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To realize large-scale habitats in extraterrestrial bodies, cement-like binders may be 
utilized along with in-situ materials such as lunar regolith. The hydration and morphology of 
cementitious systems formed in microgravity are not well understood. Previously, the size and 
morphology of a common cement binder was formed by hydration in the microgravity 
environment (10-6 or µg) aboard the International Space Station (ISS).  Upon return to the 
ground, their micro-structures, including phase size and distribution, were visually inspected 
using scanning electron microscopy (SEM), in comparison with those of the samples hydrated 
on the ground in terrestrial gravity (1g). The sample hydrated in the µg environment showed 
larger porosity and larger calcium hydroxide (CH) crystals; air bubbles are trapped due to 
the lack of buoyancy, and CH crystals grew to fill in those pores.  While the microstructures 
are well documented, their mechanical characterization has been a challenge due to size 
limitations and high porosity. Thus, in this study, such mechanical properties will be estimated 
using micromechanics-based modeling with the NASA Multiscale Analysis Tool (NASMAT). 
Micromechanics-based modeling requires 3D Repeating Unit Cell (RUCs) when used with 
highly porous samples. Representative 3D volumes for modeling are being constructed from 
the backscattered SEM images of the samples, available on NASA’s Physical Sciences 
Informatics database, using a deep learning-based sub-volume reconstruction. This 
reconstruction method successfully captured the unique microstructural development (phase 
composition and morphology) of high water-to-cement ratio tricalcium silicate (C3S) paste, 
which is the main mineral component of commercial Portland cement. The reconstructed 
volume was compared with a micro-CT scan of the samples.  The reconstructed sub-volumes 
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are then utilized as RUC in the NASMAT code. The workflow presented here can be applied 
to other multi-phase materials, beyond the space cement. 

I. Introduction 
 With the advent of crewed missions, such as the Artemis program, there is a rejuvenated interest to prolong human 
space exploration missions. Invariably, to achieve this goal, there is a need to build habitats on extraterrestrial bodies 
such as the Moon and Mars, wherein, the gravitational force is significantly less than that of the Earth. In addition, 
given the cost of transporting materials into space, it is envisioned that in situ materials such as the lunar regolith will 
be used for the construction of habitats with the aid of cement-like binders. However, the solidification of these cement 
binders is not very well understood under the influence of microgravity (10-6 g or μg). Previously, under the ambit of 
the project titled – “Microgravity Investigation of Cement Solidification (MICS)”, common cement binder formations 
in the microgravity environment were studied [1,2]. In particular, tricalcium silicate (Ca3SiO5: C3S in cement notation) 
and tricalcium aluminate (Ca3Al2O6: C3A in cement notation) were analyzed under both terrestrial (1g) as well as μg 
conditions. Studying pure compounds, such as C3S, aids in understanding the basic nature of microstructural formation 
in the μg environment. Moreover, from the perspective of mechanical characterization and analysis, a thorough 
characterization of pure phases helps to make the workflow robust, prior to analyzing complex systems comprising 
other compounds such as aluminates, sulfates, alkalis, and other impurities. Moreover, such analyses will pave the 
way in establishing process-structure-property relationships of such compounds in microgravity conditions.   
 
In μg environment, due to the lack of buoyancy, the microstructure formation is predominantly influenced by air 
bubbles that remain intermixed with the cement paste. The porosity formation was well documented in [1] and is one 
order of magnitude larger than 1g for a high water-to-cement ratio mixture. Primarily, the hydration of C3S leads to 
the formation of two distinct phases – C-S-H and CH (portlandite). Note that the usual cement chemistry notation is 
used throughout this manuscript, where C = CaO, S = SiO2, and H = H2O. The SEM images of both 1g and μg samples 
clearly showcased these phase formations as well as the porosity (see Figure 1). It was reported that the porosity in 
the space-returned samples was over 20 percent larger compared to the 1g samples [1]. Moreover, the SEM images 
illustrate the significant differences between the microstructural formations. For instance, in the μg sample, the 
portlandite (CH) phase exhibits larger and less frequent distribution in the C-S-H matrix. The major challenge for 
mechanical characterization pertaining to C3S samples is their size limitation (rendering it difficult for conventional 
mechanical testing such as compression or 3-point bend) and high porous nature (difficult for microindentation). 
Therefore, micromechanics-based modeling is relied on here to perform mechanical characterization of both 1g and 
µg hydrated C3S samples. The micromechanics model High-Fidelity Generalized Method of Cells (HFGMC) in the 
NASA Multiscale Analysis Tool (NASMAT) will be used to obtain the mechanical response, including effective 
properties, and local stress and strain fields.  
 
