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Over the course of the introductory calculus-based physics course, students are often expected to build
conceptual understanding and develop and refine skills in problem solving and qualitative inferential
reasoning. Many of the research-based materials developed over the past 30 years by the physics education
research community use sequences of scaffolded questions to step students through a qualitative inferential
reasoning chain. It is often tacitly assumed that, in addition to building conceptual understanding, such
materials improve qualitative reasoning skills. However, clear documentation of the impact of such
materials on qualitative reasoning skills is critical. New methodologies are needed to better study reasoning
processes and to disentangle, to the extent possible, processes related to physics content from processes
general to all human reasoning. As a result, we have employed network analysis methodologies to examine
student responses to reasoning-related tasks in order to gain deeper insight into the nature of student
reasoning in physics. In this paper, we show that network analysis metrics are both interpretable and
valuable when applied to student reasoning data generated from reasoning chain construction tasks.
We also demonstrate that documentation of improvements in the articulation of specific lines of reasoning
can be obtained from a network analysis of responses to reasoning chain construction tasks.
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I. INTRODUCTION

Students pursuing undergraduate science, technology,
engineering, and mathematics (STEM) majors outside of
physics are often expected to take one or more physics
courses as part of their degree programs. While certain
physics concepts and principles will be of use in these
students’ future academic careers, many will not. Instead,
it is often expected that the lasting long-term learning
outcomes from a physics course will be a repertoire of
problem-solving strategies, a familiarity with mathematiz-
ing real-world situations, and a strong set of critical
thinking skills related to qualitative inferential reasoning.
Furthermore, these takeaways are important to all students
taking a physics course, including those who go on to be
physics majors and physicists.

Physics education research (PER) has produced many
instructional materials that have been demonstrated to
improve conceptual understanding and to produce other
important learning outcomes [1–5]. Many of these materi-
als are scaffolded and step students through qualitative
chains of inferences via a series of questions [6–8]. It is
often tacitly assumed that such materials also improve
qualitative reasoning skills, but there is little documentation
of such improvements in the PER literature. Furthermore,
it has been observed that despite overall conceptual gains
after research-based instruction, there are still certain
physics questions for which it is difficult to improve
student performance [9–11]. These studies suggest that
reasoning processes general to all humans may impact how
students understand and reason in a physics context.
There is thus a need to investigate how students generate

qualitative inferential chains of reasoning. Many studies
have investigated student reasoning in the context of
specific physics problems. Some detailed specific reason-
ing difficulties [12] and some attempted to model the
dynamics of student reasoning [13]. Other studies sought to
identify domain-general reasoning phenomena (such as
heuristics and biases common to all human reasoning [14])
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and study their impact on physics-specific reasoning
[10,11,15–18]. The methodologies used in these studies
are powerful, and a methodology that systematically
examines the structure of student reasoning would advance
the broader research agenda outlined in this literature—
especially if that methodology could separate, to some
extent, the structure of the reasoning required on a given
problem from the conceptual knowledge that underpins
that reasoning.
The paired question methodology reported in Ref. [10]

comes close to the goal of separating reasoning skills from
conceptual understanding of a given problem. This meth-
odology has been used extensively elsewhere [18–20],
particularly in situations that require reasoners to produc-
tively navigate an intuitive response when it is in conflict
with the correct response. Paired questions have provided
further evidence that many students possess an ability to
reason correctly through a physics problem but opt for
other, more salient lines of reasoning on specific, closely
related questions.
More recently, we have developed a new methodology

centered on reasoning chain construction tasks, or chain-
ing tasks, that has also been designed to separate reasoning
skills from understanding particular physics concepts. This
methodology was initially reported in Ref. [21] and has
since been used to leverage results from cognitive science
to improve student performance on qualitative physics
questions [18]. These tasks have also been implemented
in chemistry courses, in which they have been shown to
provide deeper insights into student thinking than tradi-
tional free-response questions [22]. In this paper, we
describe a method for exploring chaining task data using
network analysis and present two examples that demon-
strate the utility of network analysis methods for gaining
insight into the structure of student reasoning via chaining
tasks. In combination with reasoning chain construction
tasks, network analysis generates novel data related to the
content and structure of student arguments. The over-
arching goal of this manuscript is to describe and highlight
the affordances of this novel data.

II. BACKGROUND

In this section, we review pertinent literature that
demonstrates the need for more sophisticated analyses
of student reasoning and highlights the unique affordances
of network analysis of chaining task data to meet this need.

A. Research directly related to qualitative inferential
reasoning in physics education

Qualitative inferential reasoning is any type of reasoning
that is qualitative in nature and makes inferences, whether
deductive or inductive, from given premises. It is common
in physics instruction. For instance, consider the following
physics question: “An object is at rest on a rough surface

but is subject to a forward force of 30 N. What is the value
of the friction force from the surface on the object?” A
typical way of presenting the solution to this problem is to
start with the premise (often called a first principle) that
Newton’s second law holds (premise 1). Then, from this
premise, one infers that because the object is at rest, all the
forces on the object sum to zero (qualitative inference 1).
One could then reason that since the only two forces acting
horizontally on the object are friction and the applied 30 N
force (premise 2), the friction force must therefore be equal
to 30 N (qualitative inference 2). In qualitative inferential
reasoning, premises (whether or not they are explicitly
called such) are combined to make inferences, usually in
sequence, about the problem. Such a sequence of infer-
ences could be called a chain of inferences. This type of
reasoning is distinct from the algebraic manipulations
or estimation practices required in some problem-
solving activities. However, qualitative inferential reason-
ing is closely intertwined with the idea of conceptual
understanding—after all, it is difficult to measure robust
conceptual understanding without asking students to
reason with the concepts in some way.
Understanding student reasoning on physics problems

has long been a goal of physics education research. Early
investigations of student conceptual understanding identi-
fied specific reasoning difficulties as well as conceptual
difficulties and even found similar reasoning-related diffi-
culties in different conceptual domains [23–26]. Observed
difficulties were described and the empirical findings
were used to guide the development of content-specific,
research-based instructional materials [12,27,28].
Other early investigations sought to understand the

composition of student conceptions of physics and to
explain how or why certain conceptions were formed,
cued, and used for reasoning [13,29–33]. These investiga-
tions created a framework that allows one to identify and
observe the use of student “resources” for reasoning. It is
posited by this framework that the act of reasoning is an act
of cognitively selecting and coordinating, at the moment,
the use of a subset of available resources.
Recently, there has been interest in investigating predic-

tive control mechanisms that govern reasoning in a physics
context [9,11,18,34]. Much of this work draws on findings
from cognitive science and the psychology of reasoning.
This strand of research has called for new methodologies to
be employed in physics education research that would allow
for the collection of data not normally accessible from a
written response or think-aloud interview alone, but that
would, to a greater degree, separate reasoning skills from
conceptual understanding [9,10,16].
All of the work mentioned above has focused primarily

on student responses to qualitative physics problems that
require a series of inferences to be chained together into a
line of reasoning. This ability to chain together a series
of inferences is important while reasoning about physics
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concepts, and as such, studying it in more detail is
necessary for progress in improving student performance
in a physics classroom. This work aims to provide a
new methodology for studying qualitative, inferential
reasoning.

B. Other discipline-specific, reasoning-related research

The scope of reasoning-related research can be rightfully
extended to other, expansive domains of research, such as
student problem solving, scientific reasoning skills, math-
ematization, and others, but these domains have less
relevance to the current work. Research on student problem
solving and mathematization [35–39] emphasizes tradi-
tional quantitative problems that typically require the
manipulation of multiple equations and quantities and
seeks to understand and improve the strategies students
employ while working through these problems. Likewise,
there has been research related to scientific reasoning skills
such as control of variables, conservation of volume, and
proportional reasoning, and assessments have been used to
study differences in proficiency with these skills between
populations before and after instruction [23,40–43].
However, while quantitative problems and scientific rea-
soning are essential to a physics curriculum, the focus of
this manuscript is on the structure of qualitative inferential
reasoning patterns.
The proof literature in mathematics education research

is more closely aligned with the specific goals of the
investigation described in this article. Selden and Selden
provide a review of this literature [44]. In a typical
undergraduate mathematics program, there are specific
courses that aim to teach students how to create math-
ematical proofs. These proofs tend to take the form of a
series of deductive, qualitative inferences that are linked
together as an argument in support of a specific conclusion.
The research regarding student skill at constructing proofs
is reminiscent of many research endeavors in physics
education. Often, students’ responses to a particular proof
task are examined through various epistemological and
conceptual lenses, with an emphasis placed on the iden-
tification of student difficulties with constructing proofs.
While the nature of the reasoning chains examined in

the proofs literature is very closely related to those
considered in this article, our work takes a different
approach. Instead of examining possible causes for a
particular reasoning difficulty, the current work aims to
identify patterns in the structure of the reasoning chain
itself; our goal is to provide new forms of data that can be
utilized by future researchers investigating the mecha-
nisms behind student construction of reasoning chains.
As such, the current work would be very useful to
researchers involved in studying student construction
of mathematical proofs. Elements of a proof could be
cast as a chaining task, and the resulting structures could
be studied using the methodology described herein.

