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Abstract

Hybridization coupled to polyploidy, or allopolyploidy, has dramatically shaped the evolution
of flowering plants, teleost fishes, and other lineages. Studies of recently formed allopoly-
ploid plants have shown that the two subgenomes that merged to form that new allopoly-
ploid do not generally express their genes equally. Instead, one of the two subgenomes
expresses its paralogs more highly on average. Meanwhile, older allopolyploidy events tend
to show biases in duplicate losses, with one of the two subgenomes retaining more genes
than the other. Since reduced expression is a pathway to duplicate loss, understanding the
origins of expression biases may help explain the origins of biased losses. Because we
expect gene expression levels to experience stabilizing selection, our conceptual frame-
works for how allopolyploid organisms form tend to assume that the new allopolyploid will
show balanced expression between its subgenomes. It is then necessary to invoke phenom-
ena such as differences in the suppression of repetitive elements to explain the observed
expression imbalances. Here we show that, even for phenotypically identical diploid progen-
itors, the inherent kinetics of gene expression give rise to biases between the expression
levels of the progenitor genes in the hybrid. Some of these biases are expected to be gene-
specific and not give rise to global differences in progenitor gene expression. However, par-
ticularly in the case of allopolyploids formed from progenitors with different genome sizes,
global expression biases favoring one subgenome are expected immediately on formation.
Hence, expression biases are arguably the expectation upon allopolyploid formation rather
than a phenomenon needing explanation. In the future, a deeper understanding of the kinet-
ics of allopolyploidy may allow us to better understand both biases in duplicate losses and
hybrid vigor.
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Author summary

Allopolyploidy, or polyploidy through hybridization, is common across the eukaryotes. In
newly formed allopolyploids, one of the contributing progenitor subgenomes generally
expresses its genes at higher levels than does the subgenome from the other progenitor. It
is believed that, as allopolyploids age, these expression differences drive differential dupli-
cate gene losses between the subgenomes, as most older polyploidies show such biases in
their gene losses. However, why the expression biases appear in the first place has been
debated. Here, we use simple models of gene expression to show that the merging of dis-
tinct progenitor genomes through allopolyploidy will almost always yield expression
biases due to the nonlinear kinetics of transcription. We argue that expression biases are
hence the expectation for most allopolyploidies without a need for more complex
explanations.

Introduction

Hybridization held an odd place in evolutionary theory toward the middle of the last century,
because geneticists’ view of its importance could vary substantially depending on their organ-
ism of interest [1]. In 1959, Stebbins [2] argued that zoologists working on terrestrial verte-
brates tended to discount hybridization as those animals rarely formed fertile, reproductively
isolated, hybrids. The reasons for this rarity probably center around these organisms’ obligate
sexual reproduction and their common use of chromosomal sex determination. In contrast, he
showed that there was clear evidence for the formation of new species through hybridization
among the flowering plants [2].

Stebbins also discussed the differing routes by which such hybrids might form and laid par-
ticular emphasis on hybridization coupled to polyploidy, or allopolyploidy. It is now clear that
flowering plant diversity has been hugely shaped by hybridization and in particular by allo-
polyploidy [3,4]. Genomic technologies have also provided evidence for many ancient hybrid-
ization and polyploidy events from across the eukaryotes (including vertebrates) that were not
evident from morphological or cytological evidence alone [4-7]. These hybridizations are
interesting for several reasons, not least because they can exhibit hybrid vigor or heterosis,
meaning they possess desirable traits that exceed those of either of their progenitors [8,9].
Hybrid vigor is not usually explicable in terms of one or a few genetic loci, instead being driven
by contributions from across the progenitors’ genomes [10]. One relatively simple explanation
of this vigor would therefore be that the hybrid masks mildly deleterious homozygous recessive
alleles in each progenitor lineage [10]. However, the differing heterotic behavior of different
types of traits [11] and the differences seen in heterosis between polyploid and diploid hybrids
[10,12,13] argue that other factors, termed overdominance, are also at work.

When comparing the different possible mechanisms of hybrid formation, hybridization
through allopolyploidy presents a number of advantages: it does not require equal chromo-
some numbers to preserve fertility, it can produce essentially instantaneous reproductive isola-
tion, and it can allow for the formation of hybrids between more distant lineages [2,3,14].
When coupled to the heterotic behavior of polyploids [10,12,13], these advantages of allopoly-
ploidy may be part of the reason that allopolyploid plants were unusually likely to have been
selected for domestication by early farmers [15].

As a reasonable number of recent allopolyploidy events are known, we can begin to explore
and untangle the effects of polyploidy and hybridization by studying the functional genomics
of these neopolyploids. One very important characteristic they often show is an unequal
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contribution to gene expression between the progenitor genomes. Commonly, one of the two
progenitors shows higher average gene expression than the other in the allopolyploid [16-20].
Curiously, when we consider much older paleopolyploidies, there is also usually a strong statis-
tical bias in the number of duplicate genes lost between the progenitor subgenomes, a pattern
termed biased fractionation [21-26]. One can easily hypothesize that the early expression
biases created conditions whereby gene losses were favored from the less expressed progenitor
subgenome [16-20,27], making biased fractionation a consequence of biased expression.

