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Abstract
In this paper, we prove that if u is a solution to the Liouville equation

Au+e® =0 in R? (0.1)

then the diameter of R? under the conformal metric g = ¢2*8 is bounded below by 7. Here
8 is the Euclidean metric in R2. Moreover, we explicitly construct a family of solutions
to (0.1) such that the corresponding diameters of R2 range over [, 2m). We also discuss
supersolutions to (0.1). We show that if u is a supersolution to (0.1) and fRZ eXdx < oo, then
the diameter of R? under the metric ¢2*§ is less than or equal to 27 . For radial supersolutions to
(0.1), we use both analytical and geometric approaches to prove some inequalities involving
conformal lengths and areas of disks in R?. We also discuss the connection of the above
results with the sphere covering inequality in the case of Gaussian curvature bounded below
by 1. Higher dimensional generalizations are also discussed.

Keywords Isoperimetric inequality - Liouville equation - Gaussian curvature - Conformal
metrics
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1 Introduction

In this paper, we study some geometric properties of the conformally flat Riemannian mani-
fold (M, g) = (R?, €28), where u being considered is either a solution or a supersolution to
(0.1) and § is denoted as the Euclidean metric. By u being a supersolution to (0.1), we mean
that

Au+e® <0 in R (1.1)
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The research in this paper consists of the following parts.

1.1 Diameter estimates and examples for solutions to (0.1)

It is well known that if  is a solution to (0.1), then either vol, (R?) = 47 or volg (R?) = oo,
where g = €28 and vol ¢ denotes the volume function under the meric g. In the former case,
u must be a radial solution up to translations. This was first proved in the seminal paper by
Chen-Li [6] using the moving plane method, and later by Chou—Wan [8] using Liouville’s
formula (see [26]): any entire solution u to (0.1) must be of the form

21"
L+ [f @
where f is a meromorphic function in the complex plane, f has only simple poles and f' is

nonvanishing. Such f is called the developing function of solution u to (0.1). In particular,
if f(z) = Az for some positive constant A, i.e.,

u(x,y)=1In (1.2)

21

— 1.3
1+ 22z2 (13)

u(x,y)=1In
then we call them the standard bubble solutions, for which g = 2“8 represent the scaled
metrics of the standard metric on the unit sphere after identifying the sphere with the complex
plane compactified at infinity.

Motivated by the above results, we are interested in studying the diameter of R? under
the conformal metric g = ¢2“§ for u being a solution to (0.1). Throughout this paper we use
diam g(Rz) to denote the diameter of R2 under metric g.

We first prove the following diameter lower bound estimate in Sect. 2.

Theorem 1.1 Let u be a solution to (0.1) in R2, then diam(R?) > 7 under the metric
2u
g =eMs.

We also prove a stronger version, see Proposition 2.2 in the section below, which indicates
that there are uncountably many pairs of points such that the conformal distances between
any of the pairs are bigger than or equal to .

Next, we construct a family of solutions to (0.1) such that the corresponding diameters
can be attained at any value in [, 277)..

More precisely, we show:

Proposition 1.2 Let u; be a family of functions given as
2e*

1 + 12 +2te*cosy + 2’

ur(x, y) = (1.4)

then for each t > 0, us(x, y) solves (0.1). Moreover, diamg(Rz) = 7 + 2tan~ ! (¢), where
— L2u;

g =eMé.

One can see from the above proposition that if 7 ranges over [0, c0), then the diameters of
R? corresponding to u; ranges over [, 27r). This is somehow interesting, since unlike that
the range of conformal volume is discrete regarding solutions to (0.1), it turns out that the
range of conformal diameter contain an interval.

Remark 1.3 Actually in our forthcoming paper [10], we can show if a solution u is bounded
from above, then up to translation, rotation and scaling, either u is radial, or u is given by
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(1.4). Hence we essentially proved when u has an upper bound, the range of diameter of R?
under 24§ is [, 27).

We also construct a solution in Example 3.2, where we show that the corresponding
conformal diameter can be greater than or equal to 2.

The difficulty of exactly computing the conformal diameters lies in two aspects. First,
generally given two points in R? and a solution u, there is no standard way to compute
the conformal distance between the two points under the metric g = 2“8, since there are
infinitely many paths connecting them. Second, generally it is not clear how to choose pairs
of points such that their conformal distances are approximating the conformal diameter of
R?. The method we use to prove Proposition 1.2 and illustrate Example 3.2 is by finding
the link between the conformal metrics with respect to solutions to (0.1) and the standard
metric on sphere, and we also employ some complex analysis ideas to carefully proceed the
argument.

1.2 Diameter estimates for general supersolutions

All the above results are obtained using complex function theory. However, from a geometric
point of view, (0.1) is equivalent to K = 1, where K is the Gaussian curvature of (Rz, 2),
where g = ¢248. Similarly, when considering supersolutions, (1.1) is equivalent to K > 1.
Note that (1.1) is also equivalent to Ricg > g, where Ric, is the Ricci curvature of (R?, g2).
This naturally reminds us of Myer’s Theorem in Riemannian geometry.

Recall that Meyer’s Theorem says that if (M, g) is a complete n-dimensional manifold
such that Ricg > (n — 1)g, then diamg (M) < m. This is not true for incomplete manifold,
and Proposition 1.2 actually serves as a counterexample since in such case Ricg = (2 —1)g
while diamy(R?) > 7 if t > 0.

Even though nothing can be said in general on diameter bound for incomplete Riemannian
manifolds, surprisingly, we can prove that if g is a globally conformally flat metric in R? with
Ricg > g and vol, (R?) < oo, then diamg (R?) < 27. We state this result in the following
theorem in PDE language:

Theorem 1.4 Let u satisfy (1.1). If we also assume that fR2 edx < o0, then diamg(Rz) <
21, where g = €248.

This theorem will be proved in Sect. 4, and the argument of our proof does apply Myer’s
Theorem in some situation while borrows the idea of proof of Hopf—Rinow Theorem. A key
observation is Proposition 4.2, where no finiteness of volume assumption is needed.

We note that given the assumptions in Theorem 1.4, we do not know whether or not the
27 upper bound for the conformal diameter is sharp. It is interesting to find a supersolution u
satisfying all assumptions in Theorem 1.4 such that the conformal diameter is strictly between
7 and 27, or to prove that the upper bound should be 7. So far we haven’t had an answer
yet.

1.3 Geometric inequalities related to radial supersolutions

We also study radial supersolutions to (0.1). This is essentially an ordinary differential
inequality problem. Let us define the conformal perimeter and area of balls in R? by
I(r) = faB, e'ds and A(r) = fBr e dx, where B, is the ball of radius r in R? centered at
the origin and ds is the length element. It turns out that many inequalities involving /(r) and
A(r) can be derived. We prove:
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Theorem 1.5 Let u be a radially symmetric function satisfying (1.1), and g = €**8 where §
is the Euclidean metric, then we have

voly(R?) < dn (1.5)
and
diamg(Rz) <. (1.6)

Furthermore, there exists ro > 0 such that | is increasing when r < rog and | is decreasing
when r > ro. Moreover,

max[(r) = l(rg) < 2m, a7
r>0
and
lim [(r) = 0. (1.8)
rF—>00
Also, for anyr > 0,
A(As — A) < 1> <47 A — A2, (1.9)

where Aso = [2 e dx. In addition, let R = R(r) = for P dp, then

b4
R(rg) < 7 (1.10)
Asxo(1 —cosR) < 2A, (1.11)
and
A 1 —cosR
-—> (1.12)
l sin R
Moreover, if r < ro, we also have
A .
7 <sinR. (1.13)
In particular, if r < ro, then
A(r) < 1(r), (1.14)
and if R > %, then
A
A> 7‘” (1.15)

Note that when u is a radial solution for the equality case (0.1), then (R2, ¢24§) becomes
the standard unit sphere minus a point, and /() then corresponds to the length of the latitudes
and A(r) corresponds to the area of the spherical caps. Then one can see geometrically that
all the inequalities (1.5)—(1.12) become equalities.