C. Network analysis in physics education research

In network analysis, objects of study are represented as
nodes (dots), and a relationship between two given objects
is represented as a link (a line connecting the two dots).
A collection of nodes and links forms a network, and
various parameters of the network can be analyzed.
Network analysis is fairly new to physics education

research but has recently been seeing a dramatic increase in
use, mostly in social network analysis characterizing the
social dynamics within a physics community (i.e., a
classroom, department, or university) and sometimes relat-
ing these dynamics to performance and learning gains
within a physics course [45–51]. For instance, if studying
the social dynamics of a classroom, the nodes could be the
individual students in the classroom, with links formed for
students who indicate that they have worked together in a
meaningful way. However, network analysis has also been
used to study epistemological shifts in conversations as a
result of instruction (with the nodes being the topic of
conversation and the links being formed when topics are
discussed in close proximity) [52]; to model differentiation
of concepts (where the nodes are concepts and the links
are shared attributes of the two concepts) [53]; to assess
patterns in representation used throughout a course
employing modeling instruction (with the nodes being
the type of representation used and links formed when
two representations are used together) [54]; and to gain
insight into the structure of answer patterns on a concept
inventory (in one study, the nodes were students and
responses to FCI questions, and the links were formed
between the student and their responses) [55–57]. In each
of these, the network nodes are different. In the literature
regarding the resources framework, the coordination of
resources has been studied using network-like representa-
tions, sometimes called “resource graphs” [58–61]. The
current work utilizes network analysis to study the structure
of student reasoning chains, which we believe is a novel
pursuit; however, there are also connections to be made
with resource graphs.

D. Summary and articulation of research questions

The data collection and analysis methodology presented
in this manuscript is designed to separate, to the extent
possible, reasoning skills from conceptual understanding
and to provide data not normally accessible from written
responses and think-aloud interviews. We aim to create a
tool that can be used to study specific reasoning skills and
to provide insight into the development of these skills. The
main goal of this paper is to demonstrate how network
analysis of reasoning chain construction tasks may be used
to accomplish both objectives. As such, our investigation
centered on the following research questions:

RQ1. To what extent can network analysis
methodologies applied to chaining task data
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characterize the nature of student reasoning on
qualitative physics questions?
RQ2. To what extent can our methodologies be
used to track and document the development of a
specific line of reasoning over the course of a
two-semester introductory physics sequence?

III. METHODOLOGY

This section is broken into two main parts. In the first,
we describe the reasoning chain construction task, which
underlies the methodology employed here. In the second,
we describe the network analysis methods that are used in
this manuscript.

A. Reasoning chain construction tasks

A reasoning chain construction task, or chaining task, is
a modified card-sorting task in which we (i) provide the
student with a list of reasoning elements; (ii) indicate that
all of the statements within these elements are true; and
(iii) ask the student to construct a solution to a physics
problem by selecting elements from the list, ordering them,
and incorporating provided connecting words (“and,” “so,”
“because,” “but”) as needed. The reasoning elements
primarily consist of observations about the problem setup,
statements of physical principles, and qualitative compar-
isons of quantities relevant to the problem, all of which are
true. Everything the student needs to produce a complete
chain of reasoning is present in the elements; the student’s
task is then to pick from the given conceptual pieces and
directly assemble a reasoning chain. (The connecting words
help people express the argument but are ultimately not
used in the analysis presented in this manuscript.)
Reasoning chain construction tasks have primarily been

implemented online using Qualtrics’ “Pick/Group/Rank”
question format [62]. This online format is illustrated in the
context of a graph task and is shown in Fig. 1. Reasoning
elements from the “Items” column, connecting words, and
final conclusions can be dragged and dropped into the
“Reasoning Space” box; the box increases in size vertically
as elements are added.
These tasks were administered on participation-based

homework assignments or exam reviews for students
enrolled in the introductory calculus-based physics
sequence, along with other questions relevant to the course
but not relevant to the content found in the research tasks.
The responses of all students completing a task in a given
semester will be referred to as a single dataset.
Students received participation credit for completing

these assignments in most cases, although extra credit
(based on participation only) was awarded in some cases.
In all cases, the tasks were administered after relevant
lecture, laboratory, and small-group recitation instruction at
a research-intensive university in New England. Research-
based materials from Tutorials in Introductory Physics [6]

were used in the course recitations. While course-specific
demographic data could not be obtained, insight can be
gained from institutional demographics during the years
of the study. The institution had a population of under-
graduate students where 53% identified as male and 47%
identified as female; additionally, these students self-
reported as White (83%), Hispanic/Latino (4%), multiracial
(3%), Black/African American (2%), Asian (2%), and
American Indian/Alaskan Native (1%).
The reasoning elements provided to the student were

typically based on previously obtained student responses to
open-ended, free-response versions of the task. Elements
consisted of statements of first principles, observations
about the task, and statements derived from first principles
and observations. Some were productive to the correct
line of reasoning, and some were not. Among the unpro-
ductive elements were elements that, while true, were
useful primarily in constructing a common incorrect line
of reasoning if there was one associated with the task. In
addition, the extent to which students selected unproductive
elements not associated with the correct or common
incorrect line of reasoning could help us gauge the like-
lihood that students were simply inserting elements at
random. Three blank elements labeled “Custom:” were
provided, with instructions that students could use the text
box attached to the custom element to create their own
reasoning elements if they felt they wanted to add some-
thing not represented among the given reasoning elements.
In practice, these elements ended up being used either for
additional connecting words or for students to forgo the
chaining aspect of the task altogether and instead type out a
“paragraph style” response. These kinds of behaviors were
typically observed in less than 5% of responses for any
given task.
An important aspect of a chaining task is the intended

logical connections between the provided reasoning
elements—that is, the logical topology of the elements.
For instance, some physics tasks require only a few steps to
arrive at a correct answer (e.g., a qualitative question that
can be solved via a short, linear chain of elements like the
task shown in Fig. 1), while others require the student to
combine two independent lines of reasoning (e.g., synthesis
problems such as those reported by Ref. [63]); by casting
each of these types of questions as a chaining task, we can
obtain information about how students approach these
different reasoning scenarios.
The provided reasoning elements determine to a large

extent how students interact with the task. The elements
were written by researchers (i.e., the authors of this article)
who likely have a specific epistemological stance in mind,
as well as a particular pedagogical perspective. The
elements and especially the wording of the elements reflect
the researchers’ values about such ideas as what constitutes
reasoning, a reasoning element, and the size of logical
steps. For instance, an element corresponding to Newton’s
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second law could read, among other things, “Fnet ¼ ma,”
“the net force is equivalent to the mass times the accel-
eration,” or “an acceleration is caused by a net force
(distributed over a mass).” Each of these may convey a

different meaning to the student, may interact differently
with the context of the problem, and may differently
represent what a “first principle” is and looks like. Thus,
when interpreting responses to a chaining task, the main

FIG. 1. An example of a reasoning chain construction task implemented online using Qualtrics’ “Pick/Group/Rank” question format.
This task is the same task discussed in Sec. IV B.
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research endeavor is to ascertain not only how students
reason generally about the problem but also how students
engage in the specific types and lines of reasoning supported
by the elements. In the tasks presented in this article,
attempts were made to make the reasoning space topology
as close to the observed student reasoning topology by
drawing upon student written explanations of reasoning.
The chaining task (especially when implemented online)

creates an environment in which students are required to
present their argument in a linear progression of inferences,
and this presentation of reasoning is separate from the
process of reasoning that occurs in the mind. For instance, a
student may consider a lengthy line of reasoning but feel
that simplicity and elegance are valued in the sciences and
therefore seek to construct the most concise argument
possible with the elements; another student, though, may
report a short chain out of a desire to get through the task
quickly, without deep study of the elements provided.
Regardless of these differences, there is still something
valuable to be gained from analyzing patterns in the
reasoning chains constructed by students. For example,
suppose a student does not endorse first principles in their
chain. We cannot assume that they did not consider first
principles, but we can assume that if they did consider first
principles, they made a decision (whether conscious or not)
to exclude those considerations in the presentation of their
reasoning.