What this hypothesis leaves unanswered, however, is the source of these expression biases
[27]. Researchers have sought to divide the potential sources of such biases into the “parental
legacy” and the effects of polyploid formation [28]. In this framework, a legacy of observable
expression differences, either local or global, between the diploid progenitors might map to
similar differences in the allopolyploid [29]. Alternatively, the formation of the polyploid off-
spring might, immediately or in time, give rise to expression differences between the parental
subgenomes that did not exist in the diploid progenitors [28].

While attractive, this neat division of sources of bias has certain limitations. Somewhat trivi-
ally, we should probably conceptually divide parental differences into those due to the actions
of selection and those attributable to genetic drift in expression [30,31]. Likewise, in natural
systems, the actual parental lineages are rarely extant, adding further difficulties to the identifi-
cation of the legacy [28]. A degree of ambiguity in terminology has also arisen, with the term
“genome dominance” or “genomic dominance” having been employed both in the sense of a
global bias in allopolyploid gene expression toward one progenitor subgenome [32] and in an
alternative sense of the allopolyploid expression level being indistinguishable from one of the
two progenitors (the “dominant” genome) [33]. We will thus avoid the term genomic domi-
nance to prevent confusion. Instead, we will use “expression bias” to refer to greater relative
expression from one homoeologous gene (i.e., paralog due to polyploidy) and “global expres-
sion bias” to refer to the case where one of the two subgenomes experiences expression bias in
its favor (much) more often that the other.

A final concern with the parental legacy model is that we should ask whether we are consid-
ering all differences between the parental genomes to be part of the legacy or only phenotypi-
cally-evident ones. This distinction is key, because there are well-known examples of gene
regulatory circuits that are phenotypically identical but genetically very distinct [34]. Under
such circumstances, we probably lack the intuition of how a polyploidy event would affect rela-
tive expression levels.

The question of the source of the biases has also be approached empirically [35]. The most
popular hypothesis currently is that the progenitor subgenome with the higher transposable
element content experiences a repression of those elements mediated by the other subgenome,
with the knock-on effect of repressing the expression of its nearby genes [20,36,37]. This expla-
nation does not fit neatly into the parental legacy/novel feature dichotomy above because the
effect is indeed only observed in the polyploid, but it results from significant genetic differ-
ences that have accumulated between the parental lineages.

Here we propose that computational models can be very enlightening on the question of
allopolyploid expression biases because they allow us to control all of the complexities just
mentioned that complicate analyses in real organisms [28,35]. We will therefore ask “How
easy is it to generate allopolyploid genomes with expression biases from diploid progenitors
that are phenotypically identical in their expression?”

This framing of the problem removes selected and neutral differences in parental expres-
sion levels from the analysis, allowing us to ask whether expression biases require such a paren-
tal legacy. We instead focus on more indirect changes between the parental genomes, such as
changes in their size. Size is a very important parameter because cellular volume tends to scale
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with genome size [38], with polyploid organisms showing larger volumes than their diploid
relatives. However, it is also important to recall that this scaling is not usually perfectly linear
[39]. Our approach follows that Bottani and colleagues [19], who have pointed out that the
kinetics of RNA polymerase binding and transcription will differ between genomes of different
sizes, because, in a bigger genome, there are more sites for off-target polymerase (or transcrip-
tion factor) binding. To achieve equivalent mRNA concentrations between a big and small
genome, evolution will have needed to adjust the concentrations or the affinities of the tran-
scriptional machinery in one or both genomes. An allopolyploid product of two such genomes
would not, in general, show balanced expression between its two subgenomes.

Here we extend on this insight of Bottani et al. [19], showing that the null expectation of an
allopolyploidy is unbalanced expression, particularly when the regulatory dynamics of the
genes are relatively complex. Rather than a surprising result of allopolyploidy, we argue that
subgenome-biased expression is the expected behavior of such hybrids.

Results
Modeling gene expression

Expression bias can be a global property of the genome. However, building an expression
model of thousands of genes is computationally expensive and results in models that are diffi-
cult to interpret. Instead, we will first show how models of single genes respond to polyploidy
and then discuss how some of the parameters of those models represent global quantities
determined by the genome. The allopolyploid’s progenitor genomes will therefore be assumed
to have had many generations to diverge in their transcriptional kinetics but will be required
to have identical phenotypes. Throughout, we will use steady state mRNA concentrations in
our measures of bias so that our results are independent of genome size and cell volume.

Expression balance in hybrids is difficult to achieve and unstable

As an illustration of how a bias in expression could emerge immediately upon allopolyploid
formation even with phenotypically identical parental lineages, we created models of an ortho-
logous gene in two progenitor genomes A, (ancestor 1) and A, (ancestor 2). A; and A, differ
in the DNA breathing rate [40-42]. This “breathing” is modeled with an opening (k,) and a
closing (k.) rate parameter: the proportion of time that the DNA is transcriptionally active can
be computed with the ratio of these two parameters. Their values will depend on a number of
factors such as the base composition of the sequences in question [43].

