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Abstract

We estimate the absolute age of the globular cluster NGC 3201 using 10,000 sets of theoretical isochrones
constructed through Monte Carlo simulation using the Dartmouth Stellar Evolution Program. These isochrones
take into consideration the uncertainty introduced by the choice of stellar evolution parameters. We fit isochrones
with three detached eclipsing binaries and obtained an age independent of distance. We also fit isochrones with
differential reddening corrected Hubble Space Telescope photometry data utilizing two different Hess diagram-
based fitting methods. Results from three different methods analyzing two different types of data agree to within
1σ, and we find the absolute age of NGC 3201 = 11.85± 0.74 Gyr. We also perform a variable importance
analysis to study the uncertainty contribution from individual parameters, and we find the distance is the dominant
source of uncertainty in photometry-based analysis, while total metallicity, helium abundance, α-element
abundance, mixing length, and treatment of helium diffusion are an important source of uncertainties for all three
methods.

Unified Astronomy Thesaurus concepts: Stellar evolution (1599); Globular star clusters (656); Stellar astronomy
(1583); Eclipsing binary stars (444)

1. Introduction

Globular clusters (GCs) are gravitationally bound clusters of

stars. Even though the formation of GCs is still under debate
(Forbes et al. 2018), they host some of the oldest stellar

populations in our Galaxy and can be used to constrain the age of
the Universe (Krauss & Chaboyer 2003). Using JWST data,

Mowla et al. (2022) found proto-GCs formed at z> 9 (∼0.5 Gyr

after the Big Bang), and Adamo et al. (2024) found young
massive star clusters at z∼ 10.2 (∼0.46 Gyr after the Big Bang).

Therefore, most GCs are relics of high-redshift star formation,
and contain a fossil imprint of the earliest phases of galaxy

formation. As a result, they were widely used to probe the
formation and assembly of the galaxy (e.g., Kruijssen et al.

2020). Moreover, the numerous and ancient metal-poor GCs
suggest that they might be important contributors to ionizing

radiation in the reionization era (Boylan-Kolchin 2018).
The milky Way hosts >150 GCs and there has been a

substantial amount of studies using the observational data from
the Hubble Space Telescope (HST; e.g., Sarajedini et al. 2007;

Piotto et al. 2015) and JWST (Ziliotto et al. 2023). To first

order, stars in a GC can be assumed to form at the same time
with the same composition; as a result, theoretical isochrone

age fitting is the most widely used method to determine the age
of GCs (e.g., Dotter et al. 2010; O’Malley et al. 2017; Ying

et al. 2023). Theoretical isochrones can be generated by finding
the common phase of stellar evolution shared by the stellar

evolution model with different masses (Dotter et al. 2008).
NGC 3201 is an ideal target for our study. It is a low galactic

latitude GC, about 4.55± 0.20 kpc from us (Vasiliev &
Baumgardt 2021). It is also a metal-poor GC with metallicity

[Fe/H] =−1.48± 0.02 (Magurno et al. 2018). Studies have
shown that it is likely not to have been formed in situ and was
accreted as part of other galaxies (Belokurov & Kravtsov 2024).
It is a well-studied GC mostly due to its richness in variable
stars (e.g., Layden & Sarajedini 2003; Kaluzny et al. 2016;
Cortés et al. 2023). Recently, Giesers et al. (2018) found a
detached stellar-mass black hole candidate in NGC 3201 using
the radial velocity measurements of stars about unseen
companions. Rodriguez (2023) suggests that the mass function
of the two (or potentially three) black holes in NGC 3201 can
be used to place strong constraints on the cosmological
coupling between black holes and an expanding Universe.
The accuracy of such models relies on the estimated absolute
age of NGC 3201, which is the goal of this study.
Ying et al. (2023) have demonstrated that the absolute age of

GCs can be determined by combining the deep HST Advanced
Camera for Surveys (ACS) data (Sarajedini et al. 2007;
Anderson et al. 2008) and the state-of-the-art Dartmouth Stellar
Evolution Program (DSEP; Dotter et al. 2008) with Monte Carlo
input stellar parameters (without assuming a fixed distance and
reddening) through a number-density-based 2D color–magnitude
diagram (CMD)-fitting method. Ying et al. (2023) performed a
careful analysis of the source of uncertainties in the estimate of
the absolute age of GC M92, and found that the distance is the
dominant source of uncertainty. Fortunately, NGC 3201 also
hosts detached eclipsing binaries (DEBs). Because of its
eclipsing nature, Rozyczka et al. (2022) were able to determine
the radius, mass, and luminosity of those DEBs without any prior
information about the distance. We can model DEBs as single
stars using our stellar evolution models, and compare those
parameters with observational data without any assumptions of
distance.
In this paper, we fit two sets of independent observational

data sets of NGC 3201: HST ACS photometry and three DEBs
with 10,000 sets of theoretical isochrones through Monte Carlo
simulation using the DSEP to measure the absolute age of NGC
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3201. In Section 2, we introduce the observational data;
Section 3 covers the process of isochrone construction;
Section 4 presents the details of our isochrone age-fitting
method utilizing DEBs; Section 5 presents the details of two
isochrone age-fitting methods for utilizing the CMDs with the
Voronoi binning methods focused on the overall change in
number densities and 2D Kolmogorov–Smirnov (KS) method
focused on the largest discrepancy in the morphology;
Section 6 presents our main results and compares the results
from different methods utilizing different observational data.