1. Chaining task data as networks of associations

Chaining task data can be cast as a network for
quantitative analysis. To accomplish this, the reasoning
elements can be represented as nodes in a network, and
associations made by the student between the elements can
be represented as links, with the number of links between
the nodes being called theweight of the link. We considered

two main methods for establishing associations (links)
between reasoning elements (nodes). These two methods
are illustrated in Fig. 2(a). In the first, a connection is said to
exist between two elements if the two elements are placed
consecutively in a student’s chain or on either side of a
connecting word; a network created using this definition of
association is referred to in this paper as a direct associ-
ation network. In the second method, a connection exists
between two elements if they appear together in the same
student response; a network constructed in this way is
referred to as an indirect association network. As we will
describe below, both types of networks have different
affordances, and exploring both is useful in interpreting
student responses. In either method, individual student
response networks are summed to create a network of all
responses in a given dataset, as illustrated in Fig. 2(b). This
is referred to as a full network in this manuscript.
In both methods, we remove connecting words from the

data and use undirected links to form our networks. The
connecting words, while serving in many cases to clarify
the logic of a student’s argument, posed a challenge for
network analysis for two reasons. We observed that
students often used connecting words intermittently and
inconsistently. Additionally, even when connecting words
were used, there remained ambiguity in the components
that were intended to be associated with the connective,
particularly when a task required multiple inferences.
For instance, consider the phrase “A because B and C,
therefore, D”. This phrase could be parsed logically as
“A because (B and C), therefore, D” or it could be parsed as
“(A because B) and C, therefore, D”. (Similar ambiguity
exists regarding the parsing of the “therefore” connective
prior to the D.) For these reasons, we felt uncomfortable
attributing representational meaning to the connecting
words when constructing the networks and decided to
eliminate the connecting words from our analyses.

(a) (b)

FIG. 2. (a) An example of two methods for constructing an individual-student network from an individual student’s response. (b) An
illustration of summing individual student networks to create a full network.

SPEIRS, STETZER, and LINDSEY PHYS. REV. PHYS. EDUC. RES. 20, 010147 (2024)

010147-6



Because we removed the connecting words from stu-
dents’ responses when constructing a network, we also
opted to make the links undirected. By choosing undirected
links, we interpret a link between reasoning elements as
simply a general “association” between those elements
rather than interpreting any sort of logical meaning from the
link. However, we find that this method of constructing
networks does yield interpretable results, and we view this
decision as a ground-level analysis of reasoning chains.
Future analyses may be performed to investigate the
usefulness of directed networks.

B. Network analysis

In this section, we present a brief overview of the
network analysis techniques employed in this work. A
detailed and more technical overview of each analysis
technique is given in Appendix A. Later sections will
describe in detail how to interpret the results of these
methods in the context of reasoning chain construction
tasks. All algorithms were implemented in Wolfram
Mathematica.

1. Locally adaptive network sparsification (LANS)

Network sparsification aims to uncover the “backbone”
structure of a large network by deleting links (sometimes
called edges) that are unimportant to that structure [64]. In
this study, we employed locally adaptive network sparsi-
fication (LANS) [64]. In LANS, the statistical significance
of each link is calculated for the two nodes locally and a
link is deleted only when it is found to be below a threshold
value, α, of significance to both nodes. This preserves local
structure in a network even if that local structure does not
have as much weight as other parts of the network.
For the work presented here, the threshold α was chosen

by lowering the threshold as much as possible before either
nodes or collections of nodes began to be separated from
the network. For instance, in some networks, there are
elements that are more tightly associated with each other
than with the rest of the network, and these may break off
during sparsification when the threshold is too low. We
wished to preserve the structure of the network to the extent
possible while still simplifying it, so we felt uncomfortable
breaking the network into separate pieces. Typical values of
α for this work ranged from 0.1 to 0.2. These values ended
up being consistent with those from other studies using
LANS [64].

2. Community detection and bootstrap verification

The techniques of network analysis allow us to quanti-
tatively determine groupings of elements, or communities,
which are more tightly associated with each other than
with the rest of the network. There are many methods
of community detection available, and there is no single
“best” method [65]. The method used in this work is called

optimum modularity community detection [66]. This
method of community detection was chosen based on its
potential for interpretability of results and because the
underlying statistical nature of the method allowed it to be
useful for a broad range of network types. It was also
selected because the method allowed for a rigorous
definition of a community as an indivisible subgraph of
the network (see details in Appendix A).
Before relying on the results of community detection, it

is helpful to gauge how robust the community structure is.
Could small perturbations produce a different community
structure in the network? If the answer is yes, then it would
be reasonable to question the divisions made by optimizing
modularity. However, if the structures are impervious to
random insertions or deletions, this would be clearer
evidence of true community structure. To assess robustness,
we employ a technique based on statistical bootstrapping
that has been modified from Ref. [65] for the context of
chaining tasks.
Our bootstrapping method involves creating a hypotheti-

cal dataset (with an N value equal to that of the original
dataset) comprised of responses drawn at random from the
actual student responses—but with a so-called catch and
release approach, in which a individual student response
may be included more than once in the hypothetical dataset.
Then, a network is created from the hypothetical dataset
and community detection employed. Typically, we generate
1000 hypothetical datasets. On each iteration, it is possible
to test which elements are found in the same community.
We considered an element to be part of a community if it is
found in that community in at least 60% of the hypothetical
datasets of the bootstrap test. By taking note of all the
communities and their members in each iteration, a
frequency plot can be generated showing how often a
particular element is found in the same community as a test
element. We therefore call these reasoning element fre-
quency plots.An example of such a frequency plot is shown
in Fig. 6.

3. Network measures: Centrality and clustering

Two network measures, betweenness centrality and
global clustering coefficients, were utilized in the current
work and will be described here. Betweenness centrality
[67] is seen as a measure of a node’s control over the “flow”
in the network. A node’s betweenness was originally
defined as the number of shortest distance paths through
that node divided by the total number of shortest distance
paths in the network [67]. This definition applied only to
unweighted networks, and so the definition was modified to
respect the weights of the various links in the network [67],
and we use a weighted betweenness centrality in this study.
The goal of a global clustering coefficient is to quantify

how interconnected a network is. The clustering coefficient
was originally defined as the number of closed triads
(grouping of three nodes all connected to each other)
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divided by the total number of triads, either open (i.e., only
two links among the three nodes) or closed (i.e., all nodes
connected) [68]. The direct association network shown
in Fig. 2(a) would have a clustering coefficient of 0, while
the indirect association network shown in the same figure
would have a clustering coefficient of 1. We use a
clustering coefficient that has been extended to weighted
networks [68]. Using a weighted coefficient, if a network
had few closed triads but these triads weighted more
heavily in the network, this network would rightly be
considered interconnected.

IV. RESEARCH TASKS

In this section, we present network analyses of two
different chaining tasks in physics in order to highlight the
power of these methods in providing insight into student
reasoning. The first task is set in a work and energy
conceptual domain and introduces the interpretations of the
network analysis methods in the context of chaining tasks.
We then apply the network analysis methods to a set of
four isomorphic graph-based tasks that span four content
areas: kinematics, potential energy, electric potential,
and magnetic flux. Network analysis of these graph-based
tasks reveals the development of a more coherent line of
reasoning across two semesters of introductory physics
instruction.

A. Work-energy task

In order to highlight how the network analysis methods
might be interpreted, we sought a task for which there
was strong student performance as well as multiple,
independent ways of answering correctly. This would
de-emphasize conceptual difficulties and enable us to focus
on the articulation of known correct knowledge. The goal
of such a task would be to answer the following question:
How effective are network analysis methodologies at
characterizing and differentiating among different lines
of reasoning on a physics question that most students
can answer correctly? Analysis of this kind of task thus
provides a good testing ground to determine the extent to
which network analysis methodologies applied to chaining
task data can characterize the nature of student reasoning
on qualitative physics questions (RQ1).
Here we focus on a chaining task in the context of work

and energy, and we use this task as an example of how
the methods of network analysis can be interpreted in the
context of chaining tasks. In this section, we describe the
task, provide the results of the network analysis techniques
described in Sec. III. B, and discuss the insights gained
from this approach.

1. Physics question overview

The work-energy task was adapted from a concept
question appearing in Knight’s Physics for Scientists and

Engineers 4th ed. [69]. In the task, students are told that a
point particle moving to the left is slowing down because of
a force pushing to the right, and no other forces are acting
on the particle. Students are asked if the work done on the
particle by the force is positive or negative or if there is not
enough information to tell. The complete prompt as well as
the reasoning elements provided to the student are shown
in Fig. 3.
The correct answer is that the work on the particle by the

force is negative. There are two viable ways of answering
this question. The first involves recognizing that the work
done is defined as the dot product between the force and
displacement vectors and that a dot product of two vectors
pointing in opposite directions is negative, thereby estab-
lishing that the work is similarly negative. This line of
reasoning will be referred to as the work as a dot product
argument. The second line of reasoning utilizes the
principle of energy conservation and will be referred to
as the work as a change in energy argument. This line uses
a statement of the principle of energy conservation (i.e.,
Wnet;external ¼ ΔU þ ΔK) along with the observation that
the particle is slowing down to argue that the work done
on the particle by the force must be negative. For this
approach, it is necessary to also specify that the kinetic
energy is decreasing and that a point particle has no change
in potential energy. This line of reasoning could be
simplified by invoking the work-energy theorem (i.e.,
Wnet ¼ ΔK), which only applies to objects that may be
treated as point particles, and omitting arguments related to
potential energy.
Based on our analysis of student responses to similar

questions in other formats, the most common incorrect
response involves concluding that the work on the particle
by the force is positive because the force is pushing to the
right, which is assumed to be the positive direction. Similar
findings have been reported by others [70].

