

AUTHOR'S FINAL VERSION OF: Watts, HE & Cornelius, JM. 2024. Toward understanding the endocrine regulation of diverse facultative migration strategies. *Hormones and Behavior* 158: 105465. <https://doi.org/10.1016/j.yhbeh.2023.105465>

1
2 **Toward understanding the endocrine regulation of diverse facultative migration strategies**
3

4

5

6 **Heather E. Watts^{a,b} & Jamie M. Cornelius^c**

7 ^aSchool of Biological Sciences, Washington State University, Pullman, WA, 99164, USA

8 ^bCenter for Reproductive Biology, Washington State University, Pullman, WA, 99164, USA

9 ^cDepartment of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA

10

11 Corresponding author: Heather E. Watts, heather.watts@wsu.edu

12

13

14 **Citation:**

15 Watts, HE & Cornelius, JM. 2024. Toward understanding the endocrine regulation of diverse
16 facultative migration strategies. *Hormones and Behavior* 158: 105465.

17 <https://doi.org/10.1016/j.yhbeh.2023.105465>

18

19 **Abstract**

20 Migration is an important event in the annual cycle of many animals that facilitates the use of
21 resources that vary across space and time. It can occur with regular and predictable timing, as in
22 obligate migration, or with much greater flexibility, as in facultative migration. Most research
23 aimed at understanding the endocrine mechanisms regulating the transition to a migratory stage
24 has focused on obligate migration, whereas less is known about facultative forms of migration.
25 One challenge for research into the endocrine regulation of facultative migration is that
26 facultative migrations encompass a diverse array of migratory movements. Here, we present a
27 framework to describe and conceptualize variation in facultative migrations that focuses on
28 conditions at departure. Within the context of this framework, we review potential endocrine
29 mechanisms involved in the initiation of facultative migrations in vertebrates. We first focus on
30 glucocorticoids, which have been the subject of most research on the topic. We then examine
31 other potential hormones and neurohormones that have received less attention, but are exciting
32 candidates to consider. We conclude by highlighting areas where future research is particularly
33 needed.

34

35 **Keywords:** movement, nomad, escape, fugitive, hormone, cues, glucocorticoid

36 **1. Introduction**

37 Migration facilitates the use of resources that vary across space and time and is an
38 important event in the annual cycle of many animals. Mobile animals can use migration to avoid
39 unfavorable conditions (e.g., high predation risk, severe weather, low food availability, parasites)
40 or exploit favorable conditions (e.g., abundant or high-quality food resources, mating
41 aggregations, thermal refugia) (Shaw, 2016). In many cases, migrations occur predictably in
42 space and time with animals moving each year between the same locations at approximately the
43 same time; we refer to these as obligate migrations (also termed to-and-fro or calendar
44 migrations; see Box 1 for more on terminology). However, migrations can also occur with much
45 greater flexibility with respect to their timing and destination (see Box 1). For example,
46 individuals may be flexible in whether they undertake migration from one year to the next (e.g.,
47 facultative partial migration; Terrill and Able, 1988). Migrations may occur aseasonally, in
48 response to either adverse or advantageous conditions (e.g., irruptive migration and nomadic
49 migration; Dingle, 2014; Teitelbaum and Mueller, 2019). Alternatively, migrations may be
50 irregular with respect to their destination, with individuals moving between varying locations
51 (e.g., nomadic migration; Teitelbaum and Mueller, 2019). Collectively, we refer to these more
52 flexible movement patterns as facultative migrations (following Newton, 2012; Ramenofsky et
53 al., 2012; Watts et al., 2018).

54 The endocrine system plays a central role in coordinating changes in morphology,
55 physiology, and behavior as animals transition between different stages in their annual cycle,
56 including migration (Jacobs and Wingfield, 2000). At present, much of our understanding of the
57 role of the endocrine system in regulating the transition to a migratory stage comes from studies
58 of obligate migration – and predominately avian obligate migration – with much less known

AUTHOR'S FINAL VERSION OF: Watts, HE & Cornelius, JM. 2024. Toward understanding the endocrine regulation of diverse facultative migration strategies. *Hormones and Behavior* 158: 105465. <https://doi.org/10.1016/j.yhbeh.2023.105465>

59 about facultative migrations. Yet facultative migrations occur in a wide array of taxa (Holland et
60 al., 2006; Newton, 2006a; Plotkin, 2010; Teitelbaum and Mueller, 2019), including among
61 species or individuals that also exhibit obligate migrations or are otherwise generally non-
62 migratory (Hahn et al., 2004; Jakes et al., 2018; Teitelbaum et al., 2023; Terrill and Ohmart,
63 1984). Moreover, growing data on animal movements, facilitated in part by recent advances in
64 tracking technologies, suggest that facultative migrations may be more common than previously
65 recognized (Streby et al., 2015; Teitelbaum et al., 2023). These observations suggest that the
66 study of facultative migrations, including across a diverse array of species, is central to a broad
67 understanding of the endocrine mechanisms involved in mediating migratory transitions.

68 The diverse array of migratory movements presents a remarkable challenge to
69 understanding the mechanisms that regulate facultative migration. Facultative migrations include
70 nomadic wandering to locate rich but ephemeral food sources (Eby et al., 2014; Fryxell et al.,
71 2004; Pedler et al., 2014; Roshier et al., 2008) as well as more localized to-and-fro movements to
72 temporarily escape inhospitable conditions (e.g., snow storms: Hahn et al., 2004; O'Neill and
73 Parker, 1978; or tropical storms: Udyawer et al., 2013). They are unified by a high degree of
74 variability in spatial or temporal patterning in response to relatively unpredictable biotic or
75 abiotic conditions. Yet, these movements are likely quite heterogenous with respect to the cues
76 that trigger them and the physiological mechanisms that coordinate the response. But an
77 overarching framework to describe and conceptualize this variation has been lacking. Indeed,
78 this challenge is particularly apparent when one considers that varied forms of facultative
79 migration may be routinely exhibited even within a single population or across the lifetime of a
80 single individual (Bennetts and Kitchens, 2000; Newton, 2006a; Newton, 2006b). We propose
81 that a consideration of the conditions at departure provides a unifying framework to describe

82 variation in facultative migrations. This framework can be used to generate hypotheses about
83 cues used to make departure decisions and the physiological mechanisms involved. Further, it
84 can serve as a foundation for understanding variation within and across species in the use of
85 particular cues and mechanisms. Here we give an overview of our framework and then review
86 potential endocrine mechanisms involved in facultative migration in the context of this
87 framework.

88

89 **2. A framework for describing variation in facultative migrations**

90 We describe variation in facultative migration along a continuum based on conditions at
91 departure (Figure 1); this approach shares similarities with that used by Bennetts and Kitchens
92 (2000) to explain movements by snail kites (*Rostrhamus sociabilis*). We first divide the
93 continuum between exploitative and evasive movements. We define exploitative movements as
94 those that occur while environmental conditions (e.g., foraging conditions) at departure are such
95 that animals can adequately meet energetic or nutritional demands. Migration under these
96 conditions can facilitate locating areas with higher quality resources that allow for increased
97 reproductive output or resources that will be needed or available later in the year, but movements
98 are not necessary for short-term adult survival. One example of this type of migration occurs in
99 animals that move relatively predictably in time to locate spatially unpredictable seasonal
100 resources – such as red crossbills (*Loxia curvirostra*) moving to locate newly developing cone
101 crops in the early summer (Cornelius et al., 2021; Newton, 2006b). Another example is animals
102 that move opportunistically to exploit unpredictable peaks in resources – such as many
103 waterbirds, including banded stilts (*Cladorhynchus leucocephalus*) in Australia and red-billed
104 queleas (*Quelea quelea*) in Africa, that move in association with rainfall (Dallimer and Jones,

105 2002; Pedler et al., 2014; Roshier et al., 2008; Ward, 1971). Such exploitative migrations can
106 allow animals to utilize rich but unpredictable resources. Species that facultatively migrate to
107 find rich but ephemeral resources have been called Rich Patch Exploiters or Rich Patch Fugitives
108 (Cornelius et al., 2013b; Ford et al., 1993), and we draw from this terminology here. Exploitative
109 movements need not only exploit food patches. For example, killer whales and some sharks
110 move to warmer waters to facilitate skin molt and gestation, respectively, at variable times of the
111 year (Nosal et al., 2021; Pitman et al., 2020).