2. Observational Data

2.1. DEBs

Rozyczka et al. (2022) provide a careful analysis of four sets
of DEBs in NGC 3201, and suggest that one DEB, V142,
seems to evolve along a different path than the remaining three
(likely with a nonstandard history and/or chemical composi-
tion). Therefore, we utilize only three DEBs in our analysis
with their mass, luminosity, and radius shown in Table 1.

2.2. Photometric Data

To estimate the age of NGC 3201, we use calibrated
photometric data for NGC 3201 from the HST ACS GC Survey
treasury program (Sarajedini et al. 2007; Anderson et al. 2008).
The ACS GC Survey included artificial star tests that provide
an estimate of the photometric uncertainties and completeness
as a function of magnitude and cluster position (Anderson et al.
2008). We use a subset of stars around the main sequence turn-
off (MSTO) to fit isochrones whose position is most sensitive
to variations in age, and relatively insensitive to the present-day
mass function (Chaboyer et al. 1996). These stars have
15.45< F606W< 19.45, which is ±2 mag of the point on
the subgiant branch and is 0.05 mag redder than the MSTO.
Additionally, we remove blue straggler stars and outliers by
selecting stars that are within 0.08 mag in F606W of the
median ridgeline in a magnitude–magnitude diagram of F814W
and F606W. With these cuts, our observational sample contains
4686 stars.

NGC 3201 is not a low reddening cluster as the average
reddening for NGC 3201 is E(B− V )= 0.24 (Harris 1996).
Legnardi et al. (2023) studied the effect of differential reddening
on the CMD of GCs and showed that NGC 3201 exhibits a high
differential reddening: σΔF606W= 0.022± 0.002. Differential
reddening introduces a significant broadening effect in CMD,
which can compromise the precision of our number density-
based CMD-fitting method (Ying et al. 2023).

Thus, a differential reddening correction for the photometric
data is performed using the following procedure (inspired by
Milone et al. 2012):

1. Extract the fiducial ridgeline from the CMD using the
fidanka package (Boudreaux & Ying 2023), as shown in
Figure 1(a).

2. A new reference system is defined with the x-axis:
abscissa being parallel to the reddening line. To achieve
that, we rotate the CMD counterclockwise by the angle

q =
-

A

A A
,

F606W

F606W F814W

where AF606W and AF814W are the absorption coefficients
in the F606W and F814W ACS bands. We adopt
E(B− V )= 0.24 (Harris 1996) as the average reddening
and assume a cool star with Tref= 4000 K. Bedin et al.
(2005) provide the absorption coefficient for NGC 3201
as AF606W= 0.588 and AF814W= 0.441. The rotation
angle is θ= 1.249 rad.

3. For each star on the rotated CMD, the 50 stars with the
shortest spatial distance were selected to be the target
stars' neighbors, as shown in Figure 1(b).

4. For each of its neighbors, the difference in abscissa
between it and the rotated fiducial ridgeline (shown in
Figure 1(c)) is calculated. Figure 1(d) shows a significant
bias toward negative values in the difference in abscissa.
This is expected as the differential reddening is highly
correlated with the spatial location of the star. Figure 1(e)
shows the distribution of the difference in abscissa. We
assign the medianD ¢x as the differential reddening of the
target star to avoid the influence of binaries.

5. The abscissa of each target star is subtracted by the
median D ¢x of its neighbors to correct for differential
reddening. The resulting CMD is rotated clockwise by θ
to restore the original coordinate system.

Figure 2 shows the result of differential reddening correction
for NGC 3201. The broadening effect caused by differential
reddening is significantly reduced. We use the differential
reddening corrected CMD for NGC 3201 as the observation
data in this study.
We note that NGC 3201, like other old GCs, hosts multiple

stellar populations Carretta et al. (2009b). Because multiple
stellar populations typically present abundance variations in
light elements such as C, N, O, etc., Milone et al. (2017) used
the HST UV Globular Cluster Survey (Piotto et al. 2015) and
found two populations of NGC 3201. However, VandenBerg
et al. (2022) suggest this phenomenon is hardly observable in
red filters such as the F606W and F814W data used in this
paper, as isochrones look almost identical with enhanced light
elements. More importantly, multiple populations in GCs have
a very insignificant age difference (e.g., Lucertini et al. 2021;
Ziliotto et al. 2023). As a result, these multiple populations will
not be considered in this study.

