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Robust Learning and Control of Time-Delay
Nonlinear Systems With Deep Recurrent
Koopman Operators

Minghao Han?, Zhaojian Li

Abstraci—In this work, we consider the problem of Koop-
man modeling and data-driven predictive control for a class
of uncertain nonlinear systems subject to time delays. A ro-
bust deep learning-based approach—-deep recurrent Koop-
man operator is proposed. Without requiring the knowl-
edge of system uncertainties or information on the time
delays, the proposed deep recurrent Koopman operator
method is able to learn the dynamics of the nonlinear
systems autonomously. A robust predictive control frame-
work is established based on the deep Koopman operator.
Conditions on the stability of the closed-loop system are
presented. The proposed approach is applied to a chemical
process example. The results confirm the superiority of the
proposed framework as compared to baselines.

Index Terms—Deep recurrent koopman operators,
learning-based control, time delays, uncertain nonlinear
systems.

[. INTRODUCTION

OMPLEX industrial processes, such as chemical
C plants [1], oil refineries [2], and power grids [3], need
advanced control strategies to achieve safe, efficient, reliable,
and sustainable operation. One of the most widely used advanced
control techniques is model predictive control (MPC) [4], which
optimizes the future behavior of the system by using a mathe-
matical model and current measurements. The development of
MPC requires a model that can accurately capture the dynamics
and constraints of the system. Typically, a first-principles model
derived from physical laws and empirical correlations is used
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as the basis of MPC designs. However, such models can be
challenging to obtain and validate for complex industrial systems
exhibiting high nonlinearity.

The challenge of obtaining accurate mechanistic models has
driven significant interest in the use of machine learning. In
past decades, the success of machine learning, especially deep
learning, has motivated its applications in system modeling
and control [5]. One line of research has been focused on the
training of artificial neural networks with data to approximate
the dynamics of target systems [6]. The modeling problems
are formulated as supervised learning problems, and neural
networks are trained to infer system dynamical behaviors based
on the states/measurements and control inputs. Then, based on
the learned model, controllers are designed/learned based on
appropriate algorithms. Additionally, research efforts have also
been developed for learning-based model-free control, where
control laws are directly learned out of data, e.g., reinforcement
learning, adaptive dynamic programming, and iterative learning
control [7].

Recently, the Koopman operator theory has attracted much
attention, due to its ability to model and represent the dy-
namics of complex nonlinear systems in a linear form on a
high-dimensional observable space [8]. The transformation of
nonlinearity to linearity is a key enabler for applying linear
control strategies for the analysis and control of nonlinear sys-
tems. Accordingly, practical algorithms for building Koopman
linear models based on process data have been proposed, such as
dynamic mode decomposition (DMD) [9] and extended dynamic
mode decomposition (EDMD) [10]. DMD and EDMD encode
the observables with a set of manually selected functions and
solve least-squares problems to approximate the linear opera-
tor [11]. To automate the design of observable functions, deep
learning was exploited, and the Deep-DMD approaches were
proposed [12], [13]. Following [12], a Koopman autoencoder
framework was proposed for learning Koopman models [14].
However, the conventional Koopman theory was originally de-
veloped for deterministic systems, and most of the existing
Koopman-based methods have not explicitly taken into account
system uncertainties/noise. As initial attempts to incorporate
system uncertainties into Koopman modeling, [15] proposed a
probabilistic Koopman learning framework to model and control
uncertain nonlinear systems with noisy datasets. [16] proposed
a probabilistic Koopman inference and control approach and
applied it to power systems.
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In the meantime, the existing few approaches have not yet
addressed a crucial type of uncertainty commonly encountered
during the operation of complex industrial processes, i.e., time
delays. For instance, the metallurgical industry often involves
processes with long and varying time delays due to the physical
characteristics of the materials and the transportation of molten
metals [17]. In chemical processes, lab analyzers are commonly
used for obtaining concentration measurements, which also
leads to significant time delays [18]. These time delays vary in
nature and are unpredictable. Ignoring these delays can signifi-
cantly deteriorate performance in modeling and control. These
observations have highlighted the necessity of incorporating
delays into learning-based Koopman modeling and control.

In this article, we present a novel learning control framework
for uncertain nonlinear systems with time delays, namely deep
recurrent Koopman operator (DRKO). We train a deep recurrent
neural network to map the original state/measurement trajectory
to a high-dimensional probabilistic distribution and learn a set
of linear operators to predict the system’s future dynamical be-
haviors. The stability of the closed-loop system is guaranteed by
the proposed robust control framework, even in the presence of
modeling errors. DRKO is evaluated on the modeling and control
of a reactor-separator process and shows improved performance
over the baseline.

The contributions of this article are summarized as follows.

1) The Koopman operator is generalized to deal with the
learning and control of uncertain nonlinear systems with
time delays.