112 At the other end of the continuum are reactive evasive movements that are initiated when
113 conditions at an individual's current location are poor. For example, reactive evasive movements
114 away from severe winter or snow conditions are described in birds, mammals, and sharks (Hahn
115 et al., 2004; Jakes et al., 2018; Kaczensky et al., 2011; Matich and Heithaus, 2012; O'Neill and
116 Parker, 1978), and potentially move fish away from parasite outbreaks (Birkeland, 1996).

117 Reactive evasive movements, which likely reflect part of an emergency life history stage, may be
118 triggered by negative energy balance (type 1 allostatic overload) which could result from
119 declining resources or conditions that disallow foraging in the current home range (Wingfield,
120 2005; Wingfield et al., 1998). As such, reactive evasive movements generally facilitate escape
121 from an immediate threat to survival. These movements have been distinguished from fight-or-
122 flight flight responses mediated by the sympathetic nervous system (Jansen et al., 1995), such as
123 in response to a predatory attack, in that reactive evasive movements reflect responses that occur
124 over longer time scales (Wingfield et al., 1998). Such movements have also been called fugitive
125 or escape migrations (Box 1) and likely occur in very different environmental and physiological
126 contexts than do exploitative facultative movements.

127 Between these two extremes exist intermediate conditions whereby an animal is still
128 meeting current demand but can anticipate being challenged to meet its daily energy needs or
129 nutritional requirements in the near future. We refer to these movements as predictive evasive, as
130 we expect that in this scenario animals are monitoring conditions and making movements before
131 conditions severely deteriorate to avoid substantial declines in body condition. These types of
132 migrations could occur as ephemeral food sources become depleted, such as in birds or mammals
133 that feed on seeds, berries or rodents that exhibit boom-bust cycles (Newton, 2006a; Páez et al.,
134 2018) or in response to drought (Dean et al., 2009). They can also occur in fish when available
135 energy in the environment becomes lower than energetic demand, such as in brown trout (*Salmo*
136 *trutta*; Forseth et al., 1999; Olsson et al., 2006). Facultative migration in response to tropical or
137 tornadic storms (Streby et al., 2015; Udyawer et al., 2013) and wildfires (Sanderfoot et al., 2021)
138 may also reflect predictive evasive movements given that many individuals move before
139 conditions severely deteriorate. For instance, blacktip sharks (*Carcharhinus limbatus*) have been
140 found to depart coastal areas in advance of a tropical storm (Heupel et al., 2003; Udyawer et al.,
141 2013).

142 Although we have described three points along the continuum – exploitative, predictive
143 evasive, and reactive evasive – we expect movements to fall between those points as well. For
144 instance, the nomadic movements of some gazelles (Mueller et al., 2011) may fall between
145 exploitative and predictive evasive, as changes in daily energy intake may be important in
146 movement decisions that facilitate maintenance of high energy intake (Fryxell et al., 2004).
147 Moreover, the migratory behavior of a population, or even an individual, is not necessarily fixed
148 along this continuum. For instance, populations or individuals that typically make exploitative

AUTHOR'S FINAL VERSION OF: Watts, HE & Cornelius, JM. 2024. Toward understanding the endocrine regulation of diverse facultative migration strategies. *Hormones and Behavior* 158: 105465. <https://doi.org/10.1016/j.yhbeh.2023.105465>

149 facultative migrations or seasonal obligate migrations, may also make reactive evasive
150 movements under unfavorable conditions (Hahn et al., 2004; Terrill and Ohmart, 1984).

151 We hypothesize that the proximate cues used to evaluate conditions and make departure
152 decisions vary across the departure continuum. Conditions could be evaluated using both internal
153 and external cues, both of which could be transduced via endocrine signals. Internal cues could
154 include indicators of metabolic or nutritional state (Cornelius et al., 2013a; Jachowski and Singh,
155 2015). Candidates for such indicators would be catabolic hormone levels (e.g., glucagon or
156 corticosterone), metabolite indicators of anabolism versus catabolism (e.g., triglyceride versus
157 free fatty acids), energy stores (e.g., adipocyte size), or levels of key nutrients (e.g., protein or
158 salt). External cues about local conditions could include direct assessments of food availability,
159 weather, daylength, or social information (Ramenofsky et al., 2012; Watts et al., 2018). We note
160 that many environmental conditions can generate both external and internal cues that could be
161 used to inform animal decision-making (e.g., food availability could be assessed visually or via
162 an indicator of nutritional state; Hau et al., 2000), though our understanding of these processes in
163 the context of migration is currently limited. Further, individuals likely integrate both internal
164 and external cues to make departure decisions, as occurs in obligate migrants (Bauer et al., 2011;
165 Newton, 2008). However, we hypothesize that the extent to which different cues are used or
166 weighted varies along the departure continuum (Figure 1). That is, animals departing under good
167 conditions are expected to rely more heavily on predictive cues that are indicators of
168 environmental conditions in the future or at distant locations (e.g., photoperiod or indicators of
169 distant rainfall), whereas animals departing in response to poor environmental conditions are
170 likely responding to immediate, local cues indicative of the poor conditions (e.g., metabolic state,
171 food availability, social information). Intermediate between these, we expect a more balanced

AUTHOR'S FINAL VERSION OF: Watts, HE & Cornelius, JM. 2024. Toward understanding the endocrine regulation of diverse facultative migration strategies. *Hormones and Behavior* 158: 105465. <https://doi.org/10.1016/j.yhbeh.2023.105465>

172 use or a combination of immediate and predictive cues, including predictive cues that may
173 function on a shorter time scale (e.g., changing barometric pressure or declining foraging
174 efficiency). Though we note that even in cases where animals depart under good conditions,
175 indicators of internal state may be important in fine-tuning the timing of departure, particularly
176 in cases where physiological preparations precede departure.

177

178 **3. Endocrine mechanisms of facultative migration**

179 The endocrine system has been a focus of research aimed at understanding physiological
180 mechanisms mediating facultative migration (Cornelius et al., 2013a; Ramenofsky et al., 2012;
181 Watts et al., 2018). Here, we review potential endocrine mechanisms involved in facultative
182 migration, using the departure continuum to consider variation in these mechanisms. We first
183 focus on glucocorticoid signaling, which is arguably the best studied endocrine mechanism in the
184 context of facultative migration. We then consider the potential role for other endocrine signaling
185 molecules from fat, gut, thyroid and brain, which have thus far received less research attention.

186 Although much existing research has focused on how changes in circulating hormone levels
187 influence behavior, including migratory behavior, changes in other elements of endocrine
188 signaling pathways (e.g., hormone receptors, enzymes involved in local synthesis or inactivation)
189 may also be important (Balthazart et al., 2004; Rensel and Schlinger, 2016; Watts, 2020). In
190 reviewing the literature on glucocorticoids, we consider several types of evidence for a role of a
191 given endocrine signal in facultative migration (see Table 1). We consider the strongest evidence
192 to include (i) changes in the circulating hormone and/or other elements of the signaling pathway
193 (e.g., receptor expression) in association with the expression of facultative migration, in
194 combination with (ii) hormone or receptor manipulation that changes expression of the behavior.

195 Either of these (i or ii) alone provide good, but more limited evidence. We also consider weaker
196 evidence such as associations between cues known or likely to stimulate migration and changes
197 in endocrine signaling pathways. We further distinguish between evidence from captive and free-
198 living animals, since the ability to study the expression of migratory behavior in captivity is
199 somewhat limited.