2. Chaining task implementation

The reasoning elements provided to students on the
chaining version of the work-energy task, shown in Fig. 3,
were expressly designed to reflect both the work as a dot
product argument and the work as a change in energy
argument. While the common incorrect line of reasoning
may also be constructed from the elements provided, all of
the reasoning elements (with the exception of the incorrect
conclusion elements) are true statements.

3. Performance overview

Of the 119 students who completed the chaining version
of the work-energy task, 92% of them answered correctly
that the work done by the force on the particle is negative.
Of these correct responses, 69% responded with the work
as a dot product argument, 12% responded with the work
as a change in energy argument, and 16% included both
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arguments. Figure 4 shows an example of each type of
student response.
We have purposefully chosen to introduce network

analysis using the work-energy task due to the unambigu-
ous nature of the collected dataset, as this allows us to
demonstrate the applicability and power of the network
analysis tools before examining more complex, nuanced
datasets. Because of the strong overall performance on the
work-energy task, it is likely that students had a solid grasp
of the reasoning involved in answering the question, and we
therefore expected this to be reflected in their reasoning
chains. Furthermore, since many students articulated each
independent argument (energy and/or dot product), we
recognized that these lines of reasoning would be clearly
represented in a network constructed from all student
responses. As a result, this set of student responses serves
as an ideal test case for the application of the network
analysis methods described above in the context of reason-
ing chain construction tasks.

4. Community detection analysis of correct responses

We constructed both a direct and an indirect association
network from the correct responses to the work-energy task
and applied the community detection algorithm to each
separately. (Recall that, as discussed in Sec. III. A. 1,

a direct association network only links elements that are
placed consecutively in a student response, while an
indirect association network links each reasoning element
in a response with every other reasoning element in that
response.) The results from that analysis are shown in
Fig. 5. In the figure, the elements that are important to the
work as a dot product argument are colored blue and the
elements important to the work as a change in energy
argument are colored green.
In both the direct and indirect association networks, the

elements in the work as a dot product argument and the
elements in the work as a change in energy argument are
found to be separate from each other by the community
detection algorithm. Additionally, the community structure
of the direct association network reveals that the work as
dot product elements appear to have two groupings: one
with the two elements that state that the force vector is to
the right and the displacement vector is to the left, and one
with the rest of the work as dot product elements. In both
networks, the answer element was found to be in the same
community as the work as a dot product element. This is
likely due to that argument being used more often among
the responses.
We wish to note here that these results show that the two

types of networks, direct and indirect, yield differing levels

FIG. 3. Work-energy task. Question prompts (drawn from Ref. [69]) and associated reasoning elements provided to students are
shown. The elements are numbered for later reference and color coded based on whether they were intended for the work as a change in
energy argument (green), were intended for the work as a dot-product argument (blue), or were conclusion elements (yellow). Students
were not presented with the colors associated with each element.
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of detail and indeed different types of information about the
set of student responses represented. Thus, it is valuable to
examine both types of networks. More will be said about
this in Sec. IVA 6. We also wish to highlight some
limitations of the specific visual representation shown here.
In the network plots shown in Fig. 5, the weight of within-
community edges is represented as multiple lines con-
necting two nodes, while between-community edges are
collapsed to a single line. This means that information
about the weight of those edges is obfuscated in this
representation. However, we stress that the plots shown
are a representation of the underlying community detection
algorithm that determined that those weights were insig-
nificant compared to the within-community weights that
are represented. Thus, while the information missing from

this representation may be of interest, it is not needed for
the claims made in this paper.
(a) Bootstrapping community detection results. To assess

the stability of the communities found via the optimum
modularity community detection algorithm, bootstrap tests
were administered by repeatedly testing hypothetical net-
works constructed from resampled correct responses, as
explained in Sec. III B. We first discuss our examination of
the communities arising in the direct association network
and then turn our attention to the communities in the
indirect association network.
For the direct association network, in every bootstrap

test, the elements associated with the work as a change in
energy argument and the work as a dot-product argument
were well separated from each other. For example, consider

FIG. 4. Examples of each type of response to the work-energy task. Each example is an actual student-generated chain.
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the reasoning element frequency plots shown in Figs. 6(a)
and 6(b). The plots indicate the percentage of bootstrapping
trials in which each element was included in a specified
community. For these tests, an element that was found to be
in the same community as the general statement of the

principle of energy conservation (i.e., element 1) was
considered to be a member of the work as a change in
energy community. Similarly, elements found in the same
community as the statement of work as a dot product
(i.e., element 4) were considered members of the work as a

(a)

(b)

FIG. 5. A representation of the communities found in (a) a direct association network and (b) an indirect association network, both
built from correct responses to the work-energy task described in Sec. IV. A. 2. Elements that are aligned with a work as dot-product
argument are colored blue and the elements aligned with the work as a change in energy argument are colored green. The answer
element is colored yellow. The modularity is given for reference. Note the especially dense connections between elements 5 and 6,
suggesting a tight association between those elements in (a).
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dot-product community. The frequency plots reveal that the
two arguments are well separated in the network since no
element associated with the work as a change in energy
argument appears in the work as a dot-product community,
and vice versa, in close to 100% of the trials.
The reasoning element frequency plot for the two-

element community shown in Fig. 5(a) [Fig. 6(c)] shows
that the two elements “the force on the particle is to the

right” (element 5) and “the displacement vector is to the
left” (element 6) are always coupled together in the same
community (1000 times out of 1000) but that between 30%
and 40% of the time, the elements concerning the dot
product (elements 3 and 4) are also included. These results
indicate that this two-element structure is indeed present in
the network.
It should be noted that in the reasoning element

frequency plot for the work as a dot-product community
[Fig. 6(b)], two elements (element 7 and element 14)
approach, but remain below, the 60% threshold for mem-
bership in that community. Our threshold was set at 60% to
ensure that elements were in the community more than half
the time, but one could argue that these two elements also
belong in the community or that the threshold should have
been more restrictive—say 75% of iterations. The points
made above about community membership in the work as a
change in energy community are valid for a range of
thresholds and do not rely solely on the 60% threshold set
for this study. Additionally, the main point we are making
here—that the bootstrap frequency test gives meaningful
information about the two-element substructure shown in
Fig. 5(a)—is valid also for a range of thresholds because
the two elements in the substructure (elements 5 and 6) are
well below the threshold for membership [around 40% as
shown in Fig. 6(b)] and therefore are more easily seen as
primarily belonging to an alternative community.
Based on the reasoning element frequency plots for

the indirect association graph (see Supplemental Material
[71]), all of the work as a change in energy argument
elements are found 100% of the time in the community
with the statement of the principle of energy conservation,
and the elements related to the work as a dot product
argument are likewise found 100% of the time with the
statement of work as a dot product. Thus, we felt very
confident in the robustness of the community structure
depicted in Fig. 5(b).

5. Network sparsification method applied
to work task correct responses

We now explore the usefulness of network sparsification
by analyzing a direct association network built from
the correct responses to the work task. Figure 7 shows a
sparsified version of the direct association network at a
threshold of α ¼ 0.2. The elements in this figure are color
coded according to the same color scheme used in Fig. 3.
In Fig. 7, the two independent arguments are again

separated as distinct in the network since the elements
associated with the energy argument are separate from the
elements associated with the dot-product argument (with
the exception of element 8, which seems to serve as a
bridge as will be discussed below).Furthermore, examina-
tion of the network reveals the existence of two clear chains
of reasoning, each of which appears to include general
principles (such as the principle of energy conservation or

(c)

(b)

(a)

FIG. 6. Reasoning element frequency plot for three commun-
ities present in the direct association network, including (a) the
work as a change in energy community, (b) the work as a dot-
product community, and (c) the two-element force and dis-
placement community [see Fig. 5(a)]. The plot indicates the
percentage of the trials in which each element was included in
the specified community. A dotted line corresponds to the 60%
threshold used for ascertaining community membership in the
bootstrapping tests.
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the definition of work as the dot product of the force and
displacement vectors) and to subsequently step through the
application of the specifics in the problem statement before
finally arriving at an answer. By qualitative inspection of
the responses, it was seen that the element “the system of
interest is the point particle” (element 10) was indeed a
common starting point for students, as well as “the dot
product is…” and “work can be computed by…” (elements
3 and 4). Additionally, the answer element was a common
end point. Thus, based on the sparsified undirected
graph and this additional information, the students in this
case appeared to generally be starting with first principles
and then applying situation-specific constraints to arrive at
an answer.
(a) Assessing the fidelity of the sparsified representation.

