comparing millions of functions.

Inspired by LibMatch [17], we propose SimMatch, a two-step

similarity-based function matching approach to overcome

the scalability issue. In step 1, we calculate the product of

three fundamental metrics for a function: the number of basic

blocks, the number of edges in the CFG, and the count of jump

instructions. We only proceed to step 2 if the step-1 scores for

the two functions are close. In step 2, we compare the context

of their basic blocks using the string comparison algorithm

ARM Xtensa

Function # (%) Time (hh:mm:ss) Function # (%) Time (hh:mm:ss)

SimMatch 99,844 (6.95%) 01:59:56 293,341 (23.67%) 03:10:29

Function ID 72,102 (5.02%) 00:27:45 87,514 (07.06%) 00:15:27

Table 7: Function matching results.

SDK Middleware RTOS

STM32Cube Nordic nRF5 Arduino HARDWARIO Mbedtls FreeRTOS

SimMatch 482 615 92 619 8 235

Function ID 366 440 76 380 1 76

Table 8: Library matching results for Arm firmware.

HAL lwIP WiFi MQTT BLE RF MbedTLS FreeRTOS

SimMatch 100 343 345 1 144 352 62 266

Function ID 5 195 329 0 86 340 0 79

Table 9: Library matching results for Xtensa firmware.

based on Ratcliff/Obershelp pattern [12]. We consider two

function a match when the similarity score exceeds 95%.

Results. We ran both SimMatch and Function ID to find

matching functions in our firmware datasets and show the

results in Table 7. If we consider a library to be matched if

two or more library functions are found in the firmware, the

library adoption results are shown in Table 8 and Table 9. As

expected, Function ID outperforms SimMatch significantly

in terms of time consumption. However, it also found less

matched libraries because it is more strict and we only used

the lasted libraries to perform matching. The gap is bigger

for Xtensa firmware. Our investigation shows that the Xtensa

compiler tends to generate more diverse machine code even

for the same piece of C code, making ID-based solutions more

sensitive to little changes.

To understand the false positive rate of both solutions,

we manually checked all the Xtensa firmware with matched

BLE library. SimMatch incurred 2 false positives out of 144

matches, while Function ID incurred 1 out of 86. The coun-

terintuitive false positive happened in Function ID is be-

cause it masks the otherwise different MMIO addresses in

load/store instructions, leading to a collision. We cannot

check false negatives since there is no ground truth about the

library adoption.

7.2.3 N-Day Vulnerability Analysis

We identify N-day vulnerabilities using the library adoption

information obtained in §7.2.2. If a library has ever had a

vulnerable version, it is likely to impact the firmware. There-

fore, we first searched for the involved libraries in the CVE

database [3] and identified a list of CVEs affecting these li-

braries. Then, we manually collected the version information

of the impacted libraries and the functions involved. Finally,

we checked for the presence of vulnerable functions in the

firmware.

Since our library datasets were built from the latest releases,

we also need to compile the old vulnerable ones to match the

function. Fortunately, for Xtensa firmware, the version of the

USENIX Association 33rd USENIX Security Symposium 5619

MPU TrustZone Stack Limit Stack Canary

41 (1.56%) 0 (0.00%) 0 (0.00%) 3 (0.11%)

Table 10: Mitigation features found in Arm firmware.

used ESP-IDF framework is already provided in the firmware

header. Therefore, we only need to confirm if the function in

firmware is close enough with the one in the latest library.

In total, the Arm dataset contains vulnerable libraries with

2 unique CVEs, while the Xtensa firmware dataset includes

12 unique CVEs. These CVEs were identified twice in 1 Arm

firmware image and 552 times across 190 Xtensa firmware

images, respectively. The details of these findings are listed

in Appendix C. We have reported our findings to 31 manufac-

turers, and 3 have acknowledged and planned SDK updates.

7.2.4 Mitigation Detection

Modern Arm MCUs enable several security mechanisms to

mitigate attacks. We developed Ghidra scripts to search for

the adoption rates of these features.

MPU. An Memory Protection Unit (MPU) allows program-

mers to specify the permissions (R/W/X) for memory ranges

based on the current privilege level. Not using MPU means

no data execution protection (DEP) and no isolation between

the kernel and user code, allowing code injection, illegal

memory access, etc. Since MMIO is the only way to con-

figure MPU on Cortex-M chips, we check whether there

exist load/store instructions targeting the memory range of

MPUs, i.e., 0xE000ED90 - 0xE000EDBB for Arm’s standard

MPU and 0x40000528 - 0x4000060F for Nordic’s simpli-

fied MPU (sMPU) [49]. To recover the target addresses in

these ranges, the Ghidra plugin finds the base register and

offset (register or immediate value) that are known statically.

As shown in Table 10, only 1.56% of the images use the MPU

feature, agreeing with previous research [16]. There are two

limitations of our prototype. First, it does not perform reacha-

bility analysis; therefore, the detected MPU code may not be

invoked at all. Second, it may miss real MPU accesses due to

unavoidable disassemble errors.

TrustZone. Arm announced its Trusted Execution Environ-

ment (TEE) solution for MCUs in 2016 [10]. By providing

an isolated execution environment, it ensures robust protec-

tion even if the normal-world firmware is fully compromised.