In the two models we are comparing, progenitor A, has its DNA transcriptionally active
less often (higher k; Fig 1A) than does A;. It compensates with higher RNA polymerase levels,
such that A; and A, have identical steady-state mRNA concentrations. We created a model of
an allopolyploid hybrid P by merging the two models, doubling the nuclear volume and
assuming that P has an RNA polymerase concentration that is the arithmetic average of those
of A; and A, (Methods). As one would expect, as the closing rate k. from A, increases, the bias
against mRNAs from that subgenome increases (Fig 1A).

These models are an existence proof for instantaneous expression bias but are highly sim-
plified and do not give a sense of whether bias is common. In Fig 1B, we use more complex
models where the transcription levels result from competition between a repressor and the
polymerase. In the model for species A;, the gene has only a single repression binding site,
while A, has two. We tuned the repressor affinities in A, such that the DNA is exposed for
transcription the same proportion of the time in A; and A,. As a result, the two models have
identical steady-state mRNA levels. When we form the allopolyploid hybrid, we find that no
bias is seen across any concentration of RNA polymerase because of the equal DNA exposure.
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Fig 1. Two types of gene expression model that generate expression bias after allopolyploidy. A. In this model, the
DNA transitions between a transcriptionally-available state (DNApeq) and a closed state (DNA_jqseq)- The binding and
unbinding of the polymerase to the open DNA then occurs at rates k;, and k,,, respectively. Transcription is modeled as
an irreversible process competing with polymerase unbinding (rate k). The decay of the resulting mRNA then occurs
on a timescale of minutes (rate k). We model genes in two genomes A; and A,, one of which has DNA that spends less
time in the open configuration (k; y-axis) and compensates with a higher effective concentration of RNA polymerase,
such that the steady-state mRNA concentration is identical in A; and A,. (The kinetics of transcription are also
identical for the two). The allopolyploid hybrid of A; and A, has a doubled nuclear volume (2x10"*1) and an RNA
polymerase molecule count equal to the sum of those of A; and A,. The heat map shows how B, the ratio of steady-

state mRNA in A, over A, varies with RNA polymerase affinity (k;; x-axis) and the relative DNA closing rate in

genome A, (k% k2'; y-axis). B. A more complex expression model, showing situations where balance after

allopolyploidy can be achieved. Model A, has a single repressor binding site which prevents transcription when a
soluble repressor molecule is reversibly bound (rates k, and kfor binding and release, respectively). The second
genome (A;) has two such sites that bind cooperatively: the second site has an increased binding rate k,? and a reduced
release rate k. The values of k,” and k7 are tuned, such that at a baseline level of repressor and RNA polymerase
(10,000 molecules of each), the two cells have identical steady-state mRNA levels. Under these conditions, the
allopolyploid hybrid P also has unbiased expression (B = 1.0). We show the value of B for a range of values of RNA
polymerase (x-axis) and repressor (y-axis) levels from the allopolyploid hybrid.

https://doi.org/10.1371/journal.pcbi.1011803.9001

However, if we force the repressor concentration to change in P, as might happen if the vol-
ume of the allopolyploid did not experience perfect two-fold scaling [39], we see that bias once
again appears. Hence, balance in mRNA levels is generally unstable, even in situations where
the two progenitors are “tuned” to give it.

Of course, genomes contain many genes, and it is important to understand how their rela-
tive expression levels and bias interact in hybrids. In Fig 2, we show a model that includes two
genes, G1 and G2. At a per-gene level, this model is similar to that of Fig 1B except that we
now make transcription autocatalytic, in the sense that DNA that has just been transcribed is
more open to the binding of a new polymerase molecule [44]. We tuned the affinity of A,’s sec-
ond repressor site so as to make the steady-state mRNA levels of A; and A, identical for any
combination of RNA polymerase concentration and affinity of A,’s first repressor site (Meth-
ods). Unsurprisingly, gene G1 in the allopolyploid hybrid shows expression bias, a bias that
varies as polymerase levels and repressor affinities change (Fig 2B). Strikingly, the bias
observed for G2 is very similar to that for G1 (Fig 2D). If, in real organisms, one observed such
similar bias levels between pairs of genes, one would be tempted to infer that the expression
ratio between G1 and G2 in the allopolyploid was reflective of its ratio in the progenitors.
However, such is not the case: Fig 2C shows that the G1/G2 expression ratio from subgenome
A, in the allopolyploid varies considerably across the range of polymerase concentrations,
even though it is constant at effectively 2:1 in the ancestral A; genome. In other words, know-
ing that two pairs of homoeologous genes have similar biases in an allopolyploid does not
allow us to conclude that the relative expression level that we see for those two pairs of genes in
that allopolyploid reflects their relative expression levels in the progenitor lineages. This limita-
tion holds despite the fact that the two progenitors have identical expression levels for both
genes.