2) In conjunction with linear model predictive control, the
proposed pipeline can guarantee the stability of the
closed-loop system in the presence of modeling errors.

3) Compared to the baseline, the proposed method demon-
strates superior modeling and control performance.

[l. PRELIMINARIES

In this section, we provide a brief overview of the funda-
mentals of Koopman operators and describe the time-delayed
uncertain nonlinear system learning problem.

A. Koopman Operator

First, we provide a brief introduction to the Koopman oper-
ator. Koopman operator theory was first proposed in [8], and it
claims that a nonlinear system, e.g.,

Trr = f(zx), k €N ey

can be converted into a linear system on an infinite-dimensional
function space G, which consists of all square-integrable real-
valued functions defined on the compact domain X C R™.In (1),
the xj, € X denotes the state vector at time instant &; f(+) : X —
X denotes the nonlinear function that characterizes the dynamics
of the nonlinear system. The elements of G are called observable
functions and are denoted by g. The Koopman operator /C : G —
g satisfies the following equality:

go f(xr) = Kg(zr) (2
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where o denotes function composition. Using the Koopman
operator, the future state can be predicted as follows.

Thp1 =g (Kg(ar)). 3)

From a practical perspective, it is typically only possible to
adopt a finite-dimensional function space G C G, spanned by
a set of linearly independent observables {g|g : R" — R"},
and the corresponding Koopman operator K will also be finite-
dimensional. The dimensionality / of this finite observable space
is typically specified by the designer/user. Although the Koop-
man operator was originally proposed for autonomous nonlinear
systems, this concept has been extended to actuated/controlled
systems in recent years [19]. For nonlinear controlled systems

i1 = f(Tr, uk) 4

where u; € U C R™ denotes the input vector, the Koopman
operator satisfies the following condition:

9z © f(or, up) = Agz(zr) + Bgu(xk, uk) )

where A € R"" and B € R"*" are submatrices of the Koop-
man operator. g, : R” — R" and g,, : R"*™ — R” are observ-
ables of the state and inputs, respectively. As shown in (5), for
controlled systems, the future state observables g, (1) are not
only dependent on g, (z), but are also dependent on the input
observables g, (2, ug).

B. Problem Formulation

In this article, we focus on developing an efficient learning
and control approach for uncertain nonlinear systems with time
delays, of which the dynamics are described as follows:

Tyt = [(Thoryih, Uk—7:k) T €k (6)

where f is an unknown nonlinear function of the past states
Th—7,:k and inputs uy_- ., up to unknown time delays 7,, and
Tu, Tespectively. € € R™ denotes the stochastic noise and it is
subject to unknown distribution p..

The first step of our approach is to learn the dynamics of
(6) and build a high-fidelity dynamic model in the absence of
any prior knowledge of dynamics, uncertainty and time delay,
utilizing a collected data set D that contains M trajectories with
T steps of state-action pairs each, D := {[zy, uk](i):T}i:l;M. In
the next section, we will describe how to achieve this by using
the proposed Koopman model and deep learning techniques.

In the second step of the proposed approach, the learning-
based model is exploited to develop a predictive control scheme
that can provide guaranteed closed-loop stability for nonlinear
system (6). The definition of stability for the system (6) in
nominal state is given as follows [20]:

Definition 1: System (6) is said to be mean-square sta-
ble (MSS) if there exists a positive constant b such that
limy_,o0 Ez, |z%|| = O holds for any initial state distribution
p(zo) that Ey ||zl < 0. If bis arbitrarily large, then the system
is globally MSS.
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Overview of the DRKO model pipeline. The mean and variance vectors encoded by probabilistic neural networks are used to construct the

distribution of observables. The distribution is then propagated forward by the Koopman operators to predict the future distribution of observables.
Finally, the observables are mapped back to the original state space with the observation matrix.

In the presence of noise, we seek to guarantee the boundedness
of system (6) according to the following definition:

Definition 2 ([21]): System (6) is said to be uniformly ul-
timately bounded, if for positive constants b and d, there ex-
ists an instant T'(b,d), such that Yk > T'(b,d),E,, |lzk] < d
holds for any initial state distribution p(z) that E,, ||zo|| < . d
is called the uniform ultimate bound of the system. If this holds
for an arbitrarily large b, then the system is globally uniformly
ultimately bounded.

Remark 1: System (6) may also be viewed as a system
with state order 7, and input order 7,,. Meanwhile, the control
problem we are considering in this work is also a time-delay
systems control problem, in the sense that the control input
can be determined based on the delayed state measurements,
ensuring the stability of the closed-loop control system.

[Il. DEEP RECURRENT KOOPMAN OPERATORS

In this section, we elaborate on the architecture of the pro-
posed DRKO modeling approach and elucidate how DRKO
learns the dynamics of (6).