Nearly eight years following its announcement, we are curious

about its real-world adoption. Our tool detects the footprint of

TrustZone in the secure-world firmware, since TrustZone im-

plementation details are hidden from the non-secure part. For

the secure firmware, we search for the pair of Secure Gateway

veneer (i.e., the SG instruction following a branch) and return

to the normal world instructions (i.e., bxns lr) [9]. We did

not obverse any sign of TrustZone usage.

Stack Limit. The stack limit feature introduces two new

registers to define the lower limit for the two stacks on Arm.

Configured properly, it ensures that stacks do not overrun.

Unfortunately, we did not observe any usage of this feature.

Stack Canary. Stack canary is a pure-software mitigation

mechanism. It detects stack overflow by checking whether a

canary value that is placed by the function prologue is cor-

rupted. We created instruction patterns to match both function

prologues and epilogues of canary-enabled functions. Only

0.11% of the images adopt stack canary.

8 Discussion and Future Work

Limitations of OTACap. Currently, EXT-DS contains much

more confirmed images than OTA-DS. Besides the fact that

APK-bundled firmware distribution is more popular, OTACap

may also miss a lot of firmware images for three reasons. First,

we found many URLs containing a ?token= or ?deviceid=

query string. These apps typically require user credentials to

access the firmware, which is impossible without real user reg-

istration. Second, although we tried to infer information about

real IoT device to reconstruct URLs as explained in §4.2.2,

many apps do not include any clue in the static code. Third,

our backward data flow analysis can miss data flows. For

example, we cannot unroll loops when the iteration number

is unknown.

Threats to Validity. Although we aim to measure the IoT

landscape in a general sense, due to the unsoundness and

incompleteness of our implementation, bias may exist. 1) We

may miss many firmware images due to incomplete keyword-

s/signatures and OTACap limitations, thus overrepresenting

a specific vendor or architecture. 2) Our measurements pre-

sented in §7.1 rely on metadata extracted from known signa-

tures, which may miss some information. For example, we did

not find clear signatures for some major Arm vendors, such

as NXP. Therefore, we cannot properly decompose the IoT

by chip vendors other than roughly putting them to a general

Arm group (Table 4). 3) The measurement was conducted

over unique images. It does not necessarily reflect the number

of chip shipments. 4) Some URLs may become inaccessible

over time, leading to reduced firmware.

Future Work. Signature development and identification is

largely manual work, which we plan to augment over time. We

will also enhance our crawler’s user authentication for MQTT

and HTTP endpoints. An idea is to emulate user registration

using a phantom IoT device, as described in existing work [15,

83]. The main observation is that many device secrets are

easily guessable.

More sophisticated firmware analysis tools such as Fuz-

zware [62] and HEAPSTER [30] can be used to find deeper and

even zero-day firmware bugs. Our initial attempt to use Fuz-

zware to fuzz firmware was not very successful, attributable

to three reasons. 1) Some firmware is incomplete, lacking

device initialization instructions found in bootloader that is

5620 33rd USENIX Security Symposium USENIX Association

not part of the OTA update process. 2) Some firmware checks

chip information during bootstrapping, which Fuzzware failed

to infer. 3) The complex and varied peripheral usage in the

firmware cannot be properly modeled. These failed cases will

foster new ideas to advance the state of the art.

9 Related Work

Analysis Targeting Firmware. In FirmXray [79], the authors

extracted 793 unique firmware from the companion apps. By

analyzing this dataset, many BLE-link layer vulnerabilities

are identified. In FIoT [84], the authors manually emulated

fake IoT devices to capture the OTA update traffic. Then,

symbolic execution and fuzzing were adopted to analyze the

318 obtained firmware images. The FirmXRay dataset has

been widely used in other firmware analysis research. For

example, HEAPSTER [30] runs symbolic execution against

the FirmXRay dataset to find the presence of dynamic alloca-

tors and uses bounded model checking to find vulnerabilities.

Tan et al. [69] systematizes research on Arm MCU firmware.

They also analyzed 1,797 Arm firmware samples, which were

mainly collected via the FirmXray method and web crawlers

to the vendor websites. These works mainly target the Arm

instruction set and the results overrepresent devices built on

Nordic and TI chips. Our dataset contains more firmware

images, covering at least 11 different chip vendors across

7 different architectures. Recently, Firmline [5] proposes a

generic pipeline for analyzing non-Linux firmware. An im-

pressive 21,755 samples were obtained from prior research,

the Linux firmware repository, Android dumps, and other

sources. However, the majority of the samples come from

Linux/Android firmware for PC/smartphone peripherals. In

contrast, our dataset primarily consists of firmware for con-

sumer IoT devices. Another distinction is that the Firmline

analysis pipeline relies on statistical analysis to determine the

possible architecture, whereas we leverage firmware signa-

tures to reliably determine the architecture and other metadata.

IoTFuzzer [14], while targeting firmware, relies on analysis

of the companion app. It fuzzes device firmware to find mem-

ory corruption bugs without having to access the firmware.

