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Improved Beckner’s inequality
for axially symmetric functions on S*

Changfeng Gui, Yeyao Hu and Weihong Xie

Abstract. We show that axially symmetric solutions on S* to a constant Q-curva-
ture type equation (it may also be called fourth order mean field equation) must be
constant, provided that the parameter « in front of the Paneitz operator belongs to the

473+4/209329

interval [=="7¢55>"— ~ 0.517, 1). This is in contrast to the case « = 1, where there
exists a family of solutions, known as standard bubbles. The phenomenon resembles
the Gaussian curvature equation on S2. As a consequence, we prove an improved
Beckner’s inequality on S# for axially symmetric functions with their centers of mass
at the origin. Furthermore, we show uniqueness of axially symmetric solutions when
o = 1/5 by exploiting Pohozaev-type identities, and prove the existence of a non-
constant axially symmetric solution for & € (1/5, 1/2) via a bifurcation method.

1. Introduction

We shall consider the constant Q-curvature type equation

4u

[ 4
f§4e4”dw) 0, £e8%

(1.1) aP4u+6(1—

Here, S* is the 4-dimensional sphere,
Py = A2 —2A

is the Paneitz operator on S*, and « is a positive constant. The volume form dw is nor-
malized so that [gs dw = 1.

The corresponding energy functional is defined in H2(S*) as

3
Jo () = %(/S4|Au|2dw+2/§4|vm2dw)+6/S4udw—51n/84e4"dw.
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When a = 1, (1.1) corresponds to the constant Q-curvature equation on S*, and it
is well known that there holds the following Beckner’s inequality, a higher order Moser—
Trudinger type inequality:

(1.2) Ji(w) >0, ue H*S.

Furthermore, J; is invariant under the conformal transformation

u(§) — v(tf) + iln(ldet(df)(é)l),

where 7 is an element of the conformal group of S* and | det(-)| is the modulus of the
corresponding Jacobian determinant. Equality in (1.2) is only attained at functions of the
form
u=-In(1-¢-§)+C, CeR,
where ¢ € B> := {¢c € R, |¢| < 1} (see [1,5]). This in particular implies that (1.1) has a
family of axially symmetric solutions u(§) = —In(1 —af;), £ € S*fora € (—1,1).
On the other hand, an improved Aubin-type inequality holds, as shown in Lemma 4.6

of [5] or Lemma 4.3 of [2]: for any o > 1/2, there exists a constant C(«) > 0 such that
Jo(u) > —C(w) if u belongs to the set of functions with center of mass at the origin:

2:{UEH2(84):/ e4"§jdw=0, j=1,2,---,5}-
S4

This leads to the existence of a minimizer 1 of J, in £, and u satisfies the corres-
ponding Euler-Lagrange equation

4u
(1.3) OlP4u+6( f e4"dw) Zal‘éz 4u, 5684,
S4

for some constants ay, ... ,ds.
Equation (1.1) can be regarded as the following 4-dimensional counterpart of the con-
stant Gaussian curvature type equation, or the mean field equation on S2:

2u

—%__)=o0 2
fgzez“dw> o Fe8

(14) —aAu+ (1 -

For (1.4), there is a vast literature. See, e.g., [4], [14] and references therein.
Similar to the prescribing Gaussian curvature equation on S2, the Kazdan—Warner
obstruction also works for the prescribing Q-curvature equation

Pau+6—Qe* =0, £eS*

Indeed, it is shown in Remarks (3) (ii) for Corollary 5.4 of [5] and Corollary 2.1 in [4], by
using the invariance of J; under the conformal transformation, that the following Kazdan—
Warner condition holds:

(1.5) /(VQ,VE,-)e“"dsz, i=12,...,5
§4
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It is an immediate consequence that a; = 0 fori = 1,2,...,5 in (1.3), just as in the S?
case in [4]. See also [29], where (1.5) is proved for all dimensions greater than or equal
to three. The interested reader is referred to [6,8,9, 13,17, 18,22-24,30] for literature on
equations that have conformal structure.

In what follows, we shall consider axially symmetric functions that are only dependent
on £, and show that (1.1) under axially symmetric setting admits only constant solu-

tions when o € [43+£¥209329 ‘838932 1). As a consequence, we obtain an improved Aubin-type
inequality for axially symmetric functions in £.
Considering solutions axially symmetric about &;-axis, and denoting &; by x, we can

reduce (1.1) to

4u
(1.6) a[(l—xz)zu/]’”+6—8e— =0, xe(=11),
1
f—l(l _ x2) edu
or equivalently,
8(1 — x2) e .
f_ll(l _x2)e4u

One can refer to Section 2 for the detailed derivation of (1.6). By direct computations, we
see that the corresponding functional 7, (1) can be expressed as follows:

a[(1—=x3u") —6a[(1 — x*)*u'] +6(1 —x?) —

1
) =5 [ (=)0 =5 P+ 611 = 20 )

1
+ 6/_11(1 —x)u—2Mhn (% f_ll(l —xz)e‘“‘).

Here the function space is H?(—1, 1), which is the restriction of H?(S*) in the set of
functions axially symmetric about £;-axis and §; = x.
The set £ is replaced by

1
1.7 gy = {u € H*(S*) :u = u(x) and /

-1

x(1—x?)e* = O}.

Now we state the main results.

Theorem 1.1. If 473+1‘828932 <« < 1, then (1.6) admits only constant solutions. As an

immediate consequence, we have
inf I,(u) =0.
ueL,

We conjecture that Theorem 1.1 holds, in fact, for 1/2 < o < 1. Indeed, the lower

bound 43 +1V 209329 :an be improved slightly to 0.5145 (see discussions in Section 6). We

believe that J; /2(u) > 0 for u € &, given the similar inequality for S? as shown in [14].
It is worth pointing out that Wei and Xu proved in [29] that for ¥ € £ and ¢ > 0 small
enough, there holds

Jo(u) >0, ae(l—g1)

in all dimensions n > 3.
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Now we define the following first momentum functionals on H?2(S*):

(%(u):%/S4u(P4u)dw+6/S4udw—Zln[(/;e““dw)z—g(/;e“&dw)z].

Note that $o (1) = Jo (1) when u € £. As a consequence of Theorem 1.1, for axially sym-
metric functions on S*, we find the following sharp inequality arising from the Szego’s
limit theorem.

Theorem 1.2. There holds

Fas) =0, Vue{ve H* (S :v(®) = v(E))

Concerning the classification of axially symmetric solutions there is another critical
parameter & = 1/5, which corresponds to the second bifurcation of nontrivial axially
symmetric solutions from the constant solutions. We have the following theorem.

Theorem 1.3. If o = 1/5 and u is an axially symmetric solution to (1.1), then u must be
constant.

Using a bifurcation approach and Theorems 1.1-1.3, we can also show the existence
of non-constant axially symmetric solution for o € (1/5,1/2).

Theorem 1.4. There exists a non-constant solution uy to (1.6) fora € (1/5,1/2). More-
4734+4/209329

over, there exist a sequence oy € (% == %e0 ) and a sequence of non-constant
solutions (Ug,, )m>1 to (1.6) such that

1 ! 4
U = / (1 —x?)ettom = 3 and e, llLeq11y — 00 asm — oo,
-1

We also establish the following proposition concerning the centers of mass and first
order momentums of solutions to (1.1).