Let us make some comments of the proofs of Theorem 1.5. (1.5) can be derived from
either of the two inequalities in (1.9). (1.6) is proved using the idea of proof of Myer’s
Theorem and Proposition 1.4. (1.7)—(1.8), together with the second inequality in (1.9) are
proved analytically, while the rest of the inequalites are proved using geometric argument.
In particular, the first inequality in (1.9), (1.10) and (1.13) are all obtained by exploiting
the Heintze—Karcher inequality (see [21]), which gives a control of the Jocobian of the
exponential map starting from the boundary of domain in Riemannian manifold with strictly
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positive Ricci curvature lower bound. (1.12) is derived from Bishop—Gromov inequality,
while (1.11) is a consequence of (1.9) and (1.12). (1.14) is a consequence of (1.13), and it
can also be derived from Alexandrov inequality. All of these are presented in Sect. 5.

We also discuss some higher dimensional generalizations for radial cases in Sect. 6.

1.4 Connection with sphere covering inequality

Our study of supersolutions to the Liouville equation (0.1) is also motivated by the famous
sphere covering inequality recently discovered by Gui—-Moradifam [18], which is a very pow-
erful inequality that has been successfully applied to solve various problems on symmetry and
uniqueness properties of solutions of semilinear elliptic equations with exponential nonlin-
earity in R?. In particular, it was applied to prove a longstanding conjecture of Chang—Yang
[5] concerning the best constant in Moser—Trudinger-type inequalities, see [18], and has led
to several symmetry and uniqueness results for mean field equations, Onsager vortices, Sin-
hGordon equation, cosmic string equation, Toda systems, and rigidity of Hawking mass in
general relativity. References include but not limited to [9, 14, 15, 17-20, 24, 30, 33], etc.
A simple version of the sphere covering inequality states as follows:

Theorem 1.6 ([16, Theorem 1.1]) Let u; be a smooth function defined in a simply connected
domain Qg such that

Aup + ¥ > 0in Q, / 2 < Ax. (1.16)
Qo

Let uy be another smooth function defined in Qo and suppose that in a subdomain Q2 C Qg
such that

Ay + 22 > Auy+e®in Q, up > urin Q andu, = ujon 9. (1.17)

Then
/ e dx +/ e*2dx > 4. (1.18)
Q Q

This Theorem was first proved by Gui—-Morodifam [18], and later proved by Gui-Hang—
Morodifam [16] in a simpler but more intrinsic way. However, both proofs use the crucial
assumption (1.16), since (1.16) means that (€2, ¢2"18) is a Riemannain surface with K < 1,
where K is the Gaussian curvature. Only with this assumption, the following Alexander—Bol
inequality can be applied:

12(0Q) > 4T A(Q) — AX(Q), (1.19)

where [(92) is the conformal length of 3$2 under the metric ¢*“18, and A(S2) is the conformal
area. The inequality (1.19) is essential in both proofs of Theorem 1.6 in [16, 18].
The main step in proving Theorem 1.6 in [16] is the following theorem:

Theorem 1.7 ([16, Theorem 1.4]) Let (M, g) be a simply connected Riemannian surface
with w(M) < 4w and K < 1, where u is the measure of (M, g) and K is the Gaussian
curvature. Let Q be a domain with compact closure and nonempty boundary, and A is a
constant. Then if u € C*(Q) satisfying

—Agu+1§k62“, u>0 in Q

1.20
u=2~0 on 092 ( )
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Then

2
471/ tdp — A (/ e%m) < 47 () — u(Q). (1.21)
Q Q

In particular, if & € (0, 1], then
u 4
edu + n() > 7 (1.22)
Q

For the case when Gaussian curvature K > 1, the above result is no longer true. Actually
the Alexander—Bol inequality goes in the complete opposite direction, because of the second
inequality in (1.9). However, we can still say something. The following are the results we
proved:

First, we prove the following counterpart of Theorem 1.7 in the case when M is a closed
surface and K > 1. In fact, we prove a slightly more general version.

Theorem 1.8 Let (M, g) be a closed Riemannian surface with K > 1, where K is the
Gaussian curvature. Let |4 be the volume measure of (M, g) and Q2 be a domain with nonempty
boundary. If u satisfies

{—Agu +1<h@, u>0 in Q (123
u=20 on 0K2
where h(t) is a nonnnegative function such that
0 <h' () <2h(r), (1.24)
then
2
M(M)/Qh(u)du - </;2h(u)du> = hO)u(QuM \ Q). (1.25)
Moreover, if hg € (0, 1], then
/Qh(u)du + 10 (2) = n(M). (1.26)

In particular, if h(u) = Ae?*, then (1.25) and (1.26) become the following forms similar to
(1.21) and (1.22):

2
(M) / edp — ( / ez”du) < u(MHu(Q) — p*(Q), (1.27)
Q Q

and

/ Ay + @) > M. (1.28)
Q A

Note that when K = 1, then u(M) = 47 and hence (1.28) recovers (1.22). If K > 1, then
fQ e2"du + p($2) has a smaller lower bound, since (M) < 4.

The proof of Theorem 1.8 is motivated by that of Theorem 1.7, and the new ingredient is
the application of Lévy—Gromov inequality instead of Alexander—Bol ineqaulity. Similarly
as in [16], we also prove the dual form of Theorem 1.8, see Theorem 7.2 in Sect. 7.

The closedness assumption of M is crucial in Theorem 1.8, since it is crucial in either of
the two proofs of Lévy—Gromov inequality so far we have known, see [13] for the orginal
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proof by Gromov and [1] by Bayle for a different proof. As one can see from example 8.4 and
the comment right after, even for radial supersolution u, one cannot expect that (R2, e2“8)
can be completed as a closed Riemannian surface. Hence a sphere covering inequality for
the case K > 1 cannot be directly obtained from Theorem 1.8.

However, by the first inequality of (1.9) obtained in Theorem 1.5 and by a similar argument
in the proof of Theorem 1.8, the following counterpart to Theorem 1.6 for radial functions
is obtained.

Theorem 1.9 Let u; be a radially symmetric function such that
Auj +e* <0 in R2
Let uy be another radially symmetric function defined in R. If for some disk B, we have

Auz +e* > Auy +e*Vin By, up > ujin B, andur =ujon 9B, (1.29)

/e2“1+/ e2"22/ e dx. (1.30)
r r R2

The equality holds ifand only if (By, €2“18) and (B,, ¢**28) are two complementary spherical
caps on the unit sphere.

then

Similarly, we state the dual form for Theorem 1.9.
Theorem 1.10 Let u; be a radially symmetric function such that
Auj+e* <0 in R2
Let uy be another radially symmetric function defined in R2. If for some disk B, we have

Aup + e < Auj+e*Vin By, up <ujin By andu, =ujon 9B, (1.31)

/ e +/ o2 2/ e*dx. (1.32)
r r R2

Moreover, the equality holds if and only if (By, €2*18) and (B,, e**28) are two complementary
spherical caps on the unit sphere.

then

These results are proved in Sect. 7.

‘We conjecture that the above theorem holds for nonradial solutions and for general smooth
domains, but so far we cannot validate this conjecture. In Sect. 8, we list a series of important
unsolved problems related to the results in this paper for future research.

To the end, we remark that one of the essentials in the proof of Lévy—Gromov isoperimetric
inequality requires the diameter bounded above by 7, which is guaranteed by Myer’s Theorem
on complete Riemannian manifolds with Ric, > (n — 1)g. For n = 2, this is equivalent
to K > 1. Hence in order to develop new sphere covering inequality related to incomplete
globally conformally flat surface with K > 1, the first step is to try to prove some diameter
bound. This has been another motivation for us to study diameter estimates for solutions and
supersolutions to the Liouville equation (0.1).
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2 Diameter lower bound for solutions to (0.1)

In this section, we first prove Theorem 1.1. Before proving this, we state the following
well-known lemma which is essentially proved in [8]. Here we include a proof for readers’
convenience.

Lemma 2.1 Let f(z) be the developing function for the solution u to (0.1), then f is either
a Mobiiis transform or transcendental meromorphic. For the former case, u is radially
symmetric up to translations.

Proof If f is rational, then write f = £ where both P and Q are polynomials over C. We
assume P and Q have no common factors. Since f has at most simple poles, Q has distinct
simple roots. We claim that

P'Q—-PQ =C 0. 2.1

Indeed, f' = %. If P’Q — P Q’ and Q2 have common factors, say z — zo, then since
0(z0) =0, (P'Q — PQ")(z0) = 0, and thus P(z0) Q'(z9) = 0. Since Q has simple roots,
0'(z0) # 0, and thus P(zo) = 0. This contradicts our assumption that P and Q have no
common factors. Therefore, P’Q — P Q’ and Q2 have no common factors, and since f' is
nonvanishing, it is necessary that P'Q — P Q' is a constant.