200

201 *3.1 Glucocorticoids*

202 In vertebrates, glucocorticoids are steroid hormones that coordinate whole body
203 responses to real and anticipated energetic challenges (Landys et al., 2006) and are one of many
204 hormones involved in regulating metabolism. Blood plasma concentrations of glucocorticoids
205 are controlled by the hypothalamic-pituitary-adrenal/interrenal (HPA/I) axis. Glucocorticoids can
206 be bound by both glucocorticoid receptors (GRs) and mineralocorticoid receptors (MRs)
207 (Breuner and Orchinik, 2009; de Kloet et al., 1998), and their local availability in tissues can be
208 altered via enzymatic deactivating or activating reactions by 11 β -hydroxysteroid dehydrogenases
209 (11 β -HSDs; Sapolsky et al., 2000). The HPA/I axis is responsive to energy indicators in the
210 blood plasma (e.g., blood glucose and free fatty acid levels) via reactive pathways as well as to
211 anticipatory energy needs via processive pathways (e.g., fear processing in response to a
212 perceived stressor) (de Kloet et al., 1998; Oh et al., 2012; Sapolsky et al., 2000). As energy
213 demand increases and blood sugar or free fatty acid levels decline, glucocorticoids elevate to
214 maintain energy substrates in the blood and induce energy storing cells to release more energy
215 substrate to the blood (Kuo et al., 2015; Sapolsky et al., 2000). At high levels glucocorticoids are
216 also thought to alter behavior in ways that favor adult survival in the context of the acute or
217 anticipated stressor (Landys et al., 2006; Sapolsky et al., 2000). Sustained locomotor activity

AUTHOR'S FINAL VERSION OF: Watts, HE & Cornelius, JM. 2024. Toward understanding the endocrine regulation of diverse facultative migration strategies. *Hormones and Behavior* 158: 105465. <https://doi.org/10.1016/j.yhbeh.2023.105465>

218 necessary for migration is energetically demanding (Schmidt-Nielsen, 1972; Weber, 2009). This
219 energy demand may be anticipated in those individuals preparing to leave an area or experienced
220 acutely if animals are forced to move in response to unanticipated conditions. Thus,
221 glucocorticoids may play a role in both exploitative and reactive types of movements – but the
222 physiological context is expected to be different (Ramenofsky et al., 2012).

223 Glucocorticoid signaling is frequently suggested to play an important role in stimulating
224 reactive evasive migration, when departures occur under extremely poor conditions and food
225 intake or body condition is in decline. As part of an emergency life history stage (Wingfield et
226 al., 1998), these movements are thought to be promoted by increased glucocorticoid signaling
227 (Landys et al., 2006; Wingfield et al., 1998; Wingfield and Ramenofsky, 1997). Severe weather
228 conditions that physiologically challenge animals, including storms and extreme heat, can cause
229 elevations in circulating glucocorticoid levels (Boyle et al., 2010; Dezetter et al., 2022; Huber et
230 al., 2003; Jessop et al., 2013; Krause et al., 2018; Moagi et al., 2021; Rogers et al., 1993;
231 Schwabl et al., 1985; Smith et al., 1994; Wingfield et al., 1992; Xie et al., 2017), as can fasting
232 or declines in food availability (reviewed in de Bruijn and Romero, 2018). However, few field
233 studies have linked such changes in glucocorticoid signaling, such as during severe weather, to
234 migratory movements. Many of the studies linking changes in glucocorticoid signaling to severe
235 weather have focused on cases in which animals appear to employ a strategy of attempting to ride
236 out the adverse conditions rather than leaving (i.e., a “take-it” strategy rather than a “leave-it”
237 strategy; Wingfield and Kitaysky, 2002). Other studies have suggested that animals may have
238 been in the process of facultative movements when captured (Rogers et al., 1993; Smith et al.,
239 1994), but movement data necessary to confirm this were not collected. A study of vagrant birds,
240 likely displaced by winds during obligate migration, found that circulating glucocorticoids were

AUTHOR'S FINAL VERSION OF: Watts, HE & Cornelius, JM. 2024. Toward understanding the endocrine regulation of diverse facultative migration strategies. *Hormones and Behavior* 158: 105465. <https://doi.org/10.1016/j.yhbeh.2023.105465>

241 not elevated compared to migrants that were not displaced, though it is not clear that vagrancy
242 posed an immediate energetic challenge in these birds (Snell et al., 2022). While baseline
243 corticosterone levels were extremely high in a single vagrant individual suffering very low body
244 condition, they did not correlate with fat deposits across the multi-species dataset (Snell et al.,
245 2022). Captive studies have found correlations between elevations in glucocorticoids and
246 increases in locomotor activity in response to energetic challenges (Challet et al., 1995;
247 Cornelius et al., 2010; DeSimone et al., 2021; Krause et al., 2017; Lynn et al., 2003; Spée et al.,
248 2011) and exogenous glucocorticoids can stimulate increased locomotor activity in a variety of
249 vertebrates in captivity (Astheimer et al., 1992; Breuner et al., 1998; Cash and Holberton, 1999;
250 Challet et al., 1995; Øverli et al., 2002; Spée et al., 2011). Exogenous glucocorticoids can also
251 alter movement patterns and performance in free-living animals (Breuner and Hahn, 2003;
252 Jessop et al., 2018; O'Connor et al., 2010; but see, Algera et al., 2017). However, there is a lack
253 of manipulative studies that directly link changes in glucocorticoid signaling to the expression of
254 reactive evasive migrations in free-living animals.

255 Glucocorticoids have also been hypothesized to play a role in predictive evasive
256 migrations – those movements occurring in anticipation of impending metabolic challenge –
257 particularly because elevations in circulating glucocorticoid levels are associated with cues that
258 may stimulate these migrations. Increasing energy demand, particularly relative to what is
259 available in the environment or in energy reserves, and social information about food availability
260 can both alter glucocorticoid signaling in vertebrates (Cornelius et al., 2010; Cornelius et al.,
261 2018; de Bruijn and Romero, 2018; Guinet et al., 2004; Jimeno et al., 2017). Indeed,
262 experimental studies of captive finches – pine siskins (*Spinus pinus*) and red crossbills – that
263 feed on conifer seeds and are known to make facultative, irruptive migrations in association with

AUTHOR'S FINAL VERSION OF: Watts, HE & Cornelius, JM. 2024. Toward understanding the endocrine regulation of diverse facultative migration strategies. *Hormones and Behavior* 158: 105465. <https://doi.org/10.1016/j.yhbeh.2023.105465>

264 low or declining food availability (Bock and Lepthien, 1976; Koenig and Knops, 2001) have
265 found that as food availability declines, circulating corticosterone and locomotor activity both
266 increase (Astheimer et al., 1992; Cornelius et al., 2010; Cornelius et al., 2018; DeSimone et al.,
267 2021; Robart et al., 2019; Robart and Watts, 2023). Interestingly, these studies found that
268 circulating corticosterone was only modestly elevated (~2- to 4-fold increase above baseline
269 levels compared to increases that can be 7- to 10-fold or greater in these species in response to
270 more severe stressors; Astheimer et al., 1992; Cornelius et al., 2012; Cornelius et al., 2011;
271 Knutie and Pereyra, 2012). This suggests that if corticosterone is involved in mediating the
272 migratory transition under these conditions, it is at circulating levels that are much lower than
273 maximal levels or the conditions experienced in these studies were not stimulatory of actual
274 migratory departure. In contrast to findings from captive finches, studies of facultatively partial
275 migrant brown trout have found that although reduced food availability is associated with
276 adoption of a migratory phenotype (Wysujack et al., 2009), experimental elevation of cortisol
277 does not directly stimulate migratory behavior (Midwood et al., 2016). Additionally, a recent
278 observational study of free-living pine siskins found no relationship between circulating
279 corticosterone and departure from the study area, though food availability may not have been
280 low or in decline so it is unclear if the detected movement represented an exploitative or reactive
281 migration (DeSimone et al., 2023).

282 For facultative migrations at the exploitative end of the continuum, a role for
283 glucocorticoids is not clear. In seasonal obligate migration, glucocorticoids are hypothesized to
284 elevate when migratory departure is imminent or during migration to support the metabolic
285 demands of extended locomotion, though there is only limited evidence for this function (Bauer
286 and Watts, 2021). Glucocorticoids could play a similar supportive role in exploitative migrations.

