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To realize large-scale habitats in extraterrestrial bodies, cement-like binders may be
utilized along with in-situ materials such as lunar regolith. The hydration and morphology of
cementitious systems formed in microgravity are not well understood. Previously, the size and
morphology of a common cement binder was formed by hydration in the microgravity
environment (10-° or ug) aboard the International Space Station (ISS). Upon return to the
ground, their micro-structures, including phase size and distribution, were visually inspected
using scanning electron microscopy (SEM), in comparison with those of the samples hydrated
on the ground in terrestrial gravity (1g). The sample hydrated in the ug environment showed
larger porosity and larger calcium hydroxide (CH) crystals; air bubbles are trapped due to
the lack of buoyancy, and CH crystals grew to fill in those pores. While the microstructures
are well documented, their mechanical characterization has been a challenge due to size
limitations and high porosity. Thus, in this study, such mechanical properties will be estimated
using micromechanics-based modeling with the NASA Multiscale Analysis Tool (NASMAT).
Micromechanics-based modeling requires 3D Repeating Unit Cell (RUCs) when used with
highly porous samples. Representative 3D volumes for modeling are being constructed from
the backscattered SEM images of the samples, available on NASA’s Physical Sciences
Informatics database, using a deep learning-based sub-volume reconstruction. This
reconstruction method successfully captured the unique microstructural development (phase
composition and morphology) of high water-to-cement ratio tricalcium silicate (C3S) paste,
which is the main mineral component of commercial Portland cement. The reconstructed
volume was compared with a micro-CT scan of the samples. The reconstructed sub-volumes
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are then utilized as RUC in the NASMAT code. The workflow presented here can be applied
to other multi-phase materials, beyond the space cement.

I. Introduction

With the advent of crewed missions, such as the Artemis program, there is a rejuvenated interest to prolong human
space exploration missions. Invariably, to achieve this goal, there is a need to build habitats on extraterrestrial bodies
such as the Moon and Mars, wherein, the gravitational force is significantly less than that of the Earth. In addition,
given the cost of transporting materials into space, it is envisioned that in sifu materials such as the lunar regolith will
be used for the construction of habitats with the aid of cement-like binders. However, the solidification of these cement
binders is not very well understood under the influence of microgravity (10" g or pg). Previously, under the ambit of
the project titled — “Microgravity Investigation of Cement Solidification (MICS)”, common cement binder formations
in the microgravity environment were studied [1,2]. In particular, tricalcium silicate (Ca3SiOs: C3S in cement notation)
and tricalcium aluminate (Ca3zAlOg: C3A in cement notation) were analyzed under both terrestrial (1g) as well as pg
conditions. Studying pure compounds, such as C3S, aids in understanding the basic nature of microstructural formation
in the pg environment. Moreover, from the perspective of mechanical characterization and analysis, a thorough
characterization of pure phases helps to make the workflow robust, prior to analyzing complex systems comprising
other compounds such as aluminates, sulfates, alkalis, and other impurities. Moreover, such analyses will pave the
way in establishing process-structure-property relationships of such compounds in microgravity conditions.

In pg environment, due to the lack of buoyancy, the microstructure formation is predominantly influenced by air
bubbles that remain intermixed with the cement paste. The porosity formation was well documented in [1] and is one
order of magnitude larger than 1g for a high water-to-cement ratio mixture. Primarily, the hydration of C3S leads to
the formation of two distinct phases — C-S-H and CH (portlandite). Note that the usual cement chemistry notation is
used throughout this manuscript, where C = CaO, S = SiO,, and H = H,O. The SEM images of both 1g and pg samples
clearly showcased these phase formations as well as the porosity (see Figure 1). It was reported that the porosity in
the space-returned samples was over 20 percent larger compared to the 1g samples [1]. Moreover, the SEM images
illustrate the significant differences between the microstructural formations. For instance, in the pg sample, the
portlandite (CH) phase exhibits larger and less frequent distribution in the C-S-H matrix. The major challenge for
mechanical characterization pertaining to C3S samples is their size limitation (rendering it difficult for conventional
mechanical testing such as compression or 3-point bend) and high porous nature (difficult for microindentation).
Therefore, micromechanics-based modeling is relied on here to perform mechanical characterization of both 1g and
pg hydrated C;S samples. The micromechanics model High-Fidelity Generalized Method of Cells (HFGMC) in the
NASA Multiscale Analysis Tool (NASMAT) will be used to obtain the mechanical response, including effective
properties, and local stress and strain fields.