The success of a micromechanics-based analysis of a multi-phase material system depends on accurately describing 
individual phases (volume fraction, size, and morphology) in the repeating unit cell (RUC). Moreover, from the SEM 
image of the µg sample, it is noted that in the absence of gravity, a larger prismatic morphology of CH crystallite is 
evident (refer to Figure 1). The 2D SEM images taken on polished surfaces of the hydrated C3S samples can be 
transformed as microstructure input for the NASMAT code. However, as demonstrated in this work, this is an 
oversimplified assumption leading to inaccurate results. For robust analysis, the morphology of the CH crystals formed 
in space must be accurately represented using a 3D RUC in the micromechanics-based modeling approach. This can 
be achieved either with the aid of microtomography (micro-CT) or using an inverse numerical approach. The former 
is expensive due to the time and cost involved and the latter involves algorithms that reconstruct 3D microstructure 
from orthogonal 2D sectional slices [4, 5]. The 2D surface images can be easily obtained using optical methods such 
as optical microscopy or SEM. Hence, with the aid of a micromechanics-based approach, effective properties of the 
multi-phase system such as cementitious materials may be obtained using a statistical framework by building 
statistically equivalent 3D microstructures from the 2D sectional slices. Alternatively, the complex process of C3S 
hydration can be readily analyzed using a number of existing codes in the field of cementitious materials, such as 
CEMHYD3D [6], HydratiCA [7], HYMOSTRUC [8] and µIC [9]. In general, these codes model chemical kinetics 
and capture both geometrical and topological properties of the microstructure with the aid of the autocorrelation 
function. The hydrating cement is modeled as gradually growing spheres with porosity typically described using an 
overlap algorithm.  
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In this study, high-quality 3D microstructures of both 1g and µg hydrated C3S samples are generated using a solid 
texture synthesis approach based on a deep learning framework. In particular, the Convolutional Neural Networks 
(CNN) based model proposed by Gutierrez et al. [10] was utilized. The methodology showed promising results in the 
reconstruction of 3D microstructures using 2D SEM images of both 1g and µg hydrated C3S samples as input. The 
reconstructed sub-volumes were segmented using a histogram-based approach and will be transformed and discretized 
for 3D microstructure input in the NASMAT code. By aptly describing the plate-like morphology of portlandite 
crystals found in hydrated C3S µg sample [refer to Figure 1(b)], the workflow presented here paves the way in 
simulating the mechanical response of cement binders in microgravity. In addition, complex loading conditions such 
as combined mechanical and thermal loading may be explored.  
 
 

 
(a) 

 
(b) 

Fig 1. Fractured surface of hydrated C3S samples (a)1g, and (b) μg conditions. The size and morphology of 
portlandite (C-H) crystals varies between 1g and µg sample.  