Most pairs of expression models with identical expression produce bias
when hybridized

The above results show that allopolyploids need not necessarily show balanced expression
between their subgenomes. But of course, it is possible that we have, by chance or design,
selected model parameters that give the misleading impression that bias is common. What if
instead, as is seen in metabolic pathways [45], expression in allopolyploids is canalized, such
that most expression configurations do not produce imbalances? To address this concern, we
assessed the prevalence of bias for pairs of models that randomly sampled the parameter space.
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https://doi.org/10.1371/journal.pchi.1011803.g002

To do so, we defined a range of generally sensible parameter values and uniformly and ran-
domly sampled from them to define models of genomes A; and of A,. Of course, such model
pairs will essentially never have equal mRNA levels. So, for model A,, we used step-wise opti-
mization to bring the mRNA concentrations to equality with those from A, (Methods). Doing
so does not make the models of genomes A; and A, identical: the parameter values for A; and
A, are generally dissimilar (Fig 3). Across 1000 pairs of random models, expression biases,
even very large ones, are the rule rather than the exception: only 16% of the pairs from the
more complex metamodel of Fig 3B have expression biases less than +1.25 fold. There are
three conclusions we can draw from this analysis. The first is that, even when the underlying
expression meta-model is structurally identical, there is an enormous range of potential
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1000 simulations of the simple and complex models from A&B. On x is the distance between the model pairs (y-axis in D), on y are the frequencies of those
distances. D. One thousand random pairs of genome models were created from each meta-model and their hybrids simulated. The plot shows the relationship
between the distance between the model pairs (y-axis) and expression bias B (x-axis: note the log scale). E. Histograms of B, plotted on a log-scale (c.f., C).

https://doi.org/10.1371/journal.pcbi.1011803.9003

parameter values that can give equal expression levels. However, the second conclusion is that
the formation of an allopolyploid from those models almost invariably results in expression
bias. Our final conclusion is that canalization does not seem to be at play, because using a
more complex expression meta-model produces more, not less, bias (Fig 3D).

Fig 3 makes the unrealistic assumption of a hybridization between two effectively unrelated
progenitors. Can closely related progenitors also display bias after hybridization? To address
this question, we created pairs of models A; and A, where A; was created at random in the
manner just described, but where A, was simulated to have a genome size between 50%
smaller and 50% larger than A;. Genome size was modeled as a change in nuclear volume,
given the strong association of these two values [38,46]. The A, models were initialized with
kinetics identical to A;, but then adjusted as just described to give equal steady-state mRNA
levels despite their differing volumes (Methods). Even pairs of models with rather small differ-
ences in their parameters can give expression biases in the face of genome size differences
(Fig 4). In fact, only 52% of the simulations had expression levels within 1.1 fold of each other.

From genes to genomes

The models we have described of course only consider individual genes. Directly applying an
approach such as that used in Figs 3 and 4 across an entire allopolyploid genome would pro-
duce a distribution of expression biases between A, and A, with a large variance. However,
because the model parameters from each gene would be independent, the mean bias for that
allopolyploid would be zero. In other words, no global expression bias toward one subgenome
would be observed. But are there conditions where the effects we have modeled could give rise
to a global expression bias?

A natural place to start looking for such patterns would be in the sizes of those progenitor
genomes. Fig 5 gives the genome sizes of the progenitors for several recent allopolyploidy
events in flowering plants where those progenitors are known with some confidence [32,47-
52]. Although in a few cases there is less than a 10% difference in size between the progenitors’
genomes, in only T. miscellus and C. arabica are the differences less than 5% (4.9% in both
cases).

As is suggested by Fig 4, a simple change in genome size necessarily requires changes in
global transcriptional regulatory dynamics in order to maintain gene expression patterns. Bot-
tani et al. [19] have already described this issue, pointing out that, in a larger genome, tran-
scription factors experience more off-target binding, reducing their occupancy of the true
transcription start sites. The important question is how a genome would compensate for its
size increasing over evolutionary time. The intuitive answer, given by Bottani et al. [19], would
be to increase the affinities of the transcription factors and their binding sites. However, indi-
vidually tuning all these local affinities across all the transcription factors and binding sites in
the genome would be a slow process. A more rapid adaptation would be to globally repress
non-genic DNA. In the models above such repression might be accomplished by a higher
DNA closing rate (Fig 1A) or greater numbers of repressor binding sites (Fig 1B). Mechanisti-
cally, such repression could involve a combination of DNA methylation, histone modifications
and changes to the three-dimensional organization of the chromosomes in the nucleus [53-
55]. In fact, such changes might even be automatic: mammalian cells can respond to differ-
ences in their volumes relative to a constant DNA content by changing their burst
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Fig 4. Hybrids formed from genomes of differing sizes show expression bias. A) Meta-model of gene expression used. Random example models
were created from this model by drawing uniform random variables for each parameter across the range shown in B. From these random models, we
created two progenitor genomes (A; and A,) with initially identical kinetics, but where A, could have a 50% smaller or larger genome (uniform
random variable on [0.5,1.5]; y-axis; see Methods). We adjusted A, to give identical steady-state mRNA levels to A, and then formed the hybrid to
have a volume equal to the sum of the volumes of A; and A, (Methods)_ B) Table of parameter ranges. C) Bias in steady-state mRNA levels seen for
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1000 different random expression models. On the x-axis is the bias B and on y is the ratio of the volume of A, to A;. Points are color-coded by the
Euclidian distance in normalized parameter values between A; and A, (Methods): the maximum distance observed was 0.14.

https://doi.org/10.1371/journal.pcbi.1011803.9004

transcription dynamics [56], suggesting the existence of some feedback between cell volume,
DNA content and the transcription process. In all of these cases, the result would most likely
be a pair of genomes that were phenotypically identical but that would form allopolyploid
hybrids possessing global expression biases (c.f., Fig 1B, where balanced expression is only
seen with very precise parameter tuning).