The success of a micromechanics-based analysis of a multi-phase material system depends on accurately describing
individual phases (volume fraction, size, and morphology) in the repeating unit cell (RUC). Moreover, from the SEM
image of the ug sample, it is noted that in the absence of gravity, a larger prismatic morphology of CH crystallite is
evident (refer to Figure 1). The 2D SEM images taken on polished surfaces of the hydrated C3S samples can be
transformed as microstructure input for the NASMAT code. However, as demonstrated in this work, this is an
oversimplified assumption leading to inaccurate results. For robust analysis, the morphology of the CH crystals formed
in space must be accurately represented using a 3D RUC in the micromechanics-based modeling approach. This can
be achieved either with the aid of microtomography (micro-CT) or using an inverse numerical approach. The former
is expensive due to the time and cost involved and the latter involves algorithms that reconstruct 3D microstructure
from orthogonal 2D sectional slices [4, 5]. The 2D surface images can be easily obtained using optical methods such
as optical microscopy or SEM. Hence, with the aid of a micromechanics-based approach, effective properties of the
multi-phase system such as cementitious materials may be obtained using a statistical framework by building
statistically equivalent 3D microstructures from the 2D sectional slices. Alternatively, the complex process of C3S
hydration can be readily analyzed using a number of existing codes in the field of cementitious materials, such as
CEMHYD3D [6], HydratiCA [7], HYMOSTRUC [8] and uIC [9]. In general, these codes model chemical kinetics
and capture both geometrical and topological properties of the microstructure with the aid of the autocorrelation
function. The hydrating cement is modeled as gradually growing spheres with porosity typically described using an
overlap algorithm.
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In this study, high-quality 3D microstructures of both 1g and pg hydrated CsS samples are generated using a solid
texture synthesis approach based on a deep learning framework. In particular, the Convolutional Neural Networks
(CNN) based model proposed by Gutierrez et al. [10] was utilized. The methodology showed promising results in the
reconstruction of 3D microstructures using 2D SEM images of both 1g and pg hydrated CsS samples as input. The
reconstructed sub-volumes were segmented using a histogram-based approach and will be transformed and discretized
for 3D microstructure input in the NASMAT code. By aptly describing the plate-like morphology of portlandite
crystals found in hydrated C3S pg sample [refer to Figure 1(b)], the workflow presented here paves the way in
simulating the mechanical response of cement binders in microgravity. In addition, complex loading conditions such
as combined mechanical and thermal loading may be explored.

(@)

Fig 1. Fractured surface of hydrated CsS samples (a)lg, and (b) pg conditions. The size and morphology of
portlandite (C-H) crystals varies between 1g and ug sample.

II. Sample Preparation and Image Analysis

The fabrication details of these samples can be found elsewhere [1]. The tricalcium silicate, CsS, evaluated in this
work was cured with lime water at a water-to-cement ratio (w/c) of 2.0 by mass. The high w/c ratio enhanced crystal
growth by coarsening the porosity. Moreover, magnifying the effect of overall microstructural development aids in
understanding the pg effects. Pure water in place of lime water in a high w/c system will lead to an unrealistic rapid
initial reaction. Whereas limewater controls the initial reaction rate and enhances initial nucleation and crystal growth
[1]. The mixture constituents were held in commercially available plastic bags with burstable seals and the setup
allowed the first contact between the C3S and lime water to be onboard the ISS. Both space and ground samples were
mixed simultaneously by exerting pressure on the lime-water compartment at the same conditions (20 +2 °C, 1 ATM,
and 35% RH) such that the seal burst and allowed the solution to come in contact with the anhydrous CsS. Note that
gravity is assumed to be the only variable between space and ground experiments. Both processed ground and space
samples remained within the sealed pouch for the entire hydration period undisturbed. The pg samples were allowed
to hydrate onboard the ISS for 42 days until returning to Earth. The retrieved samples were stored in insulated
containers prior to analysis (for more details on analysis techniques, see [1]). The fractured surfaces of both pg (shortly
after returning, as well as 1g samples, were examined using Scanning Electron Microscopy (SEM). In addition,
samples were dried under a vacuum, mounted in acrylic resin and polished. The Backscattered Electron (BSE) images
of the polished sections were taken with a magnification of 500x and analyzed. In this work, the BSE images of both
1g and pg samples saved in the NASA Physical Sciences Informatics (PSI) database are utilized.