Take one more derivative of (2.1), we have

P'o=prQ". 2.2)

Note that f’ nonvanishing also implies that P has only simple roots. Let zo be any root of Q,
then from (2.2) and since P (zg) cannot be zero, Q” (z0) = 0. Hence the number of roots of
QU is less than or equal to the number of roots of Q. Since Q is polynomial, it is necessary
that Q” must be zero, and thus Q is linear.

Similarly, P" = 0 and thus P is linear. Therefore, f is a Mobiiis transform. In this case,
by (1.2), direct computation implies that u is a radial solution up to translation. O

If f is not rational, then by Liouville’s result, it is transcendental meromorphic. This
finishes the proof.

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1 Any solution u to (0.1) can be written in the form

(27
- n(l n |f<z)|2>’ @3

where f is a meromorphic function such that f/(z) # 0and f has simple poles. As discussed
before, if f is rational, then f must be a Mobiiis transformation and hence u is a bubble
solution, and thus g is the standard sphere metric. Hence diam(R?) = 7 under such metric.

If f is transcendental meromorphic, then by value distribution theory, f takes the value
in the complex plane infinitely many times except for two points. In particular, for any € > 0
we can choose z; = (x1, y1) and zo = (x2, y2) such that | f(z1)| < € and | f(z2)| > 1/e.
Let y(t) = z(t); a <t < b be a curve starting at z1 and ending at 7, and hence the length
of y under the Euclidean metric is larger than 1/e — €. Let #°(S) denote the 0-Hausdorff
measure of a set S € R?, i.e. the number of points in S if it is a finite set. Then the length of
y under the conformal metric ¢24§ is given by
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b b2l z(0)]
u(z(1)) [,/ — A NN
fa e |z (t)|dt = /a T+ 7GOL |z (t)|dt

2 20 (=1
= P )mﬁ (f (w)ﬂ)/) |dw]
Y

1/e—€ 2
> / 720,’& where s is the arc length parameter
0 L+ [w(s)]

1/e—€ 2
[
0 1+ (e+5s)

since |w(s)| < lw(O)] + [w(s) —w(0)] <€+

=2 (tan’l(l/e) — tan’l(e)) — 7 as € — 0.
Hence diamg(]Rz) > 7 under the metric g = e, ]

The proof above does not quite tell whether or not there exist two point P, Q € R? such
that their conformal distance under the metric g = €28 is bigger than or equal to 7. Actually
we have the following even stronger conclusion.

Proposition 2.2 Let u be a solution to (0.1) and f(z) be its developing function. Then there
exists a set S such that #°(C \ S) < 5 and that for any point A € S, we can find point
P e f_l({A}) and Q € Csuchthatdy(P, Q) > 7, where dy is the distance function under
the conformal metric g = e**8.

Proof Let IT be the stereographic projection map from the north pole of unit sphere to the
extended complex plane C U {oo}. Let

X| ={A € C: f~! o I(the antipodal of TI~!(A)) # ¥},
X, = {A € C: the antipodal of H’I(A) is not the north pole },

and
X =X NX,.

Clearly /#°(C\ X) < 2if f is a Mobiiis transform, and .#°(C\X) < 3 if f is transcendental
meromorphic, by value distribution theory. Let S = £(C) N X, and thus s#%(C \ §) < 5.
Forany A € S, we can find P € f’l (A). Moreover, by definition of S we can find

Qe f’l o I1(the antipodal of H’I(A)).

Let y be any curve in C from P to Q, then the length of y is given by
21 '@ 2 _
f T hrord = / — " (f @ Ny)ldo|
y L+ 11 (@) o 1+ 1ol

2
> [ sldol
ron 1+ 1ol

=l (TN f(¥))
>de(IT o f(P), T o £(0Q))
=dg (I 1(A), the antipodal of T17!(A)) = 7.

In the above I is the length function on the unit sphere S% and d 52 is the sphere distance
function. From the above estimate we immediately conclude that dy (P, Q) > 7.
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Remark 2.3 If u is a radial solution to (0.1), then diamg(Rz) = 7, since (R2, e28) is the
standard unit sphere minus a point.

One can also check that if u is a 1D solution to (0.1), say u(x, y) = In(sech x), then under
the corresponding conformal metric, diamg (R?) = 7, as we will see in the examples in next
section.

‘We make one more remark on the 1D solutions:

Remark 2.4 1t is easy to prove that if u is a 1D solution, then its developing function f(z)

must have the form f(z) = gj:;;, where p, g € Cand |p|® + |g|> = 1. The converse is
also true.

To the end of this section, we also remark that the diameter of R? does not change under
translation, rotation and scaling of solutions to the Liouville equation (0.1), that s, if g = s
and g1 = e2nco§ where A > 0, ¢ € R?, w is a unit vector in R? and

U o0 = UM (@ - ((x,y) — ) +1nA,

then diamg(R?) = diam,, (R?).

3 Examples and Proof of Proposition 1.2

In this section, we first show that for the family of solutions given by (1.4), the diameters of
R? under the corresponding metrics can take all numbers in the interval [, 277). Note that
u; corresponds to the developing function ¢ + €%, and when t = 0, u; is 1D.

Proof of Proposition 1.2 Since u; corresponds to the developing function f(z) =t + €%, u;
solves (0.1).
To prove the diameter equality, first we note that

tcosy+e*

V1+12sin?y

I

/ MY gy :72 tan
—o0 V1+12sin?y
2 b4 t cos
==  [= - tanfl(iy )] -
V1I+12sin?y \ 2 14 12sin’ y

Hence

o0
sup/ N dx = + 2tan”! (¢). (3.1)
yeR J—oo

Given arbitrary two points Py, Py € R2, for each point P; (i = 1,2), we let y§ be the
horizontal line segment passing through P; with Q% g and Q‘k as the left and right end points
of y}é, such that QLR Q}e Q%e Q%R is a rectangle with length 2R. Let ' be the vertical
line segments connecting Q}e and Q%, and I'_p be the vertical line segment connecting
Ql_R and QZ_R. By (3.1), l(yl’%) <7 +2tan"(¢) fori = 1,2. Also, it is easy to see that
limg— 400 [(T'+g) = 0. Now that

2
2y (Py, Py) < Y 1(yp) +1(Tg) + (T ),

i=1
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by letting R — oo, we have that dy (Py, P,) < 7 + 2tan~1(7). Since P; and P, are arbitary,
we have that diamg(]Rz) <7 +2tan" ' (1).

To show that the equality holds, we choose P; = (a,n) and P, = (a, —m), where a
satisfies

¢ _y—tan (%~ Lant
e t_tan<4 2tan (t)). 3.2)

Such a exists since t—l—tan(% - % tan~1(7)) € [1, c0)ift € [0, co). Let I be the stereographic
projection map from the north pole of the unit sphere. Since f(P;) = f(P2) = (t — €%, 0),
by (3.2) and double angle formula, fori = 1, 2 we have
_ 2(t — e%) (t—e?—1
1
P' = 9 9
(f(P)) (1 e e

= (— sin (% — tan~! (t)) ,0, —cos (% — tan~! (t))) .

Let o = tan~!(¢), hence « € [0, Z) and

' f(P)) = T~ 1(f(P) = (—cosa, 0, —sina). (3.3)

Let y be a curve connecting P; and P,, then y must intersect the x-axis. Let us assume that
y passes through P3 = (b, 0), and thus f(b) = ¢ + ¢ > . Let f(b) = tan B for some
B €(0,%).S0 8 > a.and

M-1(f(Ps) = 2tan B 0 tan? g — 1
f(Fs _<1+tanzﬂ’ ’1—|—tan2ﬂ>

= (sin(28), 0, — cos(28)). 3.4
Let6 € (0, ) be the angle between ! (f(P1)) and ! (f(P3)). Then by (3.3) and (3.4),

cos = —cosa sin(28) + sina cos(28) = cos(% +28 —a). 3.5)

Ifn/2428—a < m,thenby (3.5)weknow 6 = 7 /2428—a > n/24+a. lf 7 /242 —a > 7,
then since 8 < %, we still have

3
0 =21 — (1242 -a)= 2> fa—28> " +a

2 2
Therefore,
de o, (M (F(P), TN (f(P3) = %+a. (3.6)
By (1.2), we have
1) = f 2 G @) N y)ldo| = / 2ol @)
ro) 1+ 0P = Jrop L+ ol

Note that the metric of the unit sphere is given by gq2 = W&, where w denotes the

coordinate of point on sphere obtained using stereographic projection map from the north
pole. Hence from (3.7),

1(y) = L, M (f (), (3.8)

where [ g0 is the length function on the unit sphere.
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Since T~ o f(y) is a curve in $2 such that it starts from H’l(f(Pl)), goes through
I~ (£(P3)) and then goes back to T~ (f(P2)) = T~ (f(Py)), by (3.6) and (3.8) we
know that the length of y satisfies m}

I(y) = 2dg, (M (F(P), T (f(P3)) = 7 + 20

That is, [(y) > 7 + 2tan~!(¢). Hence diamy(R?) > 7 + 2 tan™ ! (¢).
Therefore, we have shown that diam g(Rz) = +2tan" ! (r).