While the features of the sparsified graph are of interest,
it is also good to assess, to the extent possible, whether they
are true representations of the network structures or
whether they are artifacts of the sparsification process.
To assess the fidelity of the sparsified representation, we
compare features of the sparsified network to network
measures applied to the unsparsified network.
The first feature of interest is the observed topology of

the network. The topology of the work as a change in
energy argument elements, shown in Fig. 7, is observed
to be quite linear, while the topology of the elements
associated with the work as a dot-product argument is more
interconnected. These apparent topological differences are
reflected in the global clustering coefficients for each
argument (recall from Sec. III. B. 3 that a global clustering
coefficient quantifies how interconnected a network is). To
determine if the two separate arguments (energy vs dot
product) in the unsparsified network had the same quali-
tative level of interconnectedness, we compared subnet-
works of the original unsparsified network. To create a
subnetwork, we took the original unsparsified network of
student responses to the work task and deleted all the nodes
that did not pertain to a specific argument. We created two
subnetworks for comparison: (i) a subnetwork of just the
work as a change in energy elements, and (ii) a subnetwork
of just the work as a dot-product element. Analysis of an
unsparsified subnetwork composed of solely the elements

in the work as a change in energy argument yields a
clustering coefficient of 0.48. The global clustering coef-
ficient of an unsparsified subnetwork consisting of just
the elements in the work as a dot-product argument is
0.89—substantially higher. Thus, the relative interconnect-
edness of each of these arguments in the original, unspar-
sified networks (indicated by the clustering coefficients)
appears to be preserved even after the sparsification process
(indicated by the topology of the sparsified network); this
consistency highlights both the fidelity and reliability of the
chosen sparsification technique in retaining key character-
istics of the network structure.
Another observed feature of the network structure is that

element 8, “the particle is slowing down,” bridges the two
independent arguments. We sought to ascertain whether or
not this element also served as a bridge in the unsparsified
network. Bridges tend to have higher betweenness central-
ity as they are essential to the flow of information through a
network (upon which the betweenness centrality is based),
which means that betweenness centrality is a good measure
to assess whether the feature is a bridge in the unsparsified
network. The two elements in the unsparsified network
with the highest betweenness are “the change in kinetic
energy is negative” (element 12) and “the particle is
slowing down” (element 8). These two elements, inciden-
tally, have the same betweenness. Furthermore, in the
sparsified network, those two elements also have the
highest betweenness centrality. Thus, the unsparsified
and sparsified networks share topological features that
suggest to us that the sparsified structures are reliable
representations of the original network structures on the
basis of betweenness centrality as well.
The location of “the particle is slowing down” as a bridge

in the network may be attributed to that particular element
being used frequently in both the work as a dot-product
argument and the work as a change in energy argument.
Upon more detailed analysis of student responses, it was
found that in the work as a change in energy argument,
the element was used to justify why the kinetic energy
(and thus the work) is negative, whereas in the work as a
dot-product argument, the element was used to describe
the consequence of the force and displacement being in

FIG. 7. A representation of a sparsified (α ¼ 0.2) direct association network built from correct responses to the work task. The
elements are color coded according to the line of reasoning they are useful for: green elements are useful in the energy argument, and
blue elements are useful in the dot-product argument.
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opposite directions. This latter use may have stemmed, in
part, from students referencing the task prompt, which
noted that the particle “is slowing down because of a force
pushing to the right.”

6. Discussion of results

The separation of the elements into two distinct lines of
reasoning in both the community detection results and the
sparsification results shows that network analysis of chain-
ing task data can explore the content of students’ various
arguments in a meaningful way. Additionally, the results
show the role that each type of network (indirect vs direct
association) can play in examining student reasoning.
Based on our analyses, finding communities in the indirect
association network seems best suited for determining
which lines of reasoning are present among the responses,
whereas community detection applied to direct association
networks allows for greater resolution of the subarguments
that make up those lines of reasoning.
Bootstrapping is an indispensable part of community

detection. The reasoning element frequency plot revealed a
stable subargument structure in the direct association net-
work comprised of the elements “the force on the particle is
to the right” (element 5) and “the displacement vector is to
the left” (element 6). We would expect those two elements
to be more closely associated with each other in the
network since they were often placed next to each other
in student responses, both in the chaining format and in
free-response versions of this question. Indeed, the algo-
rithm is sensitive to that structure.
The sparsified network appears to give information about

how students viewed the structure of an argument. The
linearity of the work as a change in energy argument and
the nonlinearity of the work as a dot-product argument
suggest a difference in how students approached those two
arguments. The linearity or nonlinearity of the associations
between a group of elements indicates that many students
either responded with similar ordering of the elements
(creating a linear network) or that there was not a
preference for which elements came before others in the
reasoning chain (creating a clustered, nonlinear network).
It could be that this is inherent to the elements provided
or it could be indicative of a particular learned approach
to a problem.
Even if the specific interpretation of the structure is not

always immediately apparent, the ability to quickly and
efficiently characterize how a large group of students is
approaching a line of reasoning can be very useful to
instructors and researchers alike.
It is important to note, however, that the clear chain of

reasoning shown in the sparsified graph does not neces-
sarily represent the chain of reasoning constructed by the
majority of individual students. Actually, only 2 students
out of 100 responded with chains that included the first
four elements of the energy argument (namely, elements 1,

9–11) in the order represented in Fig. 7, and only 8 used
all four elements in their chain. Many students only cited
parts of the argument, inserted irrelevant elements into their
argument, arranged the argument differently, etc.; still,
these students constructed their arguments in a way that led
to the majority of the associations being between those
four elements in the ordering shown in Fig. 7. Thus, the
sparsified network represents a “wisdom of the crowd”
result [72,73], a synergistic classroom consensus on how
the elements ought to be arranged that transcends the
reasoning chains constructed by individual students.
Further evidence of this synergistic consensus or wisdom

of the crowd is provided by the results of the betweenness
calculations. In the full, unsparsified network of correct
student responses, the element “the particle is slowing
down” served as a bridge between the two independent
arguments and therefore has a high betweenness centrality.
However, while that particular element was used by 27
students, only 2 students used the element in between
the two arguments in their reasoning chain. Instead, the
element’s high betweenness centrality offers a glimpse into
how the students as a whole viewed that particular element;
in the logical landscape of this problem, the information
that the speed is decreasing can be seen as relevant to both
arguments. An implication of observing a dual-relevancy
element is that the identified element may serve as a
possible pivot point for shifting from one argument to
the other during, for example, a classroom discussion of the
solution to the task.
This classroom consensus reasoning can be useful in

identifying where a class stands with respect to the usage
of certain arguments. For instance, the work task was
administered to two different calculus-based introductory
mechanics courses at the same university, but with different
instructors who had different instructional emphases. The
sparsified network shown in Fig. 7 was derived from
student responses during one of these courses and repre-
sents a full work as a change in energy argument, whereas
the sparsified network of responses from the other class
(see Supplemental Material [71]) gave a truncated work as
a change in energy argument that only associates the
elements “in this case, the net external work done is
equivalent to the change in kinetic energy” (element 11)
and “the change in kinetic energy is negative” (element 12)
before arriving at an answer. The work as a dot-product
argument, however, appeared to have been articulated in
full by students in that same class. We speculate that the
dissimilarities in the work as a change in energy arguments
between the two courses are due to known differences in
how each of the instructors approached problem solving
with work and energy conservation. Such an effect has been
noted in the literature [74]. However, we cannot rule out
other factors such as the epistemological stance of the
instructor and/or students, mastery of work-energy-related
content, how each instructor graded reasoning for partial
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credit, etc. Our network data alone cannot isolate the reason
for the difference, but they do provide a method of quickly
ascertaining the nature of the difference. Thus, we find
chaining tasks coupled with network analysis to be a useful
diagnostic tool in investigating student reasoning patterns
throughout instruction.

B. Isomorphic graph tasks

In this section, we report on student reasoning on a
collection of four similar tasks administered over the course
of two subsequent semesters of introductory calculus-based
physics. Each of the tasks was designed to foreground
the same line of reasoning in four different contexts. This
experiment aimed to answer research question RQ2:
“To what extent can our methodologies be used to track
and document the development of a specific line of
reasoning over the course of a two-semester introductory
physics sequence?” Network analysis of these four tasks
provided evidence that students developed a more sophis-
ticated line of reasoning over the course of instruction.
In this section, we focus specifically on the community
detection technique in order to highlight this application of
network analysis, but for brevity’s sake, we do not discuss
the other network measures.

1. Physics question overview

As part of an investigation of the impact of salient
distracting features on patterns of student reasoning in the
context of introductory physics, we developed four chain-
ing-format graph tasks that are isomorphic in structure and
are based upon one task in the literature, which we refer to
as the kinematics graph task [9,18,32,75,76].
In the kinematics graph task, shown in Fig. 8, students

are asked to determine when the speeds of two cars are the
same by examining a plot of position vs time with two
graphs representing the motion of the two cars. At time A,
the slopes of the two graphs are the same, and at time B, the
two graphs intersect. The correct answer is obtained by
observing that the velocity is the derivative of position with
respect to time, which on a graph corresponds to the slope
of the tangent line at a point. Comparing slopes allows
students to determine that the speeds (i.e., the magnitudes
of the velocities) are the same at time A. As has been
previously documented [9,18], however, many students
answer that the speeds are the same at time B, the
intersection point of the two graphs. The patterns of
incorrect responses on these types of graphs have led to
researchers investigating “slope-height confusion” and
other difficulties related to interpreting and using graphs
in a physics context [75–77], and these graph tasks have
also been used to examine the impact of salient distracting
features and domain-general reasoning phenomena on
student performance in physics contexts [9,18].

