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In this paper, we study the problem of wave scattering from finite heterogeneities (in 1- and 2-D)
by using the Atomistic Green’s Function (AGF) technique. The application of AGF to classical wave
scattering problems is novel and it allows us to compute the Green’s function of the scatterers, which
is central to understanding the dynamics of the problem and is, in general, difficult to obtain. The
AGF method also allows us to efficiently compute the numerically exact transmission and reflection
coefficients without the need for any artificial truncating boundaries such as perfectly matched layers
or Dirichlet to Neumann (DtN) maps. The technique generates the effective Hamiltonian of the
wave scatterer and uses it to compute the numerically exact Green’s function of the scatterer. The
formalism presented here is especially suited to scattering problems involving waveguides, phononic
crystals, metamaterials, and metasurfaces. To illustrate the utility of the technique, we demonstrate
the application of the method to three scattering problems: scattering from a slab (1D), scattering
from a finite phononic crystal (1D), and scattering from defects in a waveguide (2D).



1. INTRODUCTION

In this paper, we consider the broad problem of wave scattering from a finite scatterer into an infinite environment
from the perspective of the Atomic Green’s Function (AGF) method. The AGF method is appealing as it results in the
Green’s function of the scatterer, reduces the infinite problem to a finite problem without any arbitrary spatial trunca-
tions, and provides direct expressions for the efficient calculation of all relevant scattering parameters. The scattering
problem has a long history of research, with the basic underlying ideas summarized in classic resources *. The prob-
lem finds application in many areas, too numerous to summarize here but includes guided-wave scattering’ ™", seismic
scattering°, medical tomography”>'", calculation of radar' '~ and sonar'*'* cross-sections, etc. Scattering problems
in elastic metamaterials also offer intriguing possibilities, particularly in the development of invisible cloaks, where
innovative design methods based on elastic wave scattering cancellation within phononic crystals and metamaterials
have been proposed

A major concern in such problems is the process by which the infinite domain (the environment) is accounted
for in the numerical scheme. A whole class of techniques, termed wave-based methods''®, aims to tackle this by
expressing the solution in the environment using known basis functions which automatically satisfy the associated
wave equation there. In these methods, there is no artificial truncation of the environment domain, however, they
are known to suffer from slow convergence and ill-conditioned matrices'®'”’. A separate class of methods depends
upon truncating the infinite environment domain using an artificial boundary, thus making the problem amenable to
computations. In such methods, it is of paramount importance to determine the appropriate boundary conditions
which would prevent spurious reflections from the artificial boundary from polluting the solution in the interior. An
exact boundary condition which accomplishes this — called the Dirichlet-to-Neumann (DtN) map — was discovered by
Keller and Givoli in their landmark paper®’. Even though the DtN map is exact, it is computationally challenging
due to its non-local nature. To mitigate this, a whole host of approximate but local boundary conditions have been
proposed over the years. Among them, Engquis and Majda®' modified the Sommerfeld radiation condition and
expressed the outward normal derivative of the scattered field as approximate local differential operators. Also in
other studies”™~’, asymptotic expansions of the scattered field in the far field, or combination of a Green’s function and
integral approximation on the boundary were used to make other local approximate boundary conditions. Yet another
approximate alternative route, more popular in FEM programs, is the application of perfectly matched layers (PML)
just outside the artificial truncation. The purpose of PMLs is to absorb the outgoing waves at the artificial truncation
and dissipate away the energy using fictitious dissipation terms. Keeping in mind the necessity of non-reflecting
boundaries, different variations of finite element-based methods were also applied in the field of structural inspection.
More specifically, frequency-based FE models like Spectral Finite Element (SFE)*”, and Wave Finite Element method
(WFE)~® have been used to derive wave dispersion”’ and scattering in elastic waveguides with flaws

A tangentially related set of techniques which also does not depend upon artificial truncation is the Boundary
Element Method (BEM)“”°Y and it exploits the fundamental solutions to the wave equations to solve the radia-
tion/scattering problem”'»**. BEM is also an effective method for non-destructive evaluation of cracks using Rayleigh
waves, as it allows for the solution of integral equations derived from the Betti-Rayleigh reciprocity theorem”’. BEM
techniques suffer from hypersingular integrals’® compared to the Finite element method. To overcome the singularity
issue, special numerical integration techniques, such as the Nystrom method’” or the collocation method’”, can be
used to evaluate the integral equation more accurately. Additionally, special regularization techniques can be applied
to the integral equation to avoid the hypersingularities’*”®. Compared with the Finite Element Method (FEM),
the system matrices resulting from the BEM machinery tend to be smaller in size, but the computational cost for
assembling them can be higher since they are denser’”. However, sparse matrix techniques™’ and iterative methods
have been used to reduce the memory requirements.

Scattering problems have also gained prominence in the metamaterials literature. This began with research in the
development of cloaks™* " which seeks to minimize the total scattering cross-section of a finite region. The field of
metasurfaces deals exclusively with controlling wave-scattering through the design of patterned interfaces’ . Yet
another recent set of related applications has been in the area of semi-infinite metamaterials’”, with the elucidation of
exotic phenomenon like exceptional points in conservative systems’””". Given the vast and very disparate literature
on wave scattering, a unifying understanding could be made by approaching the problem through the perspective of
open systems’’. An open system, in a general sense, consists of a finite subsystem (scatterer) with discrete eigenvalues
(levels of energy) which is coupled to an environment possessing a spectrum which is continuous™. A major aim of the
theory of open systems is the derivation of the effective Hamiltonian of the scatterer which is a finite dimensional non-
hermitian matrix which encapsulates all the scattering behavior of the scatterer. In earlier works””, some scattering
problems in discrete mass-spring systems are solved using the interface response theory. This formalism allows the
calculation of the Green’s function of a perturbed system in terms of the Green’s functions of unperturbed systems.
Although both methods are based on the calculation of Green’s functions, the method of interface response theory
follows a complicated and relatively long path. On the other hand, using the open system point of view and calculating