However, it lacks scalability as real devices are needed. Also,

without firmware, it becomes hard to pinpoint the root cause

of the bug. By integrating the firmware retrieval capabilities

of OTACap with the bug detection power of IoTFuzzer, we

anticipate more effective tools to combat firmware bugs.

Analysis Targeting Companion Apps. Due to the lack of

real firmware, prior work uses mobile IoT companion apps

to study the security of the IoT ecosystem on a larger scale.

AoT-Scout [31] focuses on finding vulnerabilities involved

in the OTA process. The authors analyzed 23 popular IoT de-

vices and corresponding companion apps to locate six popular

SDKs with security flaws. Then, they fingerprint each vulnera-

ble SDK in a large dataset of apps, revealing many others that

are prone to the same vulnerabilities. However, this approach

requires a real device to analyze the APK, thus suffering from

the scalability issue. In [78], the authors analyze the library

artifacts in mobile companion apps and infer vulnerabilities

in the device firmware. IoTSpotter [32] constructs a large IoT-

Mobile companion app repository and evaluates the security

of each app by analyzing known vulnerabilities in third-party

libraries, identifying misuses of cryptographic APIs, and the

signing scheme of the APK.

Leakscope [86] finds data leaks from mobile apps to the

Internet by reconstructing paths from potentially sensitive

sources to network sinks using backward VSA. Similarly,

IoTFlow [63] reconstructs the communication of IoT devices

with their companion apps and cloud-based backends. Ble-

Scope [87] leverages string reconstruction to identify hard-

coded UUIDs in the companion app to fingerprint BLE de-

vices. Stringoid [57] reconstructs URLs to analyze Web re-

quests in Android apps. All these tools rely on string analysis.

However, they are not specifically engineered towards OTA

link recovery, and thus cannot yield the volume of firmware

that OTACap can. Particularly, OTACap outperforms existing

tools due to 1) improved VSA accuracy via cross-referencing

hardware information and better implicit data flow tracking,

and 2) an intelligent crawler that better utilizes the recovered

URLs. Moreover, all these works rely on mobile apps to infer

the security of the device. They generally cannot get low-level

security properties of IoT firmware.

10 Conclusions

We present a novel approach for the large-scale collection, val-

idation, and analysis of MCU-based IoT firmware to improve

the understanding of the security landscape of the IoT ecosys-

tem. Specifically, we introduce OTACap, a tool designed to

automatically extract URLs for OTA firmware update by an-

alyzing companion Android apps. Additionally, we utilize

a keyword-based search strategy for rough firmware screen-

ing while leveraging a signature-based firmware unpacking

pipeline to validate firmware and extract essential information

for subsequent analysis.

In our experiments with 40,675 mobile-IoT Android APKs,

OTACap has successfully extracted over 2,221 valid URLs

related to firmware updates, allowing us to download 18,516

candidate firmware images by crawling these URLs. More-

over, we extracted 24,715 unique candidate firmware images

directly from APKs that were shipped with the APKs. Us-

ing signature matching, we identified 3,692 unique firmware

images, and 3,660 of them were analyzable.

Our security analysis indicates a lack of firmware protec-

tion, existence of N-day vulnerabilities, and rare adoption of

security mitigation in these firmware images. The results pre-

sented in this paper establish an extensive, heterogeneous, and

annotated dataset of bare-metal firmware currently available.

USENIX Association 33rd USENIX Security Symposium 5621

Acknowledgments

We thank the anonymous reviewers for their valuable com-

ments to improve our paper. This work was partially supported

by U.S National Science Foundation (NSF) grants (2238264,

1916500, 2237238, 2329704, 2422242), National Natural Sci-

ence Foundation of China (NSFC) grant (62202188), and a

grant from the University of Georgia Research Foundation,

Inc. Opinions, findings, and conclusions or recommendations

expressed in this material are those of the authors and do not

necessarily reflect the views of any funding agencies

Availability

We have made the source code for our tools available at

https://github.com/MCUSec/RealworldFirmware to fa-

cilitate the replication of our work. However, releasing the

firmware dataset poses potential risks, including copyright

infringement and misuse. Despite these concerns, ethical se-

curity researchers can leverage the dataset to benefit the IoT

community as discussed in §1. To balance these considera-

tions, we will carefully evaluate access requests and share the

dataset privately with research teams committed to responsi-

ble and ethical practices.

References

[1] Jimple. https://soot-oss.github.io/SootUp/

v1.1.2/jimple/. (Retrieved: 02/02/2024).

[2] mi band firmware analyse. https://github.com/

flycodepl/mi-band-firmware-analyse. (Re-

trieved: 02/02/2024).

[3] Mitre CVE program. https://cve.mitre.org/. (Re-

trieved: 02/02/2024).

[4] Upg file. https://filext.com/file-extension/

UPG. (Retrieved: 02/02/2024).

[5] Marius Muench Alexander Balgavy. Firmline: a generic

pipeline for large-scale analysis of non-linux firmware.

In Workshop on Binary Analysis Research, 2024.

[6] Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein,

and Yves Le Traon. Androzoo: Collecting millions of

android apps for the research community. In Proceed-

ings of the 13th International Conference on Mining

Software Repositories, 2016.