Proposition 1.5. If u solves (1.1), then

/e‘“‘é,-a’w:O and /ué,-dwzo, i=1,2,...,5,
S4 S4

whenever a # 1.

In the course of final revision of this paper, the authors learned that Theorem 1.1 was
recently proved under the sharp condition 1/2 < o < 1in [21].

The paper is organized as follows. First, we list some preliminaries and integral iden-
tities in Section 2 which will be substantially used in the later context. Section 3 is devoted
to the proof of Theorems 1.1 and 1.2. In Section 4, we derive various Pohozaev-type iden-
tities and employ them to validate Theorem 1.3 together with Proposition 1.5. In Section 5,
we carry out a bifurcation analysis of (1.6) and its equivalent form, and prove Theorem 1.4
based on Theorems 1.1 and 1.3. The last section is devoted to some discussions of the
improvement of the best constant for «.
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2. Preliminaries and integral identities

In this section, we state several important preliminaries and integral identities which will
be needed in the proof of Theorem 1.1. We begin by introducing some basic facts on
spherical geometry of S*.

Let 6;,i = 1,2, 3, 4, denote the usual angular coordinates on the sphere, with

0; € [0,7] fori =1,2,3, and 64 €[0,27],

and define x = & = cos(#;). Then the metric tensor can be given as follows:

1—x2"1 0 0 0

B 0 1—x2 0 0

&= 0 0  (1—x2)sin26, 0
0 0 0 (1 — x2) sin? 6, sin? 63

For axially symmetric functions, we have

2w
e dw = e (1 — x?) sin? 0, sin 03 dO4 dO3 d6, dx
S4 87T2
= (] _XZ) e4u
4 /—1

110U d ou
Au = 1/2 1/2 =(1— 2\—1 1— 2N\2
u=|gl” (Igl _8x) (1-x%) PP [( x%) _8x]
=(1 —xz)u" —4xu'.

One further has that

and

(1 = x»)Au)" = =2Au — 4x(Au) + (1 —x*)(Au)" = A%u —2Au.
Thus, the Paneitz operator on S* can be expressed as
Piu= [(1 _ x2)2 u’ — 4x(1 _ x2)u/]// — [(1 _ x2)2u/]///’

for u = u(x). Then, we transform the original equation (1.1) on S* into the ODE (1.6).
Note that the eigenfunctions associated with the Paneitz operator coincide with those

associated with the Laplacian. It is natural to introduce Gegenbauer polynomials (see [25],

Chapter 2.4), which can be considered as a family of generalized Legendre polynomials.

Let . .

(_1) F(2) 1 d ( _x2)k+l
2k (k +2) (1 —x2) dx*
be the k-th Gegenbauer polynomials. Then Fj satisfies that

Fr(x) =

2.1 (1 =x?)F —4xF + MF =0, A =k(k+3), k=0,1,...,

and

1
(2.2) /(1—x2)FkF,=0 for k # .
-1
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Here Fj is a sphere harmonic of degree k. Then it is readily checked that for x € (-1, 1),
(1=x)[1=x*2F]" = A2 +2A) (1 — x?) Fy.
Moreover (see [12,25]),

8
Qk+3)k+1)(k+2)

1
ey IFwi=% wma [ a-)R=
-1

We will focus on the gradient of u on the sphere throughout the rest of the paper. Define
(24) G(x) = (1 —x>,

where ¥ = u(x) is a solution to (1.1). Then we have the following decomposition using
the orthogonal polynomials Fj:

1 o0
(2.5) G =a0F0+ﬁx+azz(5x2— D+ Y ax Fe(x).
k=3

Define
0 1
Gy=) arFr(x) and b} = a,§/ (1—-x})F2, k=>2.
k=3 -1
We first derive a lemma concerning the constant term ag in (2.5).

Lemma 2.1. If u is a critical point of 1, whenever 1/2 < o < 1, then the function G(x)
belongs to H*(—1, 1) and satisfies that f_ll(l —x2)G = 0. In other words, ag = 0.

Proof. When 1/2 < a < 1, if u is a critical point of I, then u is a smooth function on S*
by the estimate Lemma 4.6. of [5]. Then G(x) = Vu - é; belongs to H?(—1, 1). Indeed,
we can obtain an explicit estimate of H?(—1, 1)-norm of G(x) in Remark 2.1 below.

In view of equation (1.6), we have

8
(2.6) a((1-—x2)G)" +6——e* =0,
Y
where
1
2.7) % =/ (1—x?)e*.
—1

By differentiating (2.6), we further have
32

(2.8) a((1—x2)G)" — =My’ = 0.
14

Multiplying (2.8) by (1 — x2)? and employing (2.6), we have

24

29 (1-x3%((1-x>6)" - = (1-x3)G —4[(1-x>G]"(1-x>G =0.
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Integrating (2.9) over [—1, 1], we have

1
/1 (1—x22((1 - x*)G)" — g/ (1-22)G
—1 —1

(2.10) ¢

1
_4/ (1-x2)G)" (1 -x%)G = 0.
-1
We use integration by parts for the first term of (2.10):
1
/ (1 _ x2)2 ((1 _ )CZ) G)////
-1
272 2 21 ! 2\24/ 2 "
=[1-=x)°(1-x7)G) ]|—1—/_1((1—x )9) (1 =x7)G)
= (1 -x)Y)" (1 -x1)6) |}, — (1 —x»)" (1 -xH) 6|
1
1— 2\2\/M 1 — 2 G
+ /_ (A=) (1= %)
1
2.11 =24 1—x?)G.
@.11) /_ (=)

Similarly, for the last term in (2.10), one has

/ (=) (1=x)G = (1=x)GY(1 —xD)G|! — / (1= GY (1-x2) G’
-1 -1

1 1
2.12) =5 —xz)G’—ZxG)Z‘ =0
We conclude from (2.10)—(2.12) that
24y (!
(24— —)[ (1-x2)G =0,
o/ J-1
which implies that f_ll(l —x2)G = 0, since o # 1. n

Remark 2.1. To obtain an estimate of the norm of G(x) € H?(—1, 1) (with the natural
weight (1 — x2)), we first use the Bochner—Lichnerowicz—Weitzenbock formula to get

/ |VZG|2dw=/ |AG|2dw—/ Ric, (VG,VG) dw
S4 S4 S4
5/ (P4G)de+/ G?dw,
S4 S4

which together with (3.9) leads to an estimate of the norm of G in H?(—1, 1) (which also
shows directly that G(x) € H2(—1, 1)). We note that in the subsequent context, H?(—1, 1)
represents the Sobolev space with the natural weight function (1 — x2) inherited from
H?(S*). Please see Lemma 3.2 for a detailed proof of (3.9).
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Next, we state some important integral identities which will be used frequently in the
proof of Theorem 1.1.

Lemma 2.2. The following equalities hold for G(x) = (1 — x?)u/, where u is a solution
of (1.6) and o > 0:

4
15

1
(2.13) / (1-x>FG B.
-1

1 4u
(2.14) /_1(1 —xz)z% = ‘3‘(1 —ap),

1
(2.15) fl(l —x?)F G = 1-x*)?F, k=>2,

8 1 e4u
Ta G2 20 L5
! 16 1
2.1 1—x)GV)2=—=(5—-=
@16 [ 10-x)6r? =2 (- )8
recalling that B is defined in (2.5) and y is given in (2.7).

Proof. Indeed, we have
1
Fo(x)=1, Fi(x)=x and F(x)= Z(sz —1).