the effective Hamiltonian present a simpler and physically more understandable approach in solving wave scattering
problems. It is worth highlighting that the scattering calculations described within the AGF formalism share some
similarities with the classical mode-matching technique in a sense that in both methods, some continuity conditions are
being projected on to the space of eigenfunctions to extract the scattering coefficients””. However, the AGF formulation
has broader applicability to a wider array of problems (including heterogeneous scatterers) since it incorporates the
Green’s function matrix in the solution. The classical mode-matching technique, as utilized for the 1D problem in
this paper, is suited for scattering calculations involving sharp interfaces or environments and scatterers which exhibit
spatial invariance. AGF can be used to solve for scattering problems involving sharp interfaces, spatially invariant
scatterers, as well as heterogeneous scatterers. From this perspective, AGF shares similarities with the global-local
approach”", offering versatility in handling complex scattering scenarios.

The notions of the open system and effective Hamiltonian are closely linked to the Green’s function framework.
In condensed matter physics, there exists a large corpus of Green’s function-based techniques used to study the
scattering of quasiparticles such as phonons, which are the wavelike excitations of the crystal lattice, by local defects.
In particular, considerable advances in the treatment of this problem have been made using the Atomistic Green’s
Function (AGF) method to analyze how phonons are transmitted and reflected by defects . For instance, using a
plane stress quasi-one-dimensional FEM model, modal transmission has been calculated recently for a finite phononic
crystal””. In this paper, we go beyond that and not only solve the scattering problem for a 1-D finite phononic crystal
using AGF, but also show how to apply the formalism to waveguide scattering problems. As we shall see later, the
close conceptual analogy between the phonons and acoustic/elastic waves suggests that key insights from the AGF
method can be transposed to the more general wave scattering problem.

In what follows, we first review the concepts of open systems and the Atomistic Green’s Function method (AGF)
in sections (2) and (3) and then elaborate on the implementation of the latter to solve scattering problems in a 1D
elastic wave problem. Section (4) moves one step further and discusses the implementation of the AGF for solving a
2D in-plane scattering problem in an elastic waveguide. There, the discretization using FEniCS, finding the dispersion
relations of Lamb waves using AGF, solving the scattering problem, and some numerical examples are discussed. The
machinery of the Decimation technique, which is an iterative method, is also reviewed in the appendix to be used in
finding the surface Green’s function matrices of the 2D problem.

2. OPEN SYSTEMS

Of interest in this paper are scattering problems involving acoustic and elastic waves. Some schematics of such
problems are shown in Fig. (1). The scattering problems consist of a finite scatterer — termed a device — embedded in
an infinite media — termed the environment. This view of the scattering problem is termed an open system since the
energy contained in the device is allowed to dissipate away to infinity”". In this problem, admissible waves traveling
in the environment get scattered by the device. These admissible waves are solutions of the dispersion relation which
characterizes wave propagation in the environment (with the device removed). The information about the scattered
waves is encapsulated in the scattering matrices (reflection matrix r» and transmission matrix t). The wave scattering
dynamics of the entire infinite problem (environment+device) is characterized by an infinite-dimensional Hamiltonian
H which, in general, cannot be calculated explicitly. The dynamics of the device, isolated from the environment,
is characterized by a finite dimensional Hamiltonian Hp which, by itself, cannot provide information about the
scattering processes which happen in the infinite problem. The purpose of the formalism presented in this paper
is to show how to combine H, Hp into an H.y; which has the same dimensionality as Hp but does provide the
full information about the scattering processes. H,s; is called the effective Hamiltonian of the device and, once
calculated, can be used to calculate the Green’s function of the device, Gp, through the inverse relationship:

Gp = [w? — Heps] '

Gp can then be used to calculate r,¢ and other derived scattering metrics through straightforward relationships
elucidated later in the paper. The calculation of H.ss is achieved through the formalism of the Atomistic Green’s
Function (AGF) technique and the main conceptual idea is the reduction of the infinite-dimensional H to a finite-
dimensional H,ys by invoking the translational symmetry of the environment and by employing a numerical technique
called decimation.

3. THE ATOMISTIC GREEN’S FUNCTION METHOD

The Atomistic Green’s Function (AGF) method has its origin in a numerical technique used in nanoscale thermal
transport research where the understanding of phonon transport in semiconductors and insulators is a longstanding
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FIG. 1: Some scattering problems of interest. (a) scattering at a rough interface between two half-planes, (b)
scattering from a notch in a waveguide, and (c) acoustic scattering from a finite scatterer.

challenge critical to the efficient thermal management of nanoscale electronic devices. In semiconductors and insu-
lators, heat conduction is primarily mediated by phonons, which are quantized excitations of the wavelike normal
modes, with each phonon carrying a (pseudo)momentum of ¢ and energy of w as it propagates. In a real crystal
lattice, phonons are scattered by local defects and boundaries, resulting in momentum dissipation and resistance to
heat conduction. Hence, an accurate treatment of phonon scattering is needed for modeling the physical processes
that affect solid state heat conduction.

In recent years, considerable effort has been expended by the nanoscale thermal transport community in the
development of numerical techniques to describe elastic phonon scattering. In particular, the AGF method, pioneered
by Mingo and Yang"', has proved to be a powerful computational tool for modeling coherent phonon transmission
and heat conduction in low-dimensional nanostructures, such as silicon nanowires and molecular junctions, because
it derives the quantum-mechanical lattice heat flux from the relatively simple classical atomic equations of motion.
In addition, the atomistic fidelity of the AGF method allows us to understand how the atomistic structure of defects
affect to thermal transport, because its inputs are the interatomic force constants (IFCs) obtained from ab-initio or
empirical models.