3. Isochrone Construction

We use the DSEP (Dotter et al. 2008) to generate stellar
models and generally use literature estimates when adopting
uncertainties for each parameter (see Table 2, and the
discussion in Ying et al. 2023). We adopt theoretical or
experimental uncertainties for most of the variables listed in
Table 2. There are, however, some variables with uncertainties

Table 1

DEBs from Rozyczka et al. (2022)

Mass Luminosity Radius

(Me) (Le) (Re)

V138p -
+0.784 5
5

-
+1.40 36
28

-
+0.973 45
45

V138s -
+0.716 3
3

-
+0.61 20
20

-
+0.760 71
50

V139p -
+0.806 7
7

-
+1.96 24
24

-
+1.215 12
5

V139s -
+0.684 3
3

-
+0.40 6
6

-
+0.687 4
4

V141p -
+0.838 8
7

-
+4.22 56
49

-
+2.458 103
55

V141s -
+0.724 5
5

-
+0.57 14
6

-
+0.750 67
21
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that are not easily quantifiable. For example, the mixing length
theory of convection remains the dominant framework for one-
dimensional (1D) convective energy transport used in stellar

structure and evolution calculations (Joyce & Tayar 2023) and
nearly all models use a solar-calibrated mixing length even
though a wide range of studies have shown that it is
inappropriate to adopt the solar-calibrated mixing length
ad hoc in any given stellar model (e.g., Guenther &
Demarque 2000; Joyce & Chaboyer 2018). Unfortunately,
there is no clear relationship between mixing length and other
variables such as mass, metallicity, etc. As a result, Ying et al.
(2023) adopt a wider input range for the mixing length
parameter αMLT to cover the range of empirical calibrated
mixing length parameter αMLT in stellar evolution models and
show the mixing length is one of the major sources of
uncertainty in stellar evolution models and is highly correlated
with models of atmosphere. We adopt the same range of the
mixing length parameter αMLT for this study.
We generate 10,000 sets of input parameters by doing Monte

Carlo simulations on the parameters shown in Table 2 from
their associated probability distribution functions. Each set of
input parameters is used to evolve 13 low-mass stellar models
with mass from 0.2–0.68Me with an increment of 0.04Me,
14 medium-low-mass stellar models with mass from
0.7–1.35Me with an increment of 0.05Me, six medium-
high-mass stellar models with mass from 1.4–1.9Me with an
increment of 0.1Me, and six high-mass stellar models with
mass from 2.0–3.0Me with an increment of 0.2Me. The
lower-mass models use FreeEOS-2.2.1 (Irwin 2012), while the
higher-mass models use an analytical equation of state that

Figure 1. Illustration of the differential reddening correction processes. Top left (a): the fiducial ridgeline for NGC 3201 (in red) generated from the CMD (in gray)
using the fidanka package. Top middle (b): position of NGC 3201 stars in the ACS/WFC field of view (in gray). The selected target star (in blue) and its 50 neighbors
(in orange). Top right (c): NGC 3201 stars on the rotated CMD (in gray) with a rotated fiducial ridgeline (in red), target star (in blue), and its 50 neighbors (in orange).
Bottom left (d):D ¢x or change in abscissa for NGC 3201 stars (in gray), the target star (in blue), and its 50 neighbors (in orange). Bottom right (e): distribution ofD ¢x
for the target star (blue histogram) and the median value (in red).

Figure 2. Comparison of CMDs. Left: CMD after correction for differential
reddening. Right: CMD before correction for differential reddening.

3
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includes the Debyre–Huckel correction (Chaboyer &
Kim 1995). Dotter (2016) describes a robust method to
transform a set of stellar evolution tracks onto a uniform basis
and then interpolate within that basis to construct stellar
isochrones. We adopt this equivalent evolutionary phase
(EEP)-based method to generate 41 theoretical isochrones
from 8–16 Gyr with an increment of 200Myr. Each isochrone
is constructed with a dense grid of 400 EEPs in order to
ensure that the output isochrones have a high density of
points to avoid any interpolation errors when constructing
simulated color–magnitude diagrams (sCMDs). In summary,
we generated 10,000 isochrone sets. Each isochrone set
consists of 41 isochrones of different ages, for a total of
10,000× 41= 410,000 individual isochrones. Those iso-
chrones are used to fit DEBs directly, while the sCMD
generated based on those isochrones is used to fit photo-
metric data.

3.1. Simulated CMD

Each Monte Carlo set of theoretical isochrones is used to
create a set of sCMDs of NGC 3201, which will be used to
compare with the observational CMD of Sarajedini et al.
(2007). An sCMD is constructed by randomly creating 4
million samples with a present-day mass function =−1.22
(Ebrahimi et al. 2020) and a binary fraction = 0.061 (Milone
et al. 2012) for each isochrone as described in detail by Ying
et al. (2023). In brief, this procedure combines the theoretical
isochrones with the observed GC density profile, present-day
mass function, binary mass fraction, photometric completeness,
and photometric errors to generate a sCMD that accurately
reflects the properties of the observed CMD.