Then it follows from (2.9) that

1 1
4
/ (1-x>FG =,B/ (1-x*)x?=—8.
_1 1 15
This finishes the proof of (2.13).

For (2.14), multiplying (2.6) by ffl(l — §2)Fi(s)ds with k > 1 and integrating over
the interval [—1, 1], one has

2.17) /_11 /j(l — $2) Fi(s) [a((l —x)G)" +6— ; e“"] dsdx = 0.

It is easy to see that
1 x
/ / (1 =52 Fr(s)((1 —x*)G)" dsdx
-1J-1

1
= [((1 —xz)Fk(X))’(l—xz)G]|1_1 —/ (1= x?) Fr)" ((1 = x*)G)
(2.18) !

1
= —/ G(1—x?)[(1 — x?) F}/ — 4xF] — 2F]
-1

1
= (Ax +2)/_1(1 —x2)G Fy.
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Moreover,
/ / (l—sz)Fk(s)dsdx— /(1—s2)Fk(s) /(1—x2)ka
(2.19) =f_l(l—s2>Fk(s>—81k/_1(1—x2)x2 =~

By (2.1), we see that for k > 1, there holds
(2.20) [(A=x*)?F] =0-x*)?F—4x(1 = x*)F| = =Ax (1 — x*) Fg.
Entailing from (2.20), we deduce that
¥ 2 1 212
[ =R = = (=52 Fo.

Letting k = 1, we have

1 X 1
(2.21) / / (1—s?) Fi(s)dse* dx = —i/ (1—x2)2e*.

1

Keep in mind that

1 1
(2.22) (Ax +2)/_1(1 _X*)GF = 68 [_1(1 —t =

Then, (2.14) follows from (2.17)—(2.22).
Similarly, letting k > 2, we conclude that

1 8 1
(Ax +2)a/ (1-x*GF, = ——/ (1 —x%)2F[e*.
-1 YAk J1

So (2.15) holds.
For (2.16), multiplying (2.9) by x and integrating from —1 to 1, we get

1
/ [.X' (1 _ X2)2 ((1 _ x2) G)////
(2.23) -1

24
— = x(1-x>)G—4[1-x*)G]"(1-x*)xG]=0.
o
For the first term in (2.23), we have
1 1
/ X(l _ x2)2 ((1 _ x2) G)//// — / (X(l _ x2)2)//// (1 o XZ)G
-1 -1
1
(2.24) = 120/ (1-x%)xG = 328.
-1

For the second term, one has

(2.25) —/ x(1— 4ﬂ/ a1- 2:%;3.
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For the last term, we find

1

(2.26) 4/_11 [(1-x3)G]"(1—-x})xG = 6/_1 [[(1 —x)G])>.

Therefore, (2.16) follows from (2.23)—(2.26). [

3. Proof of Theorem 1.1

Inspired by [10] and [15], our basic strategy is to assume 8 # 0, and show that it leads to
a contradiction with the range of . It is fairly easy to see from (2.16) that if 8 = 0, then
Vu = 0, which implies that u is a constant. One important new ingredient is the surprising
a priori estimate in Lemma 3.1 regarding the derivative of the gradient of u.

We now give the key estimate on the derivative of G, which was defined in (2.4). Note
that the lemma is true for general o > 0.

Lemma 3.1. Let M = maxye[—1,1] G'(x). Then we have

3.1) M <

’

Q| m—

Le., |

G'(x) <
o
forall x € [-1,1].

Proof. Take M = G’(x¢) for some xo € [—1, 1]. We first prove the lemma if xo € (-1, 1).
After some calculations, (2.6) becomes

8
(3.2) a[-6G —6xG"+(1—x>)G"|+6——e* =0, xe(-1,1).
Y

At x = xg, we have
GI(XO) — M, Gl/(xo) — O a.nd Gl//(xo) f 0

Consequently, M < 1/a.
If xo € (—1, 1), then we may assume without loss of generality that

sup G'(x) = lim G'(xy)
xe(~1,1) Xn—=>1

for some sequence {x,} C (—=1,1). Letr = |x’| = v/1 — x2. Then we write
G(x) =G(r) and u(x)=1ii(r), forr e[0,1)andx € (0,1].

It is well known that #(r) can be extended evenly and u(r) € €*°(—1/2,1/2). For r €
(0.1/2),
p -
W) =) 9= DT
X r
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then, one has
(33)  Gx)=0-x)u'(x)=—ri,(r)V1I—r2=G(®r), re(,1/2).

A direct calculation shows that

uy(r)

7

G'(x) = G.(r) % = (ﬁrr(r) + )(1 —r3) —ri,(r).

It is easy to see that limy—; G'(x) = 2ii,,(0). Note that

lim ii,(r) = #4,(0) =0 and lim -~ = 4,,(0).
r—0 r—0 r

We can write

(3.4 i,(r)=tr+n6r>+ 0@’ nearr =0.

Then

(3.5) G'(1) = lim G'(x) =21 = sup G'(x) > 0.
x—>1 xe(=1,1)

The last inequality is ensured by the fact that (3.3) implies
G(1)=G(-1) = xgmi_l G(x) =0.
Furthermore, by (3.4),
G'(x) =211 + (41, = 3t1)r?> + O(r*) nearr = 0.

It follows from (3.5) that

41, — 311 < 0.
By similar arguments, we obtain that near r = 0,
dG’ d
6"y = 20T 4ty 30+ 0 VI P
dr dx
Therefore,
(3.6) lim —x G”(x) < 0.
x—1

By similar calculations again, near r = 0,

, dG"(x) dr

1— 2 G/// — =0 2 .
(1=x%)G"(x) = r* == 7 = 0(?)
This ensures that
(3.7) lim (1 — x?)G"”'(x) = 0.
x—1
Using (3.2) together with (3.5)—(3.7), we have
1 8 1
(3.8) G'()= sup G'(x)<— (6 - —e4") <-. -
xe(=1,1) 6 Y o
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Remark 3.1. When « = 1, there is a family of solutions # = —In(1 — ax) to (1.6) for any
a € (0, 1). Straightforward computations show that the estimate in Lemma 3.1 is indeed
optimal in general. However, given some extra information, the estimate may be improved
slightly (see the discussion in Section 6 below for details).

Lemma 3.2. Concerning a semi-norm of G, we have the following estimate:

4 1 16 1
(3.9) 1GJ? < (&—6> /_1 |[(1—x2)G]’|2+;/_1(1—x2)62,
where
4 1
2 _ — 2 v 2N\2
(3.10) |G|? = 3/84(P4G)de /_1(1 X [(1—-x3)2G'1"G.

Proof. Multiplying (2.9) by G and integrating over [—1, 1], we have

1 1
[ ((1 _ x2) G)////(l _ X2)2G _ % / (1 _ x2) G2
(3.11) -1 * 1‘1
— 4/ (1=x*G)"(1-x*)G*=0.
-1

For the first term in (3.11), after integration by parts, one has
1
/ ((1 _ x2) G)//l/ (1 _ X2)2G
-1
1
=~ [ @610 -6 - 4x (1 =37 6]

= / =) (- 226G + 4 / (=¥ GY"x (1 - )G
-1 -1

and

[1 (1= 33 G)"x(1—x*)G = —/1 (1= ) G)'[(1 = x2)G + x((1 — x> GY']
-1 —1

3 1
=2 [ -6y,

It follows that

1
/ ((1 _ x2) G)////(l _ )CZ)ZG
(3.12) !