[7] Arm Holdings. Armv7-m architecture reference man-

ual. https://developer.arm.com/documentation/

ddi0403/latest/. (Retrieved: 02/02/2024).

[8] Arm Holdings. Intel hex file format. https:

//developer.arm.com/documentation/ka003292/

latest/. (Retrieved: 02/02/2024).

[9] Arm Holdings. Switching between Secure and Non-

secure states. https://developer.arm.com/

documentation/100690/0201/Switching-

between-Secure-and-Non-secure-states. (Re-

trieved: 02/02/2024).

[10] Arm Holdings. TrustZone technology for the

Armv8-M architecture Version 2.1. https:

//developer.arm.com/documentation/100690/

latest/. (Retrieved: 02/02/2024).

[11] Gogul Balakrishnan and Thomas Reps. Wysinwyx:

What you see is not what you execute. ACM Trans-

actions on Programming Languages and Systems

(TOPLAS), 2010.

[12] Paul E. Black. Ratcliff/obershelp pattern recog-

nition in dictionary of algorithms and data

structures. https://www.nist.gov/dads/HTML/

ratcliffObershelp.html.

[13] Daming D Chen, Maverick Woo, David Brumley, and

Manuel Egele. Towards automated dynamic analysis

for linux-based embedded firmware. In NDSS, 2016.

[14] Jiongyi Chen, Wenrui Diao, Qingchuan Zhao, Chaoshun

Zuo, Zhiqiang Lin, XiaoFeng Wang, Wing Cheong Lau,

Menghan Sun, Ronghai Yang, and Kehuan Zhang. Iot-

fuzzer: Discovering memory corruptions in iot through

app-based fuzzing. In NDSS, 2018.

[15] Jiongyi Chen, Chaoshun Zuo, Wenrui Diao, Shuaike

Dong, Qingchuan Zhao, Menghan Sun, Zhiqiang Lin,

Yinqian Zhang, and Kehuan Zhang. Your iots are

(not) mine: On the remote binding between iot devices

and users. In 2019 49th Annual IEEE/IFIP Interna-

tional Conference on Dependable Systems and Networks

(DSN), 2019.

[16] Abraham A Clements, Naif Saleh Almakhdhub,

Khaled S Saab, Prashast Srivastava, Jinkyu Koo,

Saurabh Bagchi, and Mathias Payer. Protecting bare-

metal embedded systems with privilege overlays. In

IEEE Symposium on Security and Privacy, 2017.

[17] Clements, Abraham and Gustafson, Eric and

Scharnowski, Tobias and Grosen, Paul and Fritz,

David and Kruegel, Christopher and Vigna, Giovanni

and Bagchi, Saurabh and Payer, Mathias. Halucina-

tor: Firmware re-hosting through abstraction layer

emulation. 2020.

[18] Andrei Costin, Jonas Zaddach, Aurélien Francillon, and

Davide Balzarotti. A large-scale analysis of the security

of embedded firmwares. In Proceedings of the 23rd

USENIX Conference on Security Symposium, 2014.

5622 33rd USENIX Security Symposium USENIX Association

[19] Cypress Semiconductor. Boot-

loader and bootloadable. https://

www.infineon.com/dgdl/Infineon-Component_

BootloadableBootloader_V1.60-Software%

20Module%20Datasheets-v01_06-EN.pdf?fileId=

8ac78c8c7d0d8da4017d0e9cbad0230c. (Retrieved:

02/02/2024).

[20] Justin Del Vecchio, Feng Shen, Kenny M Yee, Boyu

Wang, Steven Y Ko, and Lukasz Ziarek. String analy-

sis of android applications. In 2015 30th IEEE/ACM

International Conference on Automated Software Engi-

neering (ASE), 2015.

[21] Christian J. D’Orazio, Kim-Kwang Raymond Choo, and

Laurence T. Yang. Data exfiltration from internet of

things devices: ios devices as case studies. IEEE Internet

of Things Journal, 2017.

[22] Eclipse Foundation. Eclipse paho mqtt python

client. https://eclipse.dev/paho/files/

paho.mqtt.python/html/client.html. (Retrieved:

02/02/2024).

[23] Eclipse Foundation. Mosquitto test server. https://

test.mosquitto.org/. (Retrieved: 02/02/2024).

[24] Espressif Systems. Esp8266 nonos sdk. https://

github.com/espressif/ESP8266_NONOS_SDK. (Re-

trieved: 02/02/2024).

[25] Espressif Systems. Espressif iot development frame-

work. https://www.espressif.com/en/products/

sdks/esp-idf. (Retrieved: 02/02/2024).

[26] Espressif Systems. Firmware image format.

https://docs.espressif.com/projects/esptool/

en/latest/esp32/advanced-topics/firmware-

image-format.html. (Retrieved: 02/02/2024).

[27] Halvar Flake. Structural comparison of executable ob-

jects. DIMVA, 2004.

[28] Ankit Gangwal, Shubham Singh, Riccardo Spolaor, and

Abhijeet Srivastava. Blewhisperer: Exploiting ble adver-

tisements for data exfiltration. In European Symposium

on Research in Computer Security, 2022.

[29] Google. Asynctask reference. https:

//developer.android.com/reference/android/

os/AsyncTask. (Retrieved: 02/02/2024).