Conceptually, the AGF method can be rigorously derived from the theory of nonequilibrium Green’s functions
(NEGF) for phonons®"” and its numerical implementation draws on well-established techniques and algorithms’"
developed for studying ballistic electron transport in open quantum systems. In the typical AGF setup, the system is
partitioned into three components: the finite device, in which the scattering takes place, and the semi-infinite left and
right leads that sandwich the device. The heat flux in the device comprises partially transmitted phonons originating
from one lead and propagating towards the other. A highly attractive feature of the AGF method is that in the
harmonic limit, this heat flux is computed exactly from the frequency-domain Green’s function matrix of the device
which has a finite subset of the total number of degrees of freedom. Unlike more traditional approaches such as wave
packet simulations, there is no attempt to model the atomic displacements in the device and leads. Instead, the AGF
method is considerably more computationally efficient because it uses primarily the IFCs of the device and the infinite
degrees of freedom associated with the leads are absorbed into the device Green’s function via the so-called self-energy
terms.

Nonetheless, a drawback of the traditional AGF method is its inability to describe mode-resolved phonon trans-
mission in terms of the bulk phonon dispersion that characterizes the modes of the leads. To remedy this, Ong and
Zhang"” developed a computationally efficient extension of the AGF method, connecting mode-resolved phonon trans-
mission to polarization, frequency and momentum. In a following paper, Ong"” derived the forward and backward
scattering matrix amplitudes that describe transmission and reflection. A key idea in the extended AGF method is
the frequency-dependent Bloch matrix""'*"* which is derived from the surface Green’s function of the lead and asso-
ciated with its translational symmetry. In condensed matter physics, researchers have taken advantage of the modal
resolution of the extended AGF method to study phonon Anderson localization'", the specularity of phonon-boundary
scattering'°~'"  phonon transmission through amorphous silicon'", and valley filtering of phonons

Although the AGF method has hitherto been used predominantly in the research of phonon scattering in condensed
matter physics, there are grounds to believe that the its utility may go beyond physics problems. Firstly, the calculation
of transmission and reflection coefficients for individual modes is important in both nanoscale thermal transport and
elastic wave research. Secondly, the atomic equations of motion in the lattice are second order in time like the wave
equations commonly found in acoustics and elastodynamics. Thirdly, a discrete translational symmetry analogous to
that of a crystal lattice is introduced when space is discretized into a uniform grid. The resultant linear equations
for the field variables in acoustics and elastodynamics bear a strong mathematical similarity to the atomic equations
of motion for the crystal lattice. This suggests that the insights and techniques from the extended AGF method can



be brought to bear on the problem of wave transmission and reflection in these fields. In the following example of
the 1D elastic wave, we introduce elements of the AGF method in an elastodynamic context and show how the AGF
method is used to calculate transmission coefficients.

3.1. 1D elastic wave

We begin the discussion of the AGF method by considering the case of 1D elastic wave scattering. The important
material properties for this class of problem are the Young’s modulus E(z) and the density p(z). Consider the
problem domain shown in Fig. 2 which consists of a finite region of heterogeneity (device D) coupled to two semi-
infinite homogeneous regions (leads L, R) on either side. The frequency-domain governing wave equation for this
problem is:

- % (E(J:)ZZ) =w?p(xr)u; € D,L,R (1)
where u(z) is the axial deformation and w denotes the angular frequency. In addition, we have stress continuity at
the two interfaces. One can convert this continuous problem into a discrete one by discretizing the space x using
a uniform grid z; with spacing h and employing, as an example, finite difference (FD) schemes to approximate the
space derivatives. The device is discretized into np degrees of freedom (dof) whereas the leads are discretized into
N dof each where N goes to infinity. The 1-D problem can also be discretized by considering the medium as an
infinite chain of springs and masses. We take the bulk medium (leads) to have the homogeneous material properties
Ey, pr. By discretizing the medium with spatial interval h, we can easily determine the equivalent mass in the leads
as my, = hpp, and the equivalent spring constant as kj, = Ej/h. Inside the device, the medium can be heterogeneous
and, therefore, we talk about discrete masses m; = hp;,i = 1,..np. The masses my, mp are connected to the
leads through contact spring constants kjp,krp respectively. These are given by kpp = 2E,E1/h(E, + E1) and
kRD = 2EhED/h(Eh + ED)
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FIG. 2: (a) Discretized version of the three parts (lead-device-lead) of a scattering problem involving homogeneous

mediums, (b) the same problem modeled with masses and springs whose values are derived from the descretization
above.

The time-reduced equations for the mass-spring problem can be framed in the following form now:
Ku = w’Mu (2)
where the matrices are infinite dimensional as they correspond to the discretization of the infinite extent problem.
The matrices K and M denote the tridiagonal stiffness and diagonal mass matrix, respectively. The above can be

transformed into the canonical form used in the AGF method:

(W I-H)u=0 3)



through the introduction of the harmonic matrix H with elements H;; = (MiMj)_lpKij where M; denotes the i-th
diagonal element of M. Due to the only-local effect of interactions in the lattice, H, which is a real symmetric matrix,
has a banded structure of the form:

HY)! Hip 0
10 00
0 HY HY
kntkrp _ _kp 0
hpn h\/prp1
_hkLD :
VPhp1 :
H = Hpp i Hpr (4)
. '.. _ krD
NG
0 _ __krp krp+kn
NS hon
00 01
HY® HY 0
0 Hpp
01
Hy
Here, HY® = H9 = 2k anq H10 = O = —k»  H, 5 Hpgp also represent the coupling matrices which couple
y ML = R T hpy L =R = %y, HPLD;HIRD p pling p

the leads to the device. For 1D problems with only local interactions, all the elements of the coupling matrices are

zero except Hyp(N,1) = Hpr(1,N) = ;/Jf}’l and, Hgp(l,np +2) = Hpr(np +2,1) = ;[}f}h. H can be written in a

compact form:

H; H;p 0
H=|Hp, Hp Hpp (5)
0 Hgp Hp

The real symmetric structure of H implies that Hyp = HIBL,HRD = H};R. Hp is a square matrix of size
(np+2,np+2) whereas Hyp, Hrp are matrices of size (N,np +2). Here, we highlight that the matrix in Eq. (4) is
assembled by assuming that the immediate degrees of freedom of both the left and right leads are part of the device.
This simplifies later calculations. The main goal now is to extract from the harmonic matrix above, the frequency-
dependent Green’s function of the system. The frequency w is set equal to that for the incoming and outgoing waves.
The Green’s function matrix is formally given by:

-1

G = [(w+in)*— H]| (6)
where 0 < 7 < w and in is added to account for causality. Since the size of H is infinite, G cannot be computed using
the above in a straightforward fashion. Of greater importance than the full Green’s function matrix is the device
subset of the matrix, Gp which is finite:

Gp=[(w+in)?—Hp -3 — %] (7)

where 31, 39 are the frequency-dependent self-energy matrices corresponding to the left and right contacts respec-
tively. These matrices are given by:

¥ = HDLQLHTDL; 3y = HDRQRHTDR (8)

In the above, g1, gr are the Green’s functions of the left and right semi-infinite leads when they are uncoupled from
the device:

1

gr = [(w+in)? —Hy] 5 gr=[w+in)?—Hg]

9)



We note that if the self-energy matrices could be calculated then we would have determined the finite effective
harmonic matrix (effective Hamiltonian) of the device as well:

Hepf(w) = Hp + 31 + Xy (10)

Even though the self-energy matrices are of finite size (np + 2, np + 2), their calculation involves the infinite matrices
Hp;,Hpg as well as the infinite Green’s function matrices of the uncoupled left and right leads gr,gr. However,
since the matrices Hpy,, Hpg have a single non-zero element each, we can exploit this fact to calculate the self-energy
matrices. To be more explicit, since the only non-zero element of Hpy, is Hpr,(1, N) and the only non-zero element of
H,TDL is H]TDL (N, 1), the only element of gy, of interest and consequence is gr,(N, N). Similarly the only element of gg
of interest and consequence is gr(1,1). g (N, N) and gr(1,1) correspond to the lead Green’s function components at
their surfaces where the leads are connected to the device. They are, therefore, called surface Green’s functions and
their calculation is an important aspect of the method under discussion. Due to their importance in later equations,
we term these g5 = g (N, N), gitf = gp(1,1), H3Y' = Hpp(1,N), and HY = Hpp(N,1). For the current
problem, the surface Green’s functions can be computed analytically.

8.1.1.  Analytical computation of surface Green’s functions

We note that since the only non-zero term in Hpy, is Hpr(N, 1), ¥; = HDLgLHITDL is zero everywhere except for
the element X (1,1) and this term is equal to HLt g5 H3UH) T, Similarly, X5 is zero everywhere except Xa(np +
2,np +2) = HyHgi (H3H)T. Since we have g, = [(w +in)* — HL]f1 and gr, (N, N) is of special significance, we
can partition the Green’s function of the left lead as: .

0
. 2 .
w+ I —H :
gr = ( "7) L 0 (11)
HY
\ o ... 0 HVN (w + in)*T — HY ]

For the current 1-D problem, the blocks Hi% and H9 are 1 x 1, so the quarters in the top right and bottom left
are column and row vectors respectively, with only one non-zero element. Using established matrix identity, we can
write the g1, (N, N) term as:

gr (N,N) = {(w +in)? —HY -y {(w +in)* I — HL] B YT}l (12)

-1
where Y = (0 ... H}"). The expression {(w +in)* I — HL} is nothing but gr. The product Yg YT is simply
equal to H} g (N, N)H?'. We, therefore, have the relation:

1

gr(N,N) = [(w+in)* — HYY — H’gr(N,N)H}'| (13)
Substituting the parameters specific to the present problem:
) 2kn  kn kp } -
N,N) = |(w+in)? - 2L - 2 g, (N, N) - 14
g1 (N.N) = [ in? = 228 = g, (v, ) 2 (1)

We obtain an equation that is quadratic in gy, (N, N) and yields two possible solutions of g1, (N, N) from its roots. The
correct solution is obtained by considering the weak coupling limit. In the weak coupling (k;, — 0) limit, we expect the
surface of the lead to behave asymptotically as a decoupled independent oscillator such that limy, 0 gr.(N, N) ~ 1/w?.
This results in the following admissible solution for gz, (N, N):

i ) -l ] o ()’

gL(N7N):




which has the correct asymptotic behavior in the weak coupling limit. Proceeding similarly for the right lead, we
have the surface Green’s function gr(1,1) = gr (N, N). Finally, the only non-zero term of the self-energy matrices
can also be calculated:

L (11) = (hﬁh) GL(N.N): B (np+2mp+2) = (hjh) gn(1.1) (16)

3.1.2.  Transmittance

Once the device Green’s function, Gp, has been determined, one may use it to calculate various scattering properties
of the system. If there is an incident wave in the left lead with unit amplitude: exp(ikz) with k = w+/p/E, it gives
rise to a transmitted wave in the right lead: T'(w)exp(ikz). The function T'(w) is called the transmission coefficient
and T?(w) is the total transmitted energy, also called the transmittance. The transmittance can be directly calculated
from the matrices already calculated through the use of the Caroli formula

Alzi[gL—gTL]; Az:i[gR—gH
I = HLDAleD; I'; = Hrp A Hyp,,
T2(w) = Tt [FlGDFQGH (17)