287 However, existing studies – which are unfortunately limited to a single species, the pine siskin,
288 and have been performed primarily in a captive setting – have found no evidence for changes in
289 circulating glucocorticoids (DeSimone et al., 2023; Robart et al., 2018) or changes in expression
290 of genes that code for proteins involved in glucocorticoid signaling (e.g., MR, GR, 11 β -HSD
291 type 1 and type 2; Vernasco et al., 2021; Watts et al., 2019) in association with the seasonal
292 expression of migratory behavior. The absence of evidence for changes in the expression of
293 genes for receptors or enzymes involved in glucocorticoid signaling stands in contrast to results
294 from an obligate avian migrant, Gambel's white-crowned sparrow (*Zonotrichia leucophrys*
295 *gambelii*), which found tissue-specific adjustments in glucocorticoid signaling genes in
296 association with migratory preparations (Pradhan et al., 2019). Perhaps even more intriguingly,
297 these findings contrast with existing evidence that is consistent with a role for glucocorticoids in
298 predictive reactive movements by pine siskins (DeSimone et al., 2021; Robart et al., 2019;
299 Robart and Watts, 2023) – thus highlighting the potential for endocrine mechanisms to vary
300 across forms of facultative migration even within a species. But clearly data from a more diverse
301 array of species are needed to properly evaluate the role of glucocorticoids in exploitative
302 migrations more generally.

303

304 *3.2. Other endocrine candidates*

305 Beyond glucocorticoids, there are other, less studied, endocrine mechanisms that may be
306 important in mediating facultative migratory transitions. We highlight candidates selected based
307 on their roles in energy balance, locomotor activity, and/or their implication in obligate
308 migration. The adipokines (i.e., signaling molecules released from fat) leptin and adiponectin, as
309 well as the gastric hormone ghrelin may be signals of energetic state that could function across

310 the departure spectrum. Our general expectation for these hormones is that in reactive
311 movements indicators of a negative energy balance will promote departure and indicators of
312 positive energy balance will suppress it. In exploitative movements we expect that indicators of
313 positive energy balance should be permissive of movements, thus generating different patterns
314 across the departure continuum (Figure 1).

315 There are also several candidates that are regulators of locomotor activity that we predict
316 are more likely to play a role in just some forms of facultative migration (see below). We suggest
317 that thyroid hormones and the neurohormone 7α -hydroxypregnenolone are likely candidates for
318 roles in exploitative migrations, whereas the neurohormone corticotropin-releasing factor could
319 play a role in reactive migrations. We describe candidate signaling molecules derived from brain
320 or peripheral tissue individually below, but we note that many of these signals can interact with
321 each other, with glucocorticoids, and with other neuropeptides involved in regulation of energy
322 balance. Of particular note is the fact that, at least in mammals, neurons expressing neuropeptide
323 Y (NPY) and Agouti-related protein (AgRP), as well as those expressing pro-opiomelanocortin
324 (POMC), in the arcuate nucleus – neurons that are involved in regulating energy balance and
325 food intake – express receptors for leptin, adiponectin, and ghrelin (Guillod-Maximin et al. 2009;
326 Williams and Elmquist, 2012). NPY and AgRP have been proposed to be involved in regulating
327 migratory fueling before flight in birds (Cornelius et al., 2013a). But NPY-AgRP and POMC
328 neurons are also involved in regulating locomotor activity and evidence from rodents indicates
329 that the effects of leptin and ghrelin on locomotor activity are mediated at least in part by their
330 action on these neurons (Ceccarini et al., 2015; Huo et al., 2009; Méquinion et al., 2020). Thus,
331 although our understanding of these systems outside of mammals is still quite limited, they
332 highlight the potential for interactions between multiple endocrine signals and the neuropeptides

333 in these systems to be important in migratory decision making. We review each candidate signal,
334 starting with those released from tissues of the periphery, followed by those from the brain.

335

336 *3.2.1. Signals from the periphery: leptin, adiponectin, ghrelin, and thyroid hormones*

337 Leptin is thought to be an adipostat, or marker of adiposity, in several vertebrate taxa
338 (Evans et al., 2021). It is secreted by adipose tissue and could potentially signal internal energy
339 stores to influence behavior (Choi et al., 2008; Nourbakhsh-Rey and Markham, 2021; Vivas et
340 al., 2011), though maybe not in birds (Friedman-Einat and Seroussi, 2019). Indeed, leptin has
341 been linked to the regulation of locomotor activity across a range of vertebrates, though with
342 considerable interspecific variation in patterns and evidence of context specific effects within
343 species (Choi et al., 2008; Henderson et al., 2018; Niewiarowski et al., 2000; Vivas et al., 2011;
344 Wittert et al., 2005). There has been very little research into the role of leptin in any form of
345 migration. Research thus far has focused on avian obligate migrants and has found little evidence
346 for a role of leptin in regulation of migratory preparation or behavior (Cerasale et al., 2011;
347 Churchman and MacDougall-Shackleton, 2022; Gogga et al., 2013; Rossi and Welch, 2023).

348 Interpretation of these results must take into consideration evidence that leptin may function
349 differently in birds than in other vertebrates and may not be an adipostat (Friedman-Einat and
350 Seroussi, 2019). Thus, the potential role of leptin in any form of migration in other taxa remains
351 an open question. If leptin does play a role as an adipokine in facultative migrations, this could
352 occur across the departure continuum. We hypothesize that exploitative migrants might respond
353 to high leptin as a signal that there are enough stores to attempt a movement. If this hypothesis is
354 correct, then circulating leptin levels will be elevated in association with exploitative departures,
355 and the expression of exploitative migratory behavior will be stimulated by the administration of

356 exogenous leptin and suppressed by inhibiting the action of leptin. In the context of a reactive
357 migration, on the other hand, high leptin should be associated with staying given that body
358 condition is high and a movement need not be made, and low leptin should be associated with
359 departure. This hypothesis predicts that circulating leptin levels will be low in association with
360 reactive departures, and that the expression of reactive migratory behavior will be stimulated by
361 blocking the action of leptin and suppressed by exogenous leptin.

362 Another adipokine that may play a role in mediating facultative migrations is
363 adiponectin. Although adiponectin has been identified in fishes, birds and mammals, our
364 understanding of adiponectin comes primarily from mammalian studies. Adiponectin generally
365 circulates at levels that are positively associated with fasting or food deprivation, but expression
366 of adiponectin and its receptors are influenced by a variety of nutritional signals (Hendricks et
367 al., 2009; Sánchez-Gurmaches et al., 2012; Tang et al., 2021). Further, the relationship between
368 circulating adiponectin and adiposity appears to be quite variable (Hendricks et al., 2009; Meier
369 and Gressner, 2004; Stuber et al., 2013). Although adiponectin is perhaps better known for roles
370 in regulating food intake, metabolism, inflammation, and reproductive physiology (Bernardi et
371 al., 2021; Meier and Gressner, 2004; Tang et al., 2021), adiponectin may also play a role in
372 regulating other behaviors – including locomotor – in association with energetic state (Burkhard
373 et al., 2018; Vaanholt et al., 2007). In an avian obligate migrant, circadian patterns of circulating
374 adiponectin differed between birds in migratory and non-migratory states, with adiponectin
375 levels being elevated when locomotor activity is expressed (Stuber et al., 2013). Further,
376 adiponectin levels were positively correlated with adiposity in migrants, leading to the
377 hypothesis that adiponectin could function as a signal of energetic state to stimulate migratory
378 behavior (Stuber et al., 2013). We hypothesize that adiponectin signaling could stimulate

379 migration across the departure continuum, though the current understanding of adiponectin
380 precludes strong assertions about its signaling function in relation to energy balance. The most
381 likely scenario across most vertebrates is that increasing adiponectin signaling would stimulate
382 reactive movements as an indicator of negative energy balance and inhibit exploitative
383 movements, whereas low levels would facilitate exploitative movements. However, results from
384 an avian obligate migrant suggest that it could stimulate exploitative migrations as a positive
385 indicator of energetic state.