1 1
=f (1—x2)<(1—x2)26/)”'0+6f (1= )G
-1 —1
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For the last term in (3.11), we obtain
1

/ ((1 _ x2) G)///(l _ x2) G2

-1
1 1

=/ [—6G/+(1—xz)G”’](l—xz)Gz—z/ (1-x>2GG6'G"
-1 -1
3 ! 2N\2 2 A
- = 1-=x9)°G*G

2/

1 1 1
- —2/ (1-x2)(G?) — 5/ (1—x»2[G*G” +6GG'G"
-1 -1

1 1 1
— _4/ xG3 + l/ [(] _x2)2]///G3 +/ (1 _XZ)Z(G/)3
-1 6.J-1 -1
1
— / (1 _ x2)2 (G/)3.
-1
This and (3.12) show that (3.11) is equivalent to
1 1
| a=a-sray e s [ ja-soyp
—1 -1
24 ! 24 (12 ! 242 (13
(3.13) ——[(l—x)G —4/ (1—x2)2(G")? =o.
o J -1
Note that
1 1
6 [ 1a-x6yP -4 [ (-7 @)
B 1 B 2 1
(3.14) - 6/ (1 —xz)z(G’)z[l - -G’] + 12/ (1—x2)G2.
—1 3 -1
We deduce from (3.1), (3.13) and (3.14) that
1 1
(3.15) (ﬁ - 12)/ 1-x%)G? > |G)? + (6— i)/ (1 —x2)2(G")2.
o -1 o -1
It is easy to see that
1 1 1
(3.16) / I¢ —xZ)G]’|2—/ (1-x22(G")? = 2/ (1-x?)G>.
-1 -1 -1
Then (3.15) and (3.16) lead to that
@17 162 < (f—é)/ 11— x?)GIP + / (1—2%)G2. .
o

Corollary 3.3. If 2/3 < a < 1, any axially symmetric solution to (1.1) must be constant.

Proof. Using the facts that the first eigenvalue of Laplacian on S*is A; = 4 asin (2.1) and
the first eigenvalue of P4 is A1(A; + 2) = 24, we obtain from Lemma 3.2 immediately
that when o > 2/3, G must be constant 0 and hence u must be constant. [
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Proof of Theorem 1.1. We shall use higher order eigenfunctions in (2.1) to gain better
estimate for « and prove the main theorem. We first define the following quantity:

o0
4 167 ,
(3.18) Z[Akuk +2)- (10— =) e +2) - = | 1.
From (2.16), Lemma 3.2 and the definition of G,, we can check that

1 4 1
= [ A= -s265 62— (10- 5 [ 1 -5 6P

1
—o [ a6
o J1
1 1
<1622 (10- o) [ a-xd61P -2 [ -6
3a/ J4 o J
8 1
+(36+— ﬁ2/ (1— x2) F2
-1
16 S 4p2
< (5—16)/1|[(1—x )G +(36+a) e
_16p 1
=[O 2)p (516 (5 )]
In what follows, we assume that 8 # 0. From (2.13) and (2.14), one has
(3.19) 0<pB< é

By (2.3) and (2.15),

1
[La—-x2)F? [oe(k,i + 2Xk) /_1

1 2
b = a,§/ (1-x*)FZ = —x?)? F,;]
-1

2k +3)(k+1)(k+2) 8 A 4 2
= 8 [a(ki+2kk) 75(1_“/3)] ‘
Hence one has
5 82k +3) (1 2
(3.20) bk§m<——ﬂ) k=2

In particular, we obtain

(3.21) ; laz| < (é - ﬂ).

It follows from o > 1/2 and (3.18)—(3.19) that

(3-22) ’3—13 (“%)(5_92%
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B (e

(3.23) a < 0.5732.

and

which indicates that

From (2.16), (3.18) and (3.21), we derive that
Tl )ﬂ+(——16)(5—§)]

~(10-55) - m]Z(tz)bk

- ( ) [0

) [ [0 —mere - - ]
)

1
Sa
( sl 6-0) =552

I |
A
—

| V

Then one has
28(55 195 5) 5 (5- 15+3)
af(o+2) s+ - 205+ o)
After some straightforward computations, we obtain
1 24 1,14
#(5-2) (5529 + 2 (52 +2)]
1 56 1\ /1
= (=)o (5 +21) =55 (154 ) (G )] =0

From (3.19) and (3.22), we conclude that

(3.25) 0< (5—5)(%—24)+$(%+21) < 10.

(3.24)

The first inequality suggests that
o < 0.5444.

Furthermore, it follows from (3.22)—(3.25) that

2002 10136) 325

(3.26) - —ﬂ 20(—,3— ey ) P b
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Next, we fix an integer n > 3. After some computations, we get

S (b= hor — o= )i + 257

k=3
# (e =104 2)[TF (5 ) - 54~ 5]
];[Ak(kk—i—Z) (10_%)(,\]{4_2)_%][)%

(o 2)s 4 (2 10)(5- 1)

Hence, we have

0= 5 (5 3) (g =6~ hn) 457 (s - 124 )

+ %(A,,H 10+ %) a2 +kZ (xnﬂ A+ %)(Ak +2)b2.

By (3.20), one further has

(3.27) 0= T2 (5= 3) (1o ~6=2en) + 13 £ (B —12+ )

) Pl ) )

where

n
= (an A+ %) 2k + 3).
k=3

A straightforward calculation shows

4

4
—14) 90 — (1 + 16) ——
150 ) nt1 + 90— (n416) 7=

A2+1+(

Therefore, (3.27) is equivalent to

68 32 1 2
0=10B(5- —)(— — 6= 1) + 582 (31 — 12+ =) 436, (- —B) .
15« Sa o
Here A
Cp = 51 — TAn+1 +20+ (/xn-&-l +5—n).
We use the same technique as in (3.24) to obtain
Sﬁ[

8 1
= 5 (I5hs1 +136) — — 180 3OAn+1]
(3.28) 3

> (é _ ﬂ)[sﬁ(nm —124 53—2) 36 (— -8)]
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When n = 3, we derive from (3.26) that
B

0< (é — ,3) (ﬁ +18 E> < RHS of (3.28).

A direct calculation suggests that

139 4 /17281
0o — =

32
(329) 510

a3.

Next, we consider « € (ot 41, 0tp) With f(a,) = 0and a,, € (1/2, 1), where

8 1 1
(3.30) fola) = —— + 136 — — 180 - 151,,“(2——).

o o [07
It is readily checked that

folopy1) >0 and  fr4q(ay) <O.
We now claim that there exists some d, > 0 for n = 3 or 4, such that for @ € [0ty 41, ),

1 dy

——ph <

(3.31) o« 7 A2

’

32,3 3C_n+1 dn

An+2

Note that f,+1(®) < fu+1(otn+1) =0 when o € [0, 41, 0,). We see from (3.28) and (3.31)
that

5 1 32 _ 1
632022 @z (L p)[1580m0n -9+ 22 550 (2 -p)] >0
o o o
There is a contradiction.