Looking beyond even genome size, we can notice that our models in fact include both local
and global controls on gene expression. Parameters such as the RNA polymerase binding con-
stants (k;, and k,,) are primarily local: that is to say specific to a gene and its promotor. On the
other hand, changes in DNA opening and closing, as well as repressor affinities and (espe-
cially) repressor and polymerase concentrations, are more likely to be global genomic
responses. In other words, they would be expected to be the factors evolution might adjust in
response to changes in genome size or base composition (see below). Allopolyploids formed
from progenitors that differed in such factors would tend to have global expression biases
favoring one progenitor.

Extant allopolyploid genomes have many features that could drive
hybridization biases

How applicable are these theoretical findings to real allopolyploids? While genome size is a
useful conceptual framework for thinking about the problem, it is only one of many factors
driving a genome’s transcriptional dynamics. Differences in transposable element load have
already been discussed as a potential source of expression biases [20,36,37]. Unfortunately, for
older allopolyploidy events, this hypothesis is difficult to test because of the rapid evolutionary
turn-over of these elements [57]. In some recent analyses, we found a tendency for tRNA
genes to be overly frequent in some of the subgenomes of the hexaploid Brassicas, but no simi-
larly strong trend in the hexaploid Solanaceae [57]. That pattern would be consistent with the
ideas presented here; the expression and loss biases in any given allopolyploid will be due to
the combination of many components of genome structure, including repetitive elements,
genome size, the dynamics of genome repression, and GC content, among others. In Fig 6A-
6C we show the range of variation in these factors across eight paleohexaploid genomes. We
consider genome size for the reasons discussed above, tRNA distance due to our observations
in the Brassicas [57] and GC content because DNA melting and hence opening and closing
should differ between regions with differing base composition (c.f., Fig 1A). A potentially
intriguing observation is that, in some cases, the three subgenomes produced by ancient
hexaploidies differ amongst themselves in the average distance between their genes and tRNA
loci (Fig 6A), consistent with the idea that features like the local transcriptional environment
can affect a gene’s survival propensity.

We also see that such factors can measurably alter the expression bias seen after polyploidy.
Brassica napus is an allopolyploid hybrid of Brassica rapa and Brassica oleracea and shows sig-
nificant expression bias toward the B. oleracea-derived subgenome (Methods). The fact that
the bias, while significant, is relatively modest is probably due to a history of subgenome
replacements by homoeologous exchange in this plant [52].

When we look at the 200 most extremely B. rapa-biased homoeologous gene pairs or the
200 most B. oleracea-biased pairs, these genes have significantly lower gene-wide GC content
for both homoeologs than do other genes (P<0.018, randomization test, Fig 6D). Likewise, the
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Fig 5. Recent allopolyploidies have formed from progenitors with genomes of different sizes. Eight recent allopolyploidies are shown for which the

progenitor genomes are known. On x is the size of the larger of the progenitors in megabases of DNA (MB, lower axis) or in picograms of DNA per 4C (upper
axis). On y is given the proportional size of the smaller progenitor subgenome. Because bread wheat is an allohexaploid, the three possible comparisons of the
three progenitors are shown individually. Data sources for the genomes shown are given in the S1 Table.
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Fig 6. Mesohexaploid genomes vary several aspects of genome structure in ways relevant to the formation of further hybrids. A) We identified tRNA
genes in the intergenic region of each of eight genomes with shared mesohexaploidies and then computed the mean distance of those genes to the nearest
protein coding gene for which we could identify the subgenome of origin (y-axis; see Methods). Those subgenomes vary in their level of gene preservation from
most surviving genes (least fractionated, LF), through intermediate and most fractionated (IF and MF). We compared these distances to randomly distributed
tRNAs, finding that in all cases, the tRNAs were closer to surviving genes than expected (P = 0.02 for P. axillaris and P<0.01 for all other genomes; note the log-
scale on y). In four cases, the subgenomes differed from each other in their mean distance to the tRNA genes more than would be expected (colored points).
Genomes also differ in total size (B) and in the average GC content in the genes (mean +2 standard deviations; C). D) Finally, both European and South Asian
winter rapeseed accessions of B. napus (EWR and SAWR, respectively) show lower average gene GC content for genes with highly biased expression between
paralogous pairs compared to most paralogous gene pairs (Methods).

https://doi.org/10.1371/journal.pcbi.1011803.9006

two subgenomes differ in their gene distributions, with the B. rapa-derived subgenome having
more closely spaced genes, consistent with the smaller B. rapa genome (P = 0.001, randomiza-
tion test). It appears that this difference in gene spacing may also affect expression in the two
subgenomes: there is a stronger correlation of distance to the nearest gene and expression sim-
ilarity for the B. rapa-derived subgenome than for the B. oleracea-derived one (see Methods).
Strikingly, a recent experiment on B. napus showed that at least some of the expression bias
in these subgenomes is attributable to differences in their chromatin accessibility, with
ATAC-Seq showing the B. oleracea subgenome to have more accessible chromatin regions
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than the B. rapa subgenome [58]. While the reasons for these chromatin structure differences
between subgenomes are not clear, they represent just the type of genomic differences that
would be expected to yield subgenome bias after hybridization.