 

II. Sample Preparation and Image Analysis 
 The fabrication details of these samples can be found elsewhere [1]. The tricalcium silicate, C3S, evaluated in this 
work was cured with lime water at a water-to-cement ratio (w/c) of 2.0 by mass. The high w/c ratio enhanced crystal 
growth by coarsening the porosity. Moreover, magnifying the effect of overall microstructural development aids in 
understanding the µg effects. Pure water in place of lime water in a high w/c system will lead to an unrealistic rapid 
initial reaction. Whereas limewater controls the initial reaction rate and enhances initial nucleation and crystal growth 
[1]. The mixture constituents were held in commercially available plastic bags with burstable seals and the setup 
allowed the first contact between the C3S and lime water to be onboard the ISS. Both space and ground samples were 
mixed simultaneously by exerting pressure on the lime-water compartment at the same conditions (20 ± 2 °C, 1 ATM, 
and 35% RH) such that the seal burst and allowed the solution to come in contact with the anhydrous C3S. Note that 
gravity is assumed to be the only variable between space and ground experiments. Both processed ground and space 
samples remained within the sealed pouch for the entire hydration period undisturbed. The µg samples were allowed 
to hydrate onboard the ISS for 42 days until returning to Earth. The retrieved samples were stored in insulated 
containers prior to analysis (for more details on analysis techniques, see [1]). The fractured surfaces of both µg (shortly 
after returning, as well as 1g samples, were examined using Scanning Electron Microscopy (SEM). In addition, 
samples were dried under a vacuum, mounted in acrylic resin and polished. The Backscattered Electron (BSE) images 
of the polished sections were taken with a magnification of 500x and analyzed. In this work, the BSE images of both 
1g and µg samples saved in the NASA Physical Sciences Informatics (PSI) database are utilized.  
 
  
A. Greyscale-based Image Segmentation  
 
In both sample types, the BSE images showed large amount of porosity along with hydration products of the C3S paste 
– CH crystals encapsulated in C-S-H matrix. The porosity was high in samples cured in space. The 1536 x 1024 pixels 
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BSE images had a resolution of 0.54 x 0.54 µm per pixel (a total of 20 µg images and 19 1g images were considered). 
To identify phases, each image was segmented using the workflow shown in Figure 2. Due to the difference in atomic 
number, Z, of individual constituent phases, the histogram provides distinct peaks corresponding to each phase (see 
Figure 3(a)). However, to reliably identify each phase where the greyscale value is usually < 100, it was decided to 
modify the histogram. Firstly, the histogram was equalized (with 0.3% saturated pixels) which enhanced the contrast, 
followed by applying a Sigma filter [11]. Sigma filter has been proven to be successful in image analysis in 
cementitious systems such as identifying interfacial transition zone (ITZ) between cement paste and aggregates in 
concrete [12]. Here, the Sigma filter (with σ = 2.0) was applied after histogram equalization; the modified histogram 
with identified phase boundaries is shown in the plot [see Figure 3(b)]. The local minima approach was used to 
identify the bounds between each phase.  

 
Fig 2. Greyscale-based BSE image segmentation workflow to identify each phase in hydrated C3S samples. 

 
 

 
(a) 

 
(b) 

Fig 3. Histogram equalization of BSE image and identified local minima-based bounds of 1g sample (a) original 
histogram (greyscale ~ <100) of a BSE image (500x500 pixels, 270.29x270.29 µm), and (b) identification of 
phases using the local minima approach after histogram equalization and sigma filter application.  

 
As noted, the variation in the atomic number of individual phases results in distinct peaks in the histogram. However, 
at the phase boundary, edge effects can occur, especially when the discrepancy between the adjacent phases with 
respect to atomic number is larger. Moreover, such effects may be pronounced due to phase geometry, in particular, 
if the boundary is inclined towards the material with a lower atomic number, as is the case with porosity [12, 13].  To 
circumvent this issue, the boundary between porosity and the C-S-H phase in this research was identified using an 
approach widely employed in the cementitious materials – overflow method [14]. In this approach, the inflection point 
between the two phases is identified from a cumulative distribution plot [see Figure 4(a)]. The influence of this 
approach over the local minima is evident in the histogram plot provided in Figure 4(b). It can be noted that the 
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Porosity/C-S-H bound increased from 78 to 115 when the overflow method is employed. The computed porosity 
content was recorded as 46.05 % instead of 27.64 % using the local-minima approach. Thus, the overflow method 
coupled with the local-minima approach was used to identify the Porosity/C-S-H and C-S-H/CH bounds and ascertain 
respective phase composition in the BSE images. Table 1 provides the averaged area fraction of each constituent in 
both 1g and µg samples taken from the NASA PSI database, and Figure 5 shows the phase assignment visualized 
using color codes. Porosity assessment of both 1g and µg samples was conducted using the Mercury Intrusion 
Porosimetry (MIP) technique and the results showed good agreement with the image analysis (refer to Table 1).  
 