We are ready to prove assertion (3.31). First, we study more accurately the bound
in (3.26) when « € [0y 41, 0ty). Let

o =33 (1-5,) 6~ 2)

o) = (5- l)(% —24) + 1(51—4 + 21).
From (3.22)—(3.25), it follows that

and

é _B< [2,3 (% + ?) - z—g (15 + é) é]_l 2(otns1) B
(3.33) < [2h(an+1) (222,, + ?) - %(15 n an1+l)an1+l]_12i}(an+1)ﬂ

= ynB.
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Then we derive from (3.28), (3.30) and (3.33) that

5 1 32 /1
P i@ = (= B)[158 G — 9+ 28 32, (L - p)]
(3.34) ’ al 3% . 1
= B> —B)[15Gnt1 =4+ = =367 | = 0nB(= - B).
where
32 3
=15 a1 —4) + = —y, (= A2, — 214, 60 A 5—
w, (An+1 )+Oln J/(2 n+1 +1+ +505n+1( +1+ ”))
‘= An — Buyn.
Thus,
1
(3.35) L _IB < an(an+1).
o 3wy,

One can use (3.35) to prove the first claim in (3.31). Then the other one is ensured by
some calculations.

More precisely, if n = 3, then o € [og, a3). After some computations, we find that
y3 < 0.186, and so

1 25.553 x 0.137  3.51
< < .

3.36 - = _— < —
( ) o /3 - As - A5
Furthermore,
3.51
(3.37) Ay — ——— B4 > 600.3 — 1682.9 x 0.0064 > 589.5 > 0.
Ash(os)
Combining (3.32) and (3.37), we find
58 58 1 3.51
3.38 0=— > — >(—— Ay ———B 0,
(3.38) 3 Jalas) > 3 Ja(a) > (oz ,3)[ 4T Tohia) 4] >

which yields that o < oy4.
Similarly, if n = 4, then « € [a5, ®4). Here

473 + +/209329
s = —————-
> 1800
One has y4 < 0.249, so
1 23.0x0.298  6.855
N ,3 < <
o - /\6 - )&6
and
6.855
As — ———— Bs > 811.27 — 3383.58 x 0.095 > 489.5 > 0.
Aeh(as)
The previous arguments show that o < as.
This proves Theorem 1.1 with @ € (% w ~ 0.51695, 1). The range of « for

Theorem 1.1 to hold can be slightly improved to 0.5145 < « < 1, see Section 6 for dis-
cussions. |
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Remark 3.2. The approach used in the case n = 3 or 4 for (3.31) does not work for n > 5.
The main obstacle is that ¢, contains a term involving —A2 1 1» SO we cannot guarantee that
the value of w,, is positive for n > 5. Let us take n = 5 as an example. Some computations
indicate that ys < 0.2994 and then

w5 = AS — Vs BS o —632,

which shows that there does not exist such a d5 that the assertion (3.31) holds for n = 5.
Therefore, it seems impossible to get a contradiction similar to (3.38).

Next we shall show Theorem 1.2 as an immediate consequence of Theorem 1.1 and
invariance of §4,5 under a family of conformal transformations ¢p ;, P € S4.t >0, of S*.
Following [5], we define ¢p ;, for P € S*and > 0, to be

op,i(§) = & 1= np' (ty),

where y = mp(£) is the stereographic project of S* from P as the north pole to the
equatorial plane. In particular, we denote ¢; = ¢p, ;, where Py = (1,0,...,0).
Givenu € H?(S*) and ¢t > 0, let

5
v(€) = u(¢:(§) + 5 Infdet(ddy)]. &€ s*.

We have the following invariance property of 4,5 under the transformation u — v.

Proposition 3.4.
Fajs() = Jass(v).  Yue HA(S*), 1> 0.

Proof. The invariance of

2
—/ u(P4u)dw+6/ udw
5 4 4

can be proven similarly as part (a) of Theorem 4.1 in [5]. We only need to check that

5 5
(3.39) (/8464" dw)z—;(/s4 g dw)2 = (/8464“ dw)z—;(/s4 e4“§,~ dw)z.

Indeed, after a proper rotation, we may assume that P = Py. Letting

112
142
we have . .
1 —a2é,
L N L YY)
14+a& l1+ak
and

— 2
| det(de,) |4 (8) = % -

1+a.§1

| det(dgp ) [74(E) = iyl
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Hence,

(/84 e dw>2 - (/§4 e, dw)2
= (/84 U@ )| det(d¢,)(g)|1+1/4dw)2— (/S4 DO der(dp) (8)| 1148, dw)2
= (/84 e*|det(dg; )1 (€) afw)2 - (/84 et |det(dp; T4 (B dw)2
= ( /S et det(dg DI E 1—g) dw ) ( /S et det(dg DI TVAE) (1 +81) dw)
- (/S e* (1 —§1)dw)(/g4 e*(1 +§1)dw)
- (/84 et dw>2— (/84 e dw)z,
and for i =2,3,4.5,
/84 M E dw = /84 GO | det(dgy) () TV dw = /S4 e E dw,

Therefore, (3.39) holds. This completes the proof. ]

When P = P, is chosen to coincide with the direction of the center of mass of e*¥,
we also observe from the above proof that

/e‘“’éidw:/ e4”§,-dw=0, i =2,3,4,5,
s4 S*

and |
4v _ 4u P —

_fS‘* et §1 dw ‘
Js e¥ dw

For any u € H?(S*), there is a ¢p_; such that

if we also choose

a =

o) = u@pa(€) + o In| detldgp,)l. § €5,

belongs to £. Moreover, we have that §o (1) = J, (v) for v € £. Then Theorem 1.2 follows
immediately from Theorem 1.1 and Proposition 3.4.

We note that a similar but more general Szego limit theorem for u € H ' (S?) is proven
in [3] using a variational method with a mass center constraint, in combination with the
improved Moser—Trudinger inequality in [14]. In general, a similar Szegd limit theorem
should be true for S”, n > 5 with o = 4/5 replaced by « = n/(n + 1), provided that an
improved Beckner’s inequality could be proven for @ < n/(n + 1). Note that a counter
part of Proposition 3.4 always holds for general S”.
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4. Pohozaev-type identities and classification result

Pohozaev-type identities are very powerful tools in studying the symmetry of solutions to
semilinear elliptic equations. They play a vital role in proving classification results (see,
e.g., [11,27]). Recently, Shi et. al. [28] obtain several Pohozaev-type identities and apply
them to prove the uniqueness of axially symmetric solution of mean field equation on S?
for «.. In this section, we first list several useful Pohozaev-type identities corresponding to
solutions of (1.1), and then we prove Theorem 1.3 based on these identities.

We now prove Proposition 1.5. Motivated by [4, 19], since (1.1) is invariant under
adding a constant, we can normalize fs4 e** dw = 1. Then, (1.1) becomes

@.1) aPsu +6(1 —e*)y =0, &eS*
Multiply (4.1) by &;, i = 1,2,...,5, and integrate to get

a/ (Pyu) & dw :6/ eME dw.
S* S

Note that —A&; = A1x; = 4xpand Py& = A1 (A +2) &, fori =1,2,...,5. We further

have
a/ u&idw=/ eM & dw.
sS4 sS4

On the other hand, let

Then (4.1) can be written as
4.2) Piu+ 6= Qe*".

By the Kazdan—Warner condition (1.5), one obtains

0= 24(1—1>/;4(Vu,V§i)dw=—24($—1>/;4uAEidw=96(é—1)/%4u§idw.

Therefore,
4.3) / uédw=0 and / eMEdw=0 i=12..5,
S4 S4

whenever o # 1. Hence, we can conclude Proposition 1.5.