Here we make a remark. At the beginning of this project, we only knew that there exist
a family of solutions given by (1.4), and by just naively looking at the horizontal integrals,
we figured out the upper bound for the corresponding diameters. It is quite straightforward
up to this step. However, it took us quite a while to find out a way of exactly computing the
conformal diameters corresponding to these functions u,. Let us use the following example
to geometrically illustrate the case + = 1. In fact, this example is so important to us, that
only after understanding it did we observe Proposition 2.2 and have a better understanding
of the conformal diameters corresponding to solutions to Liouville equation (0.1). So we
will present the full details including some numerical computations as motivations in the
example.

Example 3.1 Let

2e"
N = N = l . 3-9
u(x,y) = ui(x, y) n(2+26xcosy+ezx> (3.9)
Then clearly u solves (0.1). In the following, we will gradually show that diam g(Rz) = %’T
if g = ¢*$ for such u.
First, note that

0 2 x
[ — (COSH) e 3.10)
—00

V1+sin?y V1+sin?y

and that

T T

/ Iy = (3.11)
— er

0 (e +5)—1

By (3.10), we have that

o 3
sup Mgy = —ﬂ, (3.12)
yeR J—o0 2

and hence by exact argument in the proof of Proposition 1.2, we have that diam (R?) < 37”

So the question is, can the equality be attained?

Let us consider somehow the worst case. By (3.10), the supremum of (3.12) is attained
aty = (2k + 1)z, k € Z. Let us choose two points P; = (a, 7) and P, = (a, —m), where
a € R such that

/ MED g x =/ MED gy = o (3.13)
—00 a

One can see that Pj is chosen to lie in the “middle" way of the horizontal line from (—oo, )
to (oo, 1), and similarly for P,. From the choices, we can expect that the distance between
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Py = (a, ) and P, = (a, —m) is equal to 37” under the metric g = 24§, This guess can be
supported by computing the length of ellipses connecting the two points:

Let Cs (s > 0) be the right half of the ellipses to connect (a, w) and (a, —m), and thus
the equation of C; is given by:

2
X —a
s

By setting x = a 4+ 7 cos 6 and y = 7 sin 6, the length of C, under metric g is given by

/2 27 a+sm cos
I(Cy) = / ¢ Vs2sin? 0 + cos2 6 do.

—a)2 2 + Deutsm cos cos(rr sin6) + e2a+2sm cosf

(3.14)
By (3.10) and (3.13), we have

tan et — 1) = =, (3.15)

The graph of the function /(Cy) — 37” obtained by Mathematica indicates that /(Cy) >
37”, Vs > 0, and limg_, o [(Cy) = 37” This suggests that d, (P, P;) = 37” To rigorously
prove it, we proceed with the exact same proof as in that of Proposition 1.2, for r = 1.

Proof Let y be a curve starting at P; and ending at P,, then y must pass through some point
on x-axis, which is given by P; = (b, 0). Let Pz/ = f(P;), where f(z) = 1 4 €%, which
is the developing function for the solution u. By (3.15), P{ = P; = (—tan(x/8), 0). Also,
P} = (V/,0), where b’ = 1+ e’ > 1. Then as in the proof of Proposition 1.2, we have
1(y) = Lo, (M7 f (1))

By direct computation, H_](Pl’) = H‘I(PZ/) = (—Q, 0, —%), and we denote the
point by A. Hence IT~!(f(y)) must be a closed curve on the unit sphere such that it starts
and ends at the point A, and it must passes through the point B = IT~! (P3), which lies
in the circle connecting (1, 0, 0) and the north pole in the northern hemisphere. Therefore,

M~ (y) = 2disty, (A, B) > . Hence diam,(R?) = 3. o
An interesting fact is that, from the proof above, we can now rigorously prove that
3
lim [(Cy) = 2.
5§—00 2
Indeed, when s goes to 400, L F(Cy)) is getting closer and closer to the curve that starts
from (—%, , —?), goes along the great circle to the north pole, and then goes back to
— %, ,— % ). Hence the total length is closer and closer to 37"

Without using the geometry on unit sphere, it seems very difficult to handle the “monster”
integral (3.14).

This finishes the discussion of Example 3.1.

Next, we construct a solution to (0.1) such that the corresponding conformal diameter can
be greater than or equal to 2.

Example 3.2 Let

(3.16)

28x+e“ cosy
u(x,y)=1In .

1+ e2e* cosy

We will show that u solves (0.1), and that diam, (Rz) > 2, where g = e2us.

@ Springer



40 Page 14 0f 30 C.Gui,Q.Li

Proof First, such u given by (3.16) corresponds to the developing function
f@=e".

Hence u is a solution to (0.1).
Next, note that

f) = ¢ cosy (cos(ex sin y) + i sin(e”* sin y)) .

We consider the distance between the point P = (Inr, %) and point Q = (Inr, —37"). We
have f(P) = f(Q) = —1 and P’ := [T (f(P)) = 17! (f(Q)) = (—1,0,0), where I
is the stereographic projection map from the north pole. Let y be a curve starting from P
to O, then y must pass through a point P; = (b, 0) and another point P, = (¢, —m). Since
f(P) = eeb > 1, P]’ =I"1!o f(Py) lies between the arc from (1, 0, 0) to the north pole.
Since f(P2) = e~ € (0, 1), Py := I1"! o f(P,) lies between the arc from (1, 0, 0) to the
south pole.

Let d,; be the distance function under the metric g = 1§, d 52 be the distance function
on the unit sphere S2, and ! 52 be the length function on the unit sphere. By the proof of
Proposition 2.2 or Proposition 1.2, and since IT~! o f(y) is a curve on the unit sphere
starting from P’, passing through P;, P} and ending at P’, we have

dg(P, Q) > (™" o f(y)) = dg2(P', P|) + ds2(P{, P3) + ds2(Py, P').
By the location of P/, P{ and P}, we have
dg(P, Q) = 2m.

Hence diamg(]Rz) > 2. ]

4 Diameter upper bound for supersolutions to (0.1)

In this section, our main goal is prove Theorem 1.4.

In the following, we will constantly use dg (x, y) to denote the distance between two points
x and y under the metric g, that is, the infimum of the lengths of piecewise smooth curves
starting at x and ending at y. Unlike previous sections, in this section x and y are denoted as
points in Euclidean spaces, not coordinate components.

First, for the noncompact Riemannian manifold (R”, g), it is convenient to introduce the
following definition.

Definition 4.1 For any p € R", dg(p, 00) is defined as
inf{{(y) : y is a piecewise smooth curve from [0,1) to R" with y (0)
= pand [y(17)] = oo},
where [ is the length function under metric g and | - | is the Euclidean norm.

Before stating certain geometric results related to (R2, 248), we first prove the following
key observation, which does not rely on finiteness assumption on conformal volume. Actually
the statement can be made in R" as follows:

Proposition 4.2 Let g be a Riemannian metric on R" with Ric, > (n — 1)g, then we have
dg(x,00) <7 forall x € R".
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Proposition 4.2 is related to Myer’s Theorem. Recall that Myer’s Theorem states that
if (M, g) is a geodesically complete manifold with Ric > (n — 1), then diam(M) < m.
Moreover, if the diameter is equal to 7, then by Cheng’s rigidity result in [7], M must be
isometric to sphere.