 
(a) 

 
(b) 

Fig 4. Inflection point and phase composition analysis from a modified histogram [equalization and sigma filter; 
σ = 2.0] of BSE image (500x500 pixels, 270.29x270.29 µm); C3S sample hydrated on ground (1g sample) a) 
inflection point identified in the cumulative intensity plot, and (b) comparison of bounds at the porosity/C-S-H 
boundary obtained using overflow and local minima methods. 

 

  
Fig 5. Visualization of phase assignment (1536x1021 pixels) in a C3S sample hydrated on ground (1g sample, 
top) and in the microgravity (µg sample, bottom); images were modified using histogram equalization followed 
by sigma filter application, and phase assignment using the overflow and local minima approach.    
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Table 1. Summary of individual phase composition obtained from image analysis.  

 Porosity C-S-H CH 
1g Samples 47.0 % ± 14.2 % 41.6 % ± 12.0 % 11.3 % ± 2.8 % 
1g Samples MIP 48.4 % - - 
µg Samples 70.3 % ± 1.4 % 21.2 % ± 1.2 % 8.5 % ± 1.4 % 
µg Samples MIP 69.4 % - - 

 
 

III. Convolutional Neural Network (CNN) -based Reconstruction of 3D Cement Microstructures  
 
A. 2D Analysis in NASMAT 
 
The phase-assigned, pixelated 2D images (refer to Figure 5) can be directly inputted into the NASMAT tool to assess 
effective stiffness properties and local stress/strain response. A standard linear elastic model was considered for each 
phase. A pilot study was conducted in NASMAT by using a 256 x 256 pixel [138 µm2] user-defined doubly-periodic 
architecture as shown in Figure 5. A doubly-periodic RUC was constructed assuming each subcell in the RUC 
corresponded to a pixel in the image and was occupied by the appropriate constituent.  Effective properties of the RUC 
were calculated via homogenization using the HFGMC micromechanics theory in NASMAT. However, as highlighted 
above, due to the high porosity content the 2D BSE image does not statistically represent the 3D microstructure of the 
hydrated cement. The doubly periodic analysis is presented here to demonstrate this.  
 
The material properties of individual phases (C-S-H and CH) were taken from the literature, where the reported values 
are obtained using a nanoindentation study and assumed to be isotropic. The Young’s modulus and Poisson’s ratio of 
the C-S-H phase were assigned 21.7 GPa and 0.25, respectively. For the CH crystals, Young’s modulus 40 GPa and 
Poisson’s ratio 0.31 was assigned. Figure 6 shows the stress-strain response of both 1g and µg samples for a 1% 
compressive strain loading. Note that the measured porosity content in both 1g and µg samples is 48.4 % and 69.4 %, 
respectively. HFGMC does not support open geometry.  So, for the pilot study conducted here, the Young’s modulus 
of the subcells occupying the porous space was varied; 1 MPa and 0.1 MPa were assumed which yielded Young’s 
moduli of 233.1 MPa and 2083.3 MPa, respectively for the 1g sample. In the case of the µg sample, the homogenized 
stiffness constants were 190.4 MPa and 1737.5 MPa when the Young’s modulus of the subcells representing the 
porosity was 1 MPa and 0.1 MPa, respectively.  
 
This obtained Young’s modulus value in this doubly-periodic analysis drastically differed from the reported value for 
C3S samples hydrated on the ground (typically in the range of 125 – 150 GPa). Therefore, analysis must be performed 
using a user-defined triply-periodic RUC that accurately captures the microstructure of hydrated C3S samples. Here, 
the 3D microstructures of both 1g and µg samples are reconstructed using a deep learning framework, and those results 
are discussed in the subsequent section.  
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Fig 6. Global stress-strain response of 1g and µg sample for an applied 1 % strain loading.  

