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ABSTRACT

We study dynamics of relativistic coronal mass ejections (CMEs), from launching by shearing of foot-points (either slowly — the
‘Solar flare’ paradigm, or suddenly — the ‘star quake’ paradigm), to propagation in the preceding magnetar wind. For slow shear,
most of the energy injected into the CME is first spent on the work done on breaking through the overlaying magnetic field. At
later stages, sufficiently powerful CMEs may lead to the ‘detonation’ of a CME and opening of the magnetosphere beyond some
equipartition radius req, where the decreasing energy of the CME becomes larger than the decreasing external magnetospheric
energy. Post-CME magnetosphere relaxes via the formation of a plasmoid-mediated current sheet, initially at ~7q, and slowly
reaching the light cylinder. Both the location of the foot-point shear and the global magnetospheric configuration affect the
frequent/weak versus rare/powerful CME dichotomy — to produce powerful flares, the slow shear should be limited to field lines
that close in near the star. After the creation of a topologically disconnected flux tube, the tube quickly (at ~ the light cylinder)
comes into force-balance with the preceding wind and is passively advected/frozen in the wind afterward. For fast shear (a local
rotational glitch), the resulting large amplitude Alfvén waves lead to the opening of the magnetosphere (which later recovers
similarly to the slow shear case). At distances much larger than the light cylinder, the resulting shear Alfvén waves propagate
through the wind non-dissipatively.
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fast radio bursts.

1 INTRODUCTION

Magnetars, a class of highly magnetized neutron stars, produce
X-ray and y-ray bursts (Usov 1992; Thompson & Duncan 1995;
Komissarov & Barkov 2007; Mereghetti 2008; Kaspi & Beloborodov
2017), and occasional giant flares (Hurley et al. 2005; Palmer et al.
2005). Discoveries related to fast radio bursts (Cordes & Chatterjee
2019; Petroff, Hessels & Lorimer 2019), especially simultaneous
observations of radio and X-ray bursts from a magnetar (Bochenek
et al. 2020; CHIME/FRB Collaboration 2020; Mereghetti et al.
2020; Ridnaia et al. 2021) renewed interest in the dynamics of
magnetar’s explosions.

To set up the stage, we first qualitatively divide FBR models into
two types — magnetospheric and wind models. Also qualitatively,
we divide magnetar flares’ models into Solar flare paradigm and
Starquake paradigm, with a clear understanding that the actual
separation of models is/may not be as clearly defined.

In the case of FRBs, one set of theories advocates that FRBs
are magnetospheric events (e.g. Lyutikov 2003; Popov & Postnov
2013; Lyutikov, Burzawa & Popov 2016; Lyutikov & Popov 2020).
An alternative suggestion is the generation of FRBs in the wind or
in the wind termination shock (e.g. Lyubarsky 2014; Beloborodov
2017; Metzger, Margalit & Sironi 2019; Barkov & Popov 2022;
Khangulyan, Barkov & Popov 2022; Thompson 2023). Observations
of contemporaneous magnetar X-ray flares and FRB strengthened the
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evidence for magnetospheric loci (as argued by Lyutikov & Popov
2020); the detection of sub-second periodicity (CHIME/FRB Col-
laboration 2022) leaves little doubt in our view. The recent detection
of antiglitch in FRB-associated magnetar Younes et al. (2023) is also
consistent with the magnetospheric model, see Lyutikov (2013).

The wind models of FRBs appeal to the generation of a strong
shock or magnetic shell that propagates through the wind. As we
demonstrate in this paper, the assumption of strong shock/magnetic
shell propagating through the wind is incorrect: the magnetic shells
can naturally come into force balance near the light cylinder, and
are then passively advected with the wind. We model quite a small
magnetosphere radius R c = SRns. It allows keeping pressure
balance due to small Lorentz factors of the flow. In the case of a
larger dynamical range (10*) it can be not so. Acceleration of the
blob inside the magnetosphere up to I' > 10 will lead to loss of the
casual connection and the blob can escape in strongly unbalanced
conditions and form an explosion-like solution in the wind zone.

As for magnetars’ flares, the Solar flare paradigm for magnetar
explosions (Lyutikov 2006, 2015) argues that the underlying mecha-
nism that causes magnetars’ flares may be similar to those operating
in the solar corona. According to the model, GFs are magnetospheric
events. An alternative view is that magnetar flares are crustal events
(Thompson & Duncan 1995). In the Solar flare paradigm, the energy
that will eventually power magnetar flares is first stored inside
the neutron star right following the core-collapse of the progenitor
star. Slowly over time, hundreds to thousands of years, the internal
magnetic twist is pushed into the magnetosphere via Hall (electron-
MHD) drift (Goldreich & Reisenegger 1992; Gourgouliatos et al.

© 2023 The Author(s)

Published by Oxford University Press on behalf of Royal Astronomical Society

202 1940J00 ZZ U0 Josn NINAY Seuelqr Ausioaun anpind Aq L2€0€Z./¥209/v/¥2S /P10 /seiuw/woo dno-oiwapese/:sdny wolj papeojumoq



2013; Wood, Hollerbach & Lyutikov 2014), gated by slow, plastic
deformations of the neutron star crust (Lyutikov 2015). This leads
to the gradual twisting of the external magnetospheric field lines,
on time-scales much longer than the magnetar’s GF, and creates
active magnetospheric regions similar to the Sun’s spots. As more
and more current is pushed into the magnetosphere, it eventually
reaches a point of dynamical instability. The loss of stability leads
to a rapid restructuring of magnetic configuration, on the Alfven
crossing time-scale, to the formation of narrow current sheets, and
the onset of magnetic dissipation. As a result, a large amount of
magnetic energy is converted into the kinetic energy of bulk motion
and radiation (Lyutikov 2003; Komissarov, Barkov & Lyutikov 2007;
Ripperda et al. 2019; Yuan et al. 2020). The coherent emission may
be produced due to some kind of plasma instability, for example,
via the free electron laser mechanism (Lyutikov 2021). Perhaps the
best argument in favour of the ‘Solar flare paradigm’ is that the
observed sharp rise of y-ray flux during GF, on a time-scale similar
to the Alfvén crossing time of the inner magnetosphere, which takes
~0.25 msec (Palmer et al. 2005). This unambiguously points to the
magnetospheric origin of GFs (Lyutikov 2006). Since in the Solar
flare paradigm, GFs are magnetospheric events, no large baryonic
loading is expected in the ensuing outflows.

Another model of magnetars’ flares, which we call the Starquake
model of Thompson & Duncan (1995, 2001) (though the ‘starquake’
is not used in these papers — we thank Chis Thompson for pointing
this out — we use this term as a classification marker; the models
do appeal to crustal faults), whereas the sudden fracture of the
crust leads to the fast motion of the magnetic foot-points. (Levin &
Lyutikov 2012, criticized this set-up: even if the elastic properties
of the crust allow the creation of a shear crack, the strongly sheared
magnetic field around the crack leads to a back-reaction from the
Lorentz force which does not allow large relative displacement of
the crack surfaces.)

For the present purposes, the difference between the slow shear
of the Solar flare and the fast shear of the Starquake models is
that for the slow shear the whole magnetosphere remains in the
causal contact, while the fast shear corresponds to a packet of Alfvén
waves generated by the foot-point motions. We emphasize that our
separation of models into Solar flare — Starquake clearly misses many
details and is introduced here to highlight the two different dynamics
regimes in the ensuing discussion.

In this paper, we seek answers to the two sets of questions, one re-
lated to launching the CMEs from the magnetosphere, and the second
related to the propagation of the resulting structures through the wind:
(i) how the model of sheared/inflated magnetic flux tubes in the Sun
(Antiochos, DeVore & Klimchuk 1999) transports into relativistic
highly magnetized regime; (ii) what is the role of the light cylinder
in generating the CMEs; (iii) what underlying physical parameters
distinguish magnetars’ giant flares, from the less energetic bursts; (iv)
what is the dynamics of magnetospheric perturbation as they enter the
wind. By the FRB-magnetar association, these questions may carry
the answer to why FRBs are different. Investigations are done with the
code PHAEDRA (Parfrey, Beloborodov & Hui 2012), Appendix 3.1.
The code invokes force-free electrodynamics, an appropriate limit for
the study of neutron star magnetosphere, considering their extremely
high magnetic field. In this limit, hydrodynamic forces can be safely
neglected and therefore the electromagnetic Lorentz force can be
approximated as zero.

The plan of the paper is as follows. In Section 2, we describe
theoretical expectations that would guide us through the following
research. In Section 3, we describe the code. In Section 4, we
concentrate on the innermost dynamics of the CMEs, neglecting rota-
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tion/presence of the light cylinder. In Section 5 (slow shear), we adopt
a model of generation of Solar CMEs by Antiochos et al. (1999),
Antiochos et al. (2007) to relativistic rotating magnetospheres of
neutron stars. In Section 6 (fast shear), we consider dynamics of a
‘glitched magnetosphere’ — when a part of the neutron star’s crust
experience a sudden change in the rotational angular velocity. In
Section 7, we consider dynamics, from the magnetospheres to the
wind, of an ejected magnetic flux tube.

2 MAGNETAR’S CMES

2.1 The Solar Flare paradigm

Coronal mass ejections (CMESs) are the most explosive events in our
Solar system and have been long studied in solar physics (Forbes
2000; Vourlidas et al. 2002). According to the model of Solar flares
by Antiochos et al. (1999), Antiochos et al. (2007), the underlying
cause of the manifestations of solar activity — CMEs, eruptive flares,
and filament ejections — is the disruption of a force balance between
the upward pressure of the strongly sheared field of a filament channel
and the downward tension of a potential (non-current carrying)
overlying field. Thus, an eruption is driven solely by the magnetic free
energy stored in a closed, sheared magnetic field that opens toward
infinity during a CME. Initially, the magnetic field has a complicated
multipolar topology while reconnection between a sheared arcade
and neighboring flux systems triggers the eruption. We also mention
an important Aly’s theorem, that open topologies have the largest
energy given poloidal magnetic field distribution on the surface (Aly
1991). The presence of the light cylinder changes this picture: if an
arc reaches the light cylinder it will become open.

‘We first explore models of magnetar giant flares based on the same
paradigm as Solar Flares and CME (Antiochos et al. 1999, 2007),
that they are driven by slow surface shear leading to catastrophic
rearrangement of the neutron star’s magnetospheric fields.

The principal difference between solar and magnetar CMEs is
that the magnetar plasma is relativistic and strongly magnetized,
with Alfven velocity of the order of the speed of light. Perhaps
it is more correct to them coronal flux ejections (Jens Mahlmann,
private communication), but we keep the more familiar notation of
a CME. In addition, the presence of a light cylinder plays the most
important part in the generation of CMEs in magnetars, if compared
with non-rotating calculations of Antiochos et al. (1999, 2007), the
light cylinder is the analogue of the Alfven surface in rotating stars.