However, the proof of Myer’s theorem requires that for any x, y € M, thereis a minimizing
geodesic connecting x and y. For incomplete manifolds, generally two points cannot be
connected by a length minimizing curve. So in order to prove Proposition 4.2, we need to
somehow overcome the non-completeness issue. The proof is motivated by the idea in the
proof of Hopf—Rinow theorem.

Proof of Proposition 4.2 Fix x € R" and r > 0, and B, (x) be the Euclidean r-neighborhood
of x. Let y € 9B, (x) such that dg (x, y) = dg¢(x,9B,(x)) = T. Let y : [0, b] be the unit
speed curve starting at x. We say y |[o0,p] aims at y if y starts at x and that for any 0 < ¢ < b,
[(Yljo,n) +dg(y(t),y) =dg(x,y). Clearly b < T. We claim that there exists such a curve
starting at x and aiming at y with length equal to 7.

We prove this claim by modifying the proof of Hopf—Rinow Theorem. Let

S = {b € [0, T] : there exists a unit speed curve y starting at

x suchthat yljop aimsat y}

and let 7o = sup S.

First, note that S is not empty. This is because we can always choose a small geodesic
e-neighborhood of x, denoted B/ (x). Since d, (-, y) is continuous, there is z € 3 B, (x) such
that dy(z, y) = dg(y, dB,). Let y be the minimizing geodesic connecting x and z, and thus
v1[0,¢] aims at y.

If Ty < T, then we claim that y|[o,7,) lies in a compact subset of B,(x). Indeed, if
this is not the case, then there exists w € 9B, (x) such that y () = w for some t < Tp.
Then dg(x, w) < Tp < T = dg4(x, y), which is a contradiction for the choice of y above.
Therefore, y |[0,7,] € B, (x). Hence again we can choose a small geodesic neighborhood of
y (Tp) and this extends the length of the curve starting at x aiming at y. Therefore, eventually
we conclude that Ty = T'.

Note that such y is actually a length minimizing geodesic connecting x and y. There-
fore, by the proof of Myer’s Theorem, see for example [23], we have /(y) < m. Hence
dg(x, 0B, (x)) < m. Since r arbitrary, let » — 0o we have dg(x, 00) < 7.

Remark 4.3 The essential observation in the proof of of Proposition 4.2 is that for any x € R”
and r > 0, we can find a point y € 9B, (x) such that there is a length minimizing curve
connecting x and y. We will use this fact often times in this paper. Note that this is generally
not true for every y € 9B, (x).

Remark 4.4 Also from the proof above we know forany x € R”, there exists a unit speed curve
y starting at x and aiming at oo, thatis, forany 0 < t < dg(x, 00), [(¥[0,11) +dg(y (), 00) =
dgy(x, 00).

Remark 4.5 The other triangle inequality d (x, 00) + dg(y, 00) > dg(x, y) generally does
not hold. This can be seen in (R2, ¢248), where u(7) = In(sech ) is the 1D solution to (0.1).
Letx = (—R,0) and y = (R, 0), then d,(x, y) — 7 as R — oo while both dg(x, 00) and
dg(y, 00) converge to 0.

Applying Proposition 4.2 and assuming the finiteness of volume of (R?, g), we now prove
Theorem 1.4.
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Proof of Theorem 1.4 We first show there exists a sequence ry — oo such that [, , e"ds —
Tk

0. Suppose this is not the case, then there is ¢ > 0 such that for any » > 0, faBr etds > c.
Hence by Holder’s inequality,

2
an/ eds > (/ e“ds) > 2.
9B, 9B,
CZ

Hence |; 3B, eXds > 37> and this would imply fRZ e?*dx = 0o. Thus we get a contradiction.

For any x,y € R?, by Proposition 4.2 and Remark 4.4, we can choose curves y; and
y, starting at x and y respectively aiming at co with lengths less than or equal to 7. Let
2k = 0By, Ny;, i = 1,2, where ry is the sequence above. Hence we have

distg(x,y) < dist(x, zx,) +dist(y, zx,) + disty(zg,, 2x,) < 27 +/ et — 2x
3By,

as k — o0. Therefore, diam(Rz) < 2m. O

5 Geometric inequalities for radial supersolutions to (0.1)

We first prove the following ordinary differential inequality results.

Proposition 5.1 Let u = u(r) be a function satisfying
” u/
u +7+e2"50, (5.1)
then
oo
/ Odr < 7. (5.2)
0

Unfortunately so far we cannot give a analytic proof of this result, so we use geometric
argument to prove this proposition.

Proof Atany x € R?, we consider g, = ¢*(*D§, where u is a solution to (5.1). This gives
a metric g in R? with Ricy > g.

First note that all the rays starting from the origin are geodesics. This is because, given
any curve y, the geodesic curvature of y is given by k, = ™" (k + du/9v), where « is the
curvature of y in the Euclidean metric, and v is the unit normal to y. So if y is a ray, then
since u is radial, du/dv is zero, and of course « is also zero, so kg is zero. Hence rays starting
from origin are geodesics.

By local uniqueness of geodesics, all geodesics starting from the origin must be the rays.

Next, we claim that for any x € R?, there is a minimizing geodesic connecting 0 and x.
Indeed, by Remark 4.3, there is a minimizing geodesic connecting 0 and 9 B|. Since u(] - |)
is a radial function, by symmetry there is a minimizing geodesic connecting 0 and x. m}

Since all the geodesics from O are rays and no two rays intersect at other points except
0, such minimizing geodesic must be part of the rays starting from 0 and passing through x.
Therefore, by the proof of Myer’s Theorem, fo‘xl MNdr < 7. Sending |x| — oo, we have
(5.2).

Recall that I(r) = fa B, e"ds, which is the conformal length of dB,, and that A(r) :=
f B, e dx, which is the conformal area of B,. Now we prove Theorem 1.5.

@ Springer



Some geometric inequalities related to Liouville equation Page 17 0of 30 40

Proof of Theorem 1.5 We first prove the second inequality in (1.9): Since u is radial, we may
write u(x) = u(r), where r = |x|. By (1.1) and integration by part, we have

A< —u2mr. (5.3)
Since A’ = 27re, by (5.3) we have
24A" < —2u'e® 27r)? = — (e2) 4n?r?
= — (™47%r?) + *87%r
= — (47°r?) +4n A,
Hence
(471A — Az)/ > (62”47121’2)/.
Integrating the above from O to r, we have
AT A(r) — A2(r) = (2nre"<’>)2 = 12(r). (5.4)

This proves the second inequality of (1.9).

Next, we prove (1.5). This is actually from the above inquality, since it immediately implies
that A(r) < 4 for any r > 0. Letr — 00, we conclude that vol, (Rz) = fRZ e < A,

Next, we prove the results related to properties of /(r): First, (1.7) also follows from (5.4),
since 4mA — A2 < (4”_%)2 = 472, Hence [(r) < 2 forany r > 0.

Note that!’(r) = 2me" ") (14-ru’(r)) and that (1471’ (r)) < —re® < 0.1 14ru'(r) >0
for all » > 0, then I’(r) > 0 and hence [(r) is increasing. This cannot happen since by the
proof of Theorem 1.4 we can choose a sequence ry such that /() — 0. Hence there exists
ro > 0 such that when r < rg, 1 +ru’(r) > 0 and whenr > ro, 1 +ru’(r) < 0. Hence I(r)
is increasing when r < ry, reaches its maximum at rp and then decreasing when r > ry.

Since I(ry) — 0 as k — oo and [(r) is decreasing when r > rg, (1.8) is also proved.

Next, we prove (1.10) by applying the Heintze—Karcher inequality, which is originally
obtained in [21], see also [11, Theorem 4.21]: For any 0 < r < rg, we have

1r) 5/ (cos(R(ro) — R(r) — n(ro) sin(R(rg) — R(r)))e”(”’)ds, (5.5)

3By,

where the function 7(p) is the mean curvature of 9B, under the metric g = €25, Note
that even though the statement of Heintze—Karhcer inequality is for domains in complete
manifolds, the proof only requires that any point inside the domain can be connected to
the boundary along exponential map. This is true in our case since as shown in the proof
Proposition 5.1, any line segment belonging to the ray starting from the origin must be a
minimizing geodesic.

From (5.5) we have that for any 0 < r < ry,

cos(R(ro) — R(r)) — n(ro) sin(R(ro) — R(r)) = 0. (5.6)

Since n = e “(u’ + %) and I'(ro) = 0, n(rp) = 0. Hence cos(R(rg) — R(r)) > 0 for any
0 < r < rg. Therefore, R(ro) < 5. This is (1.10).