 
 

 
B. Deep learning-based Reconstruction Algorithm  
 
In the codes that simulate hydration of cementitious materials (refer to section I), autocorrelation-based functions are 
often used to model the microstructure with the aid of Particle Size Distribution (PSD). However, cement binders 
hydrated in space will result in portlandite crystals that have distinct plate-like morphology (see Figure 1 and Figure 
5). In any numerical-based simulation involving µg samples, this distinct morphology formed due to the lack of 
buoyancy must be sufficiently represented. Microstructure reconstruction techniques are becoming widely popular 
owing to their low cost and time compared to experimental characterization techniques that result in a limited number 
of sub-volumes in the sample. Moreover, for statistical convolution in establishing the process-structure-property 
relationship, a large ensemble of sub-volumes that represent the microstructure adequately is desired.  
 
Amongst the microstructure reconstruction techniques, Markov Random Field (MRF) and machine learning-based 
techniques have received wide attention in recent years [4,5,15-19]. In the field of computer graphics, a certain set of 
algorithms have been developed recently that are similar to microstructure reconstruction. This technique, referred to 
as solid texture synthesis [15], has received wide attention and has been widely utilized to reconstruct realistic 3D 
images from 2D images (known as exemplars). In the literature, one of the most computationally effective solid texture 
synthesis algorithms is presented by Kopf et al. [16], wherein, a set of three images is used as input and provides a 
solid texture as output. The output is generated based on a search and optimization step that minimizes the error 
amongst the best-matching neighborhoods. The input images can be 2D slices from any orthogonal direction, or a 
series of slices in any particular direction. More recently, a compact solid texture generator model based on 
Convolutional Neural Networks (CNN) was proposed by Gutierrez et al. [17]. In this model, a pre-trained deep 
learning model - VGG19 [18] is utilized, and the volumetric loss function of the generated 2D slices is compared to 
the input 2D exemplar using a perpetual loss function. In addition, this methodology is fast and computationally 
efficient as only the 2D slices are generated during the training stage. This framework was adapted in our study to 
reconstruct the microstructure of both 1g and µg samples. The reconstructed microstructure can be directly 
implemented in NASMAT as a user-defined triply-periodic RUC.  
 
The model framework employed here, shown in Figure 7, consists of the generator and descriptor. More recently, this 
same algorithm was shown to successfully generate high-quality 3D microstructures of hardened cement [19]. Note 
that the pre-trained model used here, VGG19, is trained on ImageNet [20] which includes a very diverse set of images 
under various imaging conditions. VGG19 has a total of 16 convolutional layers and 5 pooling layers (divided into 5 
blocks). It accepts a 2D image with a 3-channel (RGB) as input. Hence, the two-phase 256 x 256 pixels region of 
interest (ROI) (chosen at random from the 2D BSE cement samples in the NASA PSI database) was converted to a 3-
channel representation using the OpenCV library. The extracted feature maps are represented as statistical features 
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with the aid of Gram matrix, G. During training, the parameters of the generator are optimized by minimizing the loss 
function defined as:  
 

 
(1) 

 
where ||∙||f is the Frobenius norm, vd,n denotes the solid sections synthesized by the generator, and ud,n is the 2D BSE 
exemplar. The subscripts d and n correspond to orthogonal direction and slice, respectively. The microstructure 
reconstruction follows by reducing the loss between the statistical features of the generated slices and the 2D 
exemplars. 
 
 

 
Fig 7. CNN-based deep learning framework to generate 3D microstructure of C3S samples following the solid 

texture synthesis approach [17, 19]. 