Through numerical experiments, we found that several comple-
mentary ingredient control the overall dynamics of the generation of
CMEs in magnetars: global magnetospheric structure, rotation, and
the location of shear foot points. To make the following discussion
clear, the term ‘shearing’ refers to the dynamical motion of magnetic
foot-points.

We first study step-by-step different global configurations and
different shearing prescriptions. In Appendix 3.1, we study sepa-
rately/reproduce analytical results for separate ‘ingredients’ of the
model: (i) Sheared non-rotating magnetospheres, Appendix 4.1;
(ii) Rotating stars with no foot-point shearing, Appendix B and in
particular Michel’s solution, Fig. B1.

2.2 Theoretical expectations

2.2.1 The set-up

Let us first discuss the dynamics of topologically isolated flux
tubes/magnetic blobs (called CME below) injected deep within

MNRAS 524, 6024-6051 (2023)
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Table 1. Typical scales for dynamics of CME injected within the magnetosphere. Only a small fraction of the injected energy remains within the

CME after it escapes from the magnetosphere.

Model Flux tube

Small CME Large CME (RcMmE, 0 ~ Rns)

The initial volume of CME

Injected energy Ecmg, 0 21 Rns R(Z;MEVOB(%/(&T)
3/2

CME’s linear size at r Rcme/RcME, o ( R;,S )

Energy ECME/ECME, patr (RNs/r)2

Equipartition radius req/Rxs Neae

Energy remaining at req U(Z;ME

27 Rns X nRéME'O, flux tube

(4r/ 3)RéME‘0, sphere 4/ 3)R%ME,O’ sphere

(47 /3) R\ B3/ (87) (47 /3) R\ 0BG /(87)
3/2 3
L L

( RNs ) (RNS )
(Rns/r)*? (Rns/r)

—2/3 —2/3

NeME NcME

CME ICME

a magnetosphere so that the presence of a light cylinder is not
important. (By topologically isolated structured, we mean that no
magnetic field line penetrates the boundary.) Consider an injected
isolated magnetic structure — two possible geometries include a
magnetic flux tube and magnetic ball. Let the injection occur near
the stellar surface with

Typical size Remi, 0 < Rns and associated energy Ecwg, o, Table 1.
The magnetic field inside the CME is of the order of the surface mag-
netic field By so that initially the CME is just slightly unbalanced — the
internal magnetic field matches approximately the magnetospheric
field. The gradient of the external field pushes the CME out.

An important parameter is the total magnetic energy of the
magnetosphere,

Egns ~ By Rys- (1
Naturally, the injected energy is much smaller than the total energy,

EcMmEo

@

NCME = .
Egxs

Conservation of the magnetic flux within CME plays the most
important role. The injected flux is

®p ~ BoReyp o = Const = Bei Reyg- 3)

It is conserved during evolution. Thus, magnetic field inside is

Rewmeo )’
Beve = By R ) “)
CME

We can then identify three different geometrical cases: (i) flux
tube (a toroidally symmetric configuration), (ii) small magnetic ball
(spherical ball displaced from the centre); (iii) large magnetic ball
(ReumE, 0 ~ Rns) (centred ball). In the ‘large magnetic ball’ case, the
quasi-spherical injected structure is of the order of the neutron star
from the beginning.

Importantly, we can then identify three regimes for the dynamics
of the CME: (i) ‘breaking-out’; (ii) ‘detonation’; (iii) magnetospheric
recovery and CME’s expansion in the wind, Fig. 1. During the
early ‘breaking-out’ phase, the CME expands while doing work on
the overlaying magnetic field. As a result, the energy of the CME
reduces dramatically, Table 1. During the ‘detonation’ stage, the
CME expands nearly freely, opening the magnetosphere after the
CME’s break-out, the magnetosphere recovers by forming a current
sheet, while the CME is mostly passively advected with the wind.

MNRAS 524, 6024-6051 (2023)

2.2.2 The ‘breaking-out’ stage

At the ‘breaking-out’ stage, the internal magnetic field (4) matches
the magnetospheric field at the location of the CME,

-3
Beme = Brs(r) = By <RLNS> ()

(assuming Reme < 77 this is not applicable for the ‘large CME’ case,
right-hand column in Table 1). Combining (4) and (5),

Reve _< r )3/2 ©)
Rewme,o0 Rns
Thus, the cross-sectional area o Ry;; oc r*. This scaling is true for

both the flux tube case and the small blob case. Importantly, the CME
expands laterally

R R 12
= cme _ Remeo <L> . )
r Rxs Rxs

As the CME is breaking-out through the overlaying magnetic field,
it does work on the magnetospheric magnetic field. As a result, its
internal energy sharply decreases: at least, as the ratio of the CME
energy to the total energy of the magnetosphere, 7, Table 1:

EgNs -1 )
Teq ) Eowmo — ﬁcME, spherical CME N
E - )
Rxs ( ECBMZSO ) = Ncme, Mux tube

We arrive at an important conclusion: only a small fraction of the
injected CME’s energy affects the wind, at » > R ¢ — most energy
is spent on work against the overlaying magnetic field. Later on,
when the magnetosphere recovers, the energy deposited into the
magnetosphere during CME break-out is dissipated in the newly
created current sheet, see Fig. 8, on time-scales much longer than the
dynamic time’s scale of the injection.

2.2.3 The ‘detonation’ stage

The dynamics change from ‘breaking-out’ to ‘detonation” when the
total energy contained in the confining magnetic field exterior to
the position of the CME (~ B2Rsr—*) becomes smaller than the
CME’s internal energy (equivalently, when the size of the CME
becomes comparable to the distance to the star). This occurs at some
equipartition radius .y, possibly within the light cylinder, see Table 1
and equation (8).

Beyond the rq the dynamics change: The CME has much more
energy than the confining dipolar magnetic field (from r¢q to infinity)
— as a result, the expansion enters ‘detonation stage’ — nearly
vacuum-like expansion (Barkov et al. 2022). At this stage, most
of the magnetic field is concentrated near the surface of exploding

202 1940J00 ZZ U0 Josn NINAY Seuelqr Ausioaun anpind Aq L2€0€Z./¥209/v/¥2S /P10 /seiuw/woo dno-oiwapese/:sdny wolj papeojumoq



Relativistic coronal mass ejections 6027

2.r,, - distance Light cylinder

when CME size ~ r

[ Iniected Elob or'ﬂux tube,
energy Ecypg < Egys

Later “detonation”
-

3. “Detonated” shell, energy
2p6 3
ByRysreq < Ecye < Eeypg

Total energy in the field,
2p3
Ep s ~ ByRys

Light cylinder

Newly open
magnetosphere
fromr=a

! reconnection current sheet

with time
a— R

|

Total energy in the field,
2
Ep ys ~ ByR3

®

By eme By ind

B pind

~Ng

By.eme = Byina

Figure 1. CME dynamics inside the magnetosphere and in the wind. Top panel: A CME, a flux tube or magnetic blob, carrying initial energy Ecmg, o is released
near the surface. The energy of the CME is much smaller than the total magnetic energy of the magnetosphere, Ecmg, 0 < EB, ns. As the CME expands, it
is doing work on the overlaying magnetic field, and loses energy. Sufficiently powerful CME may still reach a size comparable to the local distance to the
star req (while still within the light cylinder). After that, the injected structure would expand quasi-spherically, opening field lines beyond req. Central panel:
post-explosion relaxation. Generation of CME leads to the opening of the magnetosphere at req < R.c. The post-CME magnetosphere recovers by forming a
current sheet from req to R c. Bottom panel: CME in the wind. A flux tube is injected within the magnetosphere, CME first expands with the magnetosphere,
losing energy doing work on the magnetospheric fields to break out, coming to a force balance near the light cylinder, and then is advected passively within the
wind as a shell of constant radial and lateral extension.
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structure. Most importantly, the whole structure becomes causally
disconnected, in a sense that various parts of the expanding blob lose
causal contact with each other.

To enter the ‘detonation’ stage, the radius .y should be (much)
smaller than the light cylinder radius. This requires sufficiently high
injection energy, for example, for ‘small CMR’ column in Table 1,
Foweo o Rys _ o104 p, ©)

Ep ns LC

where P is the spin period in seconds. Thus, for a spin period of 1 s,
only CMEs that carry energy much larger few thousandths of the
total magnetospheric energy reach the ‘detonation’ stage.

For example, for a magnetar with surface field Bys = 10'3, the
total magnetospheric energy Eg ns ~ 10*® erg. Then to enter the
detonation stage, the CME should have energy >10*P~! erg. Only
very powerful events experience the detonation stage. Even if the
CME’s energy exceeds the critical, only a small fraction, at most
~ng 1s transferred to the wind in the form of an EM pulse.

For very energetic explosions, when the equipartition radius rq
is smaller than the light cylinder, the resulting CME ‘detonates’:
creating a causally disconnected shell of thickness ~7.q that expands
freely within the magnetosphere. Locally, the dynamics are governed
by the solutions of Lyutikov (2010) and Lyutikov & Hadden (2012)
describing the 1D expansion of magnetized fluid into the vacuum.
Most of the magnetic energy is concentrated near the surface of the
expanding ball (see also Fig. 6).

2.2.4 Magnetospheric recovery

The ‘detonation’ stage, if it occurs, leads to a temporary opening of
the magnetosphere beyond the radius r.q. The post-CME magneto-
sphere recovers by forming a current sheet from 7.4 to Ric, Fig. 1
middle panel. Recovery proceeds slowly — the rate of recovery is
controlled by dissipative processes in the current sheet.

For r.q < Ryc the overall magnetic structure can be approximated
as a magnetosphere plus diamagnetic disc (Aly 1980; Lyutikov
2023). In this configuration, the structure of the magnetosphere
beyond r.q is approximately monopolar (the case of a balanced
magnetic dipole in the notation of Lyutikov 2023). The location of
the inner edge of the reconnection current sheet a slowly approaches
the light cylinder. At each moment, the spin-down power

R <RLC

2
Lsd ~ BNS

2
3 X Lg dipole > Lsd,dipole
ca? a

RO Q4

3 .