Now let us prove the first inequality of (1.9), which is also a consequence of Heintze—
Karcher inequality. We prove as follows. For any r > 0, applying Heintze—Karcher inequality
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on (B,, €2'8) and integrating from O to r, we have

R
A(r) < l(r)/ (cost — n(r)sint)dt, (5.7
0

where R = R(r) = [; ¢"”dp. Hence n(r) < cotr for r < R.Let (r) = cot&, where
£ €[0,7],and thus &€ > R and when 0 <t < &, cost — n(r)sint > 0. Hence from (5.7)
we have

£
A(r) 51(r)f (cost —n(r)sint)dt. (5.8)
0

Since all the radial rays starting d B, exhausts R” \ B, we can also apply Heintze—Karcher
inequality on R? \ B, to get

Roo—R
Aso — A(r) <1(r) / (cost + nsint)dt, 5.9
0

where Ry = fooo e”(/’)dp. By Proposition 5.1, Ry, < m. Suppose that t € [0, 7], then
cost+n(r)sint = sint(cott +cot&) > Oifandonly if 0 < ¢ < m — &. Note also that from
(5.9) we have that

cost —n(r)ysint >0, VO<t <Ry —R. (5.10)
Then since n(r) = cot £ and the integrand is nonnegative, we have
Rw—R<m—E&. (.11

Therefore, we have
=&
Aso — A(r) < l(r)/ (cost + nsint)dt. (5.12)
0
Multiplying (5.8) and (5.12), we have

& T—§
A(Axe — A) 512 (/ (cost — nsint)dt) (/ (cost + nsin t)dt)
0 0

=12 (sin& 4+ cot&(cosé — 1)) (sin& + coté(cosé + 1))
_121 —cosé 14cosé _p
- sin & sing

This proves the first inequality of (1.9).

Next, we prove (1.12). It is actually a consequence of Bishop—Gromov inequality: Let B}
denote the geodesic ball of radius R centered at the origin, where R = R(r) = for ey,
then

volg(By)  Jp e™dx

fOr) = vol g (BY) - 2m(1 = cos R(r))

is a non-increasing function. Note that even if (R”, e2“8) is not complete, we can still apply
this inequality because the proof only requires that for any point on d Bg, there is a minimizing
geodesic connecting the origin and the point. This is true since u is radial. We have also used
the fact that the line segment starting from the origin to any point on 9 B, is a minimizing
geodesic, as shown in the proof of proposition 5.1.

@ Springer



Some geometric inequalities related to Liouville equation Page 190f30 40

Now that f(r) is non-increasing, f/(r) < 0. By directly computing f'(r), we have

27re® 27 (1 — cos R) — ( / e2“dx> 27 (sin R)e*") <0 (5.13)

r

Since A(r) = [, e2dx and I(r) = 27re"", (5.13) therefore implies (1.12).
Next, we prove (1.13) and (1.14). Recall that by the Heintze—Karcher inequality, we have

R
A(r) < / / (cost — nsint)dsdt, (5.14)
o Jos,

where R = R(r) = for P dp and 7 is the geodesic curvature of d B, which is equal to
e™(L + u/(r)). Hence by (5.14) we have

A < IsinR —nl(1 —cosR) (5.15)
= IsinR — e “(1/r +u'(r))2mre" (1 — cos R) (5.16)
= IsinR —e “I'(1 —cos R). (5.17)

Since I’ > 0 when r < rg, hence A < Isin R, and this proves (1.13). (1.14) is a direct
consequence of (1.13).
Next, we prove (1.11) and (1.15). By (1.12) and the first inequality of (1.9), we have

1 —cosR\> A2 A2
- ) <<
sin R T2 T A(Ax — A)
Hence
1 —cosR A
< .
14+cosR ™ Ay — A

After simplification, we obtain (1.11), and (1.15) is just a direct consequence of (1.11).

It remains to show (1.6). This can be proved by using argument similar to that used in the
proof of Proposition 4.2:

For any x, y € R", We let y;, y» be the rays staring from 0 and passing through x and y
respectively. Let y, be the line segment connecting 0 and x, and let y* = y; \ y,. Similarly,
let yy be the line segment connecting 0 and y, and let y¥ = 2 \ yy. We proceed similarly as
the proof of Theorem 1.5:

If [(yx) +{(yy) < m, then this already implies d, (x, y) < 7 by triangular inequality.

If [(yx) +1(yy) = 7, then since [(y;) < m, i = 1, 2 as we proved in Proposition 5.1, we
have

Iy*) +1(y”) <. (5.18)

Also, by (1.8) which we already proved, we know that for any ¢ > 0, we can choose
xgr =y*N3Bg and yg = y¥ N dBg such that d, (xg, yr) < faBR e"ds < e. Therefore, by
(5.18),

de(x,y) <dg(x,xg) +dg(xg, yr) +dg(yr,y) <7 +e€.

Lete — 0, we have dy(x, y) < 7.

Remark 5.2 From the proof, one can see that if either of the inequalities in (1.9) becomes
equalities for some value r > 0, then # must be a solution to (0.1) and then (R2, ¢248) is a
sphere minus a point.
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Some alternative proofs of some of the inequalities in Theorem 1.5
e (1.5) is proved as a consequence of the second inequality of (1.9). Actually the first
inequality of (1.9) also implies (1.5), since

lZ
A =A<

Let » — 0 on both sides of the above inequality, we have A, < 47, which is exactly
(1.5).
e (1.14) can also be proved by applying Alexandrov inequality.

Proof (Second proof of (1.14)) To show that I(r) > A(r) for r < rg, we first exploit the
following Alexandrov inequality (see [32] for a proof): For any Ky € R,

4w A < L* + KoA? + 2A/ (K — Ko)1dvol,. (5.19)
Q

Let Ko = 1, and we apply (5.19) to (B,, g). Note that
(K =1y = (—(Awe™™ — D)y = (7 (—Au — ™)), = e (—Au—e™),
hence we have

ArA — A2 <> +2A | (—Au —e*)dx
Br

=1 +2A (2;1 /Or(—pu’(p))’dp - A)
=12 +2A (=27ru' (r) — A).
Hence
1> >4 A(1 + ru' (r)) + A?
zAz, when r <rg

since ru’(r) > —1 when r < ry.

Proof (Alternative proof of (1.7)) If I (r) achieves its maximum at ry, then !’ (rg) = 0, and thus
14 rge"® = 0. Hence d By, is a geodesic under the metric g = e?*. Applying Toponogov’s

Theorem, we have [ (rp) < l52(9 B;Q ( ro))’ where R (r) is the function defined above. Therefore,

I(ro) < 2msin R(rg) < 2m.

In the end of this section, we remark that if u satisfies (1.1) and (R2, ¢*48) can be completed
as a closed Riemannian surface, then the first inequality of (1.9) is exactly the Lévy—Gromov
isoperimetric inequality, while the second inequality is equivalent to that of [28, Corollary
3.2], provided one can show that any minimizer to the functional

Jsg e"ds . QcR? Jg edx

hg(R2) :={ -=5—
s fR2 e2idx fR2 e2idx

=p

must be a ball centered at the origin.
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6 Higher dimensional results for radial solutions to generalized
Liouville equation

There are a few directions to extend the study of solutions or supersolutions to Liouville
equation (0.1) in R? to higher dimensional spaces.
A possible generalization of Liouville equation is the Q-curvature type equation:

(=A)iu = Qe"™, in R",

where Q is the Q-curvature introduced in [4]. In particular, for n even and n > 4, recently
partial results of our Theorem 1.5 is extended in [25].

Another possible generalization of (0.1) can be viewed as the equation describing globally
conformally flat Einstein manifolds with Ric, = (n — 1)g where n = 2 is the dimension of
the manifold. In higher dimensional case, it is natural to consider corresponding solutions to
equation Ric, = (n — 1)g, g = €25 where § is the classical metric in R”.