 
C. Reconstructed C3S Samples and Loss function  
 
The reconstructed 3D microstructures of both 1g and µg samples using the CNN-based deep learning framework are 
presented in Figure 8. The mid-slices of the reconstructed RUCs indicate the influence of the exemplar utilized. The 
variation in mechanical properties between the reconstructed sub-volumes will be obtained later using a triply-periodic 
analysis in the NASMAT code. The rate of convergence for both samples was consistent; convergence was achieved 
after ~1000 iterations (loss function plot, see Figure 9). The difference in the converged value between the 1g and µg 
samples may be attributed to the variation in the statistical features between these samples. The robustness of the 
algorithm can be noted by the fact that the three orthogonal mid-slices (see the right columns of Figure 8) are different 
for the given 2D BSE exemplar.  
 
The 2D exemplars (256 x 256 pixels; with a resolution of 0.54 µm/pixel, see Figure 8) show a notable difference in 
phase composition in each image. For the 1g samples, the CH crystals are more frequently distributed throughout the 
C-S-H matrix which has been captured in the reconstructed sub-volumes. The plate-like morphology of the CH 
crystals, distinct from the µg samples is not that evident in the reconstructed sub-volumes. During the ROI selection, 
a window of 256 x 256 pixels was chosen from the PSI database that contained elongated CH crystals. As can be seen 
from Figure 1(b) and Figure 5, a certain minimum edge length (thereby homogenized volume) is required to best 
represent the µg samples. Currently, efforts are underway to ascertain this minimum edge length (and homogenization 
volume) with the aid of micro-CT observations. Moreover, micro-CT data will also enable direct comparison of 
reconstructed sub-volumes to be utilized as RUCs in the NASMAT code.   
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 2D BSE Exemplar Reconstructed RUC Mid-slices 
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Fig 8. Reconstructed 3D RUCs from 2D BSE exemplars (sigma filtered, 256 x 256 pixels) of C3S samples (1g 
and µg) using the CNN-based deep learning framework. The white phase corresponds with CH crystals, gray 
corresponds with the C-S-H matrix and the dark phase corresponds with porosity.  
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Fig 9. Loss function for the reconstructed 1g and µg RUCs. 

 
 
C. Greyscale-based Thresholding and Phase Allocation in Reconstructed RUCs 
 
Prior to employing the reconstructed RUCs presented in the previous section in the NASMAT code, individual phases 
must be distinguished, and appropriate constituent material assigned. The previously conducted image segmentation 
(refer to section II) benchmarked against experimentally measured porosity was utilized. Furthermore, by discerning 
the phases in the reconstruction sub-volumes, individual phase composition can be obtained and compared against the 
values obtained from the image analysis. A similar greyscale thresholding approach (overflow method for the 
porosity/CSH boundary and local minima for the CSH/CH boundary) was used to assign phases in each voxel of the 
reconstructed 3D RUCs. The identified greyscale-based bounds are provided in the plot (see Figure 10). Based on the 
identified thresholds, the phase-assigned 3D RUCs (porosity, C-S-H matrix, and CH crystals) are shown in Figure 
11.  In general, the deep learning-based reconstruction strategy as exemplified before [19], was able to capture the 
microstructure in both 1g and µg samples. The percentage composition of each phase is also tabulated and compared 
against image analysis in Table 2. The triply-periodic RUCs, with each voxel corresponding to subcell that is assigned 
to a particular phase, may now be directly utilized in the NASMAT code. 
 
The uniform distribution of CH crystals, characteristic of 1g sample was captured well in the reconstructed sub-
volumes. In the reconstructed 1g sample, the CH crystal composition varied between 8 – 17.40 % compared to 11.3 
% obtained from the image analysis. The porosity varied 49 – 52 %, whilst the C-S-H matrix composition was 
estimated to be 34 – 40 % in the reconstructed RUCs of the 1g sample. The spatial distribution of both porosity and 
CH crystal qualitatively affirms the individual phase distribution found on C3S samples hydrated on the ground.  
 