4. DEB Age-fitting Method

4.1. Isochrone Fitting

The ages of the three DEBs were determined by comparing
the observed mass, luminosity, and radius (Rozyczka et al.
2022) to the predicted values in the theoretical isochrones.
Table 1 lists observational information for all six star studies in
Rozyczka et al. (2022). We define the following metric to
determine the goodness of fit between a point on the isochrone
and an observed star:

( )
åc

s
=

-o t
,

i j k
i

i j i k

o
, ,
2 , ,

2

2
i j,

where oi,j are the values for the ith parameter of the jth star

derived from observations, ti,k are the values assumed for the ith

parameter in the kth point in models (theory), and soi j, are the

observational uncertainties for the ith parameter of the jth star. In

this case, we fit three parameters simultaneously. The goodness

of fit of the kth point in an isochrone for the jth star is (where the

subscripts M, R, and L represent mass, luminosity, and radius)

( ) ( ) ( )
c

s s s
=

-
+

-
+

-o t o t o t
,

j k

M j M k

o

L j L k

o

R j R k

o
,
2 , ,

2

2

, ,
2

2

, ,
2

2
M j L j R j, , ,

for each star. For each isochrone, we find

{ } ( )åc c=
Î
min , 1

j
k

j kiso
2

star
iso

,
2

which is the sum of the minimal χ2 value for each star and

assign c
iso
2 as the goodness of fit for the isochrone. A similar

Table 2

Monte Carlo Input Parameters

Variable Distribution Range Source

[Fe/H] Normal −1.48 ± 0.07 Magurno et al. (2018)

L Carretta et al. (2009a)

L Harris (1996)

[α/Fe] Normal 0.37 ± 0.07 Magurno et al. (2018)

L Rozyczka et al. (2022)

ΔY/ΔZ Uniform 1.75 ∼ 2.5 Peimbert et al. (2016)

Helium abundance Uniform ( ) ( )+ D DY Z Z0.2465 25 Aver et al. (2015)

Mixing length Uniform 1.0 ∼ 2.5 N/A

Heavy element diffusion Uniform 0.5 ∼ 1.3 Thoul et al. (1994)

Helium diffusion Uniform 0.5 ∼ 1.3 Thoul et al. (1994)

Surface boundary condition Trinary 1/3;1/3;1/3 Eddington (1926)

L Krishna Swamy (1966)

L Hauschildt et al. (1999)

Low-temperature opacities Uniform 0.7 ∼ 1.3 Ferguson et al. (2005)

High-temperature opacities Normal 1.0 ± 0.03 Iglesias & Rogers (1996)

Plasma neutrino loses Normal 1.0 ± 0.05 Haft et al. (1994)

Conductive opacities Normal 1.0 ± 0.20 Hubbard & Lampe (1969)

L Canuto (1970)

Convective envelope overshoot Uniform 0 ∼ 0.2 N/A

Convective core overshoot Uniform 0 ∼ 0.2 N/A

p + p→ H2 + e + ν Normal ( ) ´ -4.07 0.04 10 22 Acharya et al. (2016)

L Marcucci et al. (2013)
3He + 3He→ 4He + p + p Normal 5150 ± 500 Adelberger et al. (2011)
3He + 4He→ 2H + γ Normal 0.54 ± 0.03 deBoer et al. (2014)
12C + p→ 13N + γ Normal 1.45 ± 0.50 Xu et al. (2013)
13C + p→

14N + γ Normal 5.50 ± 1.20 Chakraborty et al. (2015)
14N + p→ 15O + γ Normal 3.32 ± 0.11 Marta et al. (2011)
16N + p→ 17F + γ Normal 9.40 ± 0.80 Adelberger et al. (2011)

4
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metric has been used in a variety of studies and has been

proven effective (e.g., O’Malley et al. 2017; Joyce et al. 2023).
Figure 3 shows an example of fitting DEBs with theoretical

isochrones in the mass–luminosity–radius space. For each
isochrone, we calculate its c

iso
2 using Equation (1) as its

goodness of fit.

4.2. Bootstrap Resampling

We notice that even though we define our testing metric c
iso
2

similarly to the χ2 goodness of fit, c
iso
2 does not necessarily

follow the χ2 distribution. A χ2 distribution is defined by the
degrees of freedom (dof) k, which is the number of independent
variables. In this case, however, k is not well defined. We can
treat six observed stars as independent, but the three parameters
mass, luminosity, and radius of each star are not independent.
In a theoretical isochrone, as shown in Figure 3, there is a clear
correlation between mass, luminosity, and radius. As a result,
ideally, c

iso
2 should be modeled as the sum of squares of

dependent Gaussian random variables and the distribution can
be estimated with its covariance matrix. Since the covariance
matrix of the observational data is not provided, we cannot
estimate a closed-form distribution for c

iso
2 .

An alternative solution is to empirically estimate the
distribution of c

iso
2 through bootstrapping in the following

steps:

1. Pick a good-fit isochrone with a low c
iso
2 as the

underlying population.
2. Simulate six stars by random sampling from the

isochrone and add observational uncertainty corresp-
onding to that star listed in Table 1.