A. Greyscale-based Image Segmentation

In both sample types, the BSE images showed large amount of porosity along with hydration products of the C3S paste
— CH crystals encapsulated in C-S-H matrix. The porosity was high in samples cured in space. The 1536 x 1024 pixels
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BSE images had a resolution of 0.54 x 0.54 pm per pixel (a total of 20 pg images and 19 1g images were considered).
To identify phases, each image was segmented using the workflow shown in Figure 2. Due to the difference in atomic
number, Z, of individual constituent phases, the histogram provides distinct peaks corresponding to each phase (see
Figure 3(a)). However, to reliably identify each phase where the greyscale value is usually < 100, it was decided to
modify the histogram. Firstly, the histogram was equalized (with 0.3% saturated pixels) which enhanced the contrast,
followed by applying a Sigma filter [11]. Sigma filter has been proven to be successful in image analysis in
cementitious systems such as identifying interfacial transition zone (ITZ) between cement paste and aggregates in
concrete [12]. Here, the Sigma filter (with o = 2.0) was applied after histogram equalization; the modified histogram
with identified phase boundaries is shown in the plot [see Figure 3(b)]. The local minima approach was used to
identify the bounds between each phase.

Phase Identification

- Histogram - . .
BSE Image P Modification > Sigma Filter
C-S-H

v
Greyscale
M . CH
Thresholding -

Fig 2. Greyscale-based BSE image segmentation workflow to identify each phase in hydrated C3S samples.
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Fig 3. Histogram equalization of BSE image and identified local minima-based bounds of 1g sample (a) original
histogram (greyscale ~ <100) of a BSE image (500x500 pixels, 270.29x270.29 pm), and (b) identification of
phases using the local minima approach after histogram equalization and sigma filter application.

As noted, the variation in the atomic number of individual phases results in distinct peaks in the histogram. However,
at the phase boundary, edge effects can occur, especially when the discrepancy between the adjacent phases with
respect to atomic number is larger. Moreover, such effects may be pronounced due to phase geometry, in particular,
if the boundary is inclined towards the material with a lower atomic number, as is the case with porosity [12, 13]. To
circumvent this issue, the boundary between porosity and the C-S-H phase in this research was identified using an
approach widely employed in the cementitious materials — overflow method [14]. In this approach, the inflection point
between the two phases is identified from a cumulative distribution plot [see Figure 4(a)]. The influence of this
approach over the local minima is evident in the histogram plot provided in Figure 4(b). It can be noted that the
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Porosity/C-S-H bound increased from 78 to 115 when the overflow method is employed. The computed porosity
content was recorded as 46.05 % instead of 27.64 % using the local-minima approach. Thus, the overflow method
coupled with the local-minima approach was used to identify the Porosity/C-S-H and C-S-H/CH bounds and ascertain
respective phase composition in the BSE images. Table 1 provides the averaged area fraction of each constituent in
both 1g and pg samples taken from the NASA PSI database, and Figure 5 shows the phase assignment visualized
using color codes. Porosity assessment of both 1g and pg samples was conducted using the Mercury Intrusion
Porosimetry (MIP) technique and the results showed good agreement with the image analysis (refer to Table 1).
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Fig 4. Inflection point and phase composition analysis from a modified histogram [equalization and sigma filter;
o = 2.0] of BSE image (500x500 pixels, 270.29x270.29 pm); C3S sample hydrated on ground (1g sample) a)
inflection point identified in the cumulative intensity plot, and (b) comparison of bounds at the porosity/C-S-H
boundary obtained using overflow and local minima methods.
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Fig 5. Visualization of phase assignment (1536x1021 pixels) in a C3S sample hydrated on ground (1g sample,
top) and in the microgravity (ug sample, bottom); images were modified using histogram equalization followed
by sigma filter application, and phase assignment using the overflow and local minima approach.



Downloaded by Penn State Univ on October 22, 2024 | http://arc.aiaa.org | DOI: 10.2514/6.2023-2025

Table 1. Summary of individual phase composition obtained from image analysis.

Porosity C-S-H CH
1g Samples 47.0% + 142 % 41.6 % +12.0 % 11.3%+2.8%
1g Samples MIP 48.4 % - -
pg Samples 703%+14% 21.2%+1.2% 85%+14%
ug Samples MIP 69.4 % - -

III. Convolutional Neural Network (CNN) -based Reconstruction of 3D Cement Microstructures

A. 2D Analysis in NASMAT

The phase-assigned, pixelated 2D images (refer to Figure S) can be directly inputted into the NASMAT tool to assess
effective stiffness properties and local stress/strain response. A standard linear elastic model was considered for each
phase. A pilot study was conducted in NASMAT by using a 256 x 256 pixel [138 pm?] user-defined doubly-periodic
architecture as shown in Figure 5. A doubly-periodic RUC was constructed assuming each subcell in the RUC
corresponded to a pixel in the image and was occupied by the appropriate constituent. Effective properties of the RUC
were calculated via homogenization using the HFGMC micromechanics theory in NASMAT. However, as highlighted
above, due to the high porosity content the 2D BSE image does not statistically represent the 3D microstructure of the
hydrated cement. The doubly periodic analysis is presented here to demonstrate this.