386 Ghrelin is a hormone produced by the gut that can regulate food intake, fat deposition,
387 and in some cases locomotor activity, in mammals, birds, and fish (Jönsson, 2013; Kaiya et al.,
388 2013; Kojima and Kangawa, 2005). Although increases in circulating ghrelin are generally
389 associated with fasting, it can have both stimulatory and inhibitor effects on food intake and
390 locomotor activity, with variation occurring within and across taxa (Jönsson, 2013; Kaiya et al.,
391 2013; Lupi et al., 2022). Complicating our understanding of ghrelin is the fact that it occurs in
392 two isoforms – acylated ghrelin and unacylated ghrelin – which may differ in their effects
393 (Goymann et al., 2017), though this is not well understood. In birds, where there is evidence for a
394 role of ghrelin in obligate migration, circulating ghrelin is elevated in association with greater fat
395 deposits and can have a stimulatory effect (particularly in the case of unacylated ghrelin) on the
396 expression of migratory behavior (Goymann et al., 2017; Lupi et al., 2022; Marasco et al., 2023),
397 though these relationships are not ubiquitous (Eikenaar et al., 2018). It has been further
398 suggested that in avian obligate migrants ghrelin may play a role in the mobilization of fat to fuel
399 migration (Goymann et al., 2017; Marasco et al., 2023). In fish, it has been suggested that the
400 stimulatory effects of ghrelin on locomotor activity may be specifically associated with
401 motivation to forage (Jönsson, 2013) – this would be consistent with an effect of ghrelin on

AUTHOR'S FINAL VERSION OF: Watts, HE & Cornelius, JM. 2024. Toward understanding the endocrine regulation of diverse facultative migration strategies. *Hormones and Behavior* 158: 105465. <https://doi.org/10.1016/j.yhbeh.2023.105465>

402 stimulating reactive movements. Thus, based on our current understanding, ghrelin could
403 function in facultative migrations as a signal of either positive energy balance (promoting
404 exploitative movements) or negative energy balance (promoting reactive movements). If ghrelin
405 functions in either of these roles, then positive relationships between the expression of that form
406 of migratory behavior and both circulating ghrelin levels and the administration of exogenous
407 ghrelin are predicted.

408 Thyroid hormones have been linked to more predictable migratory behavior. In
409 songbirds, eels, and salamanders, thyroid hormones have a permissive or stimulatory effect on
410 the expression of migratory behavior – though the relative importance of triiodothyronine (T3)
411 and thyroxine (T4) remains unclear (Castonguay et al., 1990; Duvall and Norris, 1980; Imbert et
412 al., 2008; Pant and Chandola-Saklani, 1993; Pérez et al., 2016). There are also indications that
413 migratory versus residency strategies of avian subspecies are associated with differences in
414 thyroid hormone signaling (Pérez et al., 2021), though the extent to which these differences are
415 directly related to migratory behavior remains to be determined. Further, environmental cues of
416 potential relevance to facultative migrations – temperature and food availability – have been
417 found to alter thyroid hormone signaling (Boelen et al., 2008; Holloway et al., 1994; Nisembaum
418 et al., 2020; Tomasi and Mitchell, 1996; Wada, 1993). We hypothesize that thyroid hormones
419 may function in promoting (some) exploitative migrations. This hypothesis predicts that thyroid
420 hormone signaling will be elevated in association with the expression of exploitative migratory
421 behavior, that inhibition of thyroid hormone signaling will suppress the expression of this
422 behavior, and that exogenous thyroid hormones will stimulate its expression.

423

424 3.2.2. *Signals from the brain: 7 α -hydroxypregnenolone and corticotropin-releasing factor*

425 7 α -hydroxypregnenolone (7 α -OH PREG) is a neurosteroid that regulates locomotor
426 behavior in a range of vertebrates (Tsutsui et al., 2018). 7 α -OH PREG generally has a
427 stimulatory effect on locomotor activity (Haraguchi et al., 2011; Tsutsui et al., 2018), including
428 in the context of obligate migrations by newts (Haraguchi et al., 2010) and salmon (Haraguchi et
429 al., 2015). But initial studies of its role in avian obligate migration are less clear (Wingfield et al.,
430 2018). Our understanding of the internal and external cues that influence 7 α -OH PREG signaling
431 is still developing, but melatonin and prolactin appear to be important in mediating daily and
432 seasonal changes in 7 α -OH PREG signaling (Tsutsui et al., 2018). We hypothesize that 7 α -OH
433 PREG could stimulate migratory movements across the departure continuum, though likely in
434 response to different suites of cues. This hypothesis predicts that 7 α -OH PREG signaling will be
435 elevated in association with the expression of facultative migratory behavior and that exogenous
436 7 α -OH PREG will stimulate its expression. Evidence of a potential pathway by which 7 α -OH
437 PREG might stimulate movement at the reactive end of the continuum is most clear, as
438 elevations in circulating glucocorticoids have been found to stimulate 7 α -OH PREG synthesis
439 (Haraguchi et al., 2012). Thus, glucocorticoids and 7 α -OH PREG may act in concert to stimulate
440 reactive movements (Wingfield et al., 2018).

441 Finally, corticotropin-releasing factor (CRF) is a neuropeptide that is released as part of
442 the vertebrate neuroendocrine stress response. In addition to its role in stimulating release of
443 adrenocorticotropic hormone (ACTH) in the HPA/I axis, CRF can also act directly on the central
444 nervous system to influence behavior (Koob and Heinrichs, 1999). Indeed, CRF appears to have
445 a highly conserved stimulatory effect on locomotor activity, which can occur independently of
446 downstream effects on glucocorticoids (Koob et al., 2007; Lowry and Moore, 2006). This
447 behavioral effect has been shown in mammals, birds, amphibians, and fish (Lowry and Moore,

448 2006). Therefore, we hypothesize that CRF, acting in the brain, could be a stimulus of reactive
449 movements. This hypothesis predicts that central administration of CRF will stimulate reactive
450 movements in appropriate environmental contexts (see Lowry and Moore, 2006) and that CRF
451 antagonists will inhibit reactive movements.

452

453 **4. Outlook**

454 Here, we have reviewed potential endocrine mechanisms involved in migration across a
455 continuum of facultative migration types – ranging from exploitative movements initiated when
456 conditions at departure are good to reactive movements in response to poor conditions. Whereas
457 much research in this area has focused on the role of glucocorticoids in facultative movements
458 (summarized in Table 1), more work remains to resolve their role across different forms of
459 facultative migrations. Moreover, there are numerous other candidate endocrine mechanisms,
460 beyond glucocorticoids, that warrant further research in the context of facultative migrations.
461 Research that advances our understanding of the endocrine mechanisms involved in these
462 flexible migratory behaviors may have the added benefit of providing insights that help clarify
463 their roles in obligate movements as well. Although we have highlighted a number of promising
464 candidates here for further research, the use of discovery-oriented approaches such as ‘omics
465 techniques (Garcia-Reyero et al., 2014) and mass spectrometry-based hormone profiling (e.g.,
466 Boggs et al., 2019; Jalabert et al., 2021) offer considerable promise. Incorporating these
467 techniques into studies of facultative migrations will allow for examination of multiple potential
468 mechanisms simultaneously and may reveal potential mechanisms that have yet to be considered.

469 Future research that elucidates the cues that stimulate facultative migrations, especially
470 through experimental approaches (Birnie-Gauvin et al., 2020), will also be useful in generating

AUTHOR'S FINAL VERSION OF: Watts, HE & Cornelius, JM. 2024. Toward understanding the endocrine regulation of diverse facultative migration strategies. *Hormones and Behavior* 158: 105465. <https://doi.org/10.1016/j.yhbeh.2023.105465>

471 new hypotheses about endocrine mechanisms. Notably, the cues driving many nomadic
472 migrations remain particularly elusive (Teitelbaum and Mueller, 2019). Work to understand the
473 cues and endocrine mechanisms involved in such exploitative movements, especially in species
474 beyond those of current focus (i.e., red crossbills and pine siskins), would contribute to filling an
475 important knowledge gap. We suggest that birds of the arid regions of Africa and Australia that
476 make use of facultative migratory strategies on the exploitative end of the departure continuum
477 (Dallimer and Jones, 2002; Kingsford et al., 2010; Pedler et al., 2014; Roshier et al., 2008; Ward,
478 1971) would be excellent subjects for this work.