Lsd,dipole ~ ngs (10)

C

2.2.5 Beyond light cylinder

Dynamics beyond the light cylinder depend on whether the CME
reached the detonation stage or not. In the more likely scenario,
when the detonation stage is not reached, the CME is just frozen
into the wind, with the lateral and radial extensions remaining nearly
constant, see Fig. 1, bottom panel, so that its cross-section S and
internal magnetic field evolve according to

ByS ~ Ar xrAf o« r,
Bi,l=d>0/So<r71. (11)

(P, is the value of the injected flux.) The scaling of B, (11) matches
the scaling of the external wind magnetic field. Thus, after reaching a
force balance close to the light cylinderthe ejected flux tube remains

MNRAS 524, 6024-6051 (2023)

in force balance with the wind and is passively advected. The
flux tube expands along a conical trajectory, with constant radial
thickness. The energy contained in the flux tube remains constant:
The expanding magnetic flux tube does not do any work on the
surrounding wind.

If the flare energy is sufficiently large and the detonation stage
is achieved, the magnetosphere will open up at r.q. As a result, an
electromagnetic pulse will be launched in the wind. The energy of the
pulse will be much smaller than the initial injection energy, Ecye(7eq)
< EcwmE, o-

3 SIMULATIONS WITH PHAEDRA CODE

3.1 Numerical method

In this paper, we study the dynamics of sheared magnetospheres us-
ing time-dependent numerical simulations with the pseudo-spectral
simulation code PHAEDRA (Parfrey et al. 2012). The code solves
Maxwell’s equations in spherical, axisymmetric geometry.

10B

- =—VXE,

c 0t

10E 4

-—— =VxB—-—]. (12)
c ot c

A resistive version of the ideal force-free current density is used, (see
equations 10 and 11 in Parfrey, Spitkovsky & Beloborodov 2017),
given by

47 B
—J=[B-VxB—-—E -VxE+yE-B]
C

(I+ymB?
E x B
4V -E——, 13
B2+ E? (13
With
E?= B> +¢® — B,
(14)

B
32=%[32‘62+\/(32—62)2+4(E-B>2 :

Here, 7 is the resistivity and y is the driving rate. In this work, 7 is
modelled as a constant and the value is kept very small. We set n =
0.001 and y = 250.

The code uses spectral filtering to overcome the build-up of power
at high wavenumbers and discontinuities generated due to non-linear
coupling. The filter is given by

o =e", (15)

where 2p is the order of the filter and o characterizes the strength of
the filter. The code uses two filters, a high order to prevent aliasing
instability (2p = 36, « = 35) and a lower order (2p = 8, @ = 0.01)
super spectral viscosity (SSV) filter to provide some dissipation.

The simulation domain extends from ry, = r,, the neutron star
radius, to the outer boundary r,,,. We add an absorbing sponge layer
near the outer boundary to absorb outgoing waves. One important
characteristic spatial scale for a rotating system is the radius of the
light cylinder R ¢, given by the inverse of the star’s unperturbed
rotational angular velocity R c = 1/92. In this work, we concentrate
onRc=5.

For both slow-shearing and fast-shearing simulation models, we
performed the simulations with two sets of values for the outer
boundary at 7oy = 10r, = 2R ¢, 100r, = 20R;c. In the upcoming
sections, we will refer to them as short-scale and long-scale simu-
lations, respectively. We will focus on short-scale runs when we are
interested in observing the behaviour of the magnetosphere near the
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light cylinder whereas we will use long-scale runs when interested
in studying the behaviour of the system away from the light cylinder.

For the flux tube simulations, however, we only performed simula-
tion runs with the outer boundary fixed at » = 100r,. This is because
we are mostly interested in analyzing the trajectory of the flux tube
in the magnetospheric wind once the tube has been launched.

‘We use smooth coordinate mapping for the radial grid, while the
grid is equispaced in 0 direction. We use a non-uniform grid, which
has very good resolution near the star, so code can resolve very fine
details in the magnetosphere. The computational mesh consists of
N, x Ny cells in (r, 0) directions, respectively. We tested our code
with various combinations of N,, Ny and found that a very high
resolution is not needed to analyze the behaviour of our system.
In Table 2, we describe the relevant simulation parameters for all
three models. We ran all our simulation sets for at least over seven
rotational periods. In sets where we suspected different behaviour at
late time, the simulations were run over for a longer duration.

Our simulation region has two major boundaries: the inner
boundary, i.e. the surface of the star and the outer boundary defined
by the size of our simulation box. We assume axisymmetry as well
as symmetry about the equatorial plane. The normal component of
the magnetic field, B,, and the tangential components of the electric
field are continuous across the surface and therefore are known. The
required boundary conditions at r = r, are

B, = Br(g)v
Es = —QB;sin0,
Ey=0. (16)

For CME ejection simulation, we introduce shearing after one
rotation period by simply modifying the net angular velocity at the
surface by Q = Q, + w.

3.2 Global magnetospheric structure

Investigations are done with the code PHAEDRA (Parfrey et al.
2012), Appendix 3.1. We have verified that for non-sheared con-
figurations, our procedure reproduces the analytical solution and
key known results (e.g. formation of plasmoids at the Y-point), see
Appendix B.

The first important ingredient that affects the generation of flares
is the global structure of the magnetosphere. To investigate the
influence of global magnetic structure on the generation of CMEs, we
first consider several initial magnetospheric configurations: purely
dipole, twisted dipole-like configurations, dipole+quadrupole, and
dipole + octupole fields.

The expressions for magnetic fields of dipole, quadrupole, and
octupole, normalized with respect to the field at the pole B, is given

by
sin @ R3
cosf, ——,0/ By—

Bq 2 r3’

1 . R*
B, = {1(3 cos(20) + 1), sin(8) cos(), 0} Bpr—4,

B—15 0)* 33'95 ) 103R—5
0—{2( cos(®)" = 3). 7 sin(@)(5 cos(9)” — 1), } 5

Btot = Bd+qu.qu‘o- (17)

See Appendix A for a more detailed description of the analytically
tractable case of dipole + quadrupole configuration.

We then study three different configurations: (i) dipole; (ii) mixed
dipole—quadrupole; and (iii) mixed dipole—octuple. The relative
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Table 2. Table showing simulation parameters for the models used in this
work.

Model Fout Nr X N9

Slow shearing 10,100 280 x 180
Fast shearing 10,100 260 x 200
Flux tube 100 340 x 220

strength of the higher multipoles is parameterized by g and p,.
In what follows, we use pq = 2 and pu, = 3 — in these cases,
the higher order multipoles introduce non-trivial corrections to the
surface fields if compared with dipolar (e.g., in the case of dipole—
quadrupole configuration, a ‘dome’ appears near the south pole), see
Figs 2 and Al.

3.3 Prescriptions for foot-point shear

The second important ingredient is the location of the shear. The
imposed shear on magnetic foot-points is confined to a small band, to
be located at various latitudes and of latitudinal extent. The shearing
is applied at the inner boundary of our simulation, the radius of the
star.

‘When the two foot-points of the sheared arcade are well separated,
we employ symmetric shear, moving azimuthally only one set of
footprints (This is nearly equivalent to antisymmetric shear, when the
two footprints are moved in the opposite direction, given the overall
spin of the star). The symmetric shear fails to create an expanding
flux tube for the case of equatorial shear — in that case, symmetric
shear moves both footprints in the same direction so that the global
magnetosphere can remain stationary (Lyutikov & Sharma 2022). To
induce explosion for the equatorial shear, we apply antisymmetric
prescription, equation (20).

We employ several prescriptions for symmetric shear. First, we
follow the discussion in section 3 of Antiochos et al. (1999). The
angular velocity of the foot-points w; is (see Fig. 3)

_ a)maxg(g), for Gband -0 =< 0 =< gband
oy(0) = { 0, otherwise .

(18)

Here, wmax 1s the maximum value of applied shear, and function
8(6),

g0)=C (¥* — )’ siny
W = Qband - 95 (19)

defines the latitudinal extent of the shear region, and Oy, is the
polar angle around which shearing is applied. C is a normalization
constant introduced to ensure that max|g(f)| = 1 and ® = /15 is
the assumed latitudinal extent of the shear layer.

We can also construct an expression for antisymmetric shearing
as follows:

ws(e) — {wmaxg(e)’ for szmd -0 = 0 = eband +0

0, otherwise . 20)

Since for the rotating case, we are mostly interested in the
ratio of shear velocity to the stars rotation velocity, we rearrange
equation (18), to get
Wy _ {Eg(e)v for Gband -0 =< 0 =< eband
— = - 21)
Q. 0, otherwise .

Where %_ = Wmax/ 4.

The shear profile for both symmetric and antisymmetric cases, as
the function of 0, is plotted in Fig. 3 for three different locations of
the shearing band.
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Figure 2. Initial poloidal field lines for superposition of dipole, dipole plus quadrupole, and dipole plus octupole (left- to right-hand panels) for ;g = 2 and
Lo = 3, see equation (17). Shearing regions A, B, and C are at 20°, 90°, and 120°, respectively, from the z-axis. Here and below scales are normalized to neutron

star radius.
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Figure 3. Normalized shear velocity (ws/wmax) as a function of co-altitude 6 (see equations 18 and 20). Solid black curves show the shear profile for the symmetric
mode at three different regions (A, B, and C), whereas the blue-dashed line represents the shear profile for the antisymmetric mode near the equator (region B).

4 CORONAL MASS EJECTIONS DEEP INSIDE
MAGNETOSPHERES

4.1 Sheared non-rotating magnetospheres

‘We start this work by probing static non-rotating configurations with
shearing introduced at different locations. The main justification is
the limited dynamic range of simulations of the rotating magneto-
spheres, Section 5. Our typical light cylinder radius is only five stellar
radii, while in the case of a magnetar, the expected ratio is in the tens
of thousands (for ~1 s period).

As a key new ingredient, we probe the effect of various magnetic
field topologies by adding contributions from other multipoles. We
achieved this by superimposing quadrupole and octupole fields on the
star’s dipolar field (see Section 3.2). Since we are mostly interested
in the CME ejections, we chose a relatively high shearing rate to
ensure the magnetosphere enters into a non-equilibrium dynamic
state (Mikic & Linker 1994; Parfrey, Beloborodov & Hui 2013).
For this and the subsequent simulations, the maximum shearing rate
wmax Was chosen as 0.1 (so that the light cylinder corresponding to
the shearing motion is at 10 stellar radii.)

MNRAS 524, 6024-6051 (2023)

The shearing of foot-points starts immediately at the beginning of
simulations ¢ = 0, causing the field lines to twist. The subsequent
evolution of the system is visualized in Fig. (4), where we plot
toroidal current density Jy for the combination of different shearing
altitude and magnetic field topology, for short scale runs (roy =
10). To demonstrate the importance of the location of foot-point
shearing, we consider three different shearing regions: near the poles
(region A), at the equator (region B), and at ~120° from the poles
(region C).

No ejections were seen when the shearing region is located near
the poles (Region A) for all three initial magnetic field topologies. As
observed in Fig. 4, left-hand panel, there is not a substantial poloidal
expansion, and the system attains a quasi-equilibrium state where
most of the field lines remain closed.