The material properties of individual phases (C-S-H and CH) were taken from the literature, where the reported values
are obtained using a nanoindentation study and assumed to be isotropic. The Young’s modulus and Poisson’s ratio of
the C-S-H phase were assigned 21.7 GPa and 0.25, respectively. For the CH crystals, Young’s modulus 40 GPa and
Poisson’s ratio 0.31 was assigned. Figure 6 shows the stress-strain response of both 1g and pg samples for a 1%
compressive strain loading. Note that the measured porosity content in both 1g and pg samples is 48.4 % and 69.4 %,
respectively. HFGMC does not support open geometry. So, for the pilot study conducted here, the Young’s modulus
of the subcells occupying the porous space was varied; 1 MPa and 0.1 MPa were assumed which yielded Young’s
moduli of 233.1 MPa and 2083.3 MPa, respectively for the 1g sample. In the case of the pg sample, the homogenized
stiffness constants were 190.4 MPa and 1737.5 MPa when the Young’s modulus of the subcells representing the
porosity was 1 MPa and 0.1 MPa, respectively.

This obtained Young’s modulus value in this doubly-periodic analysis drastically differed from the reported value for
C3S samples hydrated on the ground (typically in the range of 125 — 150 GPa). Therefore, analysis must be performed
using a user-defined triply-periodic RUC that accurately captures the microstructure of hydrated C3S samples. Here,
the 3D microstructures of both 1g and pg samples are reconstructed using a deep learning framework, and those results
are discussed in the subsequent section.
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Fig 6. Global stress-strain response of 1g and pg sample for an applied 1 % strain loading.

B. Deep learning-based Reconstruction Algorithm

In the codes that simulate hydration of cementitious materials (refer to section I), autocorrelation-based functions are
often used to model the microstructure with the aid of Particle Size Distribution (PSD). However, cement binders
hydrated in space will result in portlandite crystals that have distinct plate-like morphology (see Figure 1 and Figure
5). In any numerical-based simulation involving pg samples, this distinct morphology formed due to the lack of
buoyancy must be sufficiently represented. Microstructure reconstruction techniques are becoming widely popular
owing to their low cost and time compared to experimental characterization techniques that result in a limited number
of sub-volumes in the sample. Moreover, for statistical convolution in establishing the process-structure-property
relationship, a large ensemble of sub-volumes that represent the microstructure adequately is desired.

Amongst the microstructure reconstruction techniques, Markov Random Field (MRF) and machine learning-based
techniques have received wide attention in recent years [4,5,15-19]. In the field of computer graphics, a certain set of
algorithms have been developed recently that are similar to microstructure reconstruction. This technique, referred to
as solid texture synthesis [15], has received wide attention and has been widely utilized to reconstruct realistic 3D
images from 2D images (known as exemplars). In the literature, one of the most computationally effective solid texture
synthesis algorithms is presented by Kopf et al. [16], wherein, a set of three images is used as input and provides a
solid texture as output. The output is generated based on a search and optimization step that minimizes the error
amongst the best-matching neighborhoods. The input images can be 2D slices from any orthogonal direction, or a
series of slices in any particular direction. More recently, a compact solid texture generator model based on
Convolutional Neural Networks (CNN) was proposed by Gutierrez et al. [17]. In this model, a pre-trained deep
learning model - VGG19 [18] is utilized, and the volumetric loss function of the generated 2D slices is compared to
the input 2D exemplar using a perpetual loss function. In addition, this methodology is fast and computationally
efficient as only the 2D slices are generated during the training stage. This framework was adapted in our study to
reconstruct the microstructure of both 1g and pg samples. The reconstructed microstructure can be directly
implemented in NASMAT as a user-defined triply-periodic RUC.