All four tasks are structurally parallel, requiring students
to recognize that a desired quantity can be obtained from

the derivative, i.e., slope, of a given graph. The differences
are in the given quantities being graphed on the x and y axes
and the quantity that can be obtained from the slope of the
graph. In addition to kinematics, graph tasks were con-
structed to highlight the relationship between force and
potential energy, electric potential and field, and magnetic
flux and electromotive force (emf). The tasks were pre-
sented to students near the end of instructional coverage of
kinematics, potential energy, electric potential, and mag-
netic flux, respectively. (The other three tasks are presented,
in detail, in Appendix B, Fig. 12.)

2. Chaining task implementation

The reasoning elements provided to the student in each
task have been modified to fit the context but remain
isomorphic in their structure. The reasoning elements are
shown in Fig. 9. Unlike the work-energy task discussed in
the previous section, these isomorphic tasks include a large
number of elements that are irrelevant to both the correct
and common incorrect lines of reasoning; indeed, 7 of the
12 elements are not relevant to any common line of
reasoning. Note that many of these irrelevant elements
are not truly isomorphic across tasks (for instance, the
element “a ¼ dv=dt” constitutes the second derivative
of position, whereas the element “F ¼ dp=dt” does not
correspond to a second derivative of potential energy.
However, all relevant elements, the surface features of
the tasks, and the underlying structure of the correct line of
reasoning are isomorphic.
There is an inherent logical structure among the pro-

ductive elements provided to the students (shown in red in
Fig. 9). While, at first glance, it may appear that the
elements “v ¼ dx=dt,” “the derivative, df=dx, at a specific

FIG. 8. The first of four isomorphic graph tasks adapted
from Ref. [9]. The other three graph tasks are shown in detail
in Appendix A. Note that this is the same task as that shown
in Fig. 1.
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point is the slope of the tangent line of the f vs x graph at
that point”, and “slope of a position vs time graph is the
velocity” are equivalent and interchangeable statements,
they actually constitute a logical argument justifying
why the slope is the velocity; namely, the two elements
“v ¼ dx=dt” and “the derivative[…] is the slope…” com-
bine to imply the third element. We refer to the collection of
these three elements as the velocity triad (even outside of
the kinematics context). We also refer to the element “slope
[…] is the velocity” as a derived heuristic because it
represents a chunked knowledge piece [78] that is derived
from two independent principles. While it would be

acceptable to many instructors if students were to simply
use the slope as a velocity-derived heuristic, all three
elements are needed to provide a logically sound argument.
Their inclusion, then, provided an opportunity for addi-
tional insight into whether students tend to justify their
arguments with first principles or instead rely on derived
heuristics practiced in class.

3. Performance overview

Given the contexts associated with these isomorphic
tasks, data were collected in both semesters (fall and

FIG. 9. Reasoning elements provided to the student on each of the four isomorphic graph tasks. Elements that are productive to a
correct line of reasoning are color coded in red, elements that are not productive are color coded in blue, and answer elements are color
coded in yellow.
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spring) of the on-sequence calculus-based introductory
physics course. All tasks were administered after relevant
course instruction. Chronologically, the kinematics task
was administered first in the year, the potential energy task
second, the electric potential task early in the second
semester of physics, and the magnetic flux task last.
Because the four graph tasks were administered across a
single academic year, most students who completed the
introductory calculus-based sequence would have seen and
completed multiple, and likely all four, tasks.
Student performance for these tasks is shown in Table I.

The percentage of responses answering correctly increased
very slightly over the two-course sequence, but the salient
distracting feature (the intersection point) remained a
strong distractor, with approximately 20% or more of
students answering consistently while attending to the
intersection point.

4. Arguments identified via community detection

Each indirect association network (see Supplemental
Material [71]) built from all responses (correct and incor-
rect) to the graph tasks generally breaks into two commun-
ities: the correct answer community, which always includes
the elements isomorphic to “v ¼ dx=dt,” “slope of a
position vs time graph is the velocity,” and “slopes are
the same at time A” and sometimes includes the “derivative
is slope” element; the common incorrect answer commu-
nity, which includes the element isomorphic to “the lines
intersect at time B”; and all of the other elements in a
loosely connected network. Interestingly, the element “the
derivative, df=dx, at a specific point is the slope of the
tangent line of the f vs x graph at that point.” (element 6),
which is very relevant to the correct line of reasoning,
was not found in the correct answer community for the
kinematics and potential energy graph task but was found
in the correct answer community in the electric potential
and magnetic flux task. We would have expected this
element to always be associated with the correct answer.
To investigate this phenomenon more fully, we examined

community structure in indirect association networks
comprised of just the correct responses to each task.

The resulting networks are shown in Fig. 10. The elements
that make up the full, detailed correct line of reasoning
are colored red in the figure, while all other elements are
colored dark blue except the answer element, which is
colored yellow. The derivative is slope element is not in the
main answer community for the first two graph tasks but
becomes more tightly associated with the correct answer
in the final two graph tasks. One may notice that, as
mentioned in Sec. IV. A. 4, the particular representation,
shown in Fig. 10, obfuscates the number of links between
the derivative is slope element and the other red elements.
As we did there, we note here that the underlying
community detection algorithm determined that the links
between the derivative is slope element and the other red
elements were less significant than the links within the
correct answer community circled in red.
A reasoning element frequency plot for the correct

community, shown in Table II, revealed that the derivative
is slope element is indeed increasing in use across the four
tasks with the exception of the potential energy task and
thus increasing over the course of the two-semester
introductory calculus-based physics sequence. Again, as
in Sec. IV. A. 4, this claim holds even if the 60% threshold
for membership of the derivative is slope element in the
correct answer community was either more restrictive (such
as 75%) or less restrictive (50%).
The community structures of the direct association

networks for the four graph tasks (see Supplemental
Material [71]) also reveal a shift in how the derivative is
slope element is used by students. In the responses to the
kinematics and potential energy tasks, the element is not a
member of the correct answer community or in the same
community as the other productive elements, whereas in the
responses to the electric potential and magnetic flux tasks,
the element is more closely associated with the productive
elements. The derivative is slope element appears to be an
important indicator of the development of this line of
reasoning. A particularly compelling community structure
is found in the direct association network built from
correct responses to the magnetic flux task, which asks
students to identify the time at which two emfs are the
same from a graph of magnetic flux as a function of time.
This community structure (shown in the Supplemental
Material [71]) shows a subcommunity made up of the
“velocity triad” elements, which include the derivative is
slope element. In a direct association network, a connection
is only formed between two elements that are placed
consecutively. Thus, the subcommunity of the “velocity
triad” elements means that those three elements were
consistently placed next to each other in student responses.
This confirms the elevation of the derivative is slope
element in the magnetic flux task compared to the kin-
ematics and potential energy task.
We note that other interesting insights could be drawn

from the sparsified networks of data from the graph tasks,

TABLE I. Overview of student performance on the four
isomorphic graph tasks. The correct answer choice is indicated
in boldface.

Response
Kinematics
(N ¼ 121)

Potential
energy

(N ¼ 183)

Electric
potential
(N ¼ 77)

Magnetic
flux

(N ¼ 187)

Time A (correct) 63% 58% 62% 78%
Time B
(intersection)

33% 36% 31% 19%

Time C 0% 3% 4% 3%
Never 4% 3% 3% 0%
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(b)

(c)

(d)

FIG. 10. Community structure detected in indirect association networks comprised of correct responses to the graph task as posed in
the context of (a) kinematics, (b) potential energy, (c) electric potential, and (d) magnetic flux.
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but our focus in this section has been on highlighting
the affordances of community detection in a specific
application.

5. Discussion of results

The results of network analysis of the four isomorphic
graph tasks again demonstrate that community detection can
meaningfully separate lines of reasoning in the responses
according to the answer choice. Thus, the key result that
network analysis of chaining task data provides useful and
interpretable information is replicated in this task.
Perhaps the most important result from the isomorphic

graph tasks is the observed development of a cohesive line
of reasoning regarding the “velocity triad” of elements,
seen in the community detection analyses presented in
the previous section. The identified communities in both
the direct and indirect association networks indicate that the
derivative is slope element was not tightly associated with
the other productive elements (including the correct answer
element) for the mechanics tasks but was tightly associated
with those elements for the electromagnetics tasks.
The proportion of correct responses that include the

derivative is slope element is 14% for the kinematics task,
24% for the potential energy task, 24% for the electric
potential task, and 27% for the magnetic flux task,
indicating that the frequency of use overall is not increasing
much over the last three tasks. Instead, the element must
have been more frequently placed in correct responses that
include only the other productive elements rather than
being placed in responses that include unproductive ele-
ments as well—that is, the element is being used “more
productively.” Additionally, students must have been plac-
ing the derivative is slope element in closer proximity to
the other productive elements since the direct association
networks also saw a tighter coordination between those
elements.
We propose that, as the sequence progresses, the students

responding to these tasks either better understand the
connection between that element and the other elements
or are more comfortable with the use of that element
alongside the other elements.