For the case of equatorial shearing (region B), we see major explo-
sive events for the superposition of dipole and quadrupole/octupole
topologies. We attribute this to the significant opening of the closed
lines. While the ejection is evident for the case of dipole and octupole
superposition, we show the final inflated state for the remaining two
configurations: the structure breaks away and exits the simulation
box at the next time-step. This equatorial expansion is consistent
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Figure 4. Toroidal current density(J/4) for non-rotating configurations sheared at various altitudes (20°, 90°, and 120° from the left- to the right-hand panels,
respectively). Shearing rate iS wmax = 0.1. The computational domain extends till 10 stellar radius (r,). In all cases, when shearing is done close to the north
pole (region A, left-hand column), no major ejection events are observed. When shearing near the equator (region B, middle column) or region C (right-hand
column) whether or not ejections are observed depends on the magnetic field topology. Red boxes are drawn around configurations where a clear expulsion of

plasmoids is observed.

with previous simulations by other authors (Mikic & Linker 1994;
Parfrey et al. 2013). As argued in above-mentioned works, field line
opening causes the formation of a current sheet, and the subsequent
reconnection of field lines triggers the ejection of magnetic energy
in the form of CMEs.

The ejections profile while shearing region C, however, depends
on the magnetic topology, as depicted in Fig. 4 right-hand panel.
Unlike in the case of dipole and dipole+octupole magnetosphere,
the field lines for dipole 4+ quadrupole topology are only partially

open and the system achieves a quasi-equilibrium state. In Fig. 4, we
highlight those cases where the system explodes and ejects CMEs
with a red box. For the rest of the cases, no emissions were observed
within the temporal limit of our simulation.

We further show the large-scale time-evolution of two selected
configurations: dipole + quadrupole and dipole sheared antisym-
metrically in Fig. 5. We see ejection events in both scenarios, albeit
at different times. In Fig. 6, we zoom in on Fig. 5(e) to highlight
the structure of the exploded shell — most of the energy/magnetic

MNRAS 524, 6024-6051 (2023)
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Figure 5. Time evolution for non-rotating dipole + quadrupole sheared at point B (top panel), and dipole sheared antisymmetrically at point B (bottom panel),
for large-scale run. Colour is the toroidal magnetic field rsin (6)B (this applies to other figures unless stated otherwise), and streamlines are poloidal fields.

Shearing starts at the beginning of the simulation.
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Figure 6. Detonating CME within the magnetosphere. Right-hand panel: zoomed-in version of Fig. 5(e): notice the edge-enhances structure of the detonating
CME, cf. Fig. 1. As discussed by Barkov et al. (2022), detonating magnetic structures are concentrated near the surface. Left-hand panel: we show the system

approximately a third of a period before the detonation.

field is concentrated near the surface of a detonating flux tube
as discussed/simulated by Barkov et al. (2022). Numerically, we
verified that the detonation occurs approximately at (8). Precise
location/confirmation suffers from the facts that the external energy
scales as req °, so that the error in the estimate of rq from simulations
by a factor of 2 (due to the finite size of the flux tube and not a strict
definition of the detonation moment) leads to large variation in the
value of the external energy.

MNRAS 524, 6024-6051 (2023)

5 CORONAL MASS EJECTIONS BY ROTATING
MAGNETOSPHERES (SLOW SHEAR)

5.1 Results: magnetospheric dynamics for slow shear

Next, we proceed to the main topic of this paper: dynamics of CMEs
in relativistic rotating magnetospheres with sheared foot points. For
slow shear, we set wmax = 0.1, which corresponds to & = 0.5 (maximal
shearing rate is half the spin). The shearing of the stellar surface
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Figure 7. Time-evolution for rotating dipole configuration sheared antisymmetrically at point B (equatorial), slow shear. The computational domain extends
till 10 stellar radius (r,). Snapshots are taken at r = {0.95, 3.2, 5.4, 6.4, 7.0, 7.3}. Shearing starts at = 1 (after one rotation period). One can clearly observe
the opening of the field line and ejection of a CME. After the CME is ejected, the closed part of the magnetosphere is smaller, with the current sheet showing
plasmoid instability. The final configuration has a non-zero twist on closed field lines — compare the first and last panels. See also Fig. 12 for the large-scale

dynamics.

begins after one rotational time period, to ensure that our initial
unsheared system is in an equilibrium state.

We start with the basic case of dipolar magnetosphere sheared
at the equator with an antisymmetric shearing profile (20), Fig. 7.
We introduce magnetic foot-point shearing to rotating neutron stars.
One can clearly observe the opening of the field line and ejection
of a CME. After the CME, the closed part of the magnetosphere
is smaller, with the current sheet showing plasmoid instability. The
final configuration has a non-zero twist on closed field lines.

The behaviour matches the expectations: the closed field lines
become partially or even fully opened in response to finite foot-
point shearing due to additional magnetic pressure from the toroidal
component of the magnetic field (Wolfson & Low 1992). The opened
field lines subsequently cause the expulsion of magnetic energy in
the form of CMEs.

The post-CME relaxation is a new effect: formation of a smaller
closed magnetosphere, with a plasmoid-mediated current sheet
deep inside the light cylinder, and a slow, reconnection-mediated
relaxation to a new equilibrium with twisted field lines.

Though our force-free simulations are not designed to catch
resistive-type plasmoid instability, experience tells us that numerical
resistivity in many cases mimics surprisingly well the qualitative
details of real resistivity, including plasmoid instability (e.g. Komis-
sarov et al. 2007; Lyutikov & McKinney 2011; Parfrey et al. 2013;
Del Zanna et al. 2016; Ripperda et al. 2019). Realistic relativistic
reconnection in current sheets forms series of plasmoid islands,
which allows forming fast reconnection regime with reconnection

speed about 0.1c. The last statement was confirmed by PIC simulation
and two-fluid simulations as well (Barkov & Komissarov 2016).
Also, two-fluid simulations show significant rate of the reconnection
with gas pressure as well with strong guiding field (see the paper
above and some unpublished results, which is in a good agreement
with PIC results). So the relativistic fast reconnection is feasible, and
our fast reconnection also mimic realistic reconnection process.

Next, we show the time-evolution of sheared dipole and
quadrupole systems for equatorial shearing in Fig. 8, left-hand
column. The opening of field lines and subsequent ejection of CME
is clearly evident. In Fig. 8, we compare the dynamics of the same
configuration (dipole + quadrupole configuration sheared at point
B), between rotating and non-rotating cases. We clearly see that it is
much easier to break out from the rotating magnetosphere. This is
expected since in the rotating case the breakout occurs when the top
of the inflated loop reaches the light cylinder. Fig. 8 also demonstrates
that though our dynamic range is not very large (light cylinder at only
five stellar radii), we do correctly capture the dynamics of the inflated
flux tube within the magnetosphere.

Finally, in Fig. 9, we discuss all three magnetic configurations
sheared at various locations. The top panel shows systems with
only dipolar fields. No ejections were observed when shear was
applied near the polar area (region A) and the system remained
in a quasi-equilibrium state. Similar to what we observed in the
previous section for non-rotating systems, this observation will hold
true even for more complicated magnetic topologies. We also don’t
observe ejections while shearing near the equator (region B). This is

MNRAS 524, 6024-6051 (2023)
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Figure 8. Dipole + quadrupole configuration sheared at point B (equatorial), slow shear. The computational domain extends till 10 stellar radii (r,). Left-hand
column: rotating case, right-hand column: non-rotating case (snapshots are taken at the same time, as measured from the start of the shearing). One clearly sees
the influence of the light cylinder on the development of the CME. This demonstrates that the light cylinder makes it ‘easier’ for the CME to break out.

a consequence of the fact that our shearing profile is symmetrical i.e. ejection events are observed when shearing between ~30° and 100°.
for the equatorial case, the shearing is confined to one hemisphere. This is consistent with our hypothesis that strong ejections are

In the middle panel, we consider a rotating star system with observed while shearing regions with closed field lines (bigger loop
superposition of dipole and quadrupole field, we find that powerful in Fig. 10). We demonstrate our results by plotting the toroidal current

MNRAS 524, 6024-6051 (2023)
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(c)Region C: 120°
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Figure 9. Toroidal current density J, for rotating and sheared configurations. The computational domain extends till 10 stellar radii (r.). Overall angular
velocity of the star is = 0.2 (so that the light cylinder is at x = 5), normalized shear parameter £ = 0.5 (so that maximal shearing angular velocity is
®max = 0.1), symmetric shear (so that all foot-points are moved in the same azimuthal direction). In all cases, when shearing is done close to the north pole
(region A, left-hand column), no major ejection events are observed. When shearing near the equator (region B, middle column), in all cases, we observe
powerful ejections. When shearing is done at region C (right-hand column) whether or not ejections are observed depends on the magnetic field topology: In
the Dipole + Quadrupole case (second row, right-hand column), no powerful ejections are observed. Red boxes are drawn around configurations where a clear

expulsion of plasmoids is observed.

at three different locations: near the poles (region A), at the equator
(region B), and at ~120° from the poles (region C). In the bottom
panel, we consider simulations with the superposition of dipole and
octupole fields. Powerful plasmoid ejection events are observed once
the shearing region is away from the polar region.

Based on the above results, we can safely conclude that the effects
of shearing highly depend on how far the field lines extend. Shearing

closed field lines leads to powerful ejections whereas if the shearing
region is located in an area where field lines have started opening out,
no or weak pulsating ejections are observed. Following the discussion
in Section 4.1, we highlight those cases where the explosion can be
observed with a red box. In Table 3, we summarize our results for
rotating sheared configurations (see also Section 6.4 for a related
case of fast shear).

MNRAS 524, 6024-6051 (2023)
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Figure 10. Qualitative description of flare dynamics depending on the location of the shear (dipole—quadrupole case). The vertical line at 5 is light cylinder.

Table 3. Table summarizing results from simulations when the magnetic field lines are sheared for rotating stars, following

the prescription in Antiochos et al. (1999).

Field topology Shearing region
Region A Region B Region C
Dipole Weak pulsating eruptions ‘Weak pulsating eruptions Powerful ejections

(Fig. 9a, top panel)
Weak pulsating eruptions
(Fig. 9a, middle panel)
Weak pulsating eruptions
(Fig. 9a, bottom panel)

Dipole + quadrupole

Dipole + octupole

(Fig. 9b, top panel)
Few but powerful

(Fig. 9b, middle panel)
Frequent and powerful
(Fig. 9b, bottom panel)

(Fig. 9c, top panel)
‘Weak pulsating eruptions
(Fig. 9¢, middle panel)
Frequent and powerful
(Fig. 9c, bottom panel)

5.2 Conclusion 1: three important ingredients for the
generation of CME: global magnetospheric structure, location
of foot-point shear, and rotation

Different magnetic field configurations are required for CME ini-
tiations by different models (Li & Luhmann 2005). The Break-out
model proposed by Antiochos et al. (1999) has a multiflux topology
with four distinct flux systems. The shearing of the central arcade
(which straddles the equator) and the subsequent reconnection of the
sheared magnetic arcade with the overlying unsheared field leads to
the build-up of large energy excess in closed sheared field lines, to
power CME.