3. Calculate c
iso,sim
2 using Equation (1).

4. Repeat the process 10,000 times.

Figure 4 shows the result of the bootstrap resampling. We first
investigate the choice of good fit on the estimated distribution for
c
iso
2 . We select 200 isochrones with different input parameters

and ages and plot the distribution for each of them in the top
panel of Figure 4. We observe that they follow the same trend
and the individual differences are likely to be caused by the
randomness in resampling. We combine the results from those
200 isochrones and use it as the empirical distribution for c

iso
2 .

We compare the empirical distribution with the χ2 distribution
with dof of k= 6 and 18. As we expected, an empirical
distribution is in between those two distributions, suggesting that
the three parameters from a star are neither perfectly correlated
(k= 6) nor independent (k= 18).

5. Hess Diagram Isochrone Fitting

5.1. Voronoi Binning Method

Ying et al. (2023) presented a new isochrone fitting method
that fits the density of points within the CMD (i.e., the fit is
made to a Hess diagram). The method partitions the sCMD
using an adaptive Voronoi binning technique (Cappellari &
Copin 2003), which keeps the number of stars within a bin to
be roughly constant. The expected number of stars in a given
bin is then compared to the observed number of stars. A
parametric bootstrapping method is used to resample the
observed data using the photometric error and completeness
from the artificial star test (Anderson et al. 2008) to generate an
empirical χ2 distribution, which is used to determine the
goodness of fit of a given isochrone to the observed data.
Ying et al. (2023) estimated the absolute age of M92 =

13.80± 0.75 Gyr using this method, which is twice as accurate
as the age estimated in O’Malley et al. (2017) with a similar

Figure 3. Comparison of a set of theoretical isochrones with different ages
ranging from 8–16 Gyr on the mass–luminosity–radius space. Blue points are
the observational data with corresponding uncertainties. The best-fit isochrone

(in red), which has an age = 11.4 Gyr, has a lower ciso
2 value (calculated using

Equation (1)) compared to other isochrones (in gray). Top: isochrones and
DEBs on mass vs. radius plane. Bottom: isochrones and DEBs on mass vs.
luminosity plane.

Figure 4. Bootstrap resampling for ciso
2 . Top: cumulative distribution for

c
iso,sim
2 of 200 different isochrones (in gray) and the combined cumulative

distribution (in red). Bottom: probability distribution for the χ2 distribution
with dof = 18 (in blue) and dof = 6 (in orange) compared with the estimated

empirical probability distribution for c
iso
2 (in red).

5
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Monte Carlo isochrone constructing method but with only
using the MSTO as an age indicator. This demonstrates the
capability of a full Hess diagram fitting method. Although very
different in detail, we note that Valcin et al. (2020) also
developed a method to determine the age of a GC by fitting the
Hess diagram.

Because the Voronoi binning method is a full CMD-fitting
method, it is extremely sensitive to morphological changes
anywhere on the CMD. As a result, it is extremely selective.
Ying et al. (2023) showed that only 1100 isochrones out of the
total 820,000 isochrones generated fit the observational data.

We apply the same method to differential reddening corrected
photometric data for NGC 3201. We collect literature values for
estimated distance modulus using methods such as CMD fitting,
RR Lyrae stars, DEBs, etc., and estimated reddening using
methods such as CMD fitting, RR Lyrae stars, dust maps, etc.
We summarize the results in Table 3 and adopt a wide range of
distance modulus (m−M)F606W = 14.0∼ 14.3, and reddening
E(F606W− F814W)= 0.20∼ 0.30 as our prior and we use the
Gaussian process method to search for the combination of
distance modulus and reddening that will return the lowest χ2

value for each isochrone. NGC 3201 has a much lower stellar
density compared to M92. As a result, only 4664 stars were
selected for this analysis, while Ying et al. (2023) utilized 18,077
stars in M92. To compensate for the decrease in the number of
observed stars, we reduce the number of Voronoi bins from 800
in our M92 study to 200, increasing the average number of stars
in each bin. This, however, reduces the resolution of our
Voronoi diagram.

5.2. Bootstrap Resampling

Lin et al. (2013) demonstrated that with large data sets, using
the p-value-based hypothesis testing method no longer
provides scientifically reliable results. Instead, we estimate
the empirical χ2 distribution using bootstrap resampling, as
described in Ying et al. (2023). Instead of fitting the observed
data, we create fake observation data by sampling 4664 points
from an sCMD generated with theoretical isochrones. By
comparing the fake observation data with another sCMD
generated from the same isochrone, the c

sim
2 we determined

shows the intrinsic uncertainty caused by the randomness in
photometric error in the situation where the model coincides
with the underlying population.

The empirical χ2 distribution is determined by repeating the
bootstrap resampling 10,000 times. Figure 5 shows the
distribution of an empirical χ2, and is normalized by the
number of stars in the observational data, which is the dof. We
compare the empirical χ2 distribution with χ2 from fitting
theoretical isochrones with observed data to assign weight in
the final analysis. We notice that only 2321 out of 410,000
isochrones (≈0.57%) have a nonzero weight and will be
considered as a good fit.