Discussion

After a pair of populations cease to interbreed, they can diverge in a variety of ways. Here we
have made the simplifying assumption of only considering divergence that does not change
the phenotype. In effect, we are constraining evolution to occur along a neutral network of
genotypes of equivalent phenotype [59]. This assumption is probably less restrictive than it
appears. If one categorizes the genomic changes affecting gene expression as being due either
to cis (local) or trans (elsewhere in the genome) effects [60], it is reasonably common to
observe compensatory changes, where a trans change in one direction is accompanied by a cis
change in the other [61]. A natural explanation for these compensatory changes is stabilizing
selection to maintain gene expression levels over time. If so, our assumption of identical
expression levels is probably a reasonable one at the genome-wide level, even though of course
some individual genes will deviate from it [60].

We asked whether expression biases are still common under this assumption, and what
kind of transcriptional responses to polyploidy are generally seen. It is very clear that neutral
changes in transcription dynamics will drive expression biases at the level of individual genes.
It is likely, though less certain, that these types of changes will also produce global expression
biases. For instance, in the case of a genome size change, the dilution effects of the larger
genome could be compensated for by either increasing the promotor affinities of all genes or
by a higher expression of the RNA polymerase [19]. The latter change is probably more evolu-
tionarily accessible because it requires fewer individual mutations to achieve. Under that
mechanism, trans changes would have accumulated as genome size increased, with later cis
changes fine-tuning the expression of individual genes. That sequence is potentially compati-
ble with the general observation that cis expression changes seem to accumulate over evolu-
tionary time without producing correspondingly increasing levels of expression changes [61].

While in the prior example the larger genome is in some sense in the weaker position, we
should not assume that this is always the case. For instance, as seen in B. napus, isolating genes
within large regions of heterochromatin could reduce coupling in their expression levels [62],
allowing more precise expression control of each. In this scheme, a physically larger genome
might show both fewer cases of pairwise correlation in expression between neighboring genes
and less off-target binding, if most of that excess DNA were kept in a heterochromatic state.
For researchers, the downside to all of this complexity is that it will be hard to predict a priori
how a hybrid of two genomes will behave with respect to expression dominance.

If the prediction of the favored subgenome remains elusive, our models strongly suggest
that that such genomic differences, resulting as they do from nonlinear kinetic differences
between the lineages, mean that allopolyploid hybrids are unlikely to show globally balanced
gene expression. Thus, if bias is the rule for the quite simple models considered here, it seems
unreasonable to believe that real genomes, with potentially thousands of different types of mol-
ecules contributing to expression levels, could commonly produce balanced expression, partic-
ularly because allopolyploids are not generally thought to be perfect “two-fold” copies of their
progenitors [39]. Among the factors that might affect global biases are changes in DNA meth-
ylation: in neopolyploid Mimulus plants, methylation patterns are disrupted at polyploid for-
mation and over time reestablish themselves in a manner favoring the dominant subgenome
[16]. Likewise, the nature of the regulatory circuits involved is likely important: genes with
putative dosage interactions tend to show instantaneous responses to allopolyploidy that are
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more similar to each other than expected by chance [63]. Therefore, we suggest that the
hypothesis of global expression biases being driven by differences in transposon load
[20,36,37] can be complemented by the more general patterns seen here. One difference in the
two positions is that the phenomena considered here do not make the assumption that factors
in one progenitor subgenome must act in a specific way on the other.

Our models do not speak directly to the question of the later biases in duplicate losses,
although, as mentioned, global expression biases are expected to contribute to global loss
biases. Nothing in these results gives us estimates of what level of global expression bias is
needed to result in a duplicate loss bias. However, we should at least recall that such biases
need not be as large as the expression differences that we would require to, say, describe a pair
of genes as differentially expressed in a direct comparison [64]. Hence, if expression biases are
the rule after allopolyploidy, duplicate losses biases are probably expected to follow on later.

We cannot yet draw any firm conclusions on questions regarding heterosis and hybrid
vigor either. However, we do believe that a modeling approach creates a framework for think-
ing about the problem, reinforcing the message that implicit linear models in evolution can be
misleading. Hybrids are not generally expected to be the average of their parents for complex
biochemical features such as gene expression. As a simple illustration, consider an aspect of
expression we have disregarded: expression noise [41,65]. The formation of an allopolyploid,
by doubling the number of genes, should have the side effect of reduced noise in gene expres-
sion [42,65,66]. Hence, we might ask whether one source of heterosis in alloployploids is
greater predictability in their gene expression patterns. Perhaps a more general version of this
insight is possible, with heterosis being explicable in light of the complex interactions between
the genomes and the mechanics of how their genes are expressed: testing such ideas will
require a much more granular sense of those mechanics and their genetic control.