In the reconstructed space sub-volumes, the porosity ranged between 57 – 77 %. This range lies within the recorded 
porosity content using both MIP and image analysis for µg samples. On the other hand, the CH crystal composition 
was within the range of 4 – 12.30 %. A significant difference to be noted is the non-frequent distribution of the CH 
crystals in space. However, the elongated plate-like structure is captured in only one of the reconstructed sub-volumes. 
It confirms the observation that the chosen BSE exemplar governs the ability of the deep learning algorithm to reliably 
reconstruct the microstructures. Additionally, a minimum homogenized volume must be identified to best represent 
the CH morphology formed in the microgravity environment. The micro-CT study will be able to shed light on that 
line and will be used to select exemplars with a minimum edge length. Further studies using low-order probability 
distribution functions such as the two-point correlation function and lineal-path function will also help evaluate the 
spatial variation of each reconstructed sub-volume. A note is made here regarding the robustness of the reconstruction 
algorithm. In general, the statistical features for sub-volume reconstruction are obtained from the input BSE exemplar. 
Currently, the chosen image size [256 x 256 pixels; resolution = 0.53 µm] does not accurately represent the CH crystal 
morphology of the µg sample. However, in the case of 1g samples, the current implementation shows reasonable 
accuracy. Future work will include scaling up this technique to be capable of accepting exemplars with increased size 
[e.g. 1024x1024 pixels]. In addition, a cyclic scheduler to increase the training rate will also be incorporated. 
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(a) 

 
(b) 

Fig 10. Greyscale thresholding (overflow and local minima approach) of voxels in the reconstructed 3D RUCs 
of (a) 1g and (b) µg C3S samples. 
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Fig 11. Phase composition in reconstructed 1g and µg RUCs [voxel size: 256 pixels] using the CNN-based deep 
learning framework. 

 

Table 2. Comparison of individual phase composition in reconstructed RUCs and image analysis.  

 Porosity C-S-H CH 
1g Samples – Image Analysis 47.0 % ± 14.2 % 41.6 % ± 12.0 % 11.3 % ± 2.8 % 
1g Samples – MIP 48.4 % - - 
1g Reconstructed RUCs 49.30 % 

51.80 % 
33.90 % 
40.30 % 

17.40 % 
8.30 % 

µg Samples – Image Analysis 70.3 % ± 1.4 % 21.2 % ± 1.2 % 8.5 % ± 1.4 % 
µg Samples – MIP 69.4 % - - 
µg - Reconstructed RUCs 57.30 % 

77.40 % 
18.80 % 
30.40 % 

3.90 % 
12.30 % 

 
 

IV. Summary and Future Work 
 The primary, long-term aim of this study is to perform computational micromechanics analysis of cement binders 
cured in the microgravity environment to predict the effective mechanical properties and local fields. Due to size 
limitations and the high porosity content of samples cured in space, conventional mechanical testing is non-viable to 
ascertain mechanical properties. Initially, the SEM images of both ground and space-returned samples were analyzed 
to distinguish the individual hydration product. A greyscale-based thresholding approach was used to estimate volume 
fractions of each phase and porosity; the porosity fraction calculated from this image analysis matched well with the 
porosity fraction measured using MIP. The phase-segmented 2D BSE image was directly inputted to the NASMAT 
code as a doubly-periodic RUC and analyzed using HFGMC However, the results were observed to not represent 
realistic scenario owing to high porosity content, and the inability of the 2D BSE image to accurately capture the 3D 
microstructure. Hence, 3D microstructures were reconstructed using a deep learning-based solid texture synthesis for 
both 1g and µg samples.   The greyscale-based phase segmentation was employed to assign each voxel to a particular 
phase. The spatial distribution of porosity and portlandite crystals was accurately captured in the 1g sample. However, 
the distinct plate-like morphology of CH crystals was not captured in the Pg sample, due to the choice of ROI.  Future 
work includes the reconstruction of µg sub-volumes using exemplars with a minimum edge length that amply captures 
the CH morphology. In addition, improvements in the reconstruction code in terms of transfer learning and finding 
the optimum number of network layers with respect to gram matrix loss will be explored. Finally, the effective 
properties of the 3D microstructures will be computed through homogenization of triply-periodic RUCs using 
HFGMC. 
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