5.3. 2D-KS Method

Anderson et al. (2008) stated that there are two main sources
of photometric error: the presence of other stars and errors in
the modeled point-spread function (PSF). The algorithm used
to perform the photometry can be severely compromised by the
presence of neighbors. As a result, the photometric uncertain-
ties for GCs with a high number density of stars, such as M92,
are dominated by crowding. This photometric uncertainty is
captured by artificial star tests, which inject a small number of
stars with a known magnitude into the real data to determine
the photometric uncertainty and completeness.
For GCs with a relatively low density of stars, imperfect PSF

modeling can be the dominant source of photometric
uncertainty. However, the artificial star tests use exactly the
same PSF to inject the stars, which is used to measure the stars
and so do not capture the uncertainty associated with the
mismatch between the real and modeled PSF. It is impossible
to quantify the uncertainty due to the PSF modeling without
redesigning the artificial star test process,3 which is beyond the
scope of this paper. The Voronoi binning method of age
determinations relies upon the assumption that the artificial star

Table 3

Summary of Results

Source Age Distance Modulus Reddening

(Gyr)

DEBs 11.98 ± 0.53 NA NA

Vorbin 11.76 ± 0.89 14.12 ± 0.07 0.23 ± 0.02

2D-KS 11.65 ± 0.87 14.13 ± 0.08 0.24 ± 0.02

Combined 11.85 ± 0.74 14.13 ± 0.07 0.24 ± 0.02

Harris (1996) NA 14.20 0.24

Rozyczka et al. (2022) 11.5 ± 0.5 -
+14.12 0.05
0.03 0.264 ± 0.002

Paust et al. (2010) 12.0 14.20 0.30

Valcin et al. (2020) -
+13.05 1.19
1.05 14.20 0.24

Monty et al. (2018) 12.2 ± 0.5 14.27 ± 0.09 0.25 ± 0.02

Bono et al. (2010) 11.5 ± 1.99 14.10 ± 0.11 0.24 ± 0.02

Figure 5. Bootstrap resampling for the Voronoi binning method. The empirical
χ2 distribution from 10,000 bootstrap resampling is shown in the gray
histogram with the estimated kernel density function in red. Blue dots show the
distribution of χ2 when fitting theoretical isochrones with the observed data.

3
J. M. Ying et al. (2024, in preparation) provide more details and discussions

about this problem.
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tests provide a reliable estimate of the photometric uncertainty
in the observed data, which may not be the case in NGC 3201.

As a result, we develop a fitting method that is more robust
to the photometric uncertainty while maintaining the advantage
of the Hess diagram fitting method. 2D-KS test is the
multivariate extension of the famous KS test and a goodness-
of-fit test that can be used to test for consistency between the
empirical distribution of data points on a plane and a
hypothetical density law (e.g., Peacock 1983; Fasano &
Franceschini 1987). We develop a Hess diagram fitting method
based on the 2D-KS test to validate the Voronoi binning
method described in Section 5.1.

The process can be summarized as follows:

1. Choose a set of distance modulus and reddening values
and apply correction to the observed CMD to align with
the sCMD.

2. Estimate the empirical cumulative distribution function
(ECDF) of the sCMD as the expected ECDF for the
isochrone by using a divide and conquer algorithm
(Bentley 1980). Generate a linear interpolation of the
expected ECDF to cover the CMD plane.

3. Apply the same method to determine the observed ECDF
from the observed CMD.

4. Compare observed ECDF and expected ECDF at the
location of each observed star and return the maximum
difference.

5. Predict the next set of distance modulus and reddening
values based on the Gaussian process within the
predetermined boundary values and rerun the analysis
process.

Figure 6 shows an example of fitting an sCMD generated from
an isochrone onto the observed CMD. For each star, such as the
green observed stars, the ECDF is calculated by counting the
number of stars within the gray shaded region divided by the
total number of stars. The red dots show the difference between
the expected ECDF and the observed ECDF. In most cases,
such as that shown in Figure 6, the difference in ECDFs is
highest at the MSTO region, where it is most sensitive to
changes in age (Krauss & Chaboyer 2003). In this case, the
maximum difference is ≈3%, which is the combined effect of
morphological change at the MSTO and inaccurate photometric
binary fraction estimation.

The 2D-KS method addresses several problems with the
Voronoi binning method mentioned before. For example, the
2D-KS method uses a nonparametric test as the 2D-KS method
does not require a choice of the number of bins or the bin size
compared to the Voronoi binning method. More importantly,
the 2D-KS method uses the cumulative distribution of stars on
the CMD plane rather than assuming independence between
subregions on the CMD plane. This makes the 2D-KS method
more robust against the photometric uncertainty caused by the
PSF models, which cannot be quantified.