Methods

Overview of models of gene expression

We hybridized models of gene expression for two distinct species A; and A,. The hybridization
creates a new allopolyploid cell P with all four homoeologous gene copies present in a single
nucleus of doubled volume. For simplicity, the progenitors were each assumed to have a
nuclear volume of 107*? 1, [1/5 of the volume of a human nucleus; 67]. The steady-state mRNA
levels A, A, and P were computed with COPASI 4.36 [68]. Because A; and A, have identical
volume and P has double that volume, the mRNA particle numbers computed by COPASI can
be treated as concentrations in our analyses. For P we computed the expression bias B: namely
A,’s steady-state mRNA level divided by that of A;. We considered several types of expression
models to better understand the behavior of B.

Chromatin relaxation model

This model considers the transition from closed, non-transcribable chromatin to open, acces-
sible, chromatin [69,70] to be the rate-limiting factor in transcription. It is consistent with data
measuring noise in mRNA levels [40,41,71,72]. Following Suter et al., [73], we model the tran-
sition between closed and open chromatin as occurring on a timescale of tens of minutes

(Fig 1A), with the mRNA half-life being ten-fold longer. A; and A, differ in the proportion of
the time that their DNA remains open (k./k,). The reversible binding of the polymerase to the
promotor was modeled as showing roughly a ten-fold lower binding rate (k) than seen in bac-
teriophages [74] but with also a stronger affinity for the polymerase (a k,, of 20-fold lower;

Fig 1A), corresponding to need for higher promotor affinity in larger eukaryotic genomes.
Transcription was modeled as an irreversible process occurring on a timescale of seconds
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(ks Fig 1A). We explored how the mRNA bias in the polyploid varied with the affinity of the
RNA polymerase (k;) for the gene’s promotor. We fixed the number of RNA polymerase II
molecules in model A, at 10,000 copies, in rough accordance with data for the RPB2 subunit
from yeast [75]. For each combination of polymerase affinity k;, and k./k, in A,, we opti-
mized the concentration of RNA polymerase to give the same mRNA levels as seen in A, for
that value of k. Steady-state mRNA levels for A; and A, ranged between 0.5 and 19 mole-
cules per cell. The polyploid offspring P was assumed to have the sum of the number of
RNA polymerase molecules as did A; and A,.

Repression model

In this model, DNA is or is not available for transcription based on the binding of repressive
factors (Fig 1B) analogous to repressive histone marks or DNA methylation. The kinetics of
the RNA polymerase and transcription were kept the same as in the previous model. For
model A; we assumed that the repressor had similar binding kinetics as did RNA polymerase
(k, = ky = 500,000 1/moles), but with a lower off-rate (k;= 0.005 1/s verses k, = 0.05 1/s Fig
1B). For model A,, we added a second repressor binding site that operates cooperatively with
the first. Hence, if one of the two repressor sites is occupied, the binding of a repressor to the
second occurs at a higher rate (k,”>k,) and its release at a lower rate (kf2 <ky). We selected val-
ues for these four parameters (k> k,, kfz and kg, Fig 1B) such that the proportion of time that
the DNA spent in the unrepressed state was the same for A; and A,. Since A, and A, also have
identical transcription kinetics, they have identical mRNA concentrations. We explored the
dependance of B on the allopolyploid’s number of repressor and RNA polymerase molecules.
Steady-state mRNA levels for A; and A, ranged between 21 and 162 molecules per cell.

Expression comparison model

We created a model with two genes G1 and G2 differing in their expression. Model A, again
had two repressor binding sites to A;’s single site. We added a relaxed state to the DNA model,
corresponding to a gene that has just experienced transcription and has an enhanced affinity
for the RNA polymerase (k,">k; Fig 2A). The DNA in this relaxed state returns to the normal
open state over a time frame of minutes (k) unless a second transcription event returns it to
the relaxed state. Because this effect is included, the polymerase exits the promotor slightly
more quickly than for the prior model (k; = 0.25 1/s verses 0.1 1/s).

To explore the relationship between bias and relative expression level, G2 has an RNA poly-
merase affinity of half that of G1 (k;; Fig 2A). We explored the dependance of B on both the
affinity of the repressor for A,’s first repressor binding and on the number of RNA polymerase
molecules (Fig 2). For each such pair of values, the relative repressor affinity for A,’s second
site (k,%) was optimized so as to give equal gene expression for both G1 and G2 between A,
and A,. In addition to the bias B, we also computed the ratio of the expression of G1 and G2
from A, in the allopolyploid and the value of B for G1 over than for G2.

Random models

We explored the bias across a range of random transcriptional models drawn from two meta-
models: a simple one S and a complex one, C. Model S considers only transcription itself, with
4 parameters, ky, k,, k; and k,, as well as an RNA polymerase concentration. We used central
values for these parameters of k; = 500,000 1/moles, k,, = 0.5 1/s, k; = 0.5 1/s and k,; = 0.001 1/s,
with a central polymerase molecule number of 10,000. These values of k; and k; differ slightly
from the prior models to give a better sampling of parameter space. Hence, the C model was
constructed with parameters similar to those of the A; model of Fig 2 with adjustments to
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avoid too many models with invalid mRNA levels. The central value of kswas reduced by a fac-
tor of 2, that of k; increased from 0.25 to 1 and that of k,; raised from 0.0001 to 0.0005 (In all
cases, the parameter values used in Fig 2 are within the range of the sampling for the random
models used here).