[30] Fabio Gritti, Fabio Pagani, Ilya Grishchenko, Lukas

Dresel, Nilo Redini, Christopher Kruegel, and Giovanni

Vigna. Heapster: Analyzing the security of dynamic al-

locators for monolithic firmware images. In 2022 IEEE

Symposium on Security and Privacy, 2022.

[31] M. Ibrahim, A. Continella, and A. Bianchi. Aot - attack

on things: A security analysis of iot firmware updates.

In 2023 IEEE 8th European Symposium on Security and

Privacy, 2023.

[32] Xin Jin, Sunil Manandhar, Kaushal Kafle, Zhiqiang Lin,

and Adwait Nadkarni. Understanding iot security from

a market-scale perspective. In Proceedings of the 2022

ACM SIGSAC Conference on Computer and Communi-

cations Security, 2022.

[33] Ori Karliner. FreeRTOS TCP/IP Stack Vulnerabilities

± The Details. https://blog.zimperium.com/

freertos-tcpip-stack-vulnerabilities-

details/. (Retrieved: 02/02/2024).

[34] M Kol and S Oberman. 19 Zero-Day Vulnerabilities

Amplified by the Supply Chain. JSOF, White Paper.

(Retrieved: 02/02/2024).

[35] mcu tools. Mcuboot secure boot for 32-bit microcon-

trollers! https://docs.mcuboot.com/. (Retrieved:

02/02/2024).

[36] Meta. Meta llama 3. https://llama.meta.com/

llama3/. (Retrieved: 02/02/2024).

[37] Microchip. Microchip over-the-air updates.

https://www.microchip.com/en-us/products/

wireless-connectivity/over-the-air-updates.

(Retrieved: 02/02/2024).

[38] Microchip. Migrating from pic18f to pic18fxxj flash

devices. https://ww1.microchip.com/downloads/

en/DeviceDoc/01021a.pdf. (Retrieved: 02/02/2024).

[39] Microchip. Mplab harmony 3 is an extension

of the mplab ecosystem for creating embedded

firmware solutions for 32-bit microchip devices.

https://github.com/Microchip-MPLAB-Harmony/

bootloader_apps_ota/blob/master/tools/ota_

host_mcu_header.py. (Retrieved: 02/02/2024).

[40] Microsoft. Usb flashing format (uf2). https:

//github.com/microsoft/uf2. (Retrieved:

02/02/2024).

[41] Charlie Miller and Chris Valasek. Remote exploitation

of an unaltered passenger vehicle. Black Hat USA, 2015.

[42] Peter Miller. srec_cat. https://

srecord.sourceforge.net/man/man1/srec_

cat.1.html. (Retrieved: 02/02/2024).

[43] Motorola. Motorola s-records. http:

//www.amelek.gda.pl/avr/uisp/srecord.htm.

(Retrieved: 02/02/2024).

USENIX Association 33rd USENIX Security Symposium 5623

[44] MSRC Team. BadAlloc ± Memory allocation

vulnerabilities could affect wide range of IoT and

OT devices in industrial, medical, and enterprise

networks. https://msrc-blog.microsoft.com/

2021/04/29/badalloc-memory-allocation-

vulnerabilities-could-affect-wide-range-

of-iot-and-ot-devices-in-industrial-

medical-and-enterprise-networks/. (Retrieved:

02/02/2024).

[45] Yuhong Nan, Xueqiang Wang, Luyi Xing, Xiaojing Liao,

Ruoyu Wu, Jianliang Wu, Yifan Zhang, and XiaoFeng

Wang. Are you spying on me? Large-Scale analysis on

IoT data exposure through companion apps. In 32nd

USENIX Security Symposium, 2023.

[46] National Security Agency of the United

States. Ghidra feature: Function id. https:

//github.com/NationalSecurityAgency/ghidra/

tree/master/Ghidra/Features/FunctionID.

(Retrieved: 02/02/2024).

[47] Shradha Neupane, Faiza Tazi, Upakar Paudel, Freddy

Baez, Merzia Adamjee, Lorenzo De Carli, Sanchari Das,

and Indrakshi Ray. On the data privacy, security, and risk

postures of iot mobile companion apps. SSRN Electronic

Journal, 2022.

[48] Nordic SemiConductor. nrf5 sdk for mesh. https:

//www.nordicsemi.com/Products/Development-

software/nRF5-SDK-for-Mesh/Download. (Re-

trieved: 02/02/2024).

[49] Nordic Semiconductor. nrf51 series reference man-

ual. https://infocenter.nordicsemi.com/pdf/

nRF51_RM_v3.0.pdf. (Retrieved: 02/02/2024).

[50] Nordic Semiconductor. SoftDevices. https:

//infocenter.nordicsemi.com/topic/ug_gsg_

ses/UG/gsg/softdevices.html, 2021.

[51] Noridc Semiconductor. Device firmware update process.

https://infocenter.nordicsemi.com/topic/sdk_

nrf5_v17.0.2/lib_bootloader_dfu_process.html.

(Retrieved: 02/02/2024).