5.4. Bootstrap Resampling

Babu & Feigelson (2006) suggest that for a multivariate KS
test, the distribution of KS statistics varies with the underlying
true distribution. As a result, the 2D-KS statistics studies in
several works in the literature (e.g., Peacock 1983; Fasano &
Franceschini 1987) cannot be applied directly to our case.
Instead, we combine the method to determine the empirical χ2

distribution (Ying et al. 2023) with the parametric bootstrapping

method (Babu & Feigelson 2006). The bootstrap resampling for
the 2D-KS method can be formalized as follows: let
{ ( ) }q q Î QF .: : be a family of continuous distributions of both
stellar evolution parameters θDSEP, distance θDM, and reddening
θRED. The observed data on the CMD plane X1,...,Xn comes
from the ECDF F= F(. ; θ) for some θ= θ0. We calculate the
testing statistics ∣ ( ) ( )∣q= -L F x F xsup ;x for every set of θ

and assign the estimated parameter q̂ q= , which returns the
lowest L.
A set of simulated observational data X X,..., n1 are generated

on the sCMD plane using q̂. Given the simulated observed ECDF

and the underlying distribution parameterized by q̂, we can

generate sCMD using q̂ and calculate the expected ECDF: ( ˆ)qF .; .

The testing statistics are calculated as ∣ ( ) ˆ ( )∣= -L F x F xsupx n .
We construct 10,000 resamples based on the parametric model for
each GC. Figure 7 shows the 2D-KS statistics for NGC 3201 (in
gray), which serves as the reference probability distribution of L

given q̂, kernel density estimation for the distribution (in red), and
testing statistics (in blue). For each isochrone θ

*

, the testing statistic

L
*

is calculated and the probability ( ∣ˆ)q=p L L can be found in
the reference distribution.

6. Results

6.1. Age Estimation

To estimate the absolute age of NGC 3201, we assign the
weight of each isochrone based on the probability of their
corresponding χ2 in empirical distribution generated from
bootstrap resampling. The weight represents the possibility of
getting the corresponding χ2 if our theoretical isochrone
represents the underlying population for the observed data.
Figure 8 shows the weighted age distribution from all three

methods we used in this study. Figure 8 demonstrates the

Figure 6. An example of the 2D-KS method. An sCMD is shown in blue dots.
The green dot represents an observed star from the HST ACS data. The ECDF
at that point is calculated by dividing the number of observed stars within the
gray shaded region by the total number of observed stars on the CMD. The red
dots represent the difference in ECDF between the CMD and sCMD.
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consistency of age estimated based on two types of observa-
tional data using three different fitting methods. Table 3
summarizes the main result of this paper. We compare our
results with literature values and our results agree with those of
previous studies. It is worth noting that most of the previous
CMD-based analyses do not take into consideration the
uncertainty introduced by stellar evolution models or photo-
metry and usually assume a fixed distance modulus and
reddening. We estimate the absolute age of NGC 3201 and take
into consideration the uncertainties introduced by those factors
and our CMD-fitting methods are able to utilize the number
density of stars on the CMD to make an estimation with high
precision that has an uncertainty level comparable with those
studies.

6.2. Monte Carlo Parameters

As described in Section 5.1, we test distance moduli ranging
from 14.00–14.30 and reddening ranging from 0.20–0.30 for
each isochrone. The best-fitting age corresponding to each
distance modulus and reddening bin is shown in Figure 9.
There is a strong negative correlation between distance
modulus and estimated age, which is well known.

It is important to understand each Monte Carlo parameter’s
contribution to the variability of the absolute age. Adding finer
constraints on important Monte Carlo parameters, those
contribute more to the variability of the response, can produce
a more precise estimation of the absolute age. Traditional error
propagation methods in analyzing contribution to the varia-
bility rely on closed-form model specification, which is lacking
due to the complex nature of stellar evolution. Thus, we
perform a first-order analysis with a linear regression model
specification with the absolute age and the Monte Carlo
parameters. A variety of methods can then be used to
decompose R2, the coefficient of determination, by exhibiting

a hierarchy between the inputs among predictors regarding

some dominance criteria known as the general dominance

analysis (Clouvel et al. 2023).
Lindeman et al. (1980) proposed a dominance analysis

method based on the measure of the elementary contribution of

any given variable Xj to a given subset model Y(Xu) by the

increase in R2 that results from adding that predictive variable

Figure 7. Bootstrap resampling for the Voronoi binning method. The
distribution of the 2D-KS statistics from 10,000 bootstrap resampling is
shown in the gray histogram with the estimated kernel density function in red.
Blue dots show the distribution of χ2 when fitting theoretical isochrones with
the observed data.

Figure 8. The weighted distribution of ages corresponding to best-fit
isochrones based on DEBs (in blue), the Voronoi binning method (in green),
and the 2D-KS method (in red).