In addition to the Caroli expression, for the current 1D problem, the transmission can be found through other
methods and comparisons can be made. For instance, consider a simple problem where the device itself is homogeneous
with material properties Ep, pg and length L. We assume that the lead-device interfaces are at © = —L/2, L/2. We
assume that there exists an incoming wave in the lead of unit amplitude ¢*»* where kj, = w/+/E},/pn, leading to a
reflected wave in the left lead Re~"*** and a transmitted wave in the right lead Te’*»*. The displacement field in
the device is made up of the waves which are admitted in the region: Ae? 0" + Be=oh where kg = w/\/Eo/po. The
four unknowns in the problem R,T, A, B are now solved by imposing displacement and stress continuity relations
at x = —L/2,L/2, allowing us to calculate T'(w). This is a standard technique which we call the mode-matching
method. Fig. 3(a) shows the results where we compare the transmittance calculated from the AGF formulation with
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FIG. 3: Transmission vs. angular frequency for a 1D scattering problem where the scatterer is a region of material
heterogeneity. (a) The comparison of solutions found via mode matching and AGF methods at Amin/h = 2, and (b)
the comparison of solutions found via AGF method for 4 different discretization levels.

that calculated from the mode matching method described above. In creating this figure, we have considered the
following material and geometric properties: Ej; = 8 GPa, p, = 1180 kg/m?, Ep = 300 GPa, pp = 8000 kg/m?,
L =0.086 m, and A = 1 m?. The lattice constant used for discretization in the AGF method in Fig. 3(a) is h = 0.00086
m. The results show excellent agreement between the AGF and mode matching results. The results diverge slightly
at the high end of the frequency range which is expected since the AGF formalism solves a discretized version of a
continuous problem whereas the mode matching method solves the continuous problem directly. Fig. 3(b) also shows
the sensitivity of the AGF method to discretization. The discretization scales are represented as Amin/h, where Apin
corresponds to the minimum wavelength occurring in the leads at the maximum frequency. The results exhibit a close
match at lower frequencies, but a noticeable divergence is observed at higher frequencies. Notably, for discretization
scales (Amin/h) of 2 or higher, the divergence in results is minimal, indicating that no finer discretization is necessary.
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A further example may be considered where the device is a finite phononic crystal (as shown in Fig. 4). The
phononic crystal is made up of a bi-phase unit cell with the following material and geometric properties: E; = 8 GPa,
p1 = 1180 kg/m3, hy = 2 x 1073 m, Fy = 300 GPa, py = 8000 kg/m?, hy = 1.62 x 10~* m, where h; and hy are
the width in phase one and two of the unit cell, respectively. The device is made up of 10 such unit cells. This new
configuration makes little difference to the AGF method but the mode matching method for this case is more involved.

However, the details are standard and given in Ref.”'. Fig. 5a shows a comparison between the AGF method and
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FIG. 5: Scattering results for scattering from a 1D phononic crystal. (a) Transmission vs. frequency calculations
using the Atomistic Green’s Function method and the Mode Matching method. (b) Bandstructure calculations
using the Transfer Matrix Method.

the mode-matching method for the calculation of the transmittance. First, we note that the AGF method provides a
near-perfect match with the results of the mode-matching method over the frequency range considered. The phononic
crystal exhibits a bandgap in the frequency range, [433,650] kHz, and the AGF calculations are able to capture this
phenomenon as the calculated transmittance values go to zero in that frequency band.

4. WAVEGUIDE PROBLEM

Next, we consider the application of the AGF method to the scattering problem in a waveguide. This problem will
serve as a platform to elucidate further advanced concepts in the theory and application of the AGF method. The
problem involves interface coupling over several degrees of freedom and, as a result, it is not possible to evaluate the
surface Green’s function in an analytical fashion here. We will demonstrate the technique of decimation which will
allow us to calculate the surface Green’s function here. The problem also involves the scattering of multiple wave-
modes (Lamb waves), a full understanding of which requires the evaluation of the S-matrix. We will show how the
S-matrix automatically emerges from the matrices which are already calculated as part of the AGF method. Fig. 6a
shows the schematic of the waveguide problem which involves a central scattering region (device, D) connected to two
semi-infinite waveguides (leads). The field variables of interest in this problem are the two components of deformation
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FIG. 6: (a) Schematic of scattering in a 2D waveguide. (b) Schematic showing a discretized version of the waveguide
problem.

u1,u2 and the relevant equations of motion (plane strain) are:

2
p—a ula{(2u+)\)aul+>\8u2}+ g [u(au1+au2)]

8t2 8331 6301 8:62 6.’172 8.’172 E)ml
82U2 0 8u2 8u1 0 8u1 BuQ
= — |@Qu4+N 2N — L+ 22 1
P52 = Dy {( HAEN o T GxJ * o [“ (ax2 * 81:1)] (18)

Here, A\ and p are the Lamé constants. Fig. 6b shows the same problem, now discretized into a grid. We have specified
the planes which couple the leads to the device. The formal frequency-domain equation of motion for the system is:

(WT — H)pp(w) =0 (19)

where ¢ constitutes all the degrees of freedom of the system. Properly organized, the H matrix has the following
structure:

H; Hpp 0
H=|Hp, Hp Hpp (20)
0 Hgip Hp

In Eq. (20), Hp is the harmonic submatrix corresponding to the device, and Hpp, Hrp are the harmonic subma-
trices corresponding to the interface region and the coupling between the device and leads. The left and right leads are
sliced into principal layers of thickness a;, ag perpendicular to the wave propagation direction, where a,, = a; = 3x 1073
m. These slices are enumerated 0,...00 in the right lead and —o0,...0 in the left lead. For the leads, the harmonic
submatrices HY, H %0 correspond to the coupling of the degrees of freedom in each corresponding slice and the sub-
matrices HY!, HY which satisfy (HY)T = H:° (HY)" = HY, correspond to the coupling of each slice to the one
on its right, such that

HY HY
HL = . , Hp = HIO HOO
.. Hg() H([],l R R R

HO HY |

The principal layers in the leads are all assumed to be identical as a consequence of the translational symmetry of the
environment.