479 In addition to expanding the breadth of endocrine mechanisms under study in the context
480 of facultative migration, there is also a pressing need for research from a greater diversity of
481 taxa. Most research to date has focused on a few species of birds and fishes highlighted here (but
482 in invertebrates see also work on locusts, e.g., Anstey Michael et al., 2009; Guo et al., 2020).
483 Mammalian systems where facultative migration is already relatively well-described (e.g., grey-
484 headed Flying-foxes, *Pteropus poliocephalus* and Thomson's gazelles, *Gazella thomsoni*) would
485 be good candidates for complementary studies on endocrine mechanisms. Among birds, there is
486 tremendous potential to study a greater diversity of species including tropical birds that make
487 altitudinal migrations in response to seasonal rain storms (Boyle et al., 2010), as well as birds of
488 the arid regions of Africa and Australia noted above. Research on the endocrine mechanisms
489 underlying migration in a diverse range of systems is necessary to make inferences about
490 commonalities and sources of variation in these mechanisms and to understand strategies for
491 coping with environmental variation more broadly.

492 Advances in tracking technology are also providing new opportunities for descriptive and
493 experimental field studies of facultative migrants (DeSimone et al., 2023; Pedler et al., 2014;

AUTHOR'S FINAL VERSION OF: Watts, HE & Cornelius, JM. 2024. Toward understanding the endocrine regulation of diverse facultative migration strategies. *Hormones and Behavior* 158: 105465. <https://doi.org/10.1016/j.yhbeh.2023.105465>

494 Streby et al., 2015). Leveraging these tools to collect complementary behavioral and endocrine
495 data, particularly in combination with endocrine manipulations (e.g., Angelier et al., 2007; Lupi
496 et al., 2022; O'Connor et al., 2010) will be critical to advancing our understanding of the
497 mechanisms underpinning facultative migrations. Field experiments, while logistically
498 challenging in facultative migrants, will be especially informative given the difficulties in
499 interpreting captive behavior and the need to better describe the movements and mechanisms in
500 free-living birds.

501 Human-induced environmental changes may pose a considerable threat to animal
502 migrations across the globe (Bolger et al., 2008; Carey, 2009; Lennox et al., 2016) and may
503 disrupt a wide range of physiological systems that are involved in orchestrating migratory
504 transitions (Buchanan and Partecke, 2012; Helm et al., 2013; Lennox et al., 2016). Flexibility in
505 migratory behavior may, however, represent an important means by which animals can cope
506 with rapid and human-induced environmental change. An understanding of the mechanisms
507 underlying facultative migratory decision-making may therefore be critical to predicting the
508 capacity for animals to cope in the future (Wilcove and Wikelski, 2008). Moreover, the need to
509 better understand facultative migrations specifically is all the more pressing because of the
510 likelihood that facultative migrations may become more common with human-induced
511 environmental changes such as increasing frequency of severe storms, extreme temperature
512 events, droughts, and wildfires (IPCC 2021).

513

514

515 **Acknowledgements**

AUTHOR'S FINAL VERSION OF: Watts, HE & Cornelius, JM. 2024. Toward understanding the endocrine regulation of diverse facultative migration strategies. *Hormones and Behavior* 158: 105465. <https://doi.org/10.1016/j.yhbeh.2023.105465>

516 We thank Tom Hahn, Marilyn Ramenofsky, John Wingfield, Hugh Dingle, and members of our
517 labs for discussions that have shaped our thinking on these topics. We thank two anonymous
518 reviewers for comments on an earlier version of the manuscript.

519

520 **Funding**

521 This work was supported by the National Science Foundation [IOS-1755245 to HEW and IOS-
522 1755227 to JMC].

523

524

525 **References**

526 Algera, D.A., Brownscombe, J.W., Gilmour, K.M., Lawrence, M.J., Zolderdo, A.J., Cooke, S.J.,
527 2017. Cortisol treatment affects locomotor activity and swimming behaviour of male
528 smallmouth bass engaged in paternal care: A field study using acceleration biologgers.
529 *Physiol. Behav.* 181, 59-68.

530 Angelier, F., Clément-Chastel, C., Gabrielsen, G.W., Chastel, O., 2007. Corticosterone and
531 time-activity budget: An experiment with Black-legged kittiwakes. *Horm. Behav.* 52, 482-
532 491.

533 Anstey Michael, L., Rogers Stephen, M., Ott Swidbert, R., Burrows, M., Simpson Stephen, J.,
534 2009. Serotonin Mediates Behavioral Gregarization Underlying Swarm Formation in
535 Desert Locusts. *Science* 323, 627-630.

536 Astheimer, L.B., Buttemer, W.A., Wingfield, J.C., 1992. Interactions of corticosterone with
537 feeding, activity and metabolism in passerine birds. *Ornis Scandinavica* 23, 355-365.

AUTHOR'S FINAL VERSION OF: Watts, HE & Cornelius, JM. 2024. Toward understanding the endocrine regulation of diverse facultative migration strategies. *Hormones and Behavior* 158: 105465. <https://doi.org/10.1016/j.yhbeh.2023.105465>

538 Balthazart, J., Baillien, M., Cornil, C.A., Ball, G.F., 2004. Preoptic aromatase modulates male
539 sexual behavior: slow and fast mechanisms of action. *Physiol. Behav.* 83, 247-270.

540 Bauer, C.M., Watts, H.E., 2021. Corticosterone's roles in avian migration: Assessment of three
541 hypotheses. *Horm. Behav.* 135, 105033.

542 Bauer, S., Nolet, B.A., Giske, J., Chapman, J.W., Akesson, S., Hedenstrom, A., Fryxell, J.M.,
543 2011. Cues and Decision Rules in Animal Migration, in: Milner-Gulland, E.J., Fryxell,
544 J.M., Sinclair, A.R.E. (Eds.), *Animal Migration: A Synthesis*. Oxford University Press,
545 Oxford.

546 Bennetts, R.E., Kitchens, W.M., 2000. Factors influencing movement probabilities of a nomadic
547 food specialist: proximate foraging benefits or ultimate gains from exploration? *Oikos* 91,
548 459-467.

549 Bernardi, O., Estienne, A., Reverchon, M., Bigot, Y., Froment, P., Dupont, J., 2021. Adipokines
550 in metabolic and reproductive functions in birds: An overview of current knowns and
551 unknowns. *Mol. Cell. Endocrinol.* 534, 111370.

552 Birkeland, K., 1996. Consequences of premature return by sea trout (*Salmo trutta*) infested with
553 the salmon louse (*Lepeophtheirus salmonis* Krøyer): migration, growth, and mortality. *Can.*
554 *J. Fish. Aquat. Sci.* 53, 2808-2813.

555 Birnie-Gauvin, K., Lennox, R.J., Guglielmo, C.G., Teffer, A.K., Crossin, G.T., Norris, D.R.,
556 Aarestrup, K., Cooke, S.J., 2020. The Value of Experimental Approaches in Migration
557 Biology. *Physiol. Biochem. Zool.* 93, 210-226.

558 Bock, C.E., Lepthien, L.W., 1976. Synchronous eruptions of boreal seed-eating birds. *Am. Nat.*
559 110, 559-571.

AUTHOR'S FINAL VERSION OF: Watts, HE & Cornelius, JM. 2024. Toward understanding the endocrine regulation of diverse facultative migration strategies. *Hormones and Behavior* 158: 105465. <https://doi.org/10.1016/j.yhbeh.2023.105465>

560 Boelen, A., Wiersinga, W.M., Fliers, E., 2008. Fasting-Induced Changes in the Hypothalamus–
561 Pituitary–Thyroid Axis. *Thyroid* 18, 123–129.