By [3, Page 58], we have the formula for Ricci tensor

Ricg = (2 —n)(Vdu —du ® du) + (—Au — (n — 2)|Vu|2)8. 6.1)
Therefore, the higher dimensional Liouville equation reads
Q2 —n)(Vdu — du @ du) + (—Au — (n —2)|Vu|?)8 = (n — 1)e?*s. (6.2)

Let u be a radial solution to Ric, > (n — 1)g. We first recall the equation when u is
radially symmetric.
Let & be the unit round metric on $”~1, then

8 =dr® +r’h
and thus
XiXj
8ij — 7;2" =r’hy; (6.3)

where h;j = h(9;, 9;). Hence if u is radially symmetric, then we have

_oaXiXj o0
ujuj =u; = = u;dr=(9;, 9;)

and
Xjxi u XiXj
o )
= [uyrdr’® + ruh](3;, 9j), by (6.3).
Since du = ) _; u;dx; and Vdu = Zi’j ujjdx; ® dx;, we have
Vdu = u,rdr2 +ru,h, (6.4)
and
du ® du = u’dr?, (6.5)
and thus (6.1) reads

Ricg = —(n— ) + u7)dr2 - (u +@n— 3)”7 +(n - 2)@/)2) r2h.
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Hence Ric, > (n — 1)g is equivalent to

14 !
u +”7+62”§0

u' +2n—3)"% + (n—2))? + (n — D < 0. (©6)

Motivated by Theorem 1.5, it is natural to ask: If (M, g) = (R”, €218) where u is a radial
function satisfying (6.6), is it true that diamg(R2) < 7 and volg(R") < volg, (8")?

The answer is yes. Actually, even assuming the weaker assumption (5.1), we still have the
same diameter upper bound 7. The proof of this is almost identical to the proof of (1.6).

Proposition 6.1 Ifu satisfies (5.1), and let g = e**'V§ where § is the classical metric in R",
then diamg(R") < 7.

Proof Let x and y be two points in R”, and let 1, > be the rays staring from 0 and passing
through x and y respectively. Let y, be the line segment connecting 0 and x, and let y* =
¥ \ Vx. Similarly, let y,, be the line segment connecting 0 and y, and let y¥ =y \ y,.

If [(yx) + {(yy) < 7, then this already implies d, (x, y) < 7 by triangular inequality.

If [(yx) +{(yy) = 7, then by Proposition 5.1,

Iy") +1(y") = (6.7)

Since lim, _, o 27re’™) = 0 as proved in Theorem 1.5, we know that for any € > 0, we
can choose xg = y* N dBg and yg = y” N dBg such that dg(xg, yg) < 27 R < ¢,
Therefore, by (6.7),

dg(x7 y) < dg(x’ xR) + dg(xR’ YR) + dg()’R7 y) <m+e.
Lete — 0, we have dy(x, y) < 7.
Now let us state the higher dimensional result for radially symmetric solutions.

Proposition 6.2 Let u be the function satisfying (6.6), then under the metric g = ¢**('Dg,
where § is the Euclidean metric in R", then

diamgR") <7 (6.8)
and
vol,(R") < ol (S"). (6.9)

Proof (6.8) is proved in Proposition 6.1.

(6.9) follows from Bishop—Gromov Theorem. Indeed, as discussed in the proof of (1.12),
Bishop—Gromov Theorem can be applied in (R", g) for g to be a radially symmetric
conformally flat metric.

At the end of the section, we remark that any solution to (6.2) must be radially symmetric
about a point. This is because any solution to (6.2) is also a solution to the Yamabe equation,
and hence by [6], such solution is radially symmetric about a point.

7 Connection with sphere covering inequality for the case K > 1

In this section, we prove Theorem 1.8 and Theorem 1.9.

First, let us state an equivalent version of Lévy—Gromov isoperimetric inequality in closed
Riemannian manifold of dimension 2, which gives a simple algebraic relation between length
and area.
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Proposition 7.1 Let M be a closed Riemannian manifold of dimension 2 and the Guassian
curvature on M is bounded below by 1, then for any smooth domain Q2 in M, we have

12(0Q) > vol (Q)vol(M \ Q). (7.1)
The equality holds if and only if M is a unit sphere and Q2 is a spherical cap (geodesic disk).

Proof Let B = Y2/8). thepn by Lévy—Gromov isoperimetric inequality, we have

vol(M)’
1092 (0B
(9€2) . (8Br) , 7.2)
vol (M) — vol(S?)
where $2 is the unit 2-sphere and B, is the geodesic ball in S such that zz;gg; = . Hence
vol(B,) = 4m B and thus [(3B,) = 4w/ — B2. Therefore, (7.2) becomes
12(0%2) vol (R2) vol (2)
— > Bl - p) = I- :
vol*(M) vol(M) vol(M)

This implies (7.1). Since from the original proof of (7.2), it becomes equality for some r > 0
if and only if M is a sphere, we prove the equality case of (7.1).

Now we prove Theorem 1.8.

Proof (Proof of Theorem 1.8) Let A(r) = h(r)e 2, hence (1.24) implies A'(f) < 0. Set
at) = foon Mu)e*dp and B(r) = u ({u > t}). Hence

B'(t) = _/ L_ds and o (1) = A(t)e* B'(1).
tu=r) |Vl

We integrate (1.23) over {u > ¢}, and by divergence theorem we have

/ |Vulds + B < a.
{u=t}

Ba—-p = (/ |W|ds) (/ ids) > P@{u > 1)),
{u=t} w=r} |Vu|

where [ is the length function on M. We multiply the above by A (f)e?, and using &’ = 1e? g
and applying (7.1), we have
—ad’ +a'B =26 (u(M)B — B7)
()\eZIﬁZ)/ _ )\,/€2t,32 _ 2[30(/
> .

Hence

=re¥ W(M)B —

Hence
—2aa’ > 2u(M)re” B — (he® B2) + Ve B2 (7.3)
Note that
22e?B= ¥ B) — N B—d,
where we have again used that o’ = Ae?' 8. Hence (7.3) becomes

—20a’ > (he¥ Bu(M) — B)) — p(M)a’ + 3/ e* (B — u(M)B). (7.4)
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Since A’ < 0 and 82 — u(M)B < 0, we have

—2aa’ > (re¥ B(u(M) — B)) — p(M)el. (7.5)

Then we integrate (7.5) from t = 0 to oo, and using the fact that lim;—, o «(#) = 0 and
im0 Ae2 B(u(M) — B) < (M) lim;_ o0 a(z) = 0, we have

w(M)a(0) — a(0)* < A(0)B(0) (L(M) — B(0)).
That is,
2
M(M)/Qh(u)dﬂ - </Qh(u)du) < h(0) (n(M)(Q) —MZ(Q))~

In particular, if #(0) < 1, then

(M) /Q WGy ( /Q h(u)du>2 < HODROR(R) — O)A(Q).
Hence
() ( [ na —h<om<sz>) < ( [ nran- h<om<sz>) ( A h(u)du+h(0)u(9)>-
Hence
/Q hdp + hO)R(R) > (M),
The proof is complete.

Theorem 1.8 also has its dual form:

Theorem 7.2 Let (M, g) be a closed Riemannian surface with and K > 1, where [ is the
measure of (M, g) and K is the Gaussian curvature. Let Q be a domain with compact closure
and nonempty boundary. If u satisfies

{—Agu F1>hw), u<0 in Q 76
u=20 on 0%
where h(t) is a nonnnegative function satisfying (1.24), i.e.,
0 <h' () <2h(), 7.7
then
2
M(M)/Qh(u)dﬂ - </Qh(u)du> = hO)pE€)u(M \ Q). (7.8)
Moreover, if hg > 1, then
| rdie+ @@ = wian. 19)

Proof We still let A(t) = h()e 2, a(t) = Suu<n Mu)e*dy and B(r) = Sy di. Then

B(t) = f{u:l] |V—lmds and o' (t) = A(r)e* B/(r). We integrate (7.6) over {u < t} and by
divergence theorem, we have

/ |Vulds — B < —a.
{u=r}

@ Springer



Some geometric inequalities related to Liouville equation Page 250f30 40

BB —a)< (/ |Vu|ds> (/ ! ds> > s2({u < 1}).
{u=t) (u=t) 1Vul

Multiply the above by A(t)e? , using o/ (r) = A(t)e* '(¢) and the isoperimetric inequality,
we have

Hence

@ (B —a) = re¥ (W(M)B — B7).

Then arguing simiarly as the proof of Theorem 1.8, we still get (7.5), that is,

—2aa’ = (he® B(u(M) — B)) — p(M)e.
. Then we integrate the above inequality from —oo to 0 and thus obtain
1(M)a(0) — a*(0) = L(0)B(0) ((M) — (0)).
That is,
2
nn) [ ot ([ wan) =10 (eonu@ - i@).