4.1. Calculating the submatrices - FEniCS

In principle, there are several methods of calculating the submatrices in Eq. (20). Here we do so through the open-
source finite element software FEniCS . The process involves considering the device and the leads together and
meshing it over a regular grid. We note that, in general, automatic meshing in a finite element software will not result
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in a neat banded form of the H matrix as shown in Eq. (20). The banded form of the Hamiltonian H is a necessity for
the Green’s matrix calculations™®" presented in the following sections. Specifically, having a tridiagonal dynamical
matrix and its manifestation within the coupling sub-matrices, Hpr and Hpy, facilitates a practical approach to
computing self-energy matrices. This lack of proper ordering is because the ordering of the degrees of freedom that
results from the automatic mesh does not necessarily conform to the slice-based order inherent in the AGF method.
Furthermore, the mass matrix which results from the finite element process is also generally not diagonal, leading
agian to a non-banded Hamiltonian H. To mitigate the first issue, we rearranged the degrees of freedom derived
from automatic meshing to conform to the AGF scheme and reorganized the stiffness (K') and mass (M) matrices
accordingly. To mitigate the second issue, we employed the lumped mass technique”’ which results in a diagonal mass
matrix. In practical applications, the lumped mass technique conveniently overlooks mass coupling between various
degrees of freedom by attributing the entire inertia contribution solely to translational effects. While computationally
more efficient, this approach tends to sacrifice accuracy by neglecting the influence of rotational inertia. However,
the impact on accuracy is not universally significant and varies based on the specific problem and mesh resolution
Here, we noted that with a finely discretized mesh, the off-diagonal terms are, in fact, up to one order of magnitude
smaller than their corresponding diagonal elements.

4.2. Wavemodes in the bulk waveguides

The wavemodes in the leads can be directly evaluated from the submatrices HY, H%O and HYY H%l. We focus
on the left lead but the treatment in the right lead follows similarly. We introduce the Bloch factor A = exp(ikay,)
where k is the wavenumber of the wave traveling along the waveguide in the left lead and a; denotes the interlayer
spacing. Fixing w, we can find the admissible wavenumbers in the lead by solving the following quadratic eigenvalue
problem

— H{%u+ \Nw?I, — H)u — N> H'u =0 (21)

We can determine the modes and their wavenumbers as a function of w from the above equation. If the total number
of dofs in each left slice is Ny, then there will be 2N, solutions to the above eigenvalue equation. The modes can
be classified as propagating and evanescent, and only propagating modes contribute to energy transfer along the
waveguide. Half of the solutions will be rightward traveling (labeled with “+”) and the other half will be leftward
traveling (labeled with “-”). The eigenvectors are similarly labeled with w,(+) for n = 1,...N. If we add a small
imaginary part in to w in Eq. (21) so that w — w + 47, then the rightward traveling modes are the ones with || < 1,
whereas the leftward traveling modes are the ones with |A| > 1. The rightward traveling modes can be further divided
into propagating (lim,_ |A| = 1) and evanescent (lim, o |A| < 1) states. Similarly, the leftward traveling modes are
either propagating (lim,_,o |A\| = 1) or evanescent (lim,_,o [A] > 1).

4.3. Device Green’s function

As in the 1D problem, we can calculate the device (effective) Green’s function matrix from the following:

1

Gp=[(w+in?—Hp—%,—Xg| (22)

where the self-energy matrices are given by X = HDLQZH};L, 3p= HDRg”RH;BR The retarded Green’s functions
of the surface slice of the decoupled left and right lead, also called the surface Green’s functions, are given by the
expressions:

- ) -1
g7, = [(w+in)* — HY — 2]

g = [(w+in)? - HY - =% (23)
where
=~ HYg (HY): B = HY gh(HR)

The above equations are recursive in nature and represent the fact that the leads are translationally invariant. Unlike
in the 1D case, the surface Green’s functions cannot be calculated in an analytical form here. The surface Green’s
function needs to be solved either recursively or using the Decimation technique™. Recursive solutions are slow to
converge and, therefore, we use the Decimation technique which is described in Appendix (66.1).
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4.4. Transmission and reflection matrices

Once the device Green’s function has been calculated, it can be used to calculate the transmission and scattering
matrices. It is convenient to define some additional matrices here before dealing with the transmission and scattering
matrices themselves. We first note that the wavemodes calculated for the bulk waveguides above correspond to
the retarded Green’s function solution satisfying the Sommerfeld radiation condition”’. We mark these wavemodes
with modeshapes u* and corresponding eigenvalues A\’*. We remember that there are 2N7, number of these modes
for the left waveguide and 2Ny number of these modes for the right waveguide. There are additional solutions to
the waveguide problem which do not satisfy the Sommerfield radiation condition and correspond to the advanced
Green’s function. These solutions can be obtained by employing the time reversal symmetric transformation for
the waveguides: ¢ — —t or by performing the substitution w — w — i, > 0. The solutions corresponding to the
advanced Green’s function will be represented by w®* and corresponding eigenvalues A%*. We now define Bloch

n
matrices Fg*, F7~ for the left lead which satisfy the linear eigenvalue equation:

rtyrr+ __ rtArt
FL UL *UL AL

where Uj* is a matrix where the columns consist of the normalized eigenvectors ul* and A}* is a diagonal matrix
where its diagonal elements are A\7*. One can similarly define:

atrrat __ at pat
FL UL *UL AL

with similar matrices for the right waveguide. The Bloch matrices relevant for transmission matrix calculations can
be evaluated from the surface Green’s function matrix:

(Fp) ' = [HP )
P = gt

where in g, and gf the superscript r and ¢ representing retarded and advanced Green’s matrices and they satisfy,
gr = (g%)*. It is important to note that the Bloch matrices are not Hermitian, which can pose a problem when it
comes to calculating scattering coefficients. Specifically, in cases where the eigenvectors have the same wave number
k, and are wave number-degenerate, this can lead to inaccuracies. To overcome this issue, we employ a Gram-Schmidt
procedure to orthonormalize the wave number-degenerate column eigenvectors”’ . Also necessary for the computation
are the velocity matrices:

v ar, U_TI‘ U
;_2 [ g] %0 Z

+ — AR gyt poogrrt 2
LR—Q,[UR] rUR (24)

where T = §(£9 — £9T) and T = (2% — £%"). The velocity matrices in Eq. (24) are diagonal matrices with
the diagonal matrix elements equal to the group velocities associated with the eigenvectors in U;™ and U};f. Finally,
we have the expression for the Nr x Ny, transmission matrix:

- %@ Ui e U] e (25)

where
G, =9rHrpGpHprgr

The square modulus of the matrix element [t,, ,|? represents the proportion of energy converted in transmission to
the m'™ wavemode in the right lead from the n'" wavemode in the left lead. We note here that the expression in Eq.
(25) efficiently yields all the possible transmission amplitudes in one computational step. The reflection matrix can
be similarly computed (in the left lead):

2% _ -1
r="Vvim o) e - e o] v (26)

ar

In the above, Qzl is the bulk Green’s function in the left lead with:

Qr = (v +inI, - H}’ — Hi’g) H}' —Hj'g; HJ (27)
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For a better interpretation in the results section, a set of new matrices t, 7 can be defined as t = tit and 7 =
rir. Here, the diagonal values t and 7 (£, Tnn) Tepresent the total normalized transmitted and reflected energy
respectively when the incident mode is mode n. Flux conservation is now given by the straightforward relation:

ton +Ton =1; Vn (28)
too
Tmo t1o
730
n=0 5 :20
— T 3
Incident mode 2 ) 80
0 tmo

Too

FIG. 7: Scattering of a single mode from a device/defect in a waveguide. The figure shows an incoming mode 0 wave
from left which excites reflected and transmitted modes before and after the heterogeneity. r;9,t;o are showing
scattered modes caused by mode zero of the incident field.

Figure (7), schematically shows how an incident mode breaks into fractions of reflected and transmitted modes.

4.5. Scattering from defects in a waveguide

We now consider two examples of defects in a waveguide. The two cases are shown in Fig. 8 which also shows the
meshes. The first defect, shown in Fig. 8a and b, is in the form of a region that differs from the rest of the waveguide
only in terms of material properties. In this case, it is easy to create a uniform grid that naturally lends itself to AGF
computations. In the second example, shown in Figs. 8c and d, we consider a notch-shaped defect in the waveguide.
In this case, a uniform grid cannot be applied everywhere.

It is worth noting that the current version of the AGF used in this paper only requires translational invariance in
the leads, while the mesh shape and arrangement in the scatterer can be arbitrary. Specifically, the analytical and
numerical calculations of the surface Green’s matrices are the only instances in which adjacent blocks (so the mesh)
are required to be homogeneous in space. This feature of the AGF allows us to tackle more complicated scatterers
with arbitrary meshes. A good example of this is the scattering problem in a waveguide with a notch, shown in Fig. 8,
where an arbitrarily meshed scatterer is connected to two rectangular meshes representing the environment.

We now present two numerical examples to illustrate the formulation presented above for the scattering and disper-
sion problem involving waveguides. For the 2D waveguide problem, we use a FEM code written in Python using the
FEniCS toolbox to obtain the discretized domain, stiffness, and mass matrices, which are then used in further calcu-
lations. The first example involves in-plane scattering in an elastic waveguide with a material discontinuity acting as
a scatterer (Fig. 8a, b). In the second example, everything is the same except that the scatterer is modeled as a notch.
For the environment, we consider mechanical properties of E = 8 GPa, p = 1180 kg/m?, and v = 0.34. For the case
where the scatterer is a material discontinuity, we use E = 300 GPa, p = 8000 kg/m?3, and v = 0.27 as the mechanical
properties of the scatterer. For this same case study, the length of the scatterer, the width of both the scatterer and
waveguide, and the horizontal and vertical length scales of the rectangular mesh are also 2.46 x 1072 m, 8 x 1072 m,
3 x 1073 m, and 4 x 1073 m, respectively. The horizontal and vertical length scales in the rectangular mesh of the
waveguide with a notch are 4 x 1072 m and 8 x 1073 m, respectively. Fig. 9 shows the dispersion curves for the first
five modes in the bulk of the waveguide, generated using equation (21). Here, V,, = ¢/V; and @ = Dw/Vj, where c is
the phase velocity, Vs is the shear wave velocity of the medium, and D is the width of the waveguides. These results
have been compared with the solutions of the Lamb wave frequency spectrum” and show good agreement.

In Fig. 10, some scattering results along with the satisfaction of energy conservation are presented in the frequency
domain. Fig. 10a shows the sum of the squared transmitted /reflected coefficients for mode zero of the incident wave.
Fig. 10b and c show the corresponding values for modes 1 and 2 of the incident wave, respectively. The inherent law of
energy conservation is also checked for the first three modes of incidence in Fig. 10d. The zero transmission/reflection
induced by the third mode incident wave up to @ ~ 3.15 (w ~ 6 x 10%) shown in Fig. 10c occurs because there is no
third propagating mode within the mentioned frequency range, as can be confirmed by the dispersion curves in Fig. 9.
The figure evaluating energy conservation (Fig. 10d) also shows zero reflected and transmitted energy fractions.

Figure (11) shows the transmission/reflection calculation results for a waveguide with a notch, presented for indi-
vidual incident modes 0, 1, and 2. As before, the conservation of the energy flux entering and exiting the scattering
zone is checked in Fig. 11d. Again, the initial zero transmission/reflection spectrum, happening for modes 2 and
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FIG. 8: Schematic of a 2D elastic waveguide with a defect. (a) and (b) show the general configuration and the mesh
when the defect is in the form of a region of material heterogeneity. (c) and (d) show the same when the defect is in

the form of a notch.
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FIG. 9: The dispersion relation between normalized phase velocities and normalized angular frequencies for the five

first modes in the bulk of the waveguide.
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FIG. 10: Results for material heterogeneity defect in a waveguide. Plots (a), (b), and (c) depict the sum of the
squared transmission/reflection coefficients for incident modes 0, 1, and 2 respectively. Plot (d) shows the flux
conservation.

beyond, are obeying the non-propagating nature of those modes in the low-frequency regime which can be verified by
the dispersion curve of the homogeneous medium, Fig. 9. Following the capability of the AGF method for accepting
any arbitrary mesh in the scatterer zone (explained in section 44.5), the scattering results in Fig. 11 were run for
different mesh distributions of the device, and the results all showed an excellent match.