Another similar model was proposed by Mikic & Linker (1994),
where the trigger for plasmoid ejections is the introduction of
resistivity in the plasma when the shearing is turned off. The
introduction of resistivity causes the magnetic field lines to recon-

MNRAS 524, 6024-6051 (2023)

nect in the current and the subsequent formation and ejection of
plasmoid islands. In the absence of plasma resistivity, no eruption
occurs, field lines become fully opened and the system remains in
equilibrium.

The major difference between this work and the model by
Antiochos et al. (1999) is the inclusion of the rotation of the star.
The rotation of the star, which, in turn, leads to the formation of the
light cylinder, removes the need for magnetic reconnection. The flux
tube opens up to infinity approximately when the top point reaches
the light cylinder.

We find a relatively simple picture of shear-generated explosion:
the location of the shear for a given global magnetospheric structure
determines the presence or absence of strong ejection events. Qual-
itatively, we show the results for dipole 4+ quadrupole configuration
in Fig. 10.
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Figure 11. Rotating dipole + quadrupole configuration sheared at point B (equatorial), slow shear for the large-scale run. The computational domain extends
till 100 stellar radius (r,), although here we zoom-in till » = 30r,. The snapshots are taken at r = 0.99, 2.4, 3.2, 3.6, 3.8, and 5.3 of the rotational period of the
star. Shearing is introduced after one rotation. One can clearly observe the opening of the field line and ejection of a CME. After the CME, the closed part of
the magnetosphere is smaller, with the current sheet showing plasmoid instability. The final configuration has a non-zero twist on closed field lines.
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Figure 12. Similar to Fig. 7 (dipolar field sheared antisymmetrically at region B) but on large scales. Plotted are values of rsin 0By (left-hand panel), Lorentz
factor (middle panel) and radial momentum p(r) as a function of radial distance r at a zenith angle of 60° from the pole for the above configuration (solid) and
for unsheared rotating dipolar configuration (dashed). The snapshots are taken at t = 7.8. As observed from the middle and left plots, there is minimal effect of

the ejection on the Lorentz factor I,

5.3 Large-scale dynamics of ejected CMEs in the wind, and
conclusion 2

Previously, in Section 5.1, we discussed the generation of a CME
within the magnetar’s magnetospheres. Next, we study the large-scale
dynamics of the resulting CME. We start with a large-scale simulation
showing the time-evolution of a sheared dipole + quadrupole
configuration, see Fig. 11. Here, we set the outer boundary far away
from the light cylinder, ro, = 207 c.

In Figs 12 and 13, we plot a large-scale snapshot for the two
cases of dipolar fields sheared antisymmetrically and dipole plus
quadrupole configuration sheared at point B.

Recall that shearing results in the generation of a topologically
disconnected flux tube, a CME. In Figs 12 and 13, an ejected CME is
clearly identified in the left-hand panels around x = 25. At the same
time, the CME is barely seen in the Lorentz factor/radial momentum
plots (centre and left-hand panels): topologically disconnected CME

MNRAS 524, 6024-6051 (2023)
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Figure 13. Similar to Fig. 11 (dipole 4+ quadrupole configuration sheared at point B) but here we show Lorentz factor I' and radial momentum p; as a function
of radial distance r at a zenith angle of 60° from the pole along with scaled toroidal magnetic field at # = 4.1. As observed from the middle and left-hand plots,

there is minimal effect of the ejection on the Lorentz factor T'.

is frozen into the wind and propagates with the local Lorentz factor
of the wind.

Overall, our numerical results are in excellent agreement with
analytics (Lyutikov 2022), see Fig. 1.

6 GLITCHED MAGNETOSPHERE (FAST
SHEAR)

6.1 Magnetar’s CMEs in the Star Quake paradigm

In a complementary approach, which can be supported by a fully
analytical model, we consider a model of propagation of the force-
free electromagnetic pulse generated by a sudden local spin-up of
a neutron star, a ‘Glitched Magnetosphere’. This type of dynamics
mimics the starquake model of Thompson & Duncan (1995) and
Yuan et al. (2020)

6.2 Locally glitched Michel’s magnetosphere: analytical
approach

Effects of ‘glitch in spin’ on the structure of the wind can actually be
considered analytically and non-perturbatively for the case of Michel
(1973) magnetospheres and the preceding wind:

2 2Q) si 2]
B:BO{%,O,—%IH()},

v { r2Q? sin(9)? r$2sin(@) }
14+ r2Q2%sin(8)?’ 7 1+ r2Q2sin(6)? |’
T =/1+r2Qsin@),
r2Q? sin(9)? r2sin(@)
P= { VI+r2QTsin0)  \/1+r2Q? sin(e)Z}'

By is the fiducial magnetic field magnitude at the light cylinder
(ro) and we set ¢ = 1. Realistic dipolar magnetospheres do evolve
asymptotically to the Michel (1973) solution (Bogovalov 1999;
Contopoulos, Kazanas & Fendt 1999; Komissarov 2006).

One can generalize Michel’s solution for any arbitrary time- and
angle-dependent rotation 2 = Q[r — #]g(0) (Lyutikov 2011) (see also
Gralla & Jacobson 2014). The solution can also be generalized to
Schwarzschild metric using the Eddington—Finkelstein coordinates,
Lyutikov 2011. This glitch in spin time-dependent non-linear solu-
tion (non-linear both in the sense that the current is a non-linear
function of the magnetic flux function, and that the perturbation
can be of large amplitude) preserves both the radial and 6 force

(22)
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balance. Qualitatively, ‘a glitch’ in the angular rotation velocity €2
mimics a symmetric shearing motion of a patch of field lines (we
remind: ‘symmetric’ means overall motion in one direction along
¢). Approximation of Michel (1973) magnetospheres misses the
magnetospheric dynamics, but it captures the wind dynamics.

In Fig. 14, we show the evolution of single Alfvén pulse using
g(0) = sin'(® + 7/4) and @ = 1 + e, To complement the
analytical work, we show the complete evolution of a pulse via
numerical simulation in Section 6.3

A pulse of shearing Alfvén waves with Q[r — #]g(6) propagates
with radial 4-momentum

_ r2sin? 0Q2%[r — t1g(6)?
V1 +r2sin? 6Q2[r — t1g(6)?

which is larger than that of the wind for Q[r — £]g(6) > o, the
constant value. Higher radial momentum (than that of the background
flow) does not mean that plasma is swept-up: It is just an EM pulse
propagating through the accelerating wind.

Finally, we note that a glitch in fact can be local, with arbitrary
¢-dependence (but only in the ¢ direction, Appendix C. Also,
interaction with the current sheet (reversal of B,) breaks the non-
linear solution and will likely will lead to dissipation.

» @)

6.3 Locally glitched magnetosphere: simulations with
PHAEDRA

In a numerical implementation, we limit ourselves to just dipolar
magnetospheres. We use glitch parametrization as

82
Q=Q <1 + g(@)f(t)gz—) . (24)
0

Several types of shearing were implemented: (i) overall glitch g(0) =
constant (so, in this case, the glitch is actually global); (ii) symmetric
g(6) = sin'%(@ + m/4); (iii) and antisymmetric near the equator
g(0) = sin3(#)cos (#). The extra rotation within the shearing band is
fast §Q2/Qy = 5.

Time dependence of the glitch is

f@t) = sin[w(t — ton)/ 7],
ton = P (one period),
T = P/10,
foft = fon + T, (25)

so that the glitch is implemented after one rotation for one-tenth of
the with maximum rate reached when ¢ = ¢,, + 7/2. Thus, a total
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Figure 14. Top row — left-hand panel: structure of the magnetic field in the equatorial plane of an electromagnetic Gaussian pulse with amplitude 10 times the
average propagating through Michel’s wind. The peak of the pulse is at #/R| c = 3. The light cylinder is at /x2 + y2 = 1. The colour scheme corresponds to
In B/Bwm, where By is the local value of the magnetic field for Michel’s solution. Centre panel: plot of B showing EM pulse propagating with the wind for times
t=13,5,and 7 (in units of Ry c/c); dashed line is the Michels’ solution. Right-hand panel: plot of p,(r). The pulse propagates with the flow with constant relative

amplitude, without experiencing any distortions. Bottom row: value of rsin6By.

shearing angle is A¢ = 7. Note that the shearing expression g(0)
used in this section is somewhat different from the one used for slow
shearing.

6.3.1 Overall glitch

We first consider the case of constant g(0), i.e. the entire magne-
tosphere is glitched instead of a narrow band. We demonstrate our
findings in Fig. 15 where we plot rsin (6)B, at different time-steps

6.3.2 Narrow symmetric glitch at 6 = w/4

The results of the simulation are presented in Fig. 16 (small-scale
simulation run,r,, = 10r,), and bottom row of Fig. 17 (long time-
scale evolution). In Fig. 16, we show zoomed-in plots for rsin (6)B,
superimposed on poloidal field lines for symmetric shear: narrow
band near 6 = /4 is suddenly moved with angular velocity five times
the spin. We start with an unperturbed magnetosphere (Fig. 16a), one
period after the star of overall rotation. Then, shear is introduced,
Fig. 16(b) —a blue region near the star at @ ~ /4. The resulting shear
Alfvén wave breaks out from the magnetosphere, Fig. 16(c). The
magnetosphere recovers the bottom row. A new Y-point is formed

close to the star (compare locations of the Y-points before the shear
is introduced in Fig. 16(a) and right after break-away, Fig. 16d).
Outside of the newly formed Y-point reconnection layer forms. It
is subjected to plasmoid instability, Figs 16(d)—(e). Eventually, the
magnetosphere recovers, to approximately the same location of the
Y-point, Fig. 16(f). Notice that the newly formed magnetosphere is
twisted: there is non-zero toroidal magnetic field on closed field lines.

6.3.3 Narrow antisymmetric glitch at 0 = /2

Here antisymmetric shear is needed to produce a CME (otherwise
the flux surfaces are just rotated as a whole, see Lyutikov &
Sharma 2022). In order to generate antisymmetric, we chose g(6) =
sin 3(0)cos (0).