A. Model

The DRKO model consists of two building blocks: 1) a
probabilistic recurrent neural network (RNN) that encodes the
distribution of observables; and 2) the Koopman operator. An
overview of our pipeline involving established Koopman oper-
ators is shown in Fig. 1.

1) Probabilistic RNN: To deal with both system uncertain-
ties and unknown time delays of system (6), we present two
techniques that can be leveraged to construct the observable
functions, including the recurrent neural network and prob-
abilistic encoding. Due to the existence of time delays, the
state/measurement of the current time step is dependent not
only on the last state and action input, but also on its historical
state-input trajectories. The RNN [22] is well known for the
learning and modeling of temporal sequences, and is exploited
to discover the inherent dependency in the system dynamic.
However, ordinary RNNs can suffer from vanishing gradients
when the gradient of prediction error is calculated with respect to
historical data backward in time, causing the loss of information

hy [ i
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| |
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|
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Fig. 2. Overview of the structure of the probabilistic RNN. The LSTM
cells sequentially take in a trajectory dy_; := [z}, u;]j—0.x—1 as input,
and updates its hidden state hj, and cell state c. Atinstant k, the hidden
state hjy and state x; are mapped to mean vector u; and variance
vector o, through a neural network.

from past data [23]. To address the potential issue of vanishing
gradients in ordinary RNNs, we adopt the long-short-term mem-
ory (LSTM), which has been proven to be effective in modeling
long-term dependencies [24], as the basic units of the RNN in the
proposed DRKO architecture. LSTM can handle sequences with
arbitrary lengths, thus it can facilitate the modeling of systems
with unknown time delays. As shown in Fig. 2, the LSTM
cell sequentially takes in a trajectory dx—; := [&}, Uj]j=0:k—1
as input, and updates its hidden state hj, € R! and cell state
cr € R, where the dimension [ is a hyperparameter and is equal
to the number of LSTM cells. The hidden state at time instant &,
hy is dependent on state x| and input uy_;, and is indirectly
dependent on the previous steps due to its dependency on cg_.
The flow of information from past data is controlled by three
trainable gates within the LSTM cell.

Meanwhile, we introduce probabilistic encoding of the ob-
servables to account for the uncertainties/stochasticity caused
by the noise or disturbances. Instead of deploying a deter-
ministic encoding of observables g = g(xx) as discussed
in Section II, we propose to encode the distribution of ob-
servables p(gi|zk,dx—1) where 0p_; denotes the historical
state-input trajectory up to instant k£ — 1. The parameteri-
zation of this conditional distribution p is not unique. In
this work, a parameterized multivariate Gaussian distribution
is used to approximate the true posterior distribution, which
has been widely used in probabilistic inferences [25].
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Specifically, the parameterized distribution is given as
pg(gk|.’£k, (5}6,1) = N(Mg(xk, (5]{,1), Ug(.%‘k7 61@71)), where the
mean vector pg(x,d,—1) and the diagonal covariance vec-
tor og(xk,dk_1) are encoded using a dense neural network.
Their dependence on the historical trajectory ;. is established
through the hidden state hy. The parameter 6 includes all train-
able parameters in neural networks. The mapping relations in
the model are shown in Fig. 2. In the following, we use u and
oy as shorthand for pg(xy, 0x—1) and o9 (2, 01 ), respectively.

Remark 2: In DRKO, a certain form of parameterized dis-
tribution needs to be employed to approximate the unknown
distribution of the observables. In this work, we choose to use the
Gaussian distribution. The reasons are mainly threefold amnd
are as follows.

1) Gaussian distribution is one of the most commonly used
parameterized distributions in machine learning-related
research.

2) By using Gaussian distribution, a closed-form expres-
sion for linear transformation can be obtained, which
streamlines the development and analysis of the proposed
method.

3) By leveraging Gaussian distribution to approximate the
distribution of the observables and subsequently learning
a Koopman operator, more robust models can be obtained
and enhanced predictability can be achieved.

Remark 3: In DRKO, the LSTM model is introduced to
encode the current and previous states and inputs into a compact
latent state vector hy, which is crucial for the prediction of
future states of time-delay systems. As compared to the existing
approaches, our pipeline can accurately learn the dynamical
behaviors of the system (6) and appropriately control the system,
without requiring any prior knowledge of the dynamic param-
eters, noise statistics/characteristics, nonlinearity types, or time
delays of the underlying nonlinear system.

2) Koopman Operators: The encoded distribution is then
propagated forward by using the Koopman operators A and B
as

Jk+1 = Agr, + Buy, (7a)
I = Coy (7b)
Gk ~ Do (k| Tk, Op—1)- (Tc)

A decoder is also needed to reconstruct and predict future
states. To preserve the convexity of the resulting predictive
control problem, an observation matrix C' is introduced as
a decoder to map the observable g to the predicted state Z.
For controlled systems, it might be possible to construct an
exact decoupled linear representation in the form of (7a), yet
there is no theoretical guarantee. While we cannot ensure that
the exact decoupled representation can be established for any
controlled nonlinear systems, from a practical perspective, it
is still feasible to find an optimal decoupled approximation in
a finite-dimensional space with the utilization of LSTM and
dense neural networks, despite the inevitable modeling error. In
Section IV, the modeling residual term 7 caused by using an
approximated Koopman model and its effect on the closed-loop
system has been taken into account. Accordingly, the effect of
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the model error on the performance of the resulting closed-loop
control system is investigated through theoretical analysis and
the stability of the closed-loop system is proved in the next
section.

By utilizing the Koopman operators, the closed-form distribu-
tion of future observables g and predicted states 2 can be derived
as the following closed-form:

po(gr+1) = N(Apy + Buy, AA(ox) AT) ®)

where A(oy) := Diag{oy} denotes the diagonal matrix con-
structed with o, being diagonal elements. Likewise, the dis-
tribution of £ can also be derived

po(Zrt1) =N (C (Apy, + Buy), CAA (oy,) ATCT) . (9)

This way, the best guess/prediction of the future state given by
the model is E 2,1 = C(Aur + Buyg). As shown in (8), the
Koopman operators A and B are used to propagate both the
mean vector and the covariance matrix.

B. Optimization

In this subsection, we elaborate on the implementation details
of the model training process.

Given a dataset D, the goal of DRKO learning is to find a
set of parameters 0, A, B, C that minimize the multistep-ahead
prediction error characterized by

‘C(ea Av Bv C) = Lre + Liincar (10a)
H
Lie =Ep Z ]Eg||xk+j - Cgk+j|k||% (10b)
=0
H
Liinear = Ep Z]Eg||9k+j\k+j — grsjiklla  (10c)
3=0
Iktj+1lk = AGryjik + Bugj (10d)
Irtjlkts ~ Po(9|Tht s Oktj—1) (10e)
jelo1,.... H (10f)

where H denotes the prediction horizon. gy ;) denotes the
predicted observable at instant k + j given the information
available at time instant k (xj and Jx_;) and the subsequent
controlinputs uy. ;. The reconstruction loss L. encourages the
model to find the optimal parameters to minimize the prediction
error of the states, while the linear evolution 10ss Lyjne,r regulates
the model to learn a proper observable space. By minimizing the
multistep prediction error in (10a), the model is encouraged to
capture crucial dependencies in the long-term behavior of the
system [15].

Instead of maximizing the posterior log-likelihood function,
we perform reparameterization to calculate the loss function
and solve the optimization problem in (10), which has been
proven to be capable of improving the stability of the training
process [15]. The reparameterization injects a Gaussian noise
vector ¢; ~ N(0, I) to approximate the expectation of the ob-
servables. Consequently, the optimization problem is formulated
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as follows:
07131713;170 Lre + Llinear (1 la)
H N
St Lee =Ep > > langs — Copy i3 (11b)
=0 i=0

H N
Liinear = Ep Z Z 120 (x5 Okrj—1) = Gy a3

=0 i=0

(11¢)

Giritik = AGhyjip + Buky (11d)
Ghpe = Ho(Tk, Ok1) + €09 (2, 61) (11e)
e ~N(0,I),i€(l,...,N]. (11f)

In (11f), each noise vector ¢; is sampled from the unit nor-
mal distribution N(0, 1), and each can be transformed into
a seed observable at k as in (11e). Each seed observable is
then propagated forward in (11d) to predict future observables
and states, which generates a seed trajectory. The expectation
of prediction error can be estimated by calculating the mean
prediction errors on all the seed trajectories. The estimated value
converges to the true value as [V goes to infinity. In practice, the
generation and propagation of random noise ¢€; can be achieved
by using built-in functions in the Tensorflow Probability [26]
package.

Furthermore, we introduce an entropy constraint on the dis-
tribution of observables in (11) to improve the robustness of the
learned DRKO model. Since DRKO is a probabilistic model,
the entropy/uncertainty of its predictions naturally decreases
as the training process progresses and the prediction accuracy
increases. However, if the dataset used for training does not
sufficiently cover the state-input space, then the model may
become overly confident in its predictions. To address this issue,
we impose a constraint on the average of the entropy of the
encoding such that it is greater than a minimum threshold H,
ie., Ep —logpg(gk|xk,dk—1) > H. Then, a Lagrange mul-
tiplier is introduced to convert the constrained optimiza-
tion problem into an unconstrained one. During train-
ing, the Lagrange multiplier value is updated by gradient
descent.

Remark 4: The DRKO aims to address a general class of
uncertain nonlinear systems with time delays as shown in (6).
Meanwhile, when the proposed method is applied to larger-scale
systems with a larger number of state variables, the training
process can be more challenging. Under such circumstances,
more samples may be needed and more efficient techniques
may be adopted to effectively learn a good robust Koopman
model.

IV. DRKO-BASED PREDICTIVE CONTROL

In this section, a predictive control scheme with a
performance guarantee is proposed based on the learned
DRKO.

4679

A. Controller Design

First, in the DRKO model, the expectation of the observables
isrepresented by the vector yi3, := Egy, g In the nominal setting,
the dynamics of /i, can be described by the Koopman operators
as follows:

(12a)
(12b)

fik1 = Aflg, + Bey,
E) = Cfiy

where ¢ € U denotes the nominal control input and i € R”
denotes the nominal mean vector. The initial mean vector
fi1 = pg(z1,dp) is encoded by the probabilistic neural network.
For this nominal system, the linear model predictive controller
formulates and solves the following optimization problem:

H-1
V' (i) = min Z (IC 1% + llewrslR) + Nl akrr I
- (13a)
s.t. g1 = Afiktj + Begy, (13b)
sy €U (130)

where (), R, and P are the positive definite weighting matrices,
and || - ||, denotes the weighted Euclidean norm with W being
a positive definite matrix.

To ensure the stability of the nominal system, the terminal
weighting matrix needs to be properly designed. Specifically, P
is required to satisfy the following condition [4]:

A iwld = lillp < —IClIG — 1K ikl R (14)

where K is a state feedback controller that stabilizes the nominal
system, i.e., the eigenvalues of the closed-loop transition matrix
Ay := A+ BK are all located in the unit circle. In this work,
we find P and K by solving the discrete Riccati equation

P=0"QC + A"PA—- A"PB(R+ B"PB) 'BTPA
(152)

K= —(R+ B"PB) 'BTPA. (15b)

In the presence of noise/disturbances, the dynamic of the
actual system (6) may deviate from the predictions provided by
the nominal system (12), even if the learned model is globally
optimal. In such cases, the dynamics of the observables can be
characterized by the following equation:

ter1 = po(f(@r, Uk, 6p—1) + €k, Op—1) (16)

and the dynamics of the actual mean vector can be described by
the following stochastic Koopman model:

P41 = Apg + Buy + v(eg) (7

where v(er) :=po(f(Tr, uk, Op—1)~+ €rs Ou—1) — o (f(Tk, Uk,
0k-1),0x-1) denotes effect of the unknown noise ¢ on the
dynamics of mean vector.

To compensate for the error caused by the noise/disturbances,
we exploit the state-feedback controller to drive the actual sys-
tem state trajectory towards the nominal system. At each time
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instant, the actual control output is computed as follows:

U = C}; + K(ug(xk,ék,l) — ﬂk) (18)

The dynamic of the error system between the actual and nominal
systems, denoted by ey, := pur — fix, iS given as

= Agey, + v(eg). (19)

CL+1

In what follows, the error dynamics in (19) are analyzed to ensure
the closed-loop performance of (6).

B. Stability With Optimal Learning

In this subsection, we conduct closed-loop performance anal-
ysis under the case scenario when the global optimal parameters
are learned, i.e., the optimal Koopman operators A*, B*, C* and
probabilistic NN’s parameter 6* are available. To conduct the
theoretical analysis, the following assumptions are needed.

Assumption 1: The probabilistic NN pg is Lipschitz contin-
uous, ie. [|uo(z, ) — po(z +y,0)|| < Lyl vy € RMm+.

Assumption 2: The energy of the system noise is bounded,
i.e., there exists a finite constant ¢ such that E||¢|| < (.

Accordingly, we can obtain the following result.

Proposition 1: If Assmuptions 1 and 2 are satisfied, then
system (6) controlled by the Robust MPC controller (13) and

(18) is uniformly ultimately bounded with finite bound Oj”_LC,

Proof: The proof is divided into two parts: 1) the stability of
the nominal system; and 2) the stability of the error system (19).
First, the stability of the nominal system (12) is demonstrated.
Solving the MPC problem (13) at instant k, one obtains the
optimal control sequence

(ki st -+ Chrrr—1it (20)
and the resulting optimal mean vector trajectory
Ui s =+ > P rr— 11> P - @n

By appending the control signal produced by the feedback con-
troller K'fiy, A (20), a suboptimal solution at next sampling
instant k + 1 is given as

* * * A~ %
{Ck\kvck+l|k7 s »Ck+H—1|kaﬂk+H\k} (22)

and

{0 Bt - -+ Bop 1> P it A Bl i b+ (23)

Based on this suboptimal solution, we can prove that the optimal
value function V*(/ix) is a control Lyapunov function that de-
creases along the trajectory. Since (22) and (23) are suboptimal,
one has

H
“(fikt1) Zq Mkﬂ,ckﬂ +p(Mk+H+1)

(24a)
7j=1
H-1
< 4B ks i) T QB s K g b))
j=1
(24b)
P(AKﬂ};+H\k) (240)
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= V*(fu)+ Q(ﬂZJrH\k» KﬂZ+H|k)+ p(AKﬂz—‘,-Hlk‘)
(244d)

Q(ﬂ;;\kac;;|k) - p(ﬂ};w\k) (24e)

where q(fix, ck) = [|Cfuk |G + llcx |7 denotes the stage cost,
and p(jix) = ||fix||% denotes the terminal cost. Note that K is
a stabilizing state feedback controller gain as designed by (15),
thus it follows that

-p <ﬂZ+H\k) <0.
(25)

q (ﬂZ+H\kaKﬂZ+H\k) +p (AK/lZ+H|k)

Therefore, it is obtained that

V*(ﬂk-l,-l) - V*(ﬂt) < —Q(ﬂZ\kaCZ\k)

and the optimal value function V*(+) is a valid Lyapunov func-
tion. Therefore, the expectation of the nominal state Exy, = C'fig
converges to zero as t — oo; i.e., the nominal state is mean-
square stable according to Definition 1.

In the second part of this proof, let us consider the evolution of
the error system in (19) from the initial time instance 1 to k& gov-
erned by ey = Agv(er) + Akv(er_1) + -+ Ak v(ey) +
Ak e;. Since fi; = pg(z1, hy), the initial error e, equals zero.
Then, the [, norm of the error state is bounded as follows:

(26)

lexr1ll = |Axv(er) + Afv(er-1) + - + Afv(e)|| 27a)
< | Arv(en)| + A% v(er-)l + - + | Afv(e)]|
(27b)
< allo(er)|| + @[lo(ex-1)]| + - + aF[lo(e)]-
(27¢)

Taking the expectation over the random noise €, and consid-
ering the fact that the random noise signal is independently
distributed at different time instances, it follows that

Ellertill < oBe, [lv(er)ll + o’ Ee, o(es-1)] + ... (28a)
+ oFE, |lv(e)]- (28b)

If Assumption 1 and 2 hold, we can further infer that
Ellers1]| < aLE, |lex| + &*LE,,  |lex_1]l +...  (29a)
+ " LE |l (29b)
<aLl+a’L{+ - +a"L¢ (29¢)
_ lazal)I¢ l’f‘ka)LC. (29d)
As k — oo, the expectation of the error state norm is
bounded by % Since Exy = EC(fiy + eg), it can be

obtained that limy_, E|jzg|| < limgoo ||Clinl] + E||Cer|| =
Oi”L ¢ which concludes the proof of the uniform ultimate bound-
edness of system (6). |

C. Stability in the Presence of Modeling Error

We further investigate the closed-loop stability of (6) gov-
erned by the controller in (18), under the case scenario when
the modeling error is present. Proposition 1 in Section IV-B
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considers an ideal case scenario when ground-truth DRKO
model parameters A, B, C, and 6 are accessible. In practice,
however, the optimal parameters are impossible to obtain/verify,
and only suboptimal parameters fl, B, C, and 6 are available. In
this case, the evolution of the mean vector (17) can be expressed
as

st = Apg + Buy, + v(e) + i (30)

Exj, = Cpy + dy, (31)
where 7, := (A — A)uy, + (B — B)uy, denotes the dynamic
residual; dj, == (C' — C’)pk denotes the observation residual.
In addition, there also exists an encoding-induced deviation
at each time step, oy := (2, Op—1) — pj(Tr, Ox—1). Before
proceeding, we make the following assumption.

Assumption 3: There exist positive constants ~y,n,w € RT,
such that ||| <, ||d|| < nand |Jo|| < w,Ve € Xandu € U.

Proposition 2: If Assumptions 1-3 hold, the nonlinear system
in (6) controlled by the controller (13) and (18) is uniformly
ultimately bounded by ““UHLEEY) ) ‘yhere 1 .= ||C[| and
A= ||BK].

Proof: As the nominal system remains the same as in Propo-
sition 1, the proof for the mean-square stability of the nominal
system can be completed following the proof of Proposition 1.
In the following, we prove the uniform ultimate boundedness
for the error system in (30).

In the presence of the approximation residuals, the dynamics
of the error system ey, := uj — fi are given as follows:

€kt1 = AKek — BKOk =+ v(ek) —+ 7L (32)

where Ay := A+ BK represents the nominal closed-loop
transition matrix. Considering the evaluation of the error dy-
namics from the initial time instant 1 to instant k, one has

€k41

= A];(el - (AKEKOk: + A%(BKqu +o 1+ A];(EKm)

Sk A BEo,
(33a)
+ Ager + Afcer1 + -+ Ay (33b)
SF Akes
+ Agv(er) + Akv(ep 1) + -+ Akv(e) . (33c)

SF Afcvles)
At the initial time instant k£ = 1, the error state e; =
po(x1,00) — pg(1, o). Then the I norm of the error is given
by

llers ]l (34a)

k k k
= A’;(GI — ZAJKBKOJ + ZA;(TJ' + ZA;(U(EJ')
j=1 j=1 j=1
(34b)

4681

< e + 32 (ko | + s + | vten)
. (34c¢)
k

<o ledll + > o (llosll + llrsll + llo(ey)) -
j=1

(34d)

Taking the expectation over the random noise ¢ and utilize
Assumptions 1-3, it follows that:

k
Ellexs1]l < ofw+ > of (hw + v+ LQ) (35a)
j=1
—af(aww+ L
I i) Uk 7% s DR S

| e
In the original state space, the error between the actual and the
nominal system is

ay, — &k = Oy, — Cliyy = Cug — fx) +dy,  (36)
which is bounded as
ok — 2kl < v ekl +n. 37
As k approaches infinity, we can derive from (37) that
. . va(iw + L{+
lim ||z, — & < ( ¢+9) +n (38)
k—o0 11—«
which concludes the proof. |

Remark 5: Assumption 3 requires that the one-step observ-
able encoding, prediction, and reconstruction errors are bounded
on the state-action space. This is practical because the learned
models are typically near-optimal, and the associated one-step-
ahead prediction errors are insignificant, which will be shown
in the next section.

Remark 6: The entropy constraint introduced in Section III
serves the purpose of mitigating the occurrence of overfitting
in the deep recurrent Koopman model. This technique does not
cause violations of assumptions or conditions in the controller
design. Therefore, the use of this technique will not compromise
the closed-loop stability.

V. APPLICATION TO A CHEMICAL PROCESS

In this section, we will evaluate the proposed approach on a
three-vessel chemical process.

A. Process and Control Problem Description

This chemical process comprises two continuously
stirred tank reactors and a flash tank separator. A detailed
description and modeling of the process can be found
in [27]. The process is designed to convert a reactant A
into a product B with a side product C, described by two
reactions A — B and B — C. The state vector of the process
xr = [XAl,XBl,T1,XAz,XBz,TQ,XA3,XB3,T3]T contains
nine variables, including the mass fractions of A and B
which are denoted by X,4; and Xp;, and the temperatures
T;, 1,2,3 in the three vessels. The process was numerically
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simulated using a standard Euler integration method, and
bounded process noise was added to the process to simulate
process disturbances and noise. The control system manipulates
the external heat inputs (Q);»3 to three vessels to steer the
process from the initial state to a steady-state set-point x5 =
[0.18,0.67,480.3K,0.19,0.65,472.8 K, 0.06,0.67,474.9 K|T.
The initial state z; uniformly distributes in the region of
[0.8z4, 1.2x]. The heating inputs are subject to constraint
[0,0,0]T x 10°kJ/h < u < [4.87,1.68,4.87]T x 10°kJ/h.
Note that the set-point z corresponds to steady-state input
us = [3.25,1.12,3.25]T x 10°kJ /h, though the control system
is not aware of this information.

The process noise € is generated from the multivariate normal
distribution A/(0, 1074I), and is clipped to the range of [-5, 5]
in each dimension. The sampling time period is A = 0.005 h.
From an application perspective, the mass fractions X 4; and
Xp, are typically measured by using lab analyzers, and we
consider that the use of lab analyzers introduces time delays
in the measurements by 0.025 h. That is, at each new sampling
instant k, the controller optimizes for control action u based on
the measurements of X 4; and Xp; at sampling instant k — 5,
instantaneous measure measurements of 7; and the historical
trajectory.

A dataset comprising 103 samples of state-input pairs is
generated by simulating the chemical process with a randomly
generated input profile. In particular, after every 20 sampling
periods, a constant vector u. is uniformly sampled from the
action space and the input signal is produced as u = u. + €,
where €, is sampled from the multivariate normal distribution
N(0,10 *u2) at every instant, with u2 (with a slight abuse of
notation) denoting the element-wise multiplication of ug. To
facilitate the learning process, we adjust the states and actions
by shifting and scaling them using their mean and standard
deviation vectors. These normalized data samples take values
around zero with a standard deviation of 1. To facilitate the
learning algorithms, the states and actions are both shifted
and scaled with their mean and standard deviation vectors,
so that the data fed into the algorithms is normalized around
zero with a standard deviation of 1. The dataset is randomly
shuffled and divided into two parts, the training set and the
validation set according to a 9:1 ratio. In addition, a test set
comprising 10* samples is collected for training evaluation. In
DRKO-based predictive control scheme, we set weighting ma-
trices as @ = A([1.5,0.5,0.5,1.5,0.5,0.5,1.5,0.5,0.5]) and
R = A([0.1,0.1,0.1]). The prediction horizon H is 40 and the
control horizon is 10.

We also compare the performance of DRKO with a
competitive baseline, the deep stochastic Koopman operator
(DeSKO) method [15]. Hyperparameters of DRKO are shown in
Table 1. The neural network structure, the learning rate, and
other hyperparameters are determined through trial and error.
Both DRKO and DeSKO adopt the default random parameter
initialization setting in Tensorflow [26], and no random seed
specification is conducted. Therefore, in comparison to DeSKO,
the proposed method does not reap the advantages of parameter
randomization.

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 20, NO. 3, MARCH 2024

TABLE |
HYPERPARAMETERS OF DRKO

Hyperparameters \ Value
Size of data set D 10°
Batch Size 256
Learning rate 1073
Prediction horzion H 30
Structure of pg(-) (128,128)
Structure of oy (+) (128,128)
Number of LSTM cells 8
History horizon 8
Activation function ELU
Dimension of observables 20
Entropy threshold H —20

l2 norm regularization coefficient 0.1

. VMWMx .

—— DeSKO
—— DRKO

—— DeSKO
—— DRKO

Validation loss
=
S
Test loss
=
51

50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400
04

Fig. 3. Cumulative prediction error on the validation set and the test
set. The Y-axis indicates the cumulative mean-squared prediction error
in log space over 16 instants, and the X-axis indicates the training
epochs. The shaded region shows the confidence interval (one standard
deviation) over five random initializations.

B. Modeling Performance

First, we evaluate the modeling performance of DRKO in this
subsection. For both DRKO and DeSKO, five models are trained
with random parameter initialization. Each model is trained for
400 epochs, in each epoch the algorithm takes a batch of 256
data points from the dataset and updates the parameter until
the dataset has been completely traversed. The [, norm of the
prediction loss on the validation and test datasets in each epoch
is presented in Fig. 3.

As shown in Fig. 3, both algorithms converge as training
proceeds. Meanwhile, DRKO exhibits significantly higher ac-
curacy as compared to DeSKO, with its prediction error being
two orders of magnitude smaller. This improvement in per-
formance can be attributed to its capability of incorporating
historical data trajectories into the observables. Furthermore,
DRKO provides a lower variance across different training trails,
as indicated by the narrower shaded area, especially during the
converging phase. In addition, the proposed method is more
resilient against variation in the initial parameters as compared to
DeSKO.

C. Control Performance

Next, we evaluate the control performance based on the
two methods. For both DRKO and DeSKO, the most accurate
models are selected for controller design. For each controller,
10 evaluation trials are conducted with random initial state x
as described in Section V-A. Each control design solves an opti-
mization problem to find the steady-state input 4, which is used
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Fig. 4.

State trajectories and reference signals in each dimension. The Y-axis indicates the state trajectories and the X-axis indicates the time in

hours. The shaded region shows the confidence interval (one standard deviation) over 5 evaluation trials.
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Fig. 5. Trajectory of the tracking error. The Y-axis indicates the I, norm
of the tracking error; the X-axis indicates the time in hours. The shaded
region shows the confidence interval (one standard deviation) over 5
evaluation trials.

by the corresponding predictive controller. The solution found
by DRKO is i, = [3.01, 1.05,2.78]" x 10 kJ /h. The mean state
trajectories and their standard deviations for the nine process
states are presented in Fig. 4. Despite the presence of modeling
error and the associated deviation of 4 from the group-truth u,
the proposed DeSKO is able to provide good and robust control
performance.

As shown in Fig. 4, starting from a randomly initialized state,
DRKO is able to steer the states towards the reference with
a short transition period and track the reference accurately. In
comparison, DeSKO fails to track the set-point. The [, norms
of the tracking errors for the two methods are shown in Fig. 5,
which further confirm a significant improvement in the control
performance of the proposed method as compared to the DeSKO
baseline.

From Fig. 4, the trajectories of X4, and X 45, as well as
Xp1 and Xp, have similar trends. One primary factor that
contributes to the similarity in each pair of state trajectories

is the use of similar initial conditions for the two states in each
pair.

VI. CONCLUSION

In this article, we proposed an efficient learning-based
modeling and control framework for a general class of uncertain
nonlinear systems with unknown delays. By exploiting LSTM
networks and Koopman operators, a DRKO learning framework
is proposed. Based on the learned Koopman linear model, a
robust MPC controller is designed to stabilize the original sys-
tem. Based on mild assumptions, the proposed learning-based
predictive control method was proven to be able to provide
guaranteed closed-loop stability for the considered nonlinear
system. Through the application to a simulated chemical pro-
cess, DRKO showed superior performance as compared to the
SOTA baseline in terms of both modeling and control. Based
on this work, there remain potential problems to be explored in
the future: 1) In this work, an encoded multivariate Gaussian
distribution was exploited to parameterize the distribution of
observables; meanwhile, alternative distribution forms may be
more advantageous for systems with colored noise; 2) in this
work, control input constraints were incorporated, while the
treatment of state constraints has been left for future study.
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