[52] Yogesh Ojha. I hacked miband 3, and here is how i

did it part ii Ð reverse engineering to upload firmware

and resources over the air. https://medium.com/

@yogeshojha/i-hacked-miband-3-and-here-is-

how-i-did-it-part-ii-reverse-engineering-

to-upload-firmware-and-b28a05dfc308. (Re-

trieved: 02/02/2024).

[53] Opulinks Tech. Opl1000a1-sdk. https:

//github.com/Opulinks-Tech/OPL1000A1-SDK/

tree/master. (Retrieved: 02/02/2024).

[54] Precedence Research. Microcontroller mar-

ket size to reach usd 69.08 bn by 2032.

https://www.precedenceresearch.com/

microcontroller-mcu-market. (Retrieved:

02/02/2024).

[55] Qualcomm Technologies International. Otau

csr102x. https://developer.qualcomm.com/qfile/

34081/csr102x_otau_overview.pdf. (Retrieved:

02/02/2024).

[56] Rami ramikg. Csr dfu file format. https://

github.com/ramikg/csr-dfu-parser. (Retrieved:

02/02/2024).

[57] Marianna Rapoport, Philippe Suter, Erik Wittern, On-

drej Lhotak, and Julian Dolby. Who you gonna call?

analyzing web requests in android applications. In 2017

IEEE/ACM 14th International Conference on Mining

Software Repositories (MSR), 2017.

[58] Betsy Reed. Hacking risk leads to recall of

500,000 pacemakers due to patient death fears.

https://www.theguardian.com/technology/

2017/aug/31/hacking-risk-recall-pacemakers-

patient-death-fears-fda-firmware-update.

(Retrieved: 02/02/2024).

[59] ReFirm Labs. Binwalk. https://github.com/

ReFirmLabs/binwalk. (Retrieved: 02/02/2024).

[60] Renesas Electronics. Firmware update mod-

ule using firmware integration technology.

https://www.renesas.com/us/en/document/

apn/rx-family-firmware-update-module-

using-firmware-integration-technology-

application-notes. (Retrieved: 02/02/2024).

[61] Renesas Electronics. Suota memory layout.

https://lpccs-docs.renesas.com/Tutorial_

SDK6/suota_memory.html. (Retrieved: 02/02/2024).

[62] Tobias Scharnowski, Nils Bars, Moritz Schloegel, Eric

Gustafson, Marius Muench, Giovanni Vigna, Christo-

pher Kruegel, Thorsten Holz, and Ali Abbasi. Fuzzware:

Using precise MMIO modeling for effective firmware

fuzzing. In 31st USENIX Security Symposium, 2022.

[63] David Schmidt, Carlotta Tagliaro, Kevin Borgolte, and

Martina Lindorfer. Iotflow: Inferring iot device behavior

at scale through static mobile companion app analysis.

In Proceedings of the 2023 ACM SIGSAC Conference

on Computer and Communications Security, 2023.

[64] Semihalf. U-boot image interface. https:

//source.denx.de/u-boot/u-boot/-/raw/

e4dba4ba6f/include/image.h. (Retrieved:

02/02/2024).

5624 33rd USENIX Security Symposium USENIX Association

[65] Ben Seri, Gregory Vishnepolsky, and Dor Zusman. Crit-

ical vulnerabilities to remotely compromise VxWorks,

the most popular RTOS. https://www.armis.com/

research/urgent11/. (Retrieved: 02/02/2024).

[66] Silicon Labs. Silicon labs gecko bootloader.

https://www.silabs.com/documents/public/

user-guides/ug266-gecko-bootloader-user-

guide.pdf#page=10. (Retrieved: 02/02/2024).

[67] STMicroelectronics. Over-the-air application and

wireless firmware update for stm32wb series mi-

crocontrollers. https://www.st.com/resource/

en/application_note/an5247-overtheair-

application-and-wireless-firmware-update-

for-stm32wb-series-microcontrollers-

stmicroelectronics.pdf. (Retrieved: 02/02/2024).

[68] STMicroelectronics. Secure boot & secure

firmware update software expansion for stm32cube.

https://www.st.com/en/embedded-software/x-

cube-sbsfu.html. (Retrieved: 02/02/2024).

[69] Xi Tan, Zheyuan Ma, Sandro Pinto, Le Guan, Ning

Zhang, Jun Xu, Zhiqiang Lin, Hongxing Hu, and Zim-

ing Zhao. Sok: Where’s the ªupº?! a comprehensive

(bottom-up) study on the security of arm cortex-m sys-

tems. In 18th USENIX WOOT Conference on Offensive

Technologies (WOOT 24), 2024.

[70] Telink Semi. Secure boot application note. https:

//doc.telink-semi.cn/index/index/detail/

id/231/type/telinksales@telink-semi.com.

(Retrieved: 02/02/2024).

[71] Texas Instruments. Over the air download (oad).

https://software-dl.ti.com/lprf/simplelink_

cc2640r2_sdk/1.35.00.33/exports/docs/

ble5stack/ble_user_guide/html/oad/oad.html.

(Retrieved: 02/02/2024).

[72] Texas Instruments. Simplelink cc13xx_cc26xx sdk

documentation. https://software-dl.ti.com/

simplelink/esd/simplelink_cc13xx_cc26xx_

sdk/7.10.02.23/exports/docs/Documentation_

Overview.html. (Retrieved: 02/02/2024).