Why would this shift occur? One explanation for the
relative nonuse of the element among correct respondents
on the kinematics graph task is that the phrase “slope of a
position vs time graph is the velocity” is often a “chunked”
cognitive element or heuristic, even among experts.1 We
presume that the students who answer correctly on this task
in the context of kinematics employ the learned heuristic
that the slope of a position vs time graph is the velocity and
ignore the first principles from which that heuristic is
derived. When asked the question in a context in which
they have not formed such a heuristic, they may then resort
to a wider examination of the separate elements.
The heuristic may have been formed to varying degrees

in other contexts. For instance, in the magnetic flux task, it
may be that students were less familiar with the application
of Faraday’s law to a graph of magnetic flux than they were
with, say, how to get an electric field from a graph of
electric potential. Because of a lack of familiarity, students
may have relied more on calculus to make a connection
between Faraday’s law and the graph, as opposed to simply
knowing from the features of the graph how to obtain
an answer. This is supported by a brief review of the
curriculum. In the course textbook [69], there are many
examples of switching between field and potential graphi-
cally, but most examples concerning Faraday’s law were
centered on nongraphical considerations. Thus, the heu-
ristic was probably more familiar in the electric potential
task than it was in the magnetic flux task, with both being
less familiar than the kinematics task.
Another possibility is that the students, over the course of

the two semesters, became more comfortable and/or more
proficient with the language and concepts of calculus, such
that they felt comfortable endorsing elements that explicitly
included those concepts. As part of our validation efforts
related to these reasoning chain construction tasks, some
think-aloud interviews with students were conducted.
These interviews seemed to support this interpretation as
well, at least in the aspect of students not feeling comfort-
able with the language of calculus employed on the
kinematics task. Further work would need to be done to
determine the extent to which comfort with calculus
impacts the use of the derivative is slope element. A
significant percentage of students were concurrently taking
the first calculus course as a corequisite at the time the
kinematics task was administered, and derivatives were
covered later in the semester in calculus relative to
kinematics in physics.

TABLE II. The results of bootstrapping test for the correct
answer community. Results are shown in table form rather than a
plot for ease of reading. Elements referencing velocity are in
quotes as a reminder that in the nonkinematics graph tasks, this
element contained words appropriate to the specific context.

Kinematics
Potential
energy

Electric
potential

Magnetic
flux

Derivative is slope 46% 29% 74% 100%
“v ¼ dx=dt” 85% 100% 95% 100%
Slope is “velocity” 100% 100% 100% 100%
Slopes same at A 100% 100% 100% 100%

1We have administered the chaining version of the kinematics
graph task to physics and other STEM educators and a frequent
comment we hear is that the three elements “v ¼ dx=dt”,
“derivative is slope”, and “velocity is slope” are functionally
equivalent. Only when it is pointed out that the former two are
independent statements that combine to justify the latter is it
agreed upon that the three elements are actually logically
different.
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Evidence for a shift in the structural usage of the
derivative is slope element across the four tasks appears
across multiple metrics, underscoring the utility of the
network analysis of chaining tasks for examining student
formation of specific reasoning chains. While the cause of
the shift cannot be ascertained from these data alone, the
shift is evident in the communities detected in indirect
association networks, as well as the communities detected
in direct association networks, the sparsified versions of
direct association networks, and the betweenness calcu-
lations on those direct association networks (the latter two
are not discussed in this paper for brevity). Thus, network
analysis techniques are sensitive to shifts in reasoning
chains over time and, as such, could be used to gauge how
students are building reasoning skills over time.

V. CONCLUSIONS AND FUTURE WORK

The overarching goal of this manuscript was to illustrate
how a new methodology, network analysis of student
responses to reasoning chain construction tasks, can gen-
erate valuable knowledge surrounding how students reason
on physics questions, specifically those questions that
require stepping through a series of qualitative inferences.
As we have shown, network analysis of responses to
chaining tasks generates novel data related to both the
content and structure of student arguments. Here, we will
discuss general affordances seen across both tasks and then
highlight how these affordances, and other patterns observed
in the data, can be used to bolster existing analysis methods
or generate entirely new research questions.
Across all tasks, we have demonstrated that network

analysis of chaining task data can separate lines of
reasoning associated with different answers. Via commu-
nity detection, we were able to find elements that were
more tightly associated with a given answer than the other
elements in the set (as in the case of the kinematics graph
task); these tight associations were interpretable as typical
reasoning seen from students in free response or interview
settings. One affordance of the network methodology
is that the categorization of the elements into lines of
reasoning associated with a particular answer is automatic
using the community detection algorithm, so large datasets
can be analyzed quickly. Furthermore, by studying the
community structure in both direct and indirect association
networks, one can determine a set of elements that are core
to an argument, and which are associated but somewhat
peripheral to arriving at a particular answer. Clear dis-
tinctions between correct and incorrect arguments were
also seen in the sparsification results of the graph tasks,
indicating once again that the lines of reasoning associated
with particular answers can be meaningfully separated in
chaining task data.
Network sparsification yields further insight into another

aspect of student reasoning with the provided elements:
on each task shown, sparsification was meaningfully

interpreted as the “wisdom of the crowd” consensus about
the structure (or logical landscape) of the identified argu-
ments. In most of the tasks on which we report, the
structure of the associations among the elements revealed
information that would not have been available from an
examination of the responses individually. For instance, in
the work-energy task, the linear structure of the work as a
change in energy argument compared to the clustered
structure of the work as a dot-product argument would
have been hard to ascertain by simply studying the
individual responses alone.
A further, perhaps more powerful, use of network

analysis of chaining task data is to observe specific lines
of reasoning before, during, and after instruction. The
isomorphic graph tasks revealed that over the course of two
semesters, a specific reasoning element representing a
specific connection between calculus concepts and features
of a graph (the derivative is slope element) was more
productively incorporated into a line of reasoning relating
velocity to features of a position graph. These results
suggest that network analysis of reasoning chain con-
struction task data can be used to isolate and study the
development of specific reasoning skills. This could
be helpful in assessing the impact of instructional
materials on student reasoning with specific arguments.
For instance, many instructional materials (especially
scaffolded tutorials) step students through qualitative
inferential arguments while developing physics concep-
tual knowledge or teaching problem-solving strategies.
These same qualitative inferential arguments are then
expected to be used on new but similar questions such as
those found on exams. Chaining tasks could be used to
study student use of these arguments before, during, and
after instruction. Coupled with network analysis tech-
niques, chaining tasks can be utilized to study many types
of arguments, specifically arguments related to the
reasoning difficulties identified in the physics education
research literature.
Reasoning chain construction tasks may have the

potential to investigate theories of student reasoning
[18], especially when used in conjunction with network
analysis. As one example, studies using the resources
framework posit that different reasoning outcomes
may share a subset of similar resources, with only one
or two resources not in common with each other [59,61].
By studying patterns of element selection and, more
particularly, how students arrange those elements, evi-
dence for (or against) this view may emerge from
reasoning chain construction tasks. The focus on the
structure of associations made by students provides
access to unique data regarding student qualitative rea-
soning and lends itself to the exploration of various
theories of qualitative reasoning.
Network analysis of reasoning chain construction tasks

has the potential to become a valuable tool for researchers
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in physics education. Here, we have demonstrated its
affordances for facilitating the investigation of specific
reasoning chains through novel data generation and inform-
ing instruction in new ways. Perhaps most importantly, it
has the potential to be a distinct asset to ongoing efforts to
investigate and strengthen student reasoning in physics,
including those that attend to domain-general reasoning
phenomena.
Finally, reasoning chain construction tasks represent a

novel activity type for students that highlights inferential
reasoning and could potentially be used as a formative tool
for teaching students to attend to deductive processes.
Chaining tasks are fairly simple to create. An instructor can
readily review students’ written responses to a specific
question and construct a set of chaining task elements from
those responses. While the network analysis techniques
employed here are generally not feasible without access to
and fluency with computational software, in the future, it is
possible that more sophisticated online homework systems
may have the ability to provide the results of the network
analysis to interested instructors without the need for
the instructor to actually perform that analysis. We have
begun working to ensure that there will be a platform
on which instructors can develop and administer online
reasoning chain construction assessments with relative
ease. Implementing chaining tasks in an online homework
platform would also create the possibility of large datasets
for which network analysis is particularly helpful in
exploring. This has the potential to increase the general-
izability of the results and reveal patterns across many
different but related tasks.
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APPENDIX A: NETWORK ANALYSIS
TECHNICAL OVERVIEW

In this section, we present a technical overview of the
network analysis techniques employed in this work.