Remark 4.1. The identities in (4.3) hold true for

nu

P, -1l ———) =0, e s",
aPyu+ (n )( fS,,e"”dw) §
for all n > 2 by the same method. Here,
(" 2)/2( A+k(n—k—1)), for n even,

P, =
(=A + ((n — 1)/2)2)1/2 1‘[(" DA+ k(n—k—1), fornodd.

Note that Theorem 1.3 can be proved by the integral identity (2.16). Here we provide
a more essential proof using Pohozaev-type identity.
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Now we focus on axially symmetric solutions to (4.1). It is readily checked that u
satisfies

44  a(d—=xH[1-=xD2" +6(1-x>)(1—-e*) =0, xe(-1,1).
Multiplying (4.4) by F, = %(sz — 1) and integrating, we get

1 1
(x/ [(1-x32u'1"(1 —xz)F2—6f (1—x%) et F, =0,
-1 —1

or
a/ (Pyu) F> dw —6/ e Fy dw = 0.
sS4 S4
Note that
a/ (Pyu)Fr dw = Ol/ UuPsFrdw =al(Ay + 2)[ ulF, dw = 12001/ ul, dw.
S4 S4 sS4 S4
Therefore,
1
4.5) / ubF,dw = — et Fy dw.
S4 20 S4
Multiply (4.1) by (Vu, VF,) and integrate,
a/ (Psu)(Vu,VFE) dw = 6/ (e*™ —1)(Vu, VF,) dw
S4 S4
1
= 6/ — (Ve ,VF,) —6/ (Vu, VE) dw
s+ 4 S
1 1
(4.6) =6/ (——e4” AF2+uAF2) dw =3/ (5--) e Fy dw.
sS4 4 sS4 (04

Direct computations show that in the spherical coordinate
Vu = ((1-x*u’,0,0,0), VF, =((1-x2%F},0,0,0),
(Vu,VF) = gii(1—x>*u' Fy) = (1 -x*)u'F;,
which together with (4.6) imply that

5 1
4.7 / (Psu){Vu,VFE) dw = E[ [(1—x3%u1"x (1 —x?*u.
S4 -1
Applying integration by parts to (4.7) we get
15
[ (P (. V) o = ) [(1 — 2PV [ =)+ (1 - 2]

45
=16 |((1 —x?)%u'))?

Hence we obtain the following Pohozaev-type inequality for solutions to (4.4):

—(5— é)/_ll(l —x%) e F,.

1
438) / (1= 2Py =
-1 50{
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This is equivalent to (2.16). When o = 1/5, it follows that

1
[ a=—suye —o
-1
‘We further have
(1=x»%u") =0, xe(1-1).
Therefore,
1-=x>*u'=C, xe(l-1)

for some constants C. Since the term (1 — x2)u’ is bounded on (-1, 1), we have C = 0.
Finally, u’ = 0, and so u = constant, x € (1—, 1). Theorem 1.3 has been proven.

5. Bifurcation

In this section we shall obtain results on bifurcation curves to (1.6) in general for ¢ > 0
and in particular for o € (1/5,1/2). We shall first apply the standard bifurcation theory to
analyze the local bifurcation diagram. Let us recall the following general theorem.

Theorem 5.1 (Theorem 1.7 in [7]). Let X,Y be Hilbert spaces, V a neighborhood of 0
in X, and F:(—1,1) x V. — Y a map with the following properties:
(1) F(t,0) =0foranyt,
(2) 0;F,0,F and E)%,x F exist and are continuous;
(3) ker(dxF(0,0)) = span{wg} and Y /R (5 F(0,0)) are one-dimensional;
(€)) af’xF(O, 0)wo & R(3 F(0,0)).
If Z is any complement of ker(dx F(0,0)) in X, then there exist g > 0, a neighbor-

hood of (0,0)in U C (—1,1) x X, and continuously differentiable maps n: (—¢&¢,09) = R
and z: (—&g, 80) — Z such that n(0) = 0, z(0) = 0 and

FTHO) N U\ (=1, 1) x {0}) = {(n(e), ewo + £2(€)) | & € (—€0, £0)}-

Recall that the shape of the above local bifurcating branch can be further described by
the following theorem (see, e.g., Section 1.6 in [20]):

Theorem 5.2. In the setting of Theorem 5.1, let  # 0 € Y ! satisfy
R(0xF(0,0) ={y €Y [ (y.y) =0},
where Y 7V is the dual space of Y. Then we have

(32  F(0.0)[wo. wol, ¥)

(0) = — .
O = = w032 F 0. O)wo. v)

Furthermore, the bifurcation is transcritical provided that 1/ (0) # 0.
Note that critical points of [, (1) satisfy the following, with p = 6/«:
4 e4u

(51) (1 _x2) [(1 _XZ)ZM/]/// + p(l —_xz)(l — EW) = 0, X € (—], 1)



C. Gui, Y. Hu and W. Xie 378

Let
V= {u e H*(SY :u = u(x), /S4udw =0},
W= {ueLz(S4):u = u(x), /S4udw=0}.

To apply Theorem 5.1, we define a nonlinear operator 7:R x V — W as

e4u
S4

Obviously, the operator 7 is well defined. After direct computations, one has

0T (0,00 = Py — 4pé.

Note that P4:V — W is surjective and the kernel of Py is trivial. Thus, P4 is invertible.
On the other hand, in view of Pqu = [(1 — x?)%u']"”, letting u(x) = > po, cx Fr(x), we
readily check that

00 o0
P4u=Zkaka(x)’ P;1u=ZA;1cka(x),

k=1 k=1
where B
Ak = Ar(Ax +2), with A = k(k + 3).
Define
F(p,u) =u —i—pP[l(l — fS4j+dW> and 9(u) = P4_1<1 — f§4j+dw>.
Let § denote the closure of the set of nontrivial solutions of
(5.2) F(p,u) =0.

Lemma 5.3. Let pr = 4(?;131))!! for k = 1,2,3,... Then the kernel of 0,7 (px,0) is
1-dimensional, and

(5.3) ker(0y, T (px, 0)) = span{ F}.

Moreover, the range of the operator 0,7 (pi, 0)) is given by
1
64 ROTEe0)=foeL2C1D: [ (-xe =),
-1

and it has co-dimension 1. In addition, we have

Proof. We can choose
X=VandY =W.

It is easy to compute that

1
04T (0. 00b = Pap—4pid. 90T (01 0 (o) = —1606> + 16k /_1(1 ey
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Then (5.3) follows from (2.1). From the orthogonal property (2.2), we deduce that
R (0, T (pr, 0)) coincides with the orthogonal of ker(dy, T (o, 0)).

Note ker(d,, ) = ker(d,, 7). Differentiating d,,7 with respect to p at the point (pg,0), we
get
af),u(‘r(plw O)¢ = _4¢’

which, combined with the fact that f_ll (1 —x%) F2 # 0 gives (5.5). n

For k € N, the following local bifurcation result is an immediate consequence of
Theorem 5.1 and Lemma 5.3.

Theorem 5.4. Let py, = 4(]6:31))', for k =1,2,3,... Then the points (p,0) are bifurcation

points for the curve of solutions (p, 0). In particular, there exist &g > 0 and continu-
ously differentiable functions py: (—eo, €9) — R and Yi: (—g9, o) — {Fi )" such that
Pk (0) = pr, Y (0) = 0, and every nontrivial solution of (5.1) in a small neighborhood
of (pk,0) is of the form

(ox (8), eFy + e Y (¢)).