The model framework employed here, shown in Figure 7, consists of the generator and descriptor. More recently, this
same algorithm was shown to successfully generate high-quality 3D microstructures of hardened cement [19]. Note
that the pre-trained model used here, VGG19, is trained on ImageNet [20] which includes a very diverse set of images
under various imaging conditions. VGG19 has a total of 16 convolutional layers and 5 pooling layers (divided into 5
blocks). It accepts a 2D image with a 3-channel (RGB) as input. Hence, the two-phase 256 x 256 pixels region of
interest (ROI) (chosen at random from the 2D BSE cement samples in the NASA PSI database) was converted to a 3-
channel representation using the OpenCV library. The extracted feature maps are represented as statistical features
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with the aid of Gram matrix, G. During training, the parameters of the generator are optimized by minimizing the loss
function defined as:

Loss = Z HGF (FF (vap) = G' (Fi (uf’)))Hf‘ O
I=L

where ||'||sis the Frobenius norm, v, denotes the solid sections synthesized by the generator, and us, is the 2D BSE
exemplar. The subscripts d and n correspond to orthogonal direction and slice, respectively. The microstructure
reconstruction follows by reducing the loss between the statistical features of the generated slices and the 2D
exemplars.
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Fig 7. CNN-based deep learning framework to generate 3D microstructure of C3S samples following the solid

texture synthesis approach [17, 19].

C. Reconstructed CsS Samples and Loss function

The reconstructed 3D microstructures of both 1g and pg samples using the CNN-based deep learning framework are
presented in Figure 8. The mid-slices of the reconstructed RUCs indicate the influence of the exemplar utilized. The
variation in mechanical properties between the reconstructed sub-volumes will be obtained later using a triply-periodic
analysis in the NASMAT code. The rate of convergence for both samples was consistent; convergence was achieved
after ~1000 iterations (loss function plot, see Figure 9). The difference in the converged value between the 1g and pg
samples may be attributed to the variation in the statistical features between these samples. The robustness of the
algorithm can be noted by the fact that the three orthogonal mid-slices (see the right columns of Figure 8) are different
for the given 2D BSE exemplar.

The 2D exemplars (256 x 256 pixels; with a resolution of 0.54 pm/pixel, see Figure 8) show a notable difference in
phase composition in each image. For the 1g samples, the CH crystals are more frequently distributed throughout the
C-S-H matrix which has been captured in the reconstructed sub-volumes. The plate-like morphology of the CH
crystals, distinct from the pg samples is not that evident in the reconstructed sub-volumes. During the ROI selection,
a window of 256 x 256 pixels was chosen from the PSI database that contained elongated CH crystals. As can be seen
from Figure 1(b) and Figure 5, a certain minimum edge length (thereby homogenized volume) is required to best
represent the g samples. Currently, efforts are underway to ascertain this minimum edge length (and homogenization
volume) with the aid of micro-CT observations. Moreover, micro-CT data will also enable direct comparison of
reconstructed sub-volumes to be utilized as RUCs in the NASMAT code.



Downloaded by Penn State Univ on October 22, 2024 | http://arc.aiaa.org | DOI: 10.2514/6.2023-2025

2D BSE Exemplar Reconstructed RUC Mid-slices

1g Sample

pg Sample

Fig 8. Reconstructed 3D RUCs from 2D BSE exemplars (sigma filtered, 256 x 256 pixels) of C3S samples (1g
and pg) using the CNN-based deep learning framework. The white phase corresponds with CH crystals, gray
corresponds with the C-S-H matrix and the dark phase corresponds with porosity.
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Fig 9. Loss function for the reconstructed 1g and pg RUCs.

C. Greyscale-based Thresholding and Phase Allocation in Reconstructed RUCs

Prior to employing the reconstructed RUCs presented in the previous section in the NASMAT code, individual phases
must be distinguished, and appropriate constituent material assigned. The previously conducted image segmentation
(refer to section II) benchmarked against experimentally measured porosity was utilized. Furthermore, by discerning
the phases in the reconstruction sub-volumes, individual phase composition can be obtained and compared against the
values obtained from the image analysis. A similar greyscale thresholding approach (overflow method for the
porosity/CSH boundary and local minima for the CSH/CH boundary) was used to assign phases in each voxel of the
reconstructed 3D RUCs. The identified greyscale-based bounds are provided in the plot (see Figure 10). Based on the
identified thresholds, the phase-assigned 3D RUCs (porosity, C-S-H matrix, and CH crystals) are shown in Figure
11. In general, the deep learning-based reconstruction strategy as exemplified before [19], was able to capture the
microstructure in both 1g and pg samples. The percentage composition of each phase is also tabulated and compared
against image analysis in Table 2. The triply-periodic RUCs, with each voxel corresponding to subcell that is assigned
to a particular phase, may now be directly utilized in the NASMAT code.