[73] Texas Instruments. Simplelink msp432 software devel-

opment kit. https://dev.ti.com/tirex/explore/

node?node=A__AC4fea1GvZOsPa2Xi4z3Gw_

_com.ti.SIMPLELINK_MSP432E4_SDK__J4.hfJy_

_LATEST. (Retrieved: 02/02/2024).

[74] Texas Instruments. Tms320c6000 assembly lan-

guage tools v8.3.x, description of object formats.

https://downloads.ti.com/docs/esd/SPRUI03/

#viewer?document=%257B%2522href%2522%253A%

2522%252Fdocs%252Fesd%252FSPRUI03%2522%

257D&url=description-of-the-object-formats-

stdz0792390.html%23STDZ0792390. (Retrieved:

02/02/2024).

[75] The Computer Security Group at UC Santa

Barbara. Repository for monolithic firmware

blobs. https://github.com/ucsb-seclab/

monolithic-firmware-collection, 2022. (Re-

trieved: 02/02/2024).

[76] Tuya Inc. Tuya mqtt topics. https:

//developer.tuya.com/en/docs/iot/MQTT_

Topic?id=Kbt4ezpeko2rz. (Retrieved: 02/02/2024).

[77] Ubisys Technologies. Ubisys technologies.

https://www.ubisys.de/en/main-page/. (Re-

trieved: 02/02/2024).

[78] Xueqiang Wang, Yuqiong Sun, Susanta Nanda, and Xi-

aoFeng Wang. Looking from the mirror: Evaluating

IoT device security through mobile companion apps. In

28th USENIX Security Symposium, 2019.

[79] Haohuang Wen, Zhiqiang Lin, and Yinqian Zhang. Fir-

mxray: Detecting bluetooth link layer vulnerabilities

from bare-metal firmware. In Proceedings of the 2020

ACM SIGSAC Conference on Computer and Communi-

cations Security, 2020.

[80] Philipp Wendler, Karlheinz Friedberger, and George

Karpenkov. Javasmt. https://github.com/sosy-

lab/java-smt. (Retrieved: 02/02/2024).

[81] Ruotong Yu, Francesca Del Nin, Yuchen Zhang, Shan

Huang, Pallavi Kaliyar, Sarah Zakto, Mauro Conti, Geor-

gios Portokalidis, and Jun Xu. Building embedded sys-

tems like it’s 1996. arXiv preprint arXiv:2203.06834,

2022.

[82] Yin Zhang and Vern Paxson. Detecting backdoors. In

9th USENIX Security Symposium, 2000.

[83] Wei Zhou, Yan Jia, Yao Yao, Lipeng Zhu, Le Guan,

Yuhang Mao, Peng Liu, and Yuqing Zhang. Discovering

and understanding the security hazards in the interac-

tions between iot devices, mobile apps, and clouds on

smart home platforms. In 28th USENIX Security Sym-

posium, 2019.

[84] Lipeng Zhu, Xiaotong Fu, Yao Yao, Yuqing Zhang, and

He Wang. Fiot: Detecting the memory corruption in

lightweight iot device firmware. In 2019 18th IEEE

International Conference On Trust, Security And Pri-

vacy In Computing And Communications/13th IEEE

International Conference On Big Data Science And En-

gineering (TrustCom/BigDataSE), 2019.

USENIX Association 33rd USENIX Security Symposium 5625

[85] ZigBee Alliance. Zigbee cluster library specifica-

tion. https://zigbeealliance.org/wp-content/

uploads/2021/10/07-5123-08-Zigbee-Cluster-

Library.pdf, 2019. (Retrieved: 02/02/2024).

[86] Chaoshun Zuo, Zhiqiang Lin, and Yinqian Zhang. Why

does your data leak? uncovering the data leakage in

cloud from mobile apps. In 2019 IEEE Symposium on

Security and Privacy, 2019.

[87] Chaoshun Zuo, Haohuang Wen, Zhiqiang Lin, and Yin-

qian Zhang. Automatic fingerprinting of vulnerable

ble iot devices with static uuids from mobile apps. In

Proceedings of the 2019 ACM SIGSAC Conference on

Computer and Communications Security, 2019.

[88] Zyte. Scrapy, a fast high-level web crawling & scraping

framework for python. https://scrapy.org/. (Re-

trieved: 02/02/2024).

A Lists of Keywords and File Extensions

Table 11 and Table 12 list the firmware-related keywords and

file extensions used in OTACap.

Keyword Regular Expression Description

firmware (?i)firmware Firmware

download (?i)download Download

release (?i)release Release

image (?i)image Image

update, upgrade (?i)update Update

(?i)upgrade

fw (?i)(?<![a-zA-Z])fw(?![a-zA-Z]) Firmware

ota (?i)(?<![a-zA-Z])ota(?![a-zA-Z]) Over-The-Air

oad (?i)(?<![a-zA-Z])oad(?![a-zA-Z]) Over-The-Air Download, mainly TI

dfu (?i)(?<![a-zA-Z])dfu(?![a-zA-Z]) Device Firmware Update, mainly Nordic

ble (?i)(?<![a-zA-Z])ble(?![a-zA-Z]) Bluetooth Low Energy

Consecutive hex values [a-fA-F0-9]{16} File content hash value as file names

Table 11: Keywords used in firmware collection.