5. CONCLUSIONS

Following the perspective of “open systems” which proposes the viewpoint of “focusing on the scatterer and the
excitations from the environment on the contact DOFs” to solve scattering problems, in this paper we applied the
atomistic green’s function (AGF) method to find the effective Hamiltonians in one and two-dimensional problems
more systematically. Through the use of the AGF method, we demonstrated how it is possible to reduce an infinite
dimensional scattering problem to a finite problem. This allows us to derive a finite-dimensional effective Hamiltonian
and Green’s matrix for the scatterer, which not only captures the properties of an isolated scatterer but also contains
information about its interaction with the surrounding environment. We also showed that the effective Hamiltonian
derived in this manner allows the scattering solution to be independent of any far-field non-reflecting boundary
conditions. Having only local interactions, we were able to calculate finite-dimensional surface Green’s matrices
analytically and numerically for 1D and 2D problems, avoiding the need to deal with infinite-dimensional Green’s
matrices for each lead. The immediate benefit of having surface Green’s matrices was the straightforward calculation
of the self-energies, which represent the interaction between the device and its environment. We also used the Caroli
formulae for 1D problems and mode matching for 2D problems to calculate the scattering coefficients for both 1D and
2D scattering scenarios. In this paper, we presented numerical results for two different scattering scenarios: a 1D case
with device heterogeneity and a finite phononic crystal, and a 2D case with device heterogeneity and a notch-shaped
defect. These examples showcase the versatility and effectiveness of the AGF method in tackling a variety of scattering
problems.

The scattering solution obtained through the AGF method not only allows us to bypass the concern of far-field
boundary conditions, but also provides valuable insight for future research on inverse problems involving the design
of scatterers. By examining the relationship between the scattering solution and the effective Hamiltonian, we can
gain a deeper understanding of the underlying physical processes at play and apply this knowledge to devise more
effective scatterers.
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FIG. 11: Results for a notch defect in a waveguide. Plots (a), (b), and (c) depict the sum of the squared
transmission/reflection coefficients for incident modes 0, 1, and 2 respectively. Plot (d) shows the flux conservation.

6. APPENDIX
6.1. Decimation Technique

In this appendix, we provide a brief introduction to a numerical technique called Decimation, which can be used to
calculate the surface Green’s matrices of the left and right leads. The Decimation technique is based on the general
equation for the Green’s matrix, which is given by [(wQ + in) I - Ha] go = I, where @« = R or L. The technique
takes advantage of the fact that only one block of the Green’s matrix is of interest, depending on the chosen lead. In
this appendix, we focus on the right lead and use the convention introduced in Eq. (4) to expand the equation for
the Green’s matrix of the right lead as:

m=0; | +in) I - HY| g — Hy g} = I
m=1 —HRgy + (W +in) I - Hy]gr — Hy g% =0

m—1)0 . m m~+1)0
m=m; —Hllzogg% 04 [(w2—|—m)I—H%O] gRO—Hlo%lg}(% 0 _o

where H}%O and H%l are the coupling matrices between degrees of freedom in two successive columns (as shown in
Fig. (12)), and the set of equations is simply the result of matrix multiplication of all the rows of Hp in the first
column of gg. It is known that the g% block of the Green’s matrix of the right lead represents the response at the
surface degrees of freedom to the excitation on surface degrees of freedom, as shown by the downward arrow in Fig.
(12). More generally, g™ represents the response at the degrees of freedom on the mt column to the excitation on
the degrees of freedom on the n'" column. The Decimation technique suggests substituting g, where i = 2k + 1 and
k € Z>p, with expressions found in terms of ngO, where i = 2k and k € Z>¢, for the first step. The updated form of
Eq. (6.1.1) for m = 0 becomes:

{(@*+in) 1 - HY* — HY [(* +in) T~ HY) " HEY } o — HY [(«* +in) I - HY] " HYg¥ =T (61.2)

In Eq. (6.1.1), the line for m = 0 was describing a relation between the surface Green’s matrix (g%) and g} .
The best interpretation says: given an impulse excitation at the left-most DOF's, the first line of Eq. (6.1.1) was
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FIG. 12: A schematic of the FEM model. The arrow on top is showing those degrees of freedom that are effective in
Green’s function of the right lead.

describing the relation between the response at the DOFs on 0" column and the response at the DOFs of the 1°¢
column. However, the updated version, Eq. (6.1.2), is showing a similar concept, but between the 0" column
and a further column. The locality of the interactions in this FEM model mandates that the new coupling term,
HY [(wQ + 2'77) I-— H%O]_1 H}?, should be smaller compared to its initial counterpart. Doing the same thing for
other lines of equations in Eq. (6.1.1) gives similar updated versions, in which the relations are between further DOF's
with smaller coupling terms. The decimation technique uses the same logic and updates the equations in Eq. (6.1.1)
iteratively, in a way that at each step, it is giving relations between the DOFs of two further columns with smaller
coupling terms. After enough iterations, the equation for the surface green’s matrix of the right lead can be written
as:

{(w2 +in) I — H%O’S/} P G (6.1.3)

where P is pointing to a far enough column, H%O’S/ is representing all the updates on H%O’S and, |7| — 0. Then
the surface green’s matrix can be approximated as:

-1

o = {[(w*+im) 1 - HY]} (6.1.4)
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