562 Boggs, A.S.P., Ragland, J.M., Zolman, E.S., Schock, T.B., Morey, J.S., Galligan, T.M., Dalle
563 Luche, G., Balmer, B.C., Wells, R.S., Kucklick, J.R., Schwacke, L.H., 2019. Remote
564 blubber sampling paired with liquid chromatography tandem mass spectrometry for
565 steroid endocrinology in free-ranging bottlenose dolphins (*Tursiops truncatus*). *Gen. Comp. Endocrinol.* 281, 164–172.

566 Bolger, D.T., Newmark, W.D., Morrison, T.A., Doak, D.F., 2008. The need for integrative
567 approaches to understand and conserve migratory ungulates. *Ecol. Lett.* 11, 63–77.

568 Boyle, W.A., Norris, D.R., Guglielmo, C.G., 2010. Storms drive altitudinal migration in a
569 tropical bird. *Proc. Roy. Soc. B.*

570 Breuner, C.W., Greenberg, A.L., Wingfield, J.C., 1998. Noninvasive corticosterone treatment
571 rapidly increases activity in Gambel's white-crowned sparrows (*Zonotrichia leucophrys*
572 *gambelii*). *Gen. Comp. Endocrinol.* 111, 386–394.

573 Breuner, C.W., Hahn, T.P., 2003. Integrating stress physiology, environmental change, and
574 behavior in free-living sparrows. *Horm. Behav.* 43, 115–123.

575 Breuner, C.W., Orchinik, M., 2009. Pharmacological characterization of intracellular,
576 membrane, and plasma binding sites for corticosterone in house sparrows. *Gen. Comp. Endocrinol.* 163, 214–224.

577 Buchanan, K., L., Partecke, J., 2012. The endocrine system: can homeostasis be maintained in a
578 changing world? , in: Candolin, U., Wong, B.B.M. (Eds.), *Behavioural Responses to a*
579 *Changing World: Mechanisms and Consequences*. Oxford University Press, Oxford, pp.
580 32–45.

581

582

AUTHOR'S FINAL VERSION OF: Watts, HE & Cornelius, JM. 2024. Toward understanding the endocrine regulation of diverse facultative migration strategies. *Hormones and Behavior* 158: 105465. <https://doi.org/10.1016/j.yhbeh.2023.105465>

583 Burkhard, T.T., Westwick, R.R., Phelps, S.M., 2018. Adiposity signals predict vocal effort in
584 Alston's singing mice. *Proc. Roy. Soc. B.* 285, 20180090.

585 Carey, C., 2009. The impacts of climate change on the annual cycles of birds. *Philos. Trans. Roy.*
586 *Soc. B.* 364, 3321.

587 Cash, W.B., Holberton, R.L., 1999. Effects of exogenous corticosterone on locomotor activity in
588 the red-eared slider turtle, *Trachemys scripta elegans*. *J. Exp. Zool.* 284, 637-644.

589 Castonguay, M., Dutil, J.-D., Audet, C., Miller, R., 1990. Locomotor Activity and Concentration
590 of Thyroid Hormones in Migratory and Sedentary Juvenile American Eels. *Trans. Am.*
591 *Fish. Soc.* 119, 946-956.

592 Ceccarini, G., Maffei, M., Vitti, P., Santini, F., 2015. Fuel homeostasis and locomotor behavior:
593 role of leptin and melanocortin pathways. *Journal of Endocrinological Investigation* 38,
594 125-131.

595 Cerasale, D.J., Zajac, D.M., Guglielmo, C.G., 2011. Behavioral and physiological effects of
596 photoperiod-induced migratory state and leptin on a migratory bird, *Zonotrichia albicollis*:
597 I. Anorectic effects of leptin administration. *Gen. Comp. Endocrinol.* 174, 276-286.

598 Challet, E., Le Maho, Y., Robin, J.P., Malan, A., cherel, Y., 1995. Involvement of corticosterone
599 in the fasting-induced rise in protein utilization and locomotor activity. *Pharmacol.*
600 *Biochem. Behav.* 50, 405-412.

601 Chapman, B.B., Brönmark, C., Nilsson, J.-Å., Hansson, L.-A., 2011. The ecology and evolution
602 of partial migration. *Oikos* 120, 1764-1775.

603 Choi, Y.-H., Li, C., Hartzell, D.L., Little, D.E., Della-Fera, M.A., Baile, C.A., 2008. ICV leptin
604 effects on spontaneous physical activity and feeding behavior in rats. *Behav. Brain Res.*
605 188, 100-108.

AUTHOR'S FINAL VERSION OF: Watts, HE & Cornelius, JM. 2024. Toward understanding the endocrine regulation of diverse facultative migration strategies. *Hormones and Behavior* 158: 105465. <https://doi.org/10.1016/j.yhbeh.2023.105465>

606 Churchman, E., MacDougall-Shackleton, S.A., 2022. Leptin administration does not influence
607 migratory behaviour in white-throated sparrows (*Zonotrichia albicollis*). PeerJ 10, e13584.

608 Cornelius, J.M., Boswell, T., Jenni-Eiermann, S., Breuner, C.W., Ramenofsky, M., 2013a.
609 Contributions of endocrinology to the migration life history of birds. Gen. Comp.
610 Endocrinol. 190, 47-60.

611 Cornelius, J.M., Breuner, C.W., Hahn, T.P., 2010. Under a neighbour's influence: public
612 information affects stress hormones and behaviour of a songbird. Proc. Roy. Soc. B. 277,
613 2399-2404.

614 Cornelius, J.M., Breuner, C.W., Hahn, T.P., 2012. Coping with the extremes: stress physiology
615 varies between winter and summer in breeding opportunists. Biol. Lett. 8, 312-315.

616 Cornelius, J.M., Hahn, T.P., Robart, A.R., Vernasco, B.J., Zahor, D.L., Glynn, K.J., Navis, C.J.,
617 Watts, H.E., 2021. Seasonal Patterns of Fat Deposits in Relation to Migratory Strategy in
618 Facultative Migrants. Frontiers in Ecology and Evolution 9.

619 Cornelius, J.M., Perfito, N., Zann, R., Breuner, C.W., Hahn, T.P., 2011. Physiological trade-offs
620 in self-maintenance: plumage molt and stress physiology in birds. J. Exp. Biol. 214, 2768-
621 2777.

622 Cornelius, J.M., Perreau, G., Bishop, V.R., Krause, J.S., Smith, R., Hahn, T.P., Meddle, S.L.,
623 2018. Social information changes stress hormone receptor expression in the songbird brain.
624 Horm. Behav. 97, 31-38.

625 Cornelius, J.M., Watts, H.E., Dingle, H., Hahn, T.P., 2013b. Obligate versus rich patch
626 opportunism: evolution and endocrine mechanisms. Gen. Comp. Endocrinol. 190, 76-80.

627 Dallimer, M., Jones, P.J., 2002. Migration Orientation Behaviour of the Red-Billed Quelea
628 *Quelea quelea*. J. Avian Biol. 33, 89-94.

AUTHOR'S FINAL VERSION OF: Watts, HE & Cornelius, JM. 2024. Toward understanding the endocrine regulation of diverse facultative migration strategies. *Hormones and Behavior* 158: 105465. <https://doi.org/10.1016/j.yhbeh.2023.105465>

629 de Bruijn, R., Romero, L.M., 2018. The role of glucocorticoids in the vertebrate response to
630 weather. *Gen. Comp. Endocrinol.* 269, 11-32.

631 de Kloet, E.R., Vreugdenhil, E., Oitzl, M.S., Joëls, M., 1998. Brain Corticosteroid Receptor
632 Balance in Health and Disease. *Endocr. Rev.* 19, 269-301.

633 Dean, W.R.J., Barnard, P., Anderson, M.D., 2009. When to stay, when to go: trade-offs for
634 southern African arid-zone birds in times of drought. *S. Afr. J. Sci.* 105, 24-28.