Format Extensions Description

Intel HEX

.hex, .mcs, .int, .ihex, .ihe, .ihe,

.ihx, .h80,.h86, .a43, .a90, .hxl-.hxh,

.h00-.h15, .p00-.pff, .obj,

.obl, .obh, .rom,.eep, .bex

Intel hex object file format conveys binary

informationin in ASCII text form. Each text line is

called a record that represents machine

code/data and its address information

Motorola S-Rec
.s19, .s28, .s37, .s1, .s2, .s3, .s, .sx,

.srec, .exo, .mot, .mxt
Similar to Intel HEX and created by Motorola

TI-TXT .txt Similar to Intel HEX and created by TI

Tektronix .tek Similar to Intel HEX and created by Tektronix

Cypress .cyacd, .cyacd2
Proprietary file format developed by Cypress,

now acquired by Infineon

CSR .csr

The firmware format used in CSR BlueCore

bluetoothchips. Developed by Cambridge Silicon

Radio and now acquired by Qualcomm

RSU .rsu Renesas Secure Update format

UF2 .uf2
A file format developed by Microsoft that is

particularly suitable for flashing microcontrollers

MISC. .bin, .fw, .img, .upg File extensions generally selected by manufacturers

Table 12: File extensions used in firmware collection.

B An Example of URL Analysis using LLM

When crawling the initial URLs from the app

com.lorexcorp.lorexping, our crawler captured the

following text (actual URL redacted).

CVE Version Component FW #

CVE-2022-35623 v4.2.0-v5.0.0 Mesh 1

CVE-2022-35624 v4.2.0-v5.0.0 Mesh 1

CVE-2019-12588 v2.2.0-v3.1.0 WiFi (Beacon) 45

CVE-2019-12586 v2.0.0-v4.0.0 WiFi (WPA2) 70

CVE-2019-12587 v2.0.0-v4.0.0 WiFi (WPA2) 70

CVE-2020-12638 v4.0.0-v4.2.0 WiFi (WPA2) 74

CVE-2020-13594 v4.0.0-v4.2.0 BLE 13

CVE-2020-13595 v4.0.0-v4.2.0 BLE (HCI) 4

CVE-2020-16146 v2.0.0-v4.0.1∗ BLE (Blufi) 3

CVE-2021-28135 v4.0.0-v4.4.0 Bluetooth (LMP) 46

CVE-2021-28136 v4.0.0-v4.4.0 Bluetooth (LMP) 46

CVE-2021-28139 v4.0.0-v4.4.0 Bluetooth (LMP) 46

CVE-2021-33028 v4.0.0-v4.2.0 WiFi (QoS) 94

CVE-2021-34173 v4.0.0-v4.2.0 WiFi (Beacon) 4

Total (deduplicated) 191

*: v3.1.8, v3.2.4, and v3.3.3 are not subject to the CVE since these minor versions

backported the patch released in v4.0.2.

Table 13: Detected N-day Vulnerabilities. Except for the first

two CVEs found in nRF5-Mesh [48] and the third found in

ESP8266_NONOS_SDK [24], all other CVEs were found in

ESP-IDF [25].

FTP tag|FTP server|FTP username|FTP password|

FTP| |upgrade|upgrade|

clientModelID|FW version|FW filename|Config version|Config

filename|

G1|030509|IC717w-gen-030509-n.f|2|g1.cfg|

G2|030418|IC717g-gen-030418-n.f|2|g2.cfg|

...

We developed a system prompt to extract information.

I have some unstructured text. It might contain information about

firmware distribution URLs with credentials. Can you extract such

information, including the protocol, server address, username

and password? If you can, please format your answer in JSON.

Otherwise, just say no.

...

LLM returned the following correct result.

After analyzing the text, I was able to extract the following

information about firmware distribution URLs with credentials:

‘‘‘json

[

{

"protocol": "FTP",

"server_address": " ",

"username": "upgrade",

"password": "upgrade"

}

]

‘‘‘

C List of N-day Vulnerabilities

We identified 14 N-day vulnerabilities across 191 firmware

samples. The details including the affected SDKs, versions,

and components are shown in Table 13.

5626 33rd USENIX Security Symposium USENIX Association

	Introduction
	Background
	Overview
	Firmware Collection
	Extracting Firmware from APKs
	Firmware Capture via OTA Update Simulation
	String Analysis for Android
	Enhancing Data Flow Tracking
	Simulating OTA Firmware Downloads

	Signature-Based Firmware Recognization
	Firmware Collection Results
	Implementation
	Dataset
	Performance of OTACap
	Result Summary

	Characterizing the IoT Ecosystem
	IoT Decomposition
	Binary-Level Analysis
	Complexity Analysis
	Library Adoption Analysis
	N-Day Vulnerability Analysis
	Mitigation Detection

	Discussion and Future Work
	Related Work
	Conclusions
	Lists of Keywords and File Extensions
	An Example of URL Analysis using LLM
	List of N-day Vulnerabilities