We constructed pairs of random models for A; and A, as follows. For each parameter, we
allowed a range of values from 5-fold under to 5-fold over the central value. To create A;, for
each parameter we drew a uniform random number on its parameter interval. Using these
parameters, we computed the steady-state mRNA level for the resulting random A; model. If
that level was less than 1 or greater than 300, the model was rejected. Otherwise, we retained
that mRNA level and generated a random A, model in the same way. We then computed an
approximate derivative for each parameter in A, and used those derivatives to match the
mRNA level of model A, with that of A;. Briefly, we increased each parameter in A, by 10%,
recomputed the mRNA level and calculated the slope between the parameter change and
mRNA change. We then used that slope to adjust the parameter in the direction of the desired
mRNA level from A;. We next recomputed the mRNA level for A,, as well as the changed
parameter’s slope. If the two models still differed in their mRNA levels by 0.005 molecules or
more, the next parameter was selected and the optimization continued. Once optimization
was complete, if the optimized A, model had parameters outside of the valid parameter ranges,
that pair of models was discarded and a new A; model selected.

Once a pair of models A; and A, had identical mRNA levels, we formed the polyploid
model P, taking the sum of the RNA polymerase and repressor molecules for the two models
and doubling the nuclear volume. We then computed B from P. Finally, we normalized the
parameter vectors for A; and A, to the interval [-1,1] using the boundaries above and com-
puted the Euclidian distance between A, and A,

Models with differing genome sizes

Using a similar approach, we also compared pairs of related progenitor models differing in
genome size. To do so, we first proposed a random model A, as just described. We represented
the difference in genome size as a nuclear volume change [38,46] in the A, model by drawing a
nuclear volume on the random interval [5x10*,1.5x107'%] (£50% relative to A;). We set the
model parameters of A, to initially be identical to A;. We then computed A;’s steady-state
mRNA level and used the gradient approach above to bring A,’s mRNA level to the same
value. Notice that in this case only we sought equal mRNA molecule counts between models
A; and A, rather than equal concentrations. We did so in order avoid creating artificial paren-
tal differences when the P model was formed. We then created P as before, making its nuclear
volume the sum of those of A; and A, and computing the resulting value of B.

B. napus gene expression data

Gene expression data from the allopolyploid Brassica napus were taken from our previous
work [76]. We identified the pairs of homologous genes in the A and C subgenomes of B.
napus (v 4.1) and B. rapa and B. oleracea [57], respectively, using GenomeHistory 2.0 [77]. We
then used our previously described tool for orthology inference [78] to identify 1:1 orthologs
between those subgenomes and the respective Brassica genome. Using POInT, our tool for
identifying orthologous genes produced by polyploidy, we filtered these sets of orthologs to
those where a paralogous pair in B. napus could be directly linked to a pair of high (>95%)
confidence orthologous genes from B. rapa and B. oleracea [79]. The result was 4858 paralo-
gous B. napus genes with expression measurements for the paralogs from both the B. rapa and
B. oleracea subgenomes. As expected from the arguments above, these subgenomes show a
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statistically significant expression bias toward the B. oleracea subgenome for both European
and South Asian winter rape seed (EWR and SAWR, respectively, P<0.003, randomization
test).

For each of these genes, we calculated the local GC content extending 1000bp upstream and
downstream of the annotated gene coordinates, as well as using BLASTN [80] and a tRNA
database [81] to find the distance from each gene to its closest tRNA. We selected the 200 (4%)
paralogous pairs most biased toward the B. rapa subgenome and the 200 most biased toward
the B. oleracea subgenome and compared their average GC content to the average of all genes
using a randomization test. Results are generally similar for using the top 100 and 500 most
biased genes, but with 2 out of 8 comparisons being non-significant in each case (P>0.05).

We also examined the potential role of gene-to-gene distances in driving expression pat-
terns across the B. napus subgenomes. For each subgenome, we compared the distance to the
nearest gene with the relative expression difference between that pair of genes (difference in
RPKM over mean RPKM for the pair). For the B. rapa subgenome, there is a weakly significant
association between these two factors (more distant genes are less similar in expression, Pear-
son’s r = 0.058, P = 0.032 and r = 0.059, P = 0.028, for EWR and SAWR, respectively). (The val-
ues for the Spearman correlation are rho = 0.043, P = 0.11 and rho = 0.045, P = 0.09 for EWR
and SAWR, respectively). However, this association is weaker and non-significant for the B.
oleracea subgenome (Pearson’s r = 0.002, P = 0.94, r = 0.007, P = 0.79 for EWR and SAWR,
respectively; Spearman’s rho = -0.029, P = 0.29, rho = -0.028, P = 0.31 for EWR and SAWR,
respectively). When we compare these real associations to those seen when the subgenome
identities are randomized, the difference in these associations between the two subgenomes is
significantly larger than would be expected by chance for the Spearman’s rho (P = 0.03 and
0.029 for EWR and SAWR, respectively), though not for Pearson’s r (P = 0.068 and 0.088 for
EWR and SAWR, respectively).

Supporting information

S1 Table. The supplemental table gives genome sizes and citations for the data shown in
Fig 5.
(PDF)
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