Asin the previous subsection, we present our results by zooming in
close to the star (Fig. 18) and showing the long time-scale evolution
(Fig. 19). The results are similar to what we observe for fast symmet-
ric shearing at a band around 7/4: Once the shearing is introduced
resulting shear Alfvén wave breaks out, reconnection is observed
outside the new Y-point is formed and plasmoid instability is
detected, Figs 18(d)—(e). The equilibrium state is shown in Fig. 18(f).

MNRAS 524, 6024-6051 (2023)
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Figure 15. Global glitch with g(f) = const, large-scale view. Snapshots of rsin (9)By, are taken at r = 1.6, 2.5, and 3.2 rotation periods. A glitch produced a
global Alfvén wave propagating through the wind.
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Figure 16. Fast glitch near 8 = /4, g(6) = sin '%(9 + 7/4), dipolar magnetospheres, symmetric shear. The computational domain extends till 10 stellar radius
(ry). Fig. 16(a) is at the time-step just before the glitch is applied whereas Fig. 16(b) is just after. We observe plasmoid island formation in Fig. 16(e). Fig. 16(f)
shows the final equilibrium state. See Fig. 17 for similar plots from a large-scale simulation run.
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Figure 17. Same as Fig. 16, but for a large-scale run. Snapshots are taken at 7 = 1.6, 2.5, and 3.2. One clearly sees an electromagnetic pulse propagating through

the wind.
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Figure 18. Antisymmetric equatorial glitch with g(0) = sin 3(6)cos (9), zoomed-in view. The computational domain extends till 10 stellar radius (r,). Fig. 18(a)
is at the time-step just before the glitch is applied, and Fig. 18(b) is just a one time-step after the initiation of the glitch. Fig. 18(c) shows shearing Alfvén wave
breaking away from the magnetosphere. In the lower row, we observe the formation of a new current sheet, subject to plasmoid instability. Fig. 18(f) is the final
equilibrium state, with twisted closed field lines.
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Figure 19. Antisymmetric equatorial glitch, large-scale simulation run at times 7 = 1.6, 2.5, and 3.2.

6.4 Comparison of slow and fast shear, and discussion of
previous results

Previously, in Section 5, we considered CME dynamics for slow
shear. Let us compare slow and fast shear cases. Concisely: Slow
shear generates topologically disconnected CME that is frozen into
the wind, while fast shear generates an Alfvén wave propagating
through the wind. In both cases, the opening of the magnetosphere
is followed by the formation of a reconnection sheet. In the case of
slow shear, this opening is achieved by the inflation of the field lines
followed by the break-out near the r.q (or near the light cylinder
for weaker injections), like in the classical Solar flare models. In the
case of fast shear, the opening is achieved by the Alfvén packet itself,
exerting a ram pressure on the closed field lines, and breaking them
open.

Thus, large amplitude Alfvén waves open up the magnetosphere
and form propagating electromagnetic pulses. The magnetosphere
recovers by forming a resistive current sheet deep inside the light
cylinder, subject to plasmoid instability. Thus, the Alfvén packet in
the wind eventually becomes causally disconnected.

Our case of fast shear resembles simulations of Yuan et al. (2020,
2022), who considered the dynamics of shear Alfvén waves within
the magnetosphere. In simulation Yuan et al. (2020) an Alfvén wave
was added at the initial moment (see our Section 7 for a similar
approach). Yuan et al. (2022) do shearing of the foot-points (in 3D).
Both simulations of Yuan et al. (2020, 2022) are done close to what
we call ‘fast shear regime’. In contrast, our 2D simulations allow a
slower rate of shear. As we demonstrate, this slow regime leads to
qualitatively different dynamics than the fast shear: in the slow case
a topologically isolated structure forms, while in the fast regime,
electromagnetic waves are launched into the wind. In the slow shear
regime, the expanding structure is in an approximate force balance.
In the fast shear regime, we demonstrate that the resulting Alfvén
pulse within the wind leads to an EM pulse, or even antipulse, not a
strong shock wave.

In contrast, we generate the Alfvén wave self-consistently by
shearing the foot-points, similar to Parfrey et al. (2013). Our wave
amplitude is large: the initial twist is 180°. Thus, the fields in the wave
quickly become much larger than the background magnetic field.
The Alfvén pulse breaks out from the magnetosphere. During break-
out, the pre-explosion closed magnetic field lines are first stretched
out, opening the magnetosphere, then reconnection ‘behind’ the
wave pulse sets in. Our 2D fast shear simulations are generally
consistent with 3D force-free simulations of Yuan et al. (2022).

MNRAS 524, 6024-6051 (2023)

The similarity includes that the resulting Alfvén pulse opens the
magnetosphere.

Recent work by Mahlmann et al. (2023) employs a similar
procedure to ours to initialize the explosion — moving of the foot-
points; with no light cylinder the corresponding set-up here is like
in Section 4. Their 3D calculations naturally are more limited in
resolution, especially at large radii. This may be the reason why
Mahlmann et al. (2023) did not capture the detonation stage of the
expansion.

The opening of the magnetosphere in the fast shear case is
somewhat different from the slow shear case. In the case of fast
shear, let’s assume that the initially generated wave near the neutron
star surface has amplitude 6B = (A¢)B,, where (A¢) is a typical
angle that the fields lines are sheared. The amplitude of the wave
decreases as o< Rys/r (both Alfvén and X-modes are excited), while
the magnetospheric field decreases as o (Rys/r)*. The amplitude of
the wave becomes larger than the guiding field for

Teq, EM

Ap)~2.
s > (Ag)

(26)
This is the estimate of the opening scale of the magnetosphere for
fast shear, and of the ensuing initial size of the current sheet.

Opening of the magnetosphere requires energy to be spent by the
electromagnetic pulse, of the order of

-6
Teq, EM
Bg( IqQ > r:q, EM-
NS

@7

7 LARGE-SCALE DYNAMICS OF INJECTED
SHEAR

To complement our analysis of slow and fast shear, we also performed
a series of experiments when a packet of shear Alfvén waves is
injected into the magnetosphere (instead of the foot point motion).
We inject a packet of shear Alfvén waves carrying toroidal magnetic
field. In this work, we focus on the scenario where the injection is
performed within the magnetosphere. In what follows, we conduct a
thorough investigation of the system: How does the location of the
ejection influence the dynamics (ejection on open versus closed field
lines), and how does the flow react to the value of the injected flux
(strong and weak ejections), and how do multiple ejections interact.
In what follows, we call the injected Alfvén wave packed as flux
tube, with a clear understanding that the resulting structure is not
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topologically isolated — it is an Alfvén wave packet resembling the
flux tube.

7.1 Injection procedure

The setup in this section is as follows. We start with a dipole
configuration and let the system evolve unperturbed for two time-
periods. We then introduce a flux tube in the magnetosphere of a
rotating neutron star in approximate force equilibrium, just slightly
out of force balance. We do this by introducing external B, given by
equation (28) for a small but finite time-interval Az.

The flux tube is taken to be a torus-like structure and embedded in
a force-free magnetic environment with the magnetic field along the
azimuthal direction. The magnitude of the toroidal field inside the
tube is equal to the total poloidal field of a dipole at » = ar,, where a
can be considered as the location of the centre of the flux tube. The
flux tube is introduced over a small radial interval at a fixed zenith
angle (¢ )from the z-axis.

In this subsection, since we are interested in tubes inserted inside
the light cylinder, we set a = 2.

Bd).tube = B,-z + BZ’

4 ERE inl6:12
_ 5, \/ O sinléh®
a a

(28)

The strength and direction of the toroidal magnetic field inside the
tube is controlled by the parameter B;. For flux inserted along
the magnetic wind, By is positive while negative when the tube
is inserted against the wind. Thus, the initial configuration is just
slightly unbalanced: the dipolar field at the inner edge is somewhat
larger than at the outer edge of the flux tube. But as the tube is pushed
radially away from the star the flux conservation quickly leads to the
creation of a highly overpressurized tube. The tube then both inflates
and is pushed out.

The construction of a self-confined flux tube implies that there are
surface currents. Surface current K can be calculated via interface
conditions of the magnetic field (Jackson 1999).

K=-"[nx(b,— B,
4
n-(B,—B,)=0. (29)

Here, B, = 0, B; = By, wpe, and n is the unit vector from region 1
(inside the flux tube) to region 2 (outside the tube).

Since the code is sensitive to sudden changes on the magnetic
field, the flux tube insertion is inserted over a finite period of time:

B, = {Bd).tube’ if linsertion = I =< linsertion + At
5 =

0, otherwise . (30)

One important quantity is the toroidal flux added within the flux
tube.

q>:/ B -iids. 31)
S

In the case of magnetar-generated CME, the magnetic flux carried
by the flux tube originating near the surface can be estimated as

&; ~ B,R? = B.n?R?, (32)

where Ry is a typical size of the active region and in the latter equality
we scaled flare’s size to the radius of the neutron star, Ry = n¢R,,
The value of the added toroidal flux can be compared with the total
toroidal flux within the light cylinder (in one hemisphere) generated
by the rotating dipole. The model of Goldreich & Julian (1969) gives

Relativistic coronal mass ejections 6043

Table 4. Table showing toroidal flux injected to the system A® for different
values of At.

At @; O AD | %|
0.03 —0.24 —0.54 —-0.30 1.25
0.06 —0.24 —0.85 —0.61 2.5
0.16 —0.24 —143 —1.19 49

an estimate

g g R
®; ~ B,R> . (33)
c

The injected magnetic flux therefore can be calculated via,
AD =D, — D, (34

where &y is the toroidal flux at # = ty = fipeerion + At and ; is the flux
at t = 1; = finsertion- HETe, finsertion 1 the simulation time-step at which
the flux tube was introduced in the system for a duration of Az. In
this work, we display our results for fipserion = 2 and At = 0.06, with
time expressed in terms of the unperturbed rotational period of the
star.

For A® ~ ®¢, we expect

Py L (35)
o, ' "R T

Thus, the toroidal magnetic flux injected by the flare is expected to

be of the order of the total toroidal magnetic flux of unperturbed

magnetosphere. Our simulations’ parameters, Table 4, use similar

values.

7.2 Dynamics of shear Alfvén waves in the magnetosphere and
the preceding wind

For our first sets of experiments, we add a single toroidal flux
tube following the procedure described in Section 7.1. The tube
is launched at a = 2 (we remind that for our basic set-up, the light
cylinder is at x = 5). We explored two injection sites: at Oinjection =
60° (so that the injection is on closed field lines) and at Oiyjeciion = 30°
(so that the injection is on open field lines). We also explored two
polarizations of the injected waves which we call symmetric (so that
the toroidal field in the wave is of the same sign as the toroidal field
in the corresponding hemisphere of the wind), and antisymmetric (so
that the toroidal field in the wave is of the same sign as the toroidal
field in the corresponding hemisphere of the wind).