Figure 9. The best-fit age corresponding to each combination of distance
modulus and reddening. The annotation on each block represents the estimated
age (Gyr) from each combination. The color represents the occurrence of each
combination as a percentage of the best-fit isochrones.
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to the regression model:

! { }

( ∣ )å=
pÎ

pd
rLMG

1
,j

d

Y X X

permutation of 1 ,...,

,
2

j

where u is a subset of all indices 1,...,d and Xu represents a

subset of input. The computational complexity grows expo-

nentially as the dimension of input parameters increases. In this

case, we have over 20 input parameters, which makes it

computationally impossible. Johnson (2000) introduces the

approximation method utilizing relative weight measures to

transform the correlated inputs into uncorrelated variables,

which significantly reduces the computational cost and is used

in this analysis.
Figure 10 shows the result in which the uncertainty in the

absolute age of both the 2D-KS method (with a coefficient of
variance = 7.44%) and DEBs (with a coefficient of var-
iance = 2.33%) being decomposed according to the contribution
from different parameters. Because the choice of atmosphere
model cannot be represented in the linear regressor, we do not
include it in the analysis. Ying et al. (2023) find that the mixing
length and atmosphere models are highly correlated and we use the
result of mixing length to infer the contribution of uncertainty from
the choice of atmosphere models. Figure 10 suggests that distance
is the dominant source of uncertainty in the Hess fitting, which
agrees with the findings in Ying et al. (2023). Because DEB
analysis does not assume a distance, and the reddening is already
corrected for the observed data, it has a much smaller combined
uncertainty (see Table 3). We found that [Fe/H], helium
abundance, [α/Fe], mixing length, and helium diffusion are the
stellar evolution parameters that are the main source of
uncertainties for both Hess fitting and DEB analysis, which further
demonstrate the consistency of our methods. It is worth noting that

there is a significantly greater contribution from helium abundance
for DEB analysis than for Hess fitting. Helium abundance is
important to stellar evolution as a helium-rich star evolves faster,
and at a higher temperature and luminosity. Despite using different
methods on different data sets, there is a consistent uncertainty in
the age of ∼0.6% that cannot be explained by any Monte Carlo
parameters, which might be the linear regression model not being
able to describe the complex parameter structure or the parameter
misspecification in our 1D stellar evolution model.

7. Conclusion

We determine the absolute age of NGC 3201 with two
independent sets of observational data and three different
statistical analysis methods. We apply a Monte Carlo simulation
approach to take into consideration the uncertainty introduced by
stellar evolution parameter, distance modulus, and reddening.
We create 10,000 sets of Monte Carlo generated stellar evolution
models with 21 variables using DSEP (Dotter et al. 2008), a
state-of-the-art 1D stellar evolution code. We construct theor-
etical isochrones from 8–16 Gyr with a 0.2 Gyr increment for
each set of input parameters based on the framework described
by Dotter (2016).
Every isochrone constructed is used to fit the DEBs in NGC

3201 with a χ2 based goodness-of-fit testing method. The
results are compared with the distribution of the same metric in
a bootstrap resampling, and being converted to a probability.
Each isochrone constructed is also used to generate an

sCMD with 4 million data points. Two different statistical
methods are applied to compare the sCMD with observed
CMD created from HST ACS data. The Voronoi binning
method divides the CMD into 200 subregions and compares
the number density of observed and simulated data, while the
2D-KS test method utilizes the ECDF to detect the biggest
change in morphology between observed and simulated data. In
both methods, we introduce a shift in distance modulus ranging
from 14.00–14.30 and reddening ranging from 0.20–0.30 and
use a Gaussian process approach to get the combination of
distance and reddening that leads to the best fit.
The absolute age of NGC 3201 from three different statistical

analysis methods with two independent sets of observational data
agree with each other. The results are combined and the absolute
age of NGC 3201 = 11.82± 0.66Gyr. We perform a variable
importance analysis on both the Hess fitting and DEB analysis
results. We found that distance is the most dominant source of
uncertainty for the absolute age of NGC 3201 in the Hess fitting,
which is in line with our conclusion for the analysis of M92
(Ying et al. 2023). Because DEB analysis does not rely on an
assumption of distance, the uncertainty of DEB analysis is 50%
of the uncertainty of CMD fitting despite having a much smaller
sample size. Moreover, we find the metallicity, α enhancement,
mixing length, and treatment of helium diffusion to be the most
important stellar evolution parameters for both DEB analysis and
CMD fitting.
The absolute age of NGC 3201 with [Fe/H]=−1.5 is found

to be 2.0± 1.0 Gyr younger than M92 with [Fe/H]=−2.3. This
is suggestive, though not conclusive evidence that the compara-
tively metal-rich cluster NGC 3201, which was likely accreted
by the Milky Way, formed at a significantly lower redshift than
the metal-poor Milky Way cluster M92. Future work, using a
larger sample of GCs with a range of metallicities, can test this
tentative conclusion.

Figure 10. Comparing contributions to the variability of the estimated absolute
age of NGC 3201 from each of the Monte Carlo stellar evolution parameters as
well as distance modulus and reddening. The percentage of error on age is
determined by the Johnson indices multiplied by the coefficient of variance of
the absolute age determined by either method. We find the variable importance
measure for the 2D-KS test results is compatible with that for the Voronoi
binning method. This is expected as both methods are CMD-fitting methods
and are based on the same set of observational data.
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