In particular, when k = 2, the bifurcation point (p2,0) = (30, 0) is a transcritical bifurc-
ation point. Indeed, we have

1 2\ 3
(5.6) p'2(0)=_60f—1(1—x)}72=_

1
Jo,(1—x2) F}
Corollary 5.5. Letaj = % for k =1,2,3,... Then the points (ay,0) are bifurca-
tion points for the curve of solutions (a,0) of (1.6). Moreover, when k = 2, the bifurcation
point (1/5,0) is a transcritical bifurcation point.

Remark 5.1. When k = 1, the bifurcation leads to the family of solutions u = —1In(1 —ax),
a € (—1,1), and p = 6. It is clear that (pg, 0) is not a transcritical bifurcation point for k
odd since Fy, is an odd function and p’(0) = 0 in this case. It should be true that (o, 0) is
a transcritical bifurcation point for k even, we only need to check if f_ll (1-x>)F k3 #0
in this case, which can be confirmed for small k numerically. However, in this paper we
only need to use the transcriticality of (pz, 0).

In order to analyze the global bifurcation diagram, we employ a global bifurcation
theorem via degree arguments (see [20,26]) and also exploit special properties of solutions
to (5.1).

First, we recall a global bifurcation result (see Theorem I1.5.8 in [20]).

Proposition 5.6. In Theorem 5.4, the bifurcation at (pg,0) is global and satisfies the
Rabinowitz alternative, i.e., a global continuum of solutions to (5.1) either goes to infinity
in R x ‘W or meets the trivial solution curve at (pp, 0) for some m > 1 and m # k.

Next we state and prove the following more specific global bifurcation result regard-
ing (5.1).
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Theorem 5.7. (1) For k > 2, there exists a global continuum of solutions B,j Cc S\
{(p,0), p € R} of (5.1) which coincides in a small neighborhood of (px,0) with

{(ox(e). e Fi + ey (). e < 0}

The set 582' is contained in N» := {(p,u) : p > 30, u € L?(—1,1)} and is uniformly
bounded in L?>(—1, 1) for p in any fixed finite interval [pm, pa] C (30, 00). Further-
more, !B,j satisfies the improved Rabinowitz alternative, i.e., either B; extends in p
to infinity, or meets the trivial solution curve at (pm, 0) for some m > 2.

(2) Similarly, for k > 2, there exists a global continuum of solutions 8B," which coin-
cides in a small neighborhood of (pg,0) with {(px (¢), eFy + &Y (e)),e > 0}. When
k > 3, the set B, is contained in N, and satisfies the boundedness for p in any fixed
finite interval [pm, pp] C (12, 00). Furthermore, the improved Rabinowitz alternat-
ive holds.

(3) Moreover, B = {u :u(x) = v(—x),v € B, } when k is odd.

(4) The global continuum of solutions 85 of (5.1) must be contained in the set

6 x 1800
473 + /209329’
Furthermore, the set 85 is unbounded in L*°([—1, 1]), and there exists a sequence

(p®, u®) e B3, k=1,2,..., such that p®) — 30 and ||u(k)||Loo([_1,1]) — 00. As
an immediate consequence, there is a nontrivial solution to (5.1) for any p € (12, 30).

Ny = {(,o,u) pe ( 30) 5 (12,30, u € L3(~1, 1)}.

Proof. To prove (1) and (2), we only need to first apply the general global bifurcation
theory and then use Theorem 1.3 to show !B: and B, are contained in N> := {(p,u) :
o> 30, u e L?(—1,1)}.

A general compactness result (see Theorem 1.1 in [24]) says that the solutions to (5.1)
can only blow up in L*°([—1, 1]) at p = 6k for an positive integer k when (5.1) is con-
sidered as an fourth order Q-curvature type equation on S*, and k is the number of blowup
points. (See also Theorem 4.3 in [16] from a view point of constrained inequalities.) Since
an axially symmetric solution can blow up at most two points at a finite parameter p, we
must have k = 1, 2. Therefore, this leads to the boundedness of !B,j ,fork > 2,and of B,
for k > 3, for p in any fixed finite interval [p,,, par] C (30, 00).

To prove (3), we note that u(x) = v(—x) is a solution to (5.1) if so is v(x), and
u(x) is not an even function for u € {u : u(x) = v(—x),v € B, } near the bifurcation
point {(px, 0)}. Therefore, by the local bifurcation result Theorem 5.4, we know {u :
u(x) =v(—x),v € By} is different from B, and hence coincides with 58,:" near {(px,0)}.
Then (3) follows immediately.

To prove (4), we first use the transcriticality (5.6) to get 8, N N; # @. By Theor-
ems 1.1 and 1.3, we conclude that B85 C N;. Since there is no other bifurcation points for

p between #232@ > 6 and 30, and p = 12 is the only blowup point, we conclude

that 85 must go to infinity in ‘W and in L*°([—1, 1]) at p = 12.
This completes the proof. u
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Remark 5.2. The above theorem implies that B85 does not coincide with other bifurc-
ation branches. It would be interesting to see whether the solution branches bifurcating
from different points (o, 0) coincide with each other or not, i.e., whether B = SB;; or

i)’]:r = B,, in general for any m # k, or particularly for m = k + 1 (mod 2). Also it is
not clear whether !B,‘: = Bk_ for some k > 3.

Proof of Theorem 1.4. Theorem 1.4 follows immediately from Theorem 5.7. This leads
to the existence of a nontrivial solution to (1.6) for & € (1/5,1/2). ]

6. Discussion

1 473+4/209329 ) Note

In this section, we shall discuss some ideas to close the gap « € (3, 1800

that Gui and Wei [15] used an induction method to show
1 4
——p<— foralln >4,
o An

with the sequence A, — oo. So it follows 1/a — 8 — 0 as n — oo, which leads to a
contradiction. Following the arguments in [15], we divide (3.28) by 4,41 to get

5 8 1
P [—— + (15Ap41 + 136)— — 180—30/Xn+1]
3An+1 o? o

= (A0 ) sG]

A direct calculation shows that

6.1)

(6.2) LHS of (6.1) < 100'8,

n+1

which is the basic ingredient for the induction procedure in [15]. Next, the major task is
to find an appropriate d so that

1 d
——p < — foralln > nyg.
o An
However, we do not know what the initial value n¢ should be, which is dependent on the
choice of d. We assume, by induction, that

1 d
6.3 ——f<—
(6.3) " B = .
for some n > ng. Then
1 d
(6.4) ——p=
o An+1

must hold. It follows from (6.3) that

2 32 )_3En d].

RHS of (6.1) > (é —,B)[Sﬂ(3— ! b

J’_
Ant1 Sad,q
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To ensure (6.4), it suffices from (6.2) to prove that

12 32 3¢, d 100
6.5) 5B(3 - ) £> D
Ant1 Saduq Ant1 An d

For n large, this requires

15d —100  3d?
(6.6) _— > —

o 2

for @ € (%, 473+1— %89329). However, there does not exist such a constant d for (6.6) to

hold. Hence, this method does not seem to yield the optimal constant & = 1/2 for this
problem.

Remark 6.1. We also intend to replace denominator in (6.3) and (6.4) by )LZ and AZ 1
respectively, for some ¢ > 0. For this purpose, we only need to slightly modify the previous
procedure. After some calculations, (6.5) becomes

= t—1
5/3(3_ 12 32 )_ 3¢, izlooln 8.