635 DeSimone, J.G., Domschot, B.S., Fylling, M.A., Blake, W.M., Breuner, C.W., 2023. Body mass
636 and triglycerides predict departure of free-living nomadic pine siskins. *Funct. Ecol.* 37,
637 372-382.

638 DeSimone, J.G., Tobalske, B.W., Breuner, C.W., 2021. Physiology and behavior under food
639 limitation support an escape, not preparative, response in the nomadic pine siskin (*Spinus*
640 *pinus*). *J. Exp. Biol.* 224, jeb238774.

641 Dezetter, M., Le Galliard, J.-F., Leroux-Coyau, M., Brischoux, F., Angelier, F., Lourdais, O.,
642 2022. Two stressors are worse than one: combined heatwave and drought affect hydration
643 state and glucocorticoid levels in a temperate ectotherm. *J. Exp. Biol.* 225, jeb243777.

644 Dingle, H., 2014. Migration: the biology of life on the move, 2nd ed. Oxford University, Oxford,
645 U.K.

646 Dingle, H., Drake, V.A., 2007. What is migration? *Bioscience* 57, 113-121.

647 Duvall, D., Norris, D.O., 1980. Stimulation of terrestrial-substrate preferences and locomotor
648 activity in newly transformed tiger salamanders (*Ambystoma tigrinum*) by exogenous or
649 endogenous thyroxine. *Anim. Behav.* 28, 116-123.

650 Eby, P., Richards, G., Collins, L., Parry-Jones, K., 2014. The distribution, abundance and
651 vulnerability to population reduction of a nomadic nectarivore, the Grey-headed Flying-fox

AUTHOR'S FINAL VERSION OF: Watts, HE & Cornelius, JM. 2024. Toward understanding the endocrine regulation of diverse facultative migration strategies. *Hormones and Behavior* 158: 105465. <https://doi.org/10.1016/j.yhbeh.2023.105465>

652 *Pteropus poliocephalus* in New South Wales, during a period of resource concentration.

653 Aust. Zool. 31, 240-253.

654 Eikenaar, C., Hessler, S., Ballstaedt, E., Schmaljohann, H., Kaiya, H., 2018. Ghrelin,

655 corticosterone and the resumption of migration from stopover, an automated telemetry

656 study. Physiol. Behav. 194, 450-455.

657 Evans, M.C., Lord, R.A., Anderson, G.M., 2021. Multiple Leptin Signalling Pathways in the

658 Control of Metabolism and Fertility: A Means to Different Ends?, International Journal of

659 Molecular Sciences. 22, 9210.

660 Ford, H., Davis, W.E., Debus, S., Ley, A., Recher, H., Williams, B., 1993. Foraging and

661 Aggressive Behaviour of the Regent Honeyeater *Xanthomyza phrygia* in Northern New

662 South Wales. Emu - Austral Ornithology 93, 277-281.

663 Forseth, T., Nesje, T.F., Jonsson, B., Hårsaker, K., 1999. Juvenile migration in brown trout: a

664 consequence of energetic state. J. Anim. Ecol. 68, 783-793.

665 Friedman-Einat, M., Seroussi, E., 2019. Avian Leptin: Bird's-Eye View of the Evolution of

666 Vertebrate Energy-Balance Control. Trends in Endocrinology & Metabolism 30, 819-832.

667 Fryxell, J.M., Wilmshurst, J.F., Sinclair, A.R.E., 2004. PREDICTIVE MODELS OF

668 MOVEMENT BY SERENGETI GRAZERS. Ecology 85, 2429-2435.

669 Garcia-Reyero, N., Tingaud-Sequeira, A., Cao, M., Zhu, Z., Perkins, E.J., Hu, W., 2014.

670 Endocrinology: Advances through omics and related technologies. Gen. Comp. Endocrinol.

671 203, 262-273.

672 Gogga, P., Karbowska, J., Kochan, Z., Meissner, W., 2013. Circulating leptin levels do not

673 reflect the amount of body fat in the dunlin *Calidris alpina* during migration. Gen. Comp.

674 Endocrinol. 187, 74-78.

AUTHOR'S FINAL VERSION OF: Watts, HE & Cornelius, JM. 2024. Toward understanding the endocrine regulation of diverse facultative migration strategies. *Hormones and Behavior* 158: 105465. <https://doi.org/10.1016/j.yhbeh.2023.105465>

675 Goymann, W., Lupi, S., Kaiya, H., Cardinale, M., Fusani, L., 2017. Ghrelin affects stop-over
676 decisions and food-intake in a long -distance migrant. *Proceedings National Academy*
677 *Sciences* 114, 1946-1951.

678 Guillod-Maximin, E., Roy Af Fau - Vacher, C.M., Vacher Cm Fau - Aubourg, A., Aubourg A
679 Fau - Bailleux, V., Bailleux V Fau - Lorsignol, A., Lorsignol A Fau - Pénicaud, L.,
680 Pénicaud L Fau - Parquet, M., Parquet M Fau - Taouis, M., Taouis, M., 2009. Adiponectin
681 receptors are expressed in hypothalamus and colocalized with proopiomelanocortin and
682 neuropeptide Y in rodent arcuate neurons. *Journal of Endocrinology* 200:93-105.

683 Guinet, C., Servera, N., Mangin, S., Georges, J.Y., Lacroix, A., 2004. Change in plasma cortisol
684 and metabolites during the attendance period ashore in fasting lactating subantarctic fur
685 seals. *Comparative Biochemistry and Physiology Part A: Molecular & Integrative*
686 *Physiology* 137, 523-531.

687 Guo, W., Song, J., Yang, P., Chen, X., Chen, D., Ren, D., Kang, L., Wang, X., 2020. Juvenile
688 hormone suppresses aggregation behavior through influencing antennal gene expression in
689 locusts. *PLoS Genet.* 16, e1008762.

690 Hahn, T.P., Sockman, K.W., Creagh, W.B., Morton, M.L., 2004. Facultative Altitudinal
691 Movements by Mountain White-Crowned Sparrows (*Zonotrichia leucophrys oriantha*) in
692 the Sierra Nevada. *The Auk* 121, 1269-1281.

693 Haraguchi, S., Koyama, T., Hasunuma, I., Okuyama, S.-i., Ubuka, T., Kikuyama, S., Do Rego,
694 J.-L., Vaudry, H., Tsutsui, K., 2012. Acute Stress Increases the Synthesis of 7 α -
695 Hydroxypregnенolone, a New Key Neurosteroid Stimulating Locomotor Activity, through
696 Corticosterone Action in Newts. *Endocrinology* 153, 794-805.

AUTHOR'S FINAL VERSION OF: Watts, HE & Cornelius, JM. 2024. Toward understanding the endocrine regulation of diverse facultative migration strategies. *Hormones and Behavior* 158: 105465. <https://doi.org/10.1016/j.yhbeh.2023.105465>

697 Haraguchi, S., Koyama, T., Hasunuma, I., Vaudry, H., Tsutsui, K., 2010. Prolactin Increases the
698 Synthesis of 7 α -Hydroxypregnenolone, a Key Factor for Induction of Locomotor Activity,
699 in Breeding Male Newts. *Endocrinology* 151, 2211-2222.

700 Haraguchi, S., Matsunaga, M., Vaudry, H., Tsutsui, K., 2011. Mode of Action and Functional
701 Significance of 7 α -Hydroxypregnenolone Stimulating Locomotor Activity. *Frontiers in*
702 *Endocrinology* 2.

703 Haraguchi, S., Yamamoto, Y., Suzuki, Y., Hyung Chang, J., Koyama, T., Sato, M., Mita, M.,
704 Ueda, H., Tsutsui, K., 2015. 7 α -Hydroxypregnenolone, a key neuronal modulator of
705 locomotion, stimulates upstream migration by means of the dopaminergic system in
706 salmon. *Scientific Reports* 5, 12546.

707 Hau, M., Wikelski, M., Wingfