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Robust Learning and Control of Time-Delay
Nonlinear Systems With Deep Recurrent

Koopman Operators
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Abstract—In this work, we consider the problem of Koop-
man modeling and data-driven predictive control for a class
of uncertain nonlinear systems subject to time delays. A ro-
bust deep learning-based approach–deep recurrent Koop-
man operator is proposed. Without requiring the knowl-
edge of system uncertainties or information on the time
delays, the proposed deep recurrent Koopman operator
method is able to learn the dynamics of the nonlinear
systems autonomously. A robust predictive control frame-
work is established based on the deep Koopman operator.
Conditions on the stability of the closed-loop system are
presented. The proposed approach is applied to a chemical
process example. The results confirm the superiority of the
proposed framework as compared to baselines.

Index Terms—Deep recurrent koopman operators,
learning-based control, time delays, uncertain nonlinear
systems.

I. INTRODUCTION

C
OMPLEX industrial processes, such as chemical

plants [1], oil refineries [2], and power grids [3], need

advanced control strategies to achieve safe, efficient, reliable,

and sustainable operation. One of the most widely used advanced

control techniques is model predictive control (MPC) [4], which

optimizes the future behavior of the system by using a mathe-

matical model and current measurements. The development of

MPC requires a model that can accurately capture the dynamics

and constraints of the system. Typically, a first-principles model

derived from physical laws and empirical correlations is used
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as the basis of MPC designs. However, such models can be

challenging to obtain and validate for complex industrial systems

exhibiting high nonlinearity.

The challenge of obtaining accurate mechanistic models has

driven significant interest in the use of machine learning. In

past decades, the success of machine learning, especially deep

learning, has motivated its applications in system modeling

and control [5]. One line of research has been focused on the

training of artificial neural networks with data to approximate

the dynamics of target systems [6]. The modeling problems

are formulated as supervised learning problems, and neural

networks are trained to infer system dynamical behaviors based

on the states/measurements and control inputs. Then, based on

the learned model, controllers are designed/learned based on

appropriate algorithms. Additionally, research efforts have also

been developed for learning-based model-free control, where

control laws are directly learned out of data, e.g., reinforcement

learning, adaptive dynamic programming, and iterative learning

control [7].

Recently, the Koopman operator theory has attracted much

attention, due to its ability to model and represent the dy-

namics of complex nonlinear systems in a linear form on a

high-dimensional observable space [8]. The transformation of

nonlinearity to linearity is a key enabler for applying linear

control strategies for the analysis and control of nonlinear sys-

tems. Accordingly, practical algorithms for building Koopman

linear models based on process data have been proposed, such as

dynamic mode decomposition (DMD) [9] and extended dynamic

mode decomposition (EDMD) [10]. DMD and EDMD encode

the observables with a set of manually selected functions and

solve least-squares problems to approximate the linear opera-

tor [11]. To automate the design of observable functions, deep

learning was exploited, and the Deep-DMD approaches were

proposed [12], [13]. Following [12], a Koopman autoencoder

framework was proposed for learning Koopman models [14].

However, the conventional Koopman theory was originally de-

veloped for deterministic systems, and most of the existing

Koopman-based methods have not explicitly taken into account

system uncertainties/noise. As initial attempts to incorporate

system uncertainties into Koopman modeling, [15] proposed a

probabilistic Koopman learning framework to model and control

uncertain nonlinear systems with noisy datasets. [16] proposed

a probabilistic Koopman inference and control approach and

applied it to power systems.
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In the meantime, the existing few approaches have not yet

addressed a crucial type of uncertainty commonly encountered

during the operation of complex industrial processes, i.e., time

delays. For instance, the metallurgical industry often involves

processes with long and varying time delays due to the physical

characteristics of the materials and the transportation of molten

metals [17]. In chemical processes, lab analyzers are commonly

used for obtaining concentration measurements, which also

leads to significant time delays [18]. These time delays vary in

nature and are unpredictable. Ignoring these delays can signifi-

cantly deteriorate performance in modeling and control. These

observations have highlighted the necessity of incorporating

delays into learning-based Koopman modeling and control.

In this article, we present a novel learning control framework

for uncertain nonlinear systems with time delays, namely deep

recurrent Koopman operator (DRKO). We train a deep recurrent

neural network to map the original state/measurement trajectory

to a high-dimensional probabilistic distribution and learn a set

of linear operators to predict the system’s future dynamical be-

haviors. The stability of the closed-loop system is guaranteed by

the proposed robust control framework, even in the presence of

modeling errors. DRKO is evaluated on the modeling and control

of a reactor-separator process and shows improved performance

over the baseline.

The contributions of this article are summarized as follows.

1) The Koopman operator is generalized to deal with the

learning and control of uncertain nonlinear systems with

time delays.

2) In conjunction with linear model predictive control, the

proposed pipeline can guarantee the stability of the

closed-loop system in the presence of modeling errors.

3) Compared to the baseline, the proposed method demon-

strates superior modeling and control performance.

II. PRELIMINARIES

In this section, we provide a brief overview of the funda-

mentals of Koopman operators and describe the time-delayed

uncertain nonlinear system learning problem.

A. Koopman Operator

First, we provide a brief introduction to the Koopman oper-

ator. Koopman operator theory was first proposed in [8], and it

claims that a nonlinear system, e.g.,

xk+1 = f(xk), k ∈ N (1)

can be converted into a linear system on an infinite-dimensional

function space G, which consists of all square-integrable real-

valued functions defined on the compact domainX ⊂ R
n. In (1),

the xk ∈ X denotes the state vector at time instant k; f(·) : X →
X denotes the nonlinear function that characterizes the dynamics

of the nonlinear system. The elements ofG are called observable

functions and are denoted by g. The Koopman operatorK : G →
G satisfies the following equality:

g ◦ f(xk) = Kg(xk) (2)

where ◦ denotes function composition. Using the Koopman

operator, the future state can be predicted as follows.

xk+1 = g−1(Kg(xk)). (3)

From a practical perspective, it is typically only possible to

adopt a finite-dimensional function space G ⊂ G, spanned by

a set of linearly independent observables {g|g : Rn → R
h},

and the corresponding Koopman operator K will also be finite-

dimensional. The dimensionalityhof this finite observable space

is typically specified by the designer/user. Although the Koop-

man operator was originally proposed for autonomous nonlinear

systems, this concept has been extended to actuated/controlled

systems in recent years [19]. For nonlinear controlled systems

xk+1 = f(xk, uk) (4)

where uk ∈ U ⊂ R
m denotes the input vector, the Koopman

operator satisfies the following condition:

gx ◦ f(xk, uk) = Agx(xk) +Bgu(xk, uk) (5)

where A ∈ R
h×h and B ∈ R

h×r are submatrices of the Koop-

man operator. gx : Rn → R
h and gu : Rn+m → R

r are observ-

ables of the state and inputs, respectively. As shown in (5), for

controlled systems, the future state observables gx(xk+1) are not

only dependent on gx(xk), but are also dependent on the input

observables gu(xk, uk).

B. Problem Formulation

In this article, we focus on developing an efficient learning

and control approach for uncertain nonlinear systems with time

delays, of which the dynamics are described as follows:

xk+1 = f(xk−τx:k, uk−τu:k) + εk (6)

where f is an unknown nonlinear function of the past states

xk−τx:k and inputs uk−τu:k up to unknown time delays τx and

τu, respectively. ε ∈ R
n denotes the stochastic noise and it is

subject to unknown distribution pε.
The first step of our approach is to learn the dynamics of

(6) and build a high-fidelity dynamic model in the absence of

any prior knowledge of dynamics, uncertainty and time delay,

utilizing a collected data set D that contains M trajectories with

T steps of state-action pairs each, D := {[xk, uk]
i
0:T }i=1:M . In

the next section, we will describe how to achieve this by using

the proposed Koopman model and deep learning techniques.

In the second step of the proposed approach, the learning-

based model is exploited to develop a predictive control scheme

that can provide guaranteed closed-loop stability for nonlinear

system (6). The definition of stability for the system (6) in

nominal state is given as follows [20]:

Definition 1: System (6) is said to be mean-square sta-

ble (MSS) if there exists a positive constant b such that

limk→∞ Exk
‖xk‖ = 0 holds for any initial state distribution

p(x0) that Ex0
‖x0‖ ≤ b. If b is arbitrarily large, then the system

is globally MSS.
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Fig. 1. Overview of the DRKO model pipeline. The mean and variance vectors encoded by probabilistic neural networks are used to construct the
distribution of observables. The distribution is then propagated forward by the Koopman operators to predict the future distribution of observables.
Finally, the observables are mapped back to the original state space with the observation matrix.

In the presence of noise, we seek to guarantee the boundedness

of system (6) according to the following definition:

Definition 2 ([21]): System (6) is said to be uniformly ul-

timately bounded, if for positive constants b and d, there ex-

ists an instant T (b, d), such that ∀k ≥ T (b, d),Exk
‖xk‖ < d

holds for any initial state distribution p(x0) that Ex0
‖x0‖ ≤ b. d

is called the uniform ultimate bound of the system. If this holds

for an arbitrarily large b, then the system is globally uniformly

ultimately bounded.

Remark 1: System (6) may also be viewed as a system

with state order τx and input order τu. Meanwhile, the control

problem we are considering in this work is also a time-delay

systems control problem, in the sense that the control input

can be determined based on the delayed state measurements,

ensuring the stability of the closed-loop control system.

III. DEEP RECURRENT KOOPMAN OPERATORS

In this section, we elaborate on the architecture of the pro-

posed DRKO modeling approach and elucidate how DRKO

learns the dynamics of (6).

A. Model

The DRKO model consists of two building blocks: 1) a

probabilistic recurrent neural network (RNN) that encodes the

distribution of observables; and 2) the Koopman operator. An

overview of our pipeline involving established Koopman oper-

ators is shown in Fig. 1.

1) Probabilistic RNN: To deal with both system uncertain-

ties and unknown time delays of system (6), we present two

techniques that can be leveraged to construct the observable

functions, including the recurrent neural network and prob-

abilistic encoding. Due to the existence of time delays, the

state/measurement of the current time step is dependent not

only on the last state and action input, but also on its historical

state-input trajectories. The RNN [22] is well known for the

learning and modeling of temporal sequences, and is exploited

to discover the inherent dependency in the system dynamic.

However, ordinary RNNs can suffer from vanishing gradients

when the gradient of prediction error is calculated with respect to

historical data backward in time, causing the loss of information

Fig. 2. Overview of the structure of the probabilistic RNN. The LSTM
cells sequentially take in a trajectory δk−1 := [xj , uj ]j=0:k−1 as input,
and updates its hidden state hk and cell state ck. At instant k, the hidden
state hk and state xk are mapped to mean vector µk and variance
vector σk through a neural network.

from past data [23]. To address the potential issue of vanishing

gradients in ordinary RNNs, we adopt the long-short-term mem-

ory (LSTM), which has been proven to be effective in modeling

long-term dependencies [24], as the basic units of the RNN in the

proposed DRKO architecture. LSTM can handle sequences with

arbitrary lengths, thus it can facilitate the modeling of systems

with unknown time delays. As shown in Fig. 2, the LSTM

cell sequentially takes in a trajectory δk−1 := [xj , uj ]j=0:k−1

as input, and updates its hidden state hk ∈ R
l and cell state

ck ∈ R
l, where the dimension l is a hyperparameter and is equal

to the number of LSTM cells. The hidden state at time instant k,

hk is dependent on state xk−1 and input uk−1, and is indirectly

dependent on the previous steps due to its dependency on ck−1.

The flow of information from past data is controlled by three

trainable gates within the LSTM cell.

Meanwhile, we introduce probabilistic encoding of the ob-

servables to account for the uncertainties/stochasticity caused

by the noise or disturbances. Instead of deploying a deter-

ministic encoding of observables gk = g(xk) as discussed

in Section II, we propose to encode the distribution of ob-

servables p(gk|xk, δk−1) where δk−1 denotes the historical

state-input trajectory up to instant k − 1. The parameteri-

zation of this conditional distribution p is not unique. In

this work, a parameterized multivariate Gaussian distribution

is used to approximate the true posterior distribution, which

has been widely used in probabilistic inferences [25].
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Specifically, the parameterized distribution is given as

pθ(gk|xk, δk−1) = N (µθ(xk, δk−1), σθ(xk, δk−1)), where the

mean vector µθ(xk, δk−1) and the diagonal covariance vec-

tor σθ(xk, δk−1) are encoded using a dense neural network.

Their dependence on the historical trajectory δk−1 is established

through the hidden state hk. The parameter θ includes all train-

able parameters in neural networks. The mapping relations in

the model are shown in Fig. 2. In the following, we use µk and

σk as shorthand forµθ(xk, δk−1) and σθ(xk, δk−1), respectively.

Remark 2: In DRKO, a certain form of parameterized dis-

tribution needs to be employed to approximate the unknown

distribution of the observables. In this work, we choose to use the

Gaussian distribution. The reasons are mainly threefold amnd

are as follows.

1) Gaussian distribution is one of the most commonly used

parameterized distributions in machine learning-related

research.

2) By using Gaussian distribution, a closed-form expres-

sion for linear transformation can be obtained, which

streamlines the development and analysis of the proposed

method.

3) By leveraging Gaussian distribution to approximate the

distribution of the observables and subsequently learning

a Koopman operator, more robust models can be obtained

and enhanced predictability can be achieved.

Remark 3: In DRKO, the LSTM model is introduced to

encode the current and previous states and inputs into a compact

latent state vector hk, which is crucial for the prediction of

future states of time-delay systems. As compared to the existing

approaches, our pipeline can accurately learn the dynamical

behaviors of the system (6) and appropriately control the system,

without requiring any prior knowledge of the dynamic param-

eters, noise statistics/characteristics, nonlinearity types, or time

delays of the underlying nonlinear system.

2) Koopman Operators: The encoded distribution is then

propagated forward by using the Koopman operators A and B
as

gk+1 = Agk +Buk (7a)

x̂k = Cgk (7b)

gk ∼ pθ(gk|xk, δk−1). (7c)

A decoder is also needed to reconstruct and predict future

states. To preserve the convexity of the resulting predictive

control problem, an observation matrix C is introduced as

a decoder to map the observable g to the predicted state x̂.

For controlled systems, it might be possible to construct an

exact decoupled linear representation in the form of (7a), yet

there is no theoretical guarantee. While we cannot ensure that

the exact decoupled representation can be established for any

controlled nonlinear systems, from a practical perspective, it

is still feasible to find an optimal decoupled approximation in

a finite-dimensional space with the utilization of LSTM and

dense neural networks, despite the inevitable modeling error. In

Section IV, the modeling residual term rk caused by using an

approximated Koopman model and its effect on the closed-loop

system has been taken into account. Accordingly, the effect of

the model error on the performance of the resulting closed-loop

control system is investigated through theoretical analysis and

the stability of the closed-loop system is proved in the next

section.

By utilizing the Koopman operators, the closed-form distribu-

tion of future observables g and predicted states x̂ can be derived

as the following closed-form:

pθ(gk+1) = N (Aµk +Buk, AΛ(σk)A
T) (8)

where Λ(σk) := Diag{σk} denotes the diagonal matrix con-

structed with σk being diagonal elements. Likewise, the dis-

tribution of x̂k+1 can also be derived

pθ(x̂k+1) = N
(
C (Aµk +Buk) , CAΛ (σk)A

TCT
)
. (9)

This way, the best guess/prediction of the future state given by

the model is Epx̂k+1 = C(Aµk +Buk). As shown in (8), the

Koopman operators A and B are used to propagate both the

mean vector and the covariance matrix.

B. Optimization

In this subsection, we elaborate on the implementation details

of the model training process.

Given a dataset D, the goal of DRKO learning is to find a

set of parameters θ,A,B,C that minimize the multistep-ahead

prediction error characterized by

L(θ,A,B,C) = Lre + Llinear (10a)

Lre = ED

H∑

j=0

Eg‖xk+j − Cgk+j|k‖
2
2 (10b)

Llinear = ED

H∑

j=0

Eg‖gk+j|k+j − gk+j|k‖
2
2 (10c)

gk+j+1|k = Agk+j|k +Buk+j (10d)

gk+j|k+j ∼ pθ(g|xk+j , δk+j−1) (10e)

j ∈ [0, 1, . . . , H] (10f)

where H denotes the prediction horizon. gk+j|k denotes the

predicted observable at instant k + j given the information

available at time instant k (xk and δk−1) and the subsequent

control inputsuk:k+j . The reconstruction lossLre encourages the

model to find the optimal parameters to minimize the prediction

error of the states, while the linear evolution lossLlinear regulates

the model to learn a proper observable space. By minimizing the

multistep prediction error in (10a), the model is encouraged to

capture crucial dependencies in the long-term behavior of the

system [15].

Instead of maximizing the posterior log-likelihood function,

we perform reparameterization to calculate the loss function

and solve the optimization problem in (10), which has been

proven to be capable of improving the stability of the training

process [15]. The reparameterization injects a Gaussian noise

vector εi ∼ N (0, I) to approximate the expectation of the ob-

servables. Consequently, the optimization problem is formulated
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as follows:

min
θ,A,B,C

Lre + Llinear (11a)

s.t. Lre = ED

H∑

j=0

N∑

i=0

‖xk+j − Cgik+j|k‖
2
2 (11b)

Llinear = ED

H∑

j=0

N∑

i=0

‖µθ(xk+j , δk+j−1)− gik+j|k‖
2
2

(11c)

gik+j+1|k = Agik+j|k +Buk+j (11d)

gik|k = µθ(xk, δk−1) + εiσθ(xk, δk−1) (11e)

εi ∼ N (0, I), i ∈ [1, . . . , N ] . (11f)

In (11f), each noise vector εi is sampled from the unit nor-

mal distribution N (0, I), and each can be transformed into

a seed observable at k as in (11e). Each seed observable is

then propagated forward in (11d) to predict future observables

and states, which generates a seed trajectory. The expectation

of prediction error can be estimated by calculating the mean

prediction errors on all the seed trajectories. The estimated value

converges to the true value as N goes to infinity. In practice, the

generation and propagation of random noise εi can be achieved

by using built-in functions in the Tensorflow Probability [26]

package.

Furthermore, we introduce an entropy constraint on the dis-

tribution of observables in (11) to improve the robustness of the

learned DRKO model. Since DRKO is a probabilistic model,

the entropy/uncertainty of its predictions naturally decreases

as the training process progresses and the prediction accuracy

increases. However, if the dataset used for training does not

sufficiently cover the state-input space, then the model may

become overly confident in its predictions. To address this issue,

we impose a constraint on the average of the entropy of the

encoding such that it is greater than a minimum threshold H,

i.e., ED − log pθ(gk|xk, δk−1) ≥ H. Then, a Lagrange mul-

tiplier is introduced to convert the constrained optimiza-

tion problem into an unconstrained one. During train-

ing, the Lagrange multiplier value is updated by gradient

descent.

Remark 4: The DRKO aims to address a general class of

uncertain nonlinear systems with time delays as shown in (6).

Meanwhile, when the proposed method is applied to larger-scale

systems with a larger number of state variables, the training

process can be more challenging. Under such circumstances,

more samples may be needed and more efficient techniques

may be adopted to effectively learn a good robust Koopman

model.

IV. DRKO-BASED PREDICTIVE CONTROL

In this section, a predictive control scheme with a

performance guarantee is proposed based on the learned

DRKO.

A. Controller Design

First, in the DRKO model, the expectation of the observables

is represented by the vectorµk := Egkgk. In the nominal setting,

the dynamics of µ̂k can be described by the Koopman operators

as follows:

µ̂k+1 = Aµ̂k +Bck (12a)

Ex̂k = Cµ̂k (12b)

where c ∈ U denotes the nominal control input and µ̂ ∈ R
h

denotes the nominal mean vector. The initial mean vector

µ̂1 = µθ(x1, δ0) is encoded by the probabilistic neural network.

For this nominal system, the linear model predictive controller

formulates and solves the following optimization problem:

V ∗(µ̂k) = min
c0:H−1

H−1∑

j=0

(
‖Cµ̂k+j‖

2
Q + ‖ck+j‖

2
R

)
+ ‖µ̂k+H‖2

P

(13a)

s.t. µ̂k+j+1 = Aµ̂k+j +Bck+j , (13b)

ck+j ∈ U (13c)

where Q, R, and P are the positive definite weighting matrices,

and ‖ · ‖2
W denotes the weighted Euclidean norm with W being

a positive definite matrix.

To ensure the stability of the nominal system, the terminal

weighting matrix needs to be properly designed. Specifically, P
is required to satisfy the following condition [4]:

‖AK µ̂k‖
2
P − ‖µ̂k‖

2
P ≤ −‖Cµ̂k‖

2
Q − ‖Kµ̂k‖

2
R (14)

whereK is a state feedback controller that stabilizes the nominal

system, i.e., the eigenvalues of the closed-loop transition matrix

AK := A+BK are all located in the unit circle. In this work,

we find P and K by solving the discrete Riccati equation

P = CTQC +ATPA−ATPB(R+BTPB)−1BTPA
(15a)

K = − (R+BTPB)−1BTPA. (15b)

In the presence of noise/disturbances, the dynamic of the

actual system (6) may deviate from the predictions provided by

the nominal system (12), even if the learned model is globally

optimal. In such cases, the dynamics of the observables can be

characterized by the following equation:

µk+1 = µθ(f(xk, uk, δk−1) + εk, δk−1) (16)

and the dynamics of the actual mean vector can be described by

the following stochastic Koopman model:

µk+1 = Aµk +Buk + v(εk) (17)

where v(εk) :=µθ(f(xk, uk, δk−1)+ εk, δk−1)−µθ(f(xk, uk,
δk−1), δk−1) denotes effect of the unknown noise εk on the

dynamics of mean vector.

To compensate for the error caused by the noise/disturbances,

we exploit the state-feedback controller to drive the actual sys-

tem state trajectory towards the nominal system. At each time
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instant, the actual control output is computed as follows:

uk = c∗k +K(µθ(xk, δk−1)− µ̂k). (18)

The dynamic of the error system between the actual and nominal

systems, denoted by ek := µk − µ̂k, is given as

ek+1 = AKek + v(εk). (19)

In what follows, the error dynamics in (19) are analyzed to ensure

the closed-loop performance of (6).

B. Stability With Optimal Learning

In this subsection, we conduct closed-loop performance anal-

ysis under the case scenario when the global optimal parameters

are learned, i.e., the optimal Koopman operators A∗, B∗, C∗ and

probabilistic NN’s parameter θ∗ are available. To conduct the

theoretical analysis, the following assumptions are needed.

Assumption 1: The probabilistic NN µθ is Lipschitz contin-

uous, i.e. ‖µθ(x, δ)− µθ(x+ y, δ)‖ ≤ L‖y‖, ∀y ∈ Rn+m+l.

Assumption 2: The energy of the system noise is bounded,

i.e., there exists a finite constant ζ such that E‖ε‖ ≤ ζ.

Accordingly, we can obtain the following result.

Proposition 1: If Assmuptions 1 and 2 are satisfied, then

system (6) controlled by the Robust MPC controller (13) and

(18) is uniformly ultimately bounded with finite bound ανLζ
1−α

,

where α = ‖AK‖, and and ν := ‖C‖.

Proof: The proof is divided into two parts: 1) the stability of

the nominal system; and 2) the stability of the error system (19).

First, the stability of the nominal system (12) is demonstrated.

Solving the MPC problem (13) at instant k, one obtains the

optimal control sequence

{c∗k|k, c
∗
k+1|k, . . . , c

∗
k+H−1|k} (20)

and the resulting optimal mean vector trajectory

{µ̂∗
k|k, µ̂

∗
k+1|k, . . . , µ̂

∗
k+H−1|k, µ̂

∗
k+H|k}. (21)

By appending the control signal produced by the feedback con-

troller Kµ̂∗
k+H|k to (20), a suboptimal solution at next sampling

instant k + 1 is given as

{c∗k|k, c
∗
k+1|k, . . . , c

∗
k+H−1|k,Kµ̂∗

k+H|k} (22)

and

{µ̂∗
k|k, µ̂

∗
k+1|k, . . . , µ̂

∗
k+H−1|k, µ̂

∗
k+H|k, AK µ̂∗

k+H|k}. (23)

Based on this suboptimal solution, we can prove that the optimal

value function V ∗(µ̂k) is a control Lyapunov function that de-

creases along the trajectory. Since (22) and (23) are suboptimal,

one has

V ∗(µ̂k+1) =
H∑

j=1

q
(
µ̂∗
k+j , c

∗
k+j

)
+ p(µ̂∗

k+H+1) (24a)

≤
H−1∑

j=1

q(µ̂∗
k+j|k, c

∗
k+j|k) + q(µ̂∗

k+H|k,Kµ̂∗
k+H|k)

(24b)

+ p(AK µ̂∗
k+H|k) (24c)

= V ∗(µ̂k)+ q(µ̂∗
k+H|k,Kµ̂∗

k+H|k)+ p(AK µ̂∗
k+H|k)

(24d)

− q(µ̂∗
k|k, c

∗
k|k)− p(µ̂∗

k+H|k) (24e)

where q(µ̂k, ck) = ‖Cµ̂k‖2
Q + ‖ck‖2

R denotes the stage cost,

and p(µ̂k) = ‖µ̂k‖
2
P denotes the terminal cost. Note that K is

a stabilizing state feedback controller gain as designed by (15),

thus it follows that

q
(

µ̂∗
k+H|k,Kµ̂∗

k+H|k

)

+ p
(

AK µ̂∗
k+H|k

)

− p
(

µ̂∗
k+H|k

)

≤ 0.

(25)

Therefore, it is obtained that

V ∗(µ̂k+1)− V ∗(µ̂t) ≤ −q(µ̂∗
k|k, c

∗
k|k) (26)

and the optimal value function V ∗(·) is a valid Lyapunov func-

tion. Therefore, the expectation of the nominal stateEx̂k = Cµ̂k

converges to zero as t → ∞; i.e., the nominal state is mean-

square stable according to Definition 1.

In the second part of this proof, let us consider the evolution of

the error system in (19) from the initial time instance 1 to k gov-

erned by ek+1 = AKv(εk) +A2
Kv(εk−1) + · · ·+Ak

Kv(ε1) +
Ak

Ke1. Since µ̂1 = µθ(x1, h1), the initial error e1 equals zero.

Then, the l2 norm of the error state is bounded as follows:

‖ek+1‖ = ‖AKv(εk) +A2
Kv(εk−1) + · · ·+Ak

Kv(ε1)‖ (27a)

≤ ‖AKv(εk)‖+ ‖A2
Kv(εk−1)‖+ · · ·+ ‖Ak

Kv(ε1)‖
(27b)

≤ α‖v(εk)‖+ α2‖v(εk−1)‖+ · · ·+ αk‖v(ε1)‖.
(27c)

Taking the expectation over the random noise εk, and consid-

ering the fact that the random noise signal is independently

distributed at different time instances, it follows that

E‖ek+1‖ ≤ αEεk‖v(εk)‖+ α2
Eεk−1

‖v(εk−1)‖+ . . . (28a)

+ αk
Eε1

‖v(ε1)‖. (28b)

If Assumption 1 and 2 hold, we can further infer that

E‖ek+1‖ ≤ αLEεk‖εk‖+ α2LEεk−1
‖εk−1‖+ . . . (29a)

+ αkLEε1
‖ε1‖ (29b)

≤ αLζ + α2Lζ + · · ·+ αkLζ (29c)

=
(α− αk)Lζ

1 − α
. (29d)

As k → ∞, the expectation of the error state norm is

bounded by αLζ
1−α

. Since Exk = EC(µ̂k + ek), it can be

obtained that limk→∞ E‖xk‖ ≤ limk→∞ ‖Cµ̂k‖+ E‖Cek‖ =
ανLζ
1−α

which concludes the proof of the uniform ultimate bound-

edness of system (6). �

C. Stability in the Presence of Modeling Error

We further investigate the closed-loop stability of (6) gov-

erned by the controller in (18), under the case scenario when

the modeling error is present. Proposition 1 in Section IV-B
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considers an ideal case scenario when ground-truth DRKO

model parameters A, B, C, and θ are accessible. In practice,

however, the optimal parameters are impossible to obtain/verify,

and only suboptimal parameters Â, B̂, Ĉ, and θ̂ are available. In

this case, the evolution of the mean vector (17) can be expressed

as

µk+1 = Âµk + B̂uk + v(εk) + rk (30)

Exk = Ĉµk + dk (31)

where rk := (A− Â)µk + (B − B̂)uk denotes the dynamic

residual; dk := (C − Ĉ)µk denotes the observation residual.

In addition, there also exists an encoding-induced deviation

at each time step, ok := µθ(xk, δk−1)− µ
θ̂
(xk, δk−1). Before

proceeding, we make the following assumption.

Assumption 3: There exist positive constants γ, η, ω ∈ R
+,

such that ‖ε‖ ≤ γ, ‖d‖ ≤ η and ‖o‖ ≤ ω, ∀x ∈ X and u ∈ U.

Proposition 2: If Assumptions 1–3 hold, the nonlinear system

in (6) controlled by the controller (13) and (18) is uniformly

ultimately bounded by
να(λω+Lζ+γ)

1−α
+ η, where ν := ‖Ĉ‖ and

λ := ‖B̂K‖.

Proof: As the nominal system remains the same as in Propo-

sition 1, the proof for the mean-square stability of the nominal

system can be completed following the proof of Proposition 1.

In the following, we prove the uniform ultimate boundedness

for the error system in (30).

In the presence of the approximation residuals, the dynamics

of the error system ek := µk − µ̂k are given as follows:

ek+1 = ÂKek − B̂Kok + v(εk) + rk (32)

where ÂK := Â+ B̂K represents the nominal closed-loop

transition matrix. Considering the evaluation of the error dy-

namics from the initial time instant 1 to instant k, one has

ek+1

= Âk
Ke1 −

(

ÂKB̂Kok + Â2
KB̂Kok−1 + · · ·+ Âk

KB̂Ko1

)

︸ ︷︷ ︸
∑k

1 Â
j

K
B̂Koj

(33a)

+ ÂKεk + Â2
Kεk−1 + · · ·+ Âk

Kε1
︸ ︷︷ ︸

∑k
1 Â

j

K
εj

(33b)

+ ÂKv(εk) + Â2
Kv(εk−1) + · · ·+ Âk

Kv(ε1)
︸ ︷︷ ︸

∑k
1 Â

j

K
v(εj)

. (33c)

At the initial time instant k = 1, the error state e1 =
µθ(x1, δ0)− µ

θ̂
(x1, δ0). Then the l2 norm of the error is given

by

‖ek+1‖ (34a)

=

∥
∥
∥
∥
∥
∥

Âk
Ke1 −

k∑

j=1

Âj
KB̂Koj +

k∑

j=1

Âj
Krj +

k∑

j=1

Âj
Kv(εj)

∥
∥
∥
∥
∥
∥

(34b)

≤
∥
∥
∥Âk

Ke1

∥
∥
∥+

k∑

j=1

(∥
∥
∥Â

j
KB̂Koj

∥
∥
∥+

∥
∥
∥Â

j
Krj

∥
∥
∥+

∥
∥
∥Â

j
Kv(εj)

∥
∥
∥

)

(34c)

≤ αk ‖e1‖+
k∑

j=1

αj (λ ‖oj‖+ ‖rj‖+ ‖v(εj)‖) . (34d)

Taking the expectation over the random noise ε and utilize

Assumptions 1–3, it follows that:

E‖ek+1‖ ≤ αkω +

k∑

j=1

αj (λω + γ + Lζ) (35a)

= αkω +
(α− αk)(λω + Lζ + γ)

1 − α
. (35b)

In the original state space, the error between the actual and the

nominal system is

xk − x̂k = Cµk − Ĉµ̂k = Ĉ(µk − µ̂k) + dk (36)

which is bounded as

‖xk − x̂k‖ ≤ ν ‖ek‖+ η. (37)

As k approaches infinity, we can derive from (37) that

lim
k→∞

‖xk − x̂k‖ ≤
να(λω + Lζ + γ)

1 − α
+ η (38)

which concludes the proof. �

Remark 5: Assumption 3 requires that the one-step observ-

able encoding, prediction, and reconstruction errors are bounded

on the state-action space. This is practical because the learned

models are typically near-optimal, and the associated one-step-

ahead prediction errors are insignificant, which will be shown

in the next section.

Remark 6: The entropy constraint introduced in Section III

serves the purpose of mitigating the occurrence of overfitting

in the deep recurrent Koopman model. This technique does not

cause violations of assumptions or conditions in the controller

design. Therefore, the use of this technique will not compromise

the closed-loop stability.

V. APPLICATION TO A CHEMICAL PROCESS

In this section, we will evaluate the proposed approach on a

three-vessel chemical process.

A. Process and Control Problem Description

This chemical process comprises two continuously

stirred tank reactors and a flash tank separator. A detailed

description and modeling of the process can be found

in [27]. The process is designed to convert a reactant A
into a product B with a side product C, described by two

reactions A → B and B → C. The state vector of the process

x := [XA1, XB1, T1, XA2, XB2, T2, XA3, XB3, T3]
T contains

nine variables, including the mass fractions of A and B
which are denoted by XAi and XBi, and the temperatures

Ti, 1,2,3 in the three vessels. The process was numerically
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simulated using a standard Euler integration method, and

bounded process noise was added to the process to simulate

process disturbances and noise. The control system manipulates

the external heat inputs Q1,2,3 to three vessels to steer the

process from the initial state to a steady-state set-point xs =
[0.18, 0.67, 480.3 K, 0.19, 0.65, 472.8 K, 0.06, 0.67, 474.9 K]T.

The initial state x1 uniformly distributes in the region of

[0.8xs, 1.2xs]. The heating inputs are subject to constraint

[0, 0, 0]T × 106 kJ/h ≤ u ≤ [4.87, 1.68, 4.87]T × 106 kJ/h.

Note that the set-point xs corresponds to steady-state input

us = [3.25, 1.12, 3.25]T × 106 kJ/h, though the control system

is not aware of this information.

The process noise ε is generated from the multivariate normal

distribution N (0, 10−4I), and is clipped to the range of [−5, 5]
in each dimension. The sampling time period is ∆ = 0.005 h.

From an application perspective, the mass fractions XAi and

XBi are typically measured by using lab analyzers, and we

consider that the use of lab analyzers introduces time delays

in the measurements by 0.025 h. That is, at each new sampling

instant k, the controller optimizes for control action uk based on

the measurements of XAi and XBi at sampling instant k − 5,

instantaneous measure measurements of Ti and the historical

trajectory.

A dataset comprising 105 samples of state-input pairs is

generated by simulating the chemical process with a randomly

generated input profile. In particular, after every 20 sampling

periods, a constant vector uc is uniformly sampled from the

action space and the input signal is produced as u = uc + εu,

where εu is sampled from the multivariate normal distribution

N (0, 10−4u2
s) at every instant, with u2

s (with a slight abuse of

notation) denoting the element-wise multiplication of us. To

facilitate the learning process, we adjust the states and actions

by shifting and scaling them using their mean and standard

deviation vectors. These normalized data samples take values

around zero with a standard deviation of 1. To facilitate the

learning algorithms, the states and actions are both shifted

and scaled with their mean and standard deviation vectors,

so that the data fed into the algorithms is normalized around

zero with a standard deviation of 1. The dataset is randomly

shuffled and divided into two parts, the training set and the

validation set according to a 9 :1 ratio. In addition, a test set

comprising 104 samples is collected for training evaluation. In

DRKO-based predictive control scheme, we set weighting ma-

trices as Q = Λ([1.5, 0.5, 0.5, 1.5, 0.5, 0.5, 1.5, 0.5, 0.5]) and

R = Λ([0.1, 0.1, 0.1]). The prediction horizon H is 40 and the

control horizon is 10.

We also compare the performance of DRKO with a

competitive baseline, the deep stochastic Koopman operator

(DeSKO) method [15]. Hyperparameters of DRKO are shown in

Table I. The neural network structure, the learning rate, and

other hyperparameters are determined through trial and error.

Both DRKO and DeSKO adopt the default random parameter

initialization setting in Tensorflow [26], and no random seed

specification is conducted. Therefore, in comparison to DeSKO,

the proposed method does not reap the advantages of parameter

randomization.

TABLE I
HYPERPARAMETERS OF DRKO

Fig. 3. Cumulative prediction error on the validation set and the test
set. The Y-axis indicates the cumulative mean-squared prediction error
in log space over 16 instants, and the X-axis indicates the training
epochs. The shaded region shows the confidence interval (one standard
deviation) over five random initializations.

B. Modeling Performance

First, we evaluate the modeling performance of DRKO in this

subsection. For both DRKO and DeSKO, five models are trained

with random parameter initialization. Each model is trained for

400 epochs, in each epoch the algorithm takes a batch of 256

data points from the dataset and updates the parameter until

the dataset has been completely traversed. The l2 norm of the

prediction loss on the validation and test datasets in each epoch

is presented in Fig. 3.

As shown in Fig. 3, both algorithms converge as training

proceeds. Meanwhile, DRKO exhibits significantly higher ac-

curacy as compared to DeSKO, with its prediction error being

two orders of magnitude smaller. This improvement in per-

formance can be attributed to its capability of incorporating

historical data trajectories into the observables. Furthermore,

DRKO provides a lower variance across different training trails,

as indicated by the narrower shaded area, especially during the

converging phase. In addition, the proposed method is more

resilient against variation in the initial parameters as compared to

DeSKO.

C. Control Performance

Next, we evaluate the control performance based on the

two methods. For both DRKO and DeSKO, the most accurate

models are selected for controller design. For each controller,

10 evaluation trials are conducted with random initial state x1

as described in Section V-A. Each control design solves an opti-

mization problem to find the steady-state input ûs, which is used
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Fig. 4. State trajectories and reference signals in each dimension. The Y-axis indicates the state trajectories and the X-axis indicates the time in
hours. The shaded region shows the confidence interval (one standard deviation) over 5 evaluation trials.

Fig. 5. Trajectory of the tracking error. The Y-axis indicates the l2 norm
of the tracking error; the X-axis indicates the time in hours. The shaded
region shows the confidence interval (one standard deviation) over 5
evaluation trials.

by the corresponding predictive controller. The solution found

by DRKO is ûs=[3.01, 1.05, 2.78]T×106 kJ/h. The mean state

trajectories and their standard deviations for the nine process

states are presented in Fig. 4. Despite the presence of modeling

error and the associated deviation of ûs from the group-truth us,

the proposed DeSKO is able to provide good and robust control

performance.

As shown in Fig. 4, starting from a randomly initialized state,

DRKO is able to steer the states towards the reference with

a short transition period and track the reference accurately. In

comparison, DeSKO fails to track the set-point. The l2 norms

of the tracking errors for the two methods are shown in Fig. 5,

which further confirm a significant improvement in the control

performance of the proposed method as compared to the DeSKO

baseline.

From Fig. 4, the trajectories of XA1 and XA2, as well as

XB1 and XB2 have similar trends. One primary factor that

contributes to the similarity in each pair of state trajectories

is the use of similar initial conditions for the two states in each

pair.

VI. CONCLUSION

In this article, we proposed an efficient learning-based

modeling and control framework for a general class of uncertain

nonlinear systems with unknown delays. By exploiting LSTM

networks and Koopman operators, a DRKO learning framework

is proposed. Based on the learned Koopman linear model, a

robust MPC controller is designed to stabilize the original sys-

tem. Based on mild assumptions, the proposed learning-based

predictive control method was proven to be able to provide

guaranteed closed-loop stability for the considered nonlinear

system. Through the application to a simulated chemical pro-

cess, DRKO showed superior performance as compared to the

SOTA baseline in terms of both modeling and control. Based

on this work, there remain potential problems to be explored in

the future: 1) In this work, an encoded multivariate Gaussian

distribution was exploited to parameterize the distribution of

observables; meanwhile, alternative distribution forms may be

more advantageous for systems with colored noise; 2) in this

work, control input constraints were incorporated, while the

treatment of state constraints has been left for future study.
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