An1 o SaAnp1/ Apyr A d
Therefore, we need to show that for @ € (%, 473+1— V8§89329) and n large,

1 t+1 2t 3d2
& [ISdAn - 100/‘\‘" ] Z Tkn+1 )Ln +0n(1)’

which suggests that ¢ = 1 is the best choice, since A, — 0o as n — oo.

It is worth pointing out that the inequality (3.17) ensured by Lemma 3.1 plays an
important role in the proof of Theorem 1.1. In view of (3.8), we may want to estimate M
more accurately by considering

1 4
6.7) M= max G'(x)= —(1 - —e4">.
xe[—1,1] o 3y

To this purpose, first, we observe, due to G'(x) < M < 1/«, that

1 1
6.8) (-0 =6 = —(1+x), xel-Ll]
This leads to

(6.9) u'(x) x € (—1,1).

- < <
a(l +x) — ~a(l—x)’

Assume, without loss of generality, #(0) = 0. Then one has

1
(6.10) u(x) > ——1In2, thatis, e** >27%/¢
o
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We next estimate y from above. Note that ¥ = —In(1 — ax) is a solution when o = 1.
By some computations, we can see that (6.8)—(6.9) cannot be improved, and there is no a
priori estimate for y. However, if we assume

6.11) 1—aB >0,

then we can use (2.14) to estimate y. Precisely, take a constant a such that

(6.12) 1—a®>=c(1—aB), ce(0,4/5).

Then

(6.13) i(1 —af) < 2 /a(l —x) (@ —xH (1 —x)"¥* + (1 -4d?).
5 Y Jo

Since « € (0.5,0.517), one has
.:a_z 2 2y o —4/a ¢ 2 201 =T
I /0(1 ) (@® = x*)(1 - x) s/o(1+x)(a ) (1 - x)
2
_ Zlis (1 —a)5 —1).

It follows from (6.12) thata = /1 — ¢(1 — «f), and so
1 l+a 2

1—a c(—af) ~c(—ap)

We further compute directly

_ 2601 — (1 — ap)]

which, joint with (6.13), lead to

“127[1 —c(l —ap)]

(6.14) Vf[(g_c)(l_“ﬁ)] 15[c(1—ap)ls

We see from (6.7), (6.10) and (6.14) that

U] 5¢5 /4 (I—ap)® 7 1
(6.15) M_a[1—2?(§—c) —l_c(l_aﬂ)].—E[I—B(a,ﬁ)].

We conclude from the above relations that the upper bound of M can be slightly improved
in terms of B(a, 8) > 0 by choosing, e.g., ¢ = 2/5, given 8 # 0 and 1 — af > 0. Thus,
one has

1 —aﬁ)‘s'

(6.16) BleP) = 5557 35 2ap

‘We next will use some notations from Section 3, and assume that

(6.17) 0.5165 < a < 0.51696.
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Note that
(6.18) B > h(0.5165) > 1.3375.
It follows from (3.33) and (6.11) that

(6.19) 1> af > 0.5165h(0.5165) > 0.69057
and

1
(6.20) — =B <0.2558.

o

Lett = 1/a — B. We now estimate the lower bound of ¢. Noting that
fa(a) < f6(0.5165) < —13.764, forn > 6,
we derive from (3.28) and (6.18) that

5 5 Bs , Bs ,
- 0.5165) > — > At — — 17 > Agt — t-.
3 Je( ) 3 Jela) > Ag 3 ' ~ 13375

Noting that ¢ > 0, a direct calculation indicates that
(6.21) t > 0.253,
which joint with (6.19) and (6.20) suggests that

0.2556 B(a. p) = 1 (1-aB)®
54273+ 2x0. 69057) - 5427 34 2ap
(0.5165 x 0.253)°

>
5527
On the other hand, we need to modify some inequalities in Section 3 by exploit-
ing (6.15) instead of (3.1). First, inequality (3.15) becomes

7.85x 10710 >

(6.22)

> 1.132x 10711,

——12 / (1-x1)G2> |G)? + (6——(1—3) / (1 - x2)2(G")2.

Here, B denotes B(w, 8). Similarly, we have

67 = (Ra-m-o) [a-ere+ a6

and

- i (3 +2) = (10~ 44;23)@,6 +2)— @] b
k=
( —10B 16) /_11 11— ) GT P — [6(44;53 _6) B 16+8B] 4>

o 15
S R N
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From (2.16), (3.21) and (6.23), we derive that

3 (b=t — 2B Y G+ 2087

P 15«
4+ 2B\r168 1\ 8, 8,
(=104 = =) S5 (5 )~ 587 - 4]
o0
4+42B 16 + 8B
- [Ak(kk +2)—(10- ) O +2) - —]bg
3a o
k=3
168 2+ B 16— 10B 1
e (G R G U [CRE |
One further obtains that
168 1\ /68 —56B 8 32+ 16B
0<—"L(5——)(———=—6-1 2 B2 (3Apyq — 124 2 27
= 15< a)( 15a ”+‘)+15’8( ntl N )
8 /1 2 4+2B
(6.24) +2—5(&—ﬂ) [7(xn+1—10+ - )+cn,3],
where 1 4428 4+ 2B
_ 12 _ _ .
c,,,B_ZAn+1+( = 14)An+1+90 (n+16)
Note that (6.24) is equivalent to
1\ /68 —56B 5 32+ 16B
0< 10,3(5—5)(T—6—A,,+1) +58 (3A,,+1 124 T)

_ 1 2
=+ 36‘,,,3(— — ,3)
o

. 1 4+ 2B
n,B = 5A5+1_7An+1 +20 + 5o (An+1+5—n).
Therefore,
7[(323 —8)— + (154,41 + 136 — 112B) — — 180 — 3oxn+1]
(6.25) o o

= (2= B)[58(3mr — 124 ZEEE) 36,52 - p)]

When n = 3, it follows from (6.20) that

16(2 + B) 12(2 + B)
— =)

RHS of (6.25) = (é - /3) B [360 + —0.255 (648 n

> (é —B) B(194.76 + —12'94S i B)).
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Combining (6.22), (6.21) and (6.25), we conclude

12.94(2 + 1.132 x 10711)
o

12942 + B
0.253,3(194.76+ %)

) < tﬂ<194.76 +

56 132B—-8 556—112B
<P [ + . 1020]
3 a? o
58732x785x10719 -8 556—112x 1.132 x 107!
<2 + ~1020].
3 a? o
Then one has
a < 0.511.
This is a contraction with (6.17). Consequently,
a < 0.5165.
We now assume that
(6.26) 0.516 < @ < 0.5165.

Similarly, one has

1
——B<026118, B>13341 and ¢ > 0.2492.
o

Furthermore,
9.05x 1071 > B(a, 8) > 1.13 x 10711,

Then we find

32x9.05x 10710 -8 556—112x1.13x 10711

0< 3 +
(07 (07
12.8(2 + 1.13 x 10711
— 1020 — 0.6 x 0.2492[190.8 + - ]

A direct calculation shows that
o < 0.512.

This yields a contradiction.
Repeating previous arguments, we obtain a contradiction for the following ranges of «:

a €[0.5155,0.516), « €[0.515,0.5155) and « € [0.5145,0.515).

Hence, o < 0.5145.

Unfortunately, it does not seem possible to improve the estimate of o significantly
in this way and recursively, due to (6.22), let alone to obtain the possible optimal con-
stant o = 1/2.
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