Though the waves are injected with similar procedures, the
addition of the toroidal component, in fact, corresponds to somewhat
different modes. On the open field lines, there is already B, present.
This toroidal field determines the spin-down: the addition of an extra
toroidal field modifies the spin-down, see Sections 6 and 7.3. The
addition of the toroidal component on the close field lines generates
both Alfvén waves (propagating mostly along the magnetic field),
and compressional X-mode (propagating approximately radially).

While the Alfvén components of the resulting pulse add differently
to the wind flow (depending on the strength and polarization), see
Fig. 20, the X-mode component always produces a compression: a
forward propagating wave, Fig. 21.

Our basic results are plotted in Fig. 20 for injection on closed field
lines (‘symmetric’ injection). We observe that the injected flux tube
first expands within the magnetosphere (top two left-hand panels)
and then propagates as an Alfvén pulse in the wind.

To further elucidate the underlying dynamics in Fig. 21, we com-
pare later behaviour for ‘antisymmetric’ injection at two locations:

MNRAS 524, 6024-6051 (2023)
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Figure 20. Flux tube/Alfvén wave packet launched on closed field lines at 60° from zenith and radial distance a = 2, ‘symmetric’ injection, at times r = 2.01,
2.04, 3.2, 3.8, and 4.1 (launching at r = 2, At = 0.06). The left and middle figures, in the top panel, show the zoomed-in version to capture the flux tube just
after the launch. In the first plot, the injected flux tube is a small patch, highlighted within a rectangle for visual clarity. We observe that the flux tube expands
quickly within the light cylinder. The right greyscale figure, in the middle panel, shows the absolute value of effective magnetic field (B> — E?) x rsin 2@ at
t = 4.1; it demonstrates that with the flux tube Alfvén pulse, there are no large variations of the effective magnetic field. The bottom panel shows the magnitude
of radial momentum p; as a function of radial distance r for a slice at 60° from the pole at r = {2.9, 3.2, 3.5}. A forward-propagating pulse is clearly seen. We
also repeated the calculations for an angular slice at 120° and the results were similar.

6 = 30° (left-hand panel) and 0 = 60° (right-hand panel). In both
cases, the injection is ‘weak’ — meaning that the injected toroidal flux
is somewhat smaller than (33). The two cases are clearly different: for
‘antisymmetric’ injection on open field lines a backward propagating
wave is launched (in panel 21, the radial momentum within the wave
is smaller than that of the wind.)

At the same time, the similar injection but on closed field lines
(right-hand panels in Fig. 21) creates forward propagating pulse.
The reason for the differences is the following. For ‘antisymmetric’
injection on open field lines, the resulting Alfvén pulse resembles
the magnetospheric glitch, Section 6 — regions with smaller toroidal
fields propagate slower. We also verified that in the case of a ‘strong
antisymmetric’ injection, when the injected toroidal flux is larger
than (33), the resulting pulse is forward-propagating.

MNRAS 524, 6024-6051 (2023)

Qualitatively, using Michel’s solution (22) a local toroidal mag-
netic field corresponds to some local effective angular velocity.
Reducing local toroidal magnetic field (for weak antisymmetric
injection) reduces the effective angular velocity and the radial
momentum. Since the radial momentum p; is a quadratic function
of the field, strong antisymmetric injection (so that the total toroidal
field is larger inside the pulse than in the surrounding wind) produces
a forward propagating pulse.

Injection on the closed field lines proceeds differently. For ‘mild’
injection, the added toroidal field on the closed field lines corresponds
to fast mode regardless of the polarization. The fast mode first
propagates through the magnetosphere and then creates compression
of the field in the wind. The resulting pulse is always forward

propagating.
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Figure 21. Comparison of injections on open field lines 6 = 30° (left-hand column) and closed field & = 60° (right-hand column). Weak ‘antisymmetric’
injection. Notice that injection on open field lines produces a pulse that is backward propagating through the wind. For injection on closed field lines, the fast
mode propagating with the magnetosphere creates an electromagnetic pulse that propagates in a forward direction through the wind independently on the initial

polarization of the pulse.

7.3 Multiple injection events

We end this section by considering the scenario of multiple flux
tubes. Here, we add two flux tubes, the first one at 1 = f;4erion, and
the second one at t = 1.5figerion With time expressed in terms of the
rotational period of the star. The first tube is weaker and launched
against the wind (antisymmetric scenario) while the second tube
is stronger and launched along the wind. We consider injections on
open field lines & = 30° and closed field & = 60°. We show a snapshot
of such a multiflux tube system in Figs 22(a) and (b) The two tubes
do not catch up, even if the second one is more powerful and the
first is ‘weak-antisymmetric’ launched on open field lines (hence
propagating backward through the wind).

This is clearly a result of relativistic kinematics, modified by
the fact that the bulk flow is accelerating. In fact, Alfvén waves
propagating in Michel’s wind can be considered non-perturbatively,
Lyutikov (2011) and Section 6. Such waves can be parametrized by
the local spin ;> # ¢ (£2¢ is the constant spin of the star). One
then finds the location of the first wave at time ¢ after leaving the

light cylinder:
1 1 Q (1 +12) —23)2 1
Ri=-|t+——-—= 1 — Xt
: 2< T sz%)’L\/ * 49202 2
1 @ 1
— -+ —, 36
+QO ¥ + T (36)

where Ry = 1/2 (wave is launched at time 7 = 0 at the light cylinder);
the latter relation is for ¢ > 1/€2y. Equation (36) gives the location
of the Alfvén pulse propagating through accelerating wind.

If a second Alfvén pulse is launched after time Af with 2, > Q,
the collision will occur approximately at

-1
teottS2 ~ | 1+ A ~lg( L] @37
coll 240 QO (Q% — Q%) B 0 Q% Q% )

where the last relation assumes that the two pulses are separated by
one rotation. Typical collision times are long and not captured by
our simulations. When the waves eventually catch up at r > R ¢,

MNRAS 524, 6024-6051 (2023)
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Figure 22, Multiple injection events. Two tubes are injected inside the light cylinder at spherical radius a = 2. Injection occurs at 30° (left-hand column, on
open field lines) and 60° (right-hand column, on closed field lines). The first tube is weak-antisymmetric, and the second tube was launched half rotational
period after the first one. Bottom row: time evolution of the distance between the two flux tubes (normalized with respect to the radius of the light cylinder). The
solid line represents the separation between the tubes as a function of time, whereas the dashed line shows the average separation. As observed, the separation

between the injections remains (approximately) the same.

the interaction will resemble the interaction between two non-linear
packets of fast modes.

8 CONCLUSION: WHENCE TO FRB

In this work we continue, following Lyutikov (2022), Barkov et al.
(2022), and exploration of the dynamics of the relativistic magne-
tized explosions: How relativistic magnetically driven explosions
are produced by magnetars, and how they propagate through the
preexisting magnetized wind. To search for answers, we performed
multiple 2D numerical simulations of a neutron star magnetosphere
and the winds. The simulations focused on several different but
related phenomenons: production of magnetic flares via shearing of
the foot-points of the magnetic field lines, and evolution of relativistic
flux tube(s)/Alfvén pulses in magnetars’ winds.
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Two regimes of foot-points shearing, we considered (i) slow shear
so that the whole inflated magnetic arc structure is in a state of causal
contact; (ii) fast shear so that the corresponding dynamics resemble
large amplitude Alfvén waves injected into the magnetosphere.

We stress again the importance of magnetic loading of magne-
tar flares (Barkov et al. 2022; Lyutikov 2022): an injected flux
tube/plasmoid loses a lot of energy trying to break out from the
magnetosphere. For example, we expect that a fraction of the injected
magnetic energy Ecyg, o Will be emitted in X-rays. Yet the energy
that gets deposited into the wind even in the supercritical case is
always much smaller at least by the small numerical factor ng (the
ratio of injected energy to the total magnetospheric energy); for
the flux tube scenario, the decrease is even more dramatic, r)z,
see Table 1. For milder flares, the wind adjusts to the perturbation
right near the light cylinder, so no energy is deposited in the
wind.
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Though force-free simulations naturally do not allow shock
formations, in the ‘magnetic bomb’ paper Barkov et al. (2022) both
MHD and force-free simulations were done, showing that there is
a clear regime — detonation. Briefly, the dynamics of a flux tube
or a CME within the magnetosphere are controlled by two factors:
conservation of the magnetic flux and work done on the opening of
the overlaying magnetic field lines. The energy contained within the
CME decreases as o< 1/r. The energy of the dipolar field external
to the CME decreases as o 1//*. As a result, at some radius Teq
the energy of the CME is larger than the energy of the confining
field. At radii smaller than r.,, the structure is volume-filled. After
detonation, the magnetic field is concentrated near the surface of the
expanding structure. The ensuing expansion of a CME (modelled
as a spheromak) becomes supersonic. In the force-free case, we see
the spheromak torn apart and also become causally disconnected.
This is detonation. After detonation, the CME stops losing energy on
the external matter/field and will form a weak shock-like event in the
magnetar wind. In application here, with force-free simulations only,
we argue that before the detonation happens (if at all) an expending
structure already loses a lot of energy. So, simple estimates that an
injection of energy E; will somehow affect the wind, are off by
orders of magnitude. For subcritical injections, when the energy of
the CME is small and r.q is beyond the light cylinder, so that there
is no detonation inside the, the resulting CME is a structure in force
balance, and advected passively with the wind. If the CME’s energy
exceeds the critical and detonation occurs, then still only a small
fraction of the initial energy, at most ~g, is transferred to the wind
in the form of an EM pulse.

‘We conclude that:

(1) For slow shear, the Solar flare paradigm:

(a) There are two possible stages of CME expansion within
the magnetosphere: for sufficiently large injection, a CME
experiences internal detonation at some radius 7.4, when it starts
expanding relativistically within the magnetosphere and loses
causal connection.

(b) The magnetospheric dynamics depends both on the large-
scale structure and on the location of shearing foot points: to
generate rare powerful events shear must occur on field lines
that ‘close-in’ near the star; otherwise, numerous weak events
are generated.

(c) Ejected magnetic blobs, CMEs, are frozen into the wind

(i) For fast shear, the Star quake paradigm:

(a) Shearing of foot-points leads to the generation of Alfvén
wave; the pressure of the Alfvén leads to opening of the
magnetosphere (no wave breaking).

(b) Resulting perturbations propagate in the wind as shear
Alfvén waves, with no breaking

(c) Multiple shear Alfvén waves are unlikely to collide within
relativistically accelerating wind.

(iii) In both cases of slow and fast shear, no considerable dissi-
pation occurs in the wind zone. In both cases after the ejection, the
magnetosphere first opens; afterward, the newly closed magneto-
sphere is smaller, and recovers resistively.