The uniform distribution of CH crystals, characteristic of 1g sample was captured well in the reconstructed sub-
volumes. In the reconstructed 1g sample, the CH crystal composition varied between 8 — 17.40 % compared to 11.3
% obtained from the image analysis. The porosity varied 49 — 52 %, whilst the C-S-H matrix composition was
estimated to be 34 — 40 % in the reconstructed RUCs of the 1g sample. The spatial distribution of both porosity and
CH crystal qualitatively affirms the individual phase distribution found on C3S samples hydrated on the ground.

In the reconstructed space sub-volumes, the porosity ranged between 57 — 77 %. This range lies within the recorded
porosity content using both MIP and image analysis for ng samples. On the other hand, the CH crystal composition
was within the range of 4 — 12.30 %. A significant difference to be noted is the non-frequent distribution of the CH
crystals in space. However, the elongated plate-like structure is captured in only one of the reconstructed sub-volumes.
It confirms the observation that the chosen BSE exemplar governs the ability of the deep learning algorithm to reliably
reconstruct the microstructures. Additionally, a minimum homogenized volume must be identified to best represent
the CH morphology formed in the microgravity environment. The micro-CT study will be able to shed light on that
line and will be used to select exemplars with a minimum edge length. Further studies using low-order probability
distribution functions such as the two-point correlation function and lineal-path function will also help evaluate the
spatial variation of each reconstructed sub-volume. A note is made here regarding the robustness of the reconstruction
algorithm. In general, the statistical features for sub-volume reconstruction are obtained from the input BSE exemplar.
Currently, the chosen image size [256 x 256 pixels; resolution = 0.53 pm] does not accurately represent the CH crystal
morphology of the pug sample. However, in the case of 1g samples, the current implementation shows reasonable
accuracy. Future work will include scaling up this technique to be capable of accepting exemplars with increased size
[e.g. 1024x1024 pixels]. In addition, a cyclic scheduler to increase the training rate will also be incorporated.

10
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RUC05

Fig 11. Phase composition in reconstructed 1g and pg RUCs [voxel size: 256 pixels] using the CNN-based deep
learning framework.

Table 2. Comparison of individual phase composition in reconstructed RUCs and image analysis.

Porosity C-S-H CH

1g Samples — Image Analysis 47.0% £ 142 % 416 % +£12.0% 113%+£2.8%

1g Samples — MIP 48.4 % - -

1g Reconstructed RUCs 49.30 % 33.90 % 17.40 %
51.80 % 40.30 % 8.30 %

pg Samples — Image Analysis 703%+1.4% 212%+£12% 85%+14%

pg Samples — MIP 69.4 % - -

pg - Reconstructed RUCs 57.30 % 18.80 % 3.90 %
77.40 % 30.40 % 12.30 %

IV. Summary and Future Work

The primary, long-term aim of this study is to perform computational micromechanics analysis of cement binders
cured in the microgravity environment to predict the effective mechanical properties and local fields. Due to size
limitations and the high porosity content of samples cured in space, conventional mechanical testing is non-viable to
ascertain mechanical properties. Initially, the SEM images of both ground and space-returned samples were analyzed
to distinguish the individual hydration product. A greyscale-based thresholding approach was used to estimate volume
fractions of each phase and porosity; the porosity fraction calculated from this image analysis matched well with the
porosity fraction measured using MIP. The phase-segmented 2D BSE image was directly inputted to the NASMAT
code as a doubly-periodic RUC and analyzed using HFGMC However, the results were observed to not represent
realistic scenario owing to high porosity content, and the inability of the 2D BSE image to accurately capture the 3D
microstructure. Hence, 3D microstructures were reconstructed using a deep learning-based solid texture synthesis for
both 1g and pg samples. The greyscale-based phase segmentation was employed to assign each voxel to a particular
phase. The spatial distribution of porosity and portlandite crystals was accurately captured in the 1g sample. However,
the distinct plate-like morphology of CH crystals was not captured in the pg sample, due to the choice of ROI. Future
work includes the reconstruction of pg sub-volumes using exemplars with a minimum edge length that amply captures
the CH morphology. In addition, improvements in the reconstruction code in terms of transfer learning and finding
the optimum number of network layers with respect to gram matrix loss will be explored. Finally, the effective
properties of the 3D microstructures will be computed through homogenization of triply-periodic RUCs using
HFGMC.
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