1. Locally adaptive network sparsification (LANS)

Network sparsification aims to uncover the “backbone”
structure of a large network by deleting links (sometimes
called edges) that are unimportant to that structure [64].
One simple method for achieving this is to establish a
threshold value for a link’s weight and delete all links that
fall below this threshold. For instance, one might decide a
connection is only relevant if more than 5% of students
made the connection, and so one would delete any link that
had a weight less than the value of 0.05 · N, where N
represents the population size. However, this method does
not preserve some structures that are important to the
network. Perhaps, a small group of students decided to be
detailed in their reasoning chains, and so they added
structure to the network that is relevant to overall patterns
of reasoning but, due to its low prevalence among the whole
population, this structure might get cut from the network by
an arbitrarily set threshold weight. Additionally, it may be
hard to guess, a priori, a threshold weight that preserves
these structures and still reduces the complexity of the
network.
A more sophisticated, method of sparsification is locally

adaptive network sparsification (LANS) [64]. In LANS, the
statistical significance of each link is calculated for the two
nodes locally and a link is deleted only when it is found to
be below a threshold value of significance to both nodes.
This preserves the local structure that would be dismantled
using a threshold link weight method. The LANSmethod is
implemented by first calculating the fractional link weight
of a link connecting nodes i and j, as

pij ¼
wijPNi
k¼1 wik

;

where wij is the weight of the link, and the sum in
the denominator is over all the nearest neighbors of the
node i. Then, the cumulative distribution function (CDF) is
computed as

Fij ¼
1

Ni

XNi

k¼1

1̂fpij < pikg;

and the link is retained if Fij > α, where α is the
predetermined significance threshold. These same calcu-
lations are completed for every link in the network. The
function 1̂fpij < pikg returns the value 1 if the argument is
true and 0 if the argument is false.
To give an example of how this method works, a sample

network [Fig. 11(a)] was constructed, and the technique
was applied. The main structure of the original network is
represented by the lettered nodes. The link between nodes
D and E is 7 times weaker than the link between nodes D
and C; all other links between lettered nodes are roughly
equivalent in strength. The added nodes 6–8 were given
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random connections to each other and the other nodes in
the network to simulate smaller structures that may be of
interest and generate “noise.” The sparsified network is
shown in Fig. 11(b). The smaller structures have been
retained even after the network has been simplified via the
LANS technique but the connection between nodes D and
E has been severed along with the weaker connections to
node B (except the one to node 6). Thus, this technique is
able to preserve small structures while still detecting and
removing weaker connections among the larger structures.
Note that the four connections to node 6 remain. This is

because those four connections are equally significant to
node 6. More generally, anytime a node has only links of
weight one, all of those links will be preserved due to
the nature of the algorithm. Because of the tendency to
automatically preserve nodes such as node 6, we “prune”
sparsified networks by removing all links of weight 1 after
sparsification to make the network more readable.
For the work presented here, the threshold α was chosen

by lowering the threshold as much as possible before either
nodes or collections of nodes began to be separated from
the network. For instance, in some networks, there are
elements that are more tightly associated with each other
than with the rest of the network, and these may break off
during sparsification when the threshold is too low. We
wished to preserve the structure of the network to the extent
possible while still simplifying it, so we felt uncomfortable
breaking the network into separate pieces. Typical values
of α for this work ranged from 0.1 to 0.2. These values
ended up being consistent with those from other studies
using LANS [64].

2. Community detection

The techniques of network analysis allow us to quanti-
tatively determine groupings of elements, or communities,
which are more tightly associated with each other than
with the rest of the network. There are many methods of
community detection available, and there is no single
“best” method [65]. The method used in this work is
termed optimum modularity community detection [66].

This method of community detection was chosen based on
its potential for interpretability of results and because the
underlying statistical nature of the method allowed it to be
useful for a broad range of network types. It was also
selected because the method allowed for a rigorous
definition of a community as an indivisible subgraph of
the network.
Network modularity is proportional to the number of

links between a pre-defined group of elements minus the
number of expected links in an equivalent network (i.e., one
with the same nodes) in which the links are placed at
random. The expected number of links is kikj=2m, where ki
and kj are the degrees of node i and node j, and m is the
total number of links in the network and is given by
m ¼ 1

2

P
i ki. Thus, the expected number of links is related

to the degree of the node: the higher the degree, the more
likely it is to have links in a network in which the links are
placed at random.
The modularity is maximized by dividing the network

into two subgraphs of maximum modularity and then
repeating this process for each of the two parts. If any
proposed division causes the total modularity to decrease,
the corresponding subgraph is preserved and considered
a community, and the algorithm moves on to the next
subgraph until all communities are found. Thus, a
community is defined as an indivisible subgraph of the
network.
Before relying on the results of community detection, it

is helpful to gauge how robust the community structure is.
Could small perturbations produce a different community
structure in the network? If the answer is yes, then it would
be reasonable to question the divisions made by optimizing
modularity. However, if the structures are impervious to
random insertions or deletions, this would be clearer
evidence of true community structure. To assess robustness,
we employ a technique based on statistical bootstrapping
that has been modified from Ref. [65] for the context of
chaining tasks.
For a dataset of N student responses, our bootstrapping

technique consists of creating a hypothetical dataset com-
prised of M ¼ N responses drawn at random from the N
actual student responses. (A specific response in the
original dataset may be selected more than once for the
hypothetical dataset; if this were not the case, the hypo-
thetical dataset would be equivalent to the actual dataset.)
This hypothetical dataset is treated as a new dataset and a
network is constructed from it. The community structure
of this new hypothetical network is found, and tests are
applied to the hypothetical community structure. The
process is then repeated for many iterations, tallying the
results of the tests to determine how frequent a particular
result is. It is suggested to perform as many iterations as
possible, but in chaining task analysis, the frequency of a
particular result converges on a specific value in under 1000
iterations. Accordingly, in the research described in this

(a) (b)

FIG. 11. Example network illustrating locally adaptive network
sparsification [64]. (a) The base network. (b) The same network
after sparsification at α ¼ 0.1.
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manuscript, a standard 1000 iterations were found to be
sufficient to obtain reliable information.
In this manuscript, we use the bootstrapping technique to

test how often particular elements are found in the same
community as a test element. We select an element of
interest (such as an answer element, or one indicative of a
specific argument being used) and determine which of the
other elements are consistently in the same community as
that element. By taking note of the community members in
each iteration, a frequency plot can be generated from the
results. We therefore call these reasoning element fre-
quency plots. An example of such a frequency plot is shown
in Fig. 6. We consider an element to be part of a community
if it is found in that community in at least 60% of the
iterations of the bootstrap test.

3. Network measures: Centrality and clustering

Two network measures, betweenness centrality and
global clustering coefficients, were utilized in the current
work and will be described here. Betweenness centrality
[67] is seen as a measure of a node’s control over the “flow”
in the network. A node’s betweenness was originally
defined as the number of shortest distance paths through
that node divided by the total number of shortest distance
paths in the network [67]. This definition applied only to
unweighted networks, and so the definition was modified to
respect the weights of the various links in the network by
defining “shortest distance” as a combination of the tradi-
tional “distance” (i.e., number of nodes on a path between
two end nodes) and a “conductance” (i.e., the weighting of
the different links on a path between two end nodes) [79].
The modification of betweenness of Ref. [67] for weighted
networks relies on a similar definition of shortest distance
and is represented as

dði; jÞ ¼ min

�
1

ðwihÞβ
þ � � � þ 1

ðwhjÞβ
�
;

where d is the shortest distance between node i and node j,
wgh is the weight of the link between nodes g and h, and β is
a positive tuning parameter set based on the context that the
network represents. When β < 1, the number of nodes in a
path becomes a greater influence on the distance, whereas

for β > 1, the weight of the links becomes a greater
influence. In chaining networks, the weight of a link
represents the number of students who made an association
between the two elements and so it should have the most
influence over the distance: a path that many students
established should be of smaller distance than a short path
that only a few students took. However, we do not wish to
completely drown out structures created by only a few
students. For this reason, we selected a value of 1.5 for β.
The betweenness is then calculated in the same manner as
for unweighted graphs—by finding the ratio of the number
of shortest paths through a given node to the number of
shortest paths in the network.
Global clustering coefficients were also defined origi-

nally for unweighted networks and needed to be extended
for weighted networks. The goal of a global clustering
coefficient is to quantify how interconnected a network is.
The clustering coefficient was originally defined as the
number of closed triads (grouping of three nodes all
connected to each other) divided by the total number of
triads, either open, (i.e., only two links among the three
nodes) or closed (i.e., all nodes connected) [68]. The direct
association network shown in Fig. 1 would have a
clustering coefficient of zero, while the indirect association
network shown in that figure would have a clustering
coefficient of 1. The idea of clustering is extended to
weighted networks by assigning a weight, ω, to each triad
in the network based on the weights of the links in the
triad [68]. The weights, ω, are computed from the geo-
metric mean of the weights of the two links stemming from
the center node of the triad. The clustering coefficient can
then be defined as follows, with τ representing the set of
triplets and τΔ representing the set of closed triplets:

Cω ¼ total value of closed triplets
total value of triplets

¼
P

τΔ
ωP

τ ω
:

Thus, if a network had many closed triads compared to
open triads, but the open triads were weighted more
heavily, the network would not be considered intercon-
nected. Conversely, if a network had few closed triads but
these triads weighted more heavily in the network, this
network would rightly be considered interconnected.
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APPENDIX B: ISOMORPHIC GRAPH TASKS

FIG. 12. Four isomorphic graph tasks used in the study.
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