Our results are complementary to those of Barkov et al. (2022),
who investigated the dynamics of magnetic explosions with com-
plicated, linked magnetic internal stricture. Computations presented
by Barkov et al. (2022) describe the case when a CME expands
beyond the light cylinder. In that case, the initial dynamics, both
in highly magnetized MHD and force-free cases, were similar to
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what we observed: an overpressurized magnetic structure first rapidly
expanded. The long-term dynamics had two possibilities depending
on the initial energy and the structure of the wind: a magnetic
bubble either expands nearly self-similarly with the wind (for weaker
explosions) or detonates — creating internally causally disconnected
structures.

Our results make a consistent picture: powerful strongly mag-
netized ejected blobs/flux tube makes minimal distortion in the
wind. They either quickly reach force-balance with the wind, and
propagate self-similarly, without producing shocks and/or dissipative
structures, or propagate as highly weakened electromagnetic distur-
bances. This picture is in sharp contrast with the hydrodynamics,
where overpressurized regions create a strong dissipative shock.

Our results have implications for the generation of FRBs.

(1) FRBs as CMEs — large and small. FRBs show a large range of
luminosities (CHIME/FRB Collaboration 2020; Shin et al. 2023),
which raises an obvious question: what’s the control parameter
that defines (both X-ray and radio) luminosity of magnetars’
bursts/flares? The overall size involved in a flare is one obvious
parameter. Another is the strength of the magnetic field — both
determine total energetics.

In the Solar flare paradigm of magnetar flares, the magnetic field
also enters via the rate of shearing the foot-point: the shearing
rate is o« magnetic field (Goldreich & Reisenegger 1992); thus,
qualitatively, the magnetar activity is a B* function of the magnetic
field (Lyutikov 2015).

In this work, we find that other, less clearly measured properties
play a role: (i) evolution of a CME within magnetosphere proceeds
in different regimes depending on the injected energy (possibly a
detonation); (ii) location of the shear; (iii) overall structure of the
magnetosphere. If shearing is done near the fields that extend far
out from the star, then the twist is easily released in many small
flares. (Along a given field line, the twist concentrates near the
regions of weakest magnetic field, hence at the highest point in the
magnetosphere.) In order to produce rare and powerful explosions,
the shearing should be done at the foot-points of field lines that close
in, roughly speaking, within a stellar radius.

Qualitatively, a twist of a given magnetic field line concentrates near
the points where the guiding field is the weakest — at the furthest
extent. It is there that the stability is determined. For field lines
extending to large distances, the guiding field is small, so that the
kink instability is easily initiated at small twists. The system then
gets rid of the twist in many small events.

Finally, the presence of the light cylinder effectively impedes the
storage of the magnetic energy. If an inflated flux tube reaches the
light cylinder before reaching the detonation stage, Ric < reg, it
opens up and releases the twist which limits the amount of magnetic
energy that can be stored. Thus, to produce strong flares the spin
period should not be too short.

(ii) Dynamics of CMEs/electromagnetic pulses in the preceding
wind. Our results on the wind dynamics are in some contradiction
to the ‘wind models’ of FRBs (e.g. Lyubarsky 2014; Beloborodov
2017; Metzger et al. 2019; Thompson 2023). For slow shear, the Solar
flare paradigm, energetically mild CME (non-detonating) produces a
minimal distortion of the wind: topologically disconnected structures
(‘magnetic shells’) come into force balance close to the light cylinder,
and are then passively advected with the flow. In the supercritical det-
onating case, a highly weakened electromagnetic pulse is launched
into the wind. For fast shear, the Starquake paradigm, the energy is
quickly deposited into the magnetosphere in the form of Alfvén and
X-modes that may also open the magnetosphere. In doing so, the
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wave energy is deposited into the magnetosphere, so is lost by the
pulse.

In passing, we note that the original shock model of Gallant et al.
(1992), Hoshino et al. (1992), envisioned to explain months-long
variability of Crab Nebula wisps, involves the interaction of the
relativistic wind with heavy ejecta. In that case, the cyclotron
instability occurs in the termination shock of the wind, with only
mildly relativistic post-shock flow. It does not apply to the generation
of millisecond (and even shorter) radio pulses in FRBs.
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APPENDIX A: DIPOLE-PLUS-QUADRUPOLE
CONFIGURATIONS

In this case, fairly simple analytical results can guide us in the choice
of shearing location. The flux function for dipole and quadrupole,
normalized to magnetic field at the pole is

sin” @ BPR3
Py =
r 2
sin(26) sin 6 BqR4
Fa = r? 4
By = VPiqx V. (A1)

The total field is a linear sum

Por = Py +Mqan (A2)
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Figure Al. Last closed field lines and the southern dome for the dipole-plus-quadrupole configuration with 14 = 2.

where pq parametrizes the relative strength of the dipole and

quadrupole. We use j1q = 2: This makes the magnetic field at one pole

three times larger than pure dipole, while at the other pole magnetic

field equal in value to the dipole value, but with the reverse sign.
‘We find special points:

(1) Zero point at antipole corresponds to g = 1.

(ii) Edge of the southern dome cos O4ome = —1/1 (O gome = 27/3
for pg = 2).

(iii) Upper polar cap. Furthest point at R - = rsinfy, (0y is the
angle of the Y-point

6 cot(6y) Ric
5co8(20y)+3 R

For R c/R =5 and n = 2, 6y = 1.4480 (fy cannot be smaller than
cos (20y) = —3/5). Y-point is at r = Ry ¢/sinfy — 5.037.
(iv) At the last open field line

© _ sin’(By)cos (26y) 1

n= (A3)

ot = . (A4)
5 cos (20}/) +3 RLC
The last closed field lines are given by
sin?(6) = sin(6)4/sin2(0) + 87 P cos(6)
r® = . (AS)

0)
4P

The maximal extent is when they are equal,

COS Opax = 4P 1tg — \/ 1+ PRS2 (A6)

Polar cap polar angles are as follows:

Opc.1 = 0.267,
Opc.r = 1.96. (AT)

APPENDIX B: ROTATING STARS WITH NO
FOOT-POINT SHEARING

As a preliminary investigation, we considered rotating but unsheared
configurations. Rotation adds a characteristic scale to the problem,
namely the radius of the light cylinder R;c. The field lines open
to infinity beyond the light cylinder. We start with a non-rotating
neutron star and bring it to final rotational velocity €2, and then are
allowed to relax to a steady equilibrium state.

We first consider the case of an aligned neutron star in purely dipo-
lar field, and with no shearing of the magnetic field lines. We expect
the solution to resemble that given by (Michel 1973) (equation 22),
once the equilibrium has been achieved. We compared the radial
momentum from simulations for a fixed  with those generated from
simulations and the values were in excellent agreement (Fig. B1). We
also observe a few weak plasmoid ejection events, consistent with
Parfrey et al. (2013), Fig. B2.
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Figure B1. Radial momentum (solid) from analytical expression (equation 22) and (dashed) for a simple dipole with no flux tube from numerical simulation

data at 6 = 30°.
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Figure B2. Toroidal current (J,) for an aligned rotating dipole (€ = 0.2) with no shearing at two consecutive time slice clearly showing plasmoid ejection.

APPENDIX C: PERTURBATIONS OF MICHEL’S
SOLUTION

Using vector spherical harmonics

Ylm = ErYlm’
Vi =1V,
<I)lm =rXx VYlma (Cl)

and Y, are scalar spherical harmonics, we look for perturbations of
the vector potential with angular dependence of A as an expansion
in spherical harmonics (Abramowitz & Stegun 1972), with the

MNRAS 524, 6024-6051 (2023)

following radial and temporal parametrization

Yim
SA o« f(r —1)g(r) x ¢ Y (2
<I)lm

Noting that Michel’s solution corresponds to

1
Buy,r =Yg
r

1
Awo & o (C3)
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by orthogonality of vector harmonics any solution

—t
s, o LTy,
r

div(6A); =0 (C4)
satisfies the wave equation

028A — ASA+V(V-8A) = J — o,
_(B-VxB)—(E-VxE)+(divE)E x B
= 5

J (C5)

and all constraints

B = B, + 4B,

E =E,+E,

divB =0,

E-B=0,

B+ VXxE=0

VxB=J+0d4E (Co6)
We also note that though generally current (C5) is a non-linear
function of the fields, in this particular, case it turns out to be linear

in 6B.
In terms of electromagnetic fields,

. i ro

8By = —lme””d’P[’" X ———38B(r —t) = —8E,
rsinf
8By = —e™? [(l + 1)cosOP" + (= +m — 1)P",]
ITO SB(r —t) =08E,

rsin6@

57, — _l(l + De™?(cos O(l —m + P/}, — Sin@PI’j'rTL)
(+m+1
Xr—g(SB(r —1) ©
’

where P/" = P/"(cos#). One then recognizes (Brennan, Gralla &
Jacobson 2013)

1
8Ey =8By = 0 f(t 1.6, 9),

1
rsiné

BEy = —3By = ———0,f(t — 1,0, 9). 8

These are global, fully non-linear solutions (no limitation on 6B),
satisfying E - B = 0. They cannot be separated into local X or O-

© 2023 The Author(s)
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mode, except {/, m = 0} modes which are purely X-mode with
electric field perpendicular to the guide field By. In fact, the modes
have an arbitrary shape, not necessarily harmonic, so they are better

referred to as pulse.
For example, for [/ = 1,

¥, _; «{0,—cosd, —i}w,
2r
5By 1 = (0,4, cose}e—i¢;—°33(r —0,
r

SE, 1 ={0,cosb, —i}e’id’;—oaB(r —1),
r

W10 o {0, —sind, 0} 2 F(r — 1),

r
5B1o = 10,0, —sin0} 28B(r — 1),

r

. ro

0E;p=1{0,—sin6, 0} —=6B(r — 1),

r

b fir— ¢
W, 1 o {0, — cos, —iy LT =D
.

5B1, = 1{0,i, —cos0}e® 25 B(r — 1),
r
SE,, = {0, —cos0, —i}e* 5B —1). (C9)
r

At a large distance, the relative amplitude 6 B/By; reaches a constant.
Any m = 0, solution has the form B = {0, 0, =8B}, and E =
{0, =8By, 0} — this matches Michel’s solution with arbitrary Q(r —
t, 0) Lyutikov (2011); formally, this corresponds to arbitrary sum of
different /-solutions.
Another solution that satisfied the Lorentz gauge,

3 (r* f(r)

5A Yo
2 O SOV + 0

v, (C10)
cannot be treated in this way (separation of variable).

Non-linear interaction of modes §A, will lead to turbulent cascade
and dissipation. Also, both modes §A; and 5 A, do not allow reversals
of the radial magnetic field. Hence, they would interact strongly with
the current sheet (e.g. Thompson 2023).
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