If h(0) > 1, then

2
(M) fg hu)dp - ( /Q h(u)du> > LDRO)L(R) — B O (R).

Hence

J(M) ( fQ h(u)dp — h(omsz)) > ( /Q hu)dp — h(om(m) ( /Q hu)du + h(om(sz)) .

Since u < 0in Q, h(u) < h(0) and thus fQ h(u)du — h(0)u(2) < 0. Therefore,

/ h(u)dp + h(0)u(2) = w(M).
Q
This completes the proof. O

Remark 7.3 If the Gaussian curvature K of (M, g) satisfies a’> < K < 1 for some positive
constant ¢ < 1, and u satisfies conditions of Theorem 1.8 with 2(0) < a2, then the conclu-
sions of Theorem 1.8 still hold with p, 2 (u), A replaced by i = a’p, h(u) := h(u)/a?, k=
1/a? respectively, after applying Theorem 1.8 with a proper scaling of the metric g by ag.
In particular, if A < a?, then (1.28) becomes

a’u(M)
f' (7.10)

/ dp+ p(Q) =
Q

It is interesting to compare this with the lower bound obtained from (1.22) of Theorem 1.7,
where A is allowed to be in (0, 1]. Note that a2 w(M) < 4 by the Gauss—Bonnet theorem.
It turns out that under the same curvature conditions a®> < K < 1, (1.22) in Theorem 1.7
requires less constraints and has a better lower bound. Nevertheless, Theorem 1.8 gives a
similar lower bound but under a complete opposite curvature condition. Similar remark can
also be made for Theorem 7.2, the dual form of Theorem 1.8.

Next, we prove Theorem 1.9.
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Proof of Theorem 1.9 First, let u = up — uy, and hence u > 0in B, and u = 0 on 0 B,. Note
that for any ¢ > 0, {u > t} is a radially symmetric domain.
We claim that if w is a radially symmetric domain, then

P () = A(@)(As — A(0)), (7.11)

where P(w) = faw é'lds, A(w) = fw e2idx and As = fRz e2idx.

Indeed, if w is connected, then w is either a disk or an annulus centered at origin. For the
disk case, (7.11) is exactly the first inequality of (1.9). If w is an annulus, then w = w1 \w3,
where w1 3 wy are two disks. Then by (1.9), we have

P () — A(@)(Ass — A())
> P2(w1) + PH(@2) — (A(@1) — A(@2)) (Aoo — A(@1) + A(@2))
2
> Y A) (A — A@) — Ao (A(@1) — A(@2)) + (A1) — A(@2))?

i=1

=2A00A(@2) — 2A(w1) A(@2) = 0.

Hence we proved (7.11) for connected radially symmetric domains. If @ has more than 1
component, then set w = U;w;, where w; are disjoint component. Hence w; satisfies (7.11).
We have

P*(@) — A(@)(Ax — A(®))
>y Piw) - (Z A(w») (Ao — Y A@)
> Y A (A — A(@)) — (Z A(w») (Ao — Y Al)

2
= (Z A(w») —> Ao =0

Hence (7.11) holds for general radially symmetric domains.

Since u satisfies (1.23) for g = %18, applying (7.11) for the radially symmetric domain
{u > t} instead of (7.1) in the proof of Theorem 1.8, and proceeding the same argument, we
have

f e*dp + n(By) > u(R?).

Since u = e*1dx and up = u; + u, the above inequality becomes

/ezuzdx—i-/ e2u‘dx2/ e*dx.
r r RZ

When the equality holds, then by tracing the equality cases, especially by Remark 5.2, we
conclude that (]Rz, e 8) is punctured sphere. In such case, we have

Auy + e®2 = Auy +e* =0in By, up > u;in B, andus = ujon 9B,

[m}
Hence as shown in [18], (B, 62“‘8) and (B,, 62”28) are two complementary spherical
caps on the unit sphere.
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The proof of Theorem 1.10 is similar because of Theorem 7.2, so we omit it.

8 Some further problems and remarks

In this section, we present some further problems related to the results proved in this paper.
The following question is on conformal diameter corresponding to solutions to (0.1).

Question 8.1 Let u be a solution to (0.1) and g = e24§, where § is the Euclidean metric. Is
it true that there exists a universal constant C > 20 such that

7 < diamg(R?) < Cn?

Moreover, is it true that diam,g (R?) = 7 if and only if u is radial up to translation, or « is an
1D solution to (0.1)?

We remark that in our forthcoming paper [10], we can prove if # has an upper bound, then
under the metric 28, diameter of R? equal to 7 if and only if u is either radial about a point,
or u is one-dimensional. More recently, in [2], it is proved that when the diameter reaches
the lower bound 7, then u is truly either radial or one-dimensional. Also, the diameter can
be arbitrarily large.

The following question is on conformal diameter corresponding to supersolutions to (0.1).

Question 8.2 On general supersolutions, let u satisfy (1.1) and g = 2“8, where 8 is the
Euclidean metric. Suppose that [, e*dx < oo, is it true that diam g(Rz) < 7 ? Recall that
in Proposition 1.4, we can only prove the 27 upper bound.

Recently, in [27], Lytchak proves that the 2 upper bound is indeed sharp. This was also
pointed out earlier by Dmitri Panov via a very nice example [29].

The following question is on conformal volume estimate correspnding to supersolutions
to (0.1).

Question 8.3 let u satisfy (1.1) and g = 2“8, where § is the Euclidean metric. Suppose that
Jr2 e dx < oo, then is it true that

/ edx < 4xn? 8.1
Rz

Note that if the completion of (R2, ¢24§) is a closed surface, then by Gauss—Bonnet theorem,
(8.1) is true. Let K (x) be the Gaussian curvature at x, then a necessary condition for this to
be true is that

/ K (x)e?"™ =47, (8.2)
RZ

where K is the Gaussian curvature, K = —e ™2 Au. However, generally this is not true even
for radial supersolutions to (0.1), even if the metric can be smoothly extended at co, as we
shall see immediately in the next example:

Example 8.4 Let u be the radial function u = —r2, then (R2, ¢248) is a Riemannian manifold

with Gaussian curvature K = —Aue™24 = 42 > 1. Using the conformal change of
variable z +—> % the metric at oo is equivalent to i (r) := e2u/r) r%‘drz at 0. Clearly, h(r) is

smooth at 0, but

/]R? Kdvol, = /Rz(—Au)dx = 00 # 4m.
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Actually, the answer to Question 8.3 is negative, due to Lytchak [27]. Nevertheless, if the
inequality (1.1) goes in the other direction, we do have the following counterpart for general
cases:

Proposition 8.5 If
Au+e* >0, (8.3)

then
/ dx > 4. (8.4)
RZ

The proof of the proposition follows exactly from the proof of [6, Lemma 1.1]. For the
convenience of the reader, we include the proof here.

Proof Tt suffices to prove (8.4) by assuming fR2 edx < oo.
Let €2; be the superlevel set of u. Since |€2;| < oo because of Chebyshev’s inequality, we

have
/ edx > —/ Audx =/ |Vu|dx (8.5)
Q Q 92
and
d 1
—*|Qt|=/ . (8.6)
dt A |Vu|
Using
1 2
dx |Vuldx | > |092;|° > 47|,
aq, |Vul I
we have
d
—— 1| [ ePdx = 4n ||
dt Q
Hence

d 2 ? 2 d 2 2
—(/ e”dx) =2€’(—|S2,|)/ edx < —8me” |
dt Q dt Q

Integrating from —oo to 0o, and since

o0
f 2% |Q,|dt = / edx,
—00 R2

we proved (8.4). O
Question 8.6 On radial supersolutions, recall that we have applied several geometric argu-
ment to prove the inequalities in Theorem 1.5. Can we give a proof from pure analytic point

of view?

The following question is on generalization of Proposition 7.1 to the case M = (R2, ¢24§)
such that u is a supersoluton to (0.1) and that voly (M) < oo.
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Question 8.7 If u satisfies (1.1) and /R2 eXdx < oo, then for any smooth domain Q C R2,

is it true that
2
</ e”ds) > (/ ezudx> </ ezudx)? (8.7)
aQ Q R2\Q

We note that (8.7) already implies (8.1). However, even (8.1) is not true as mentioned above,
the answer to Question 8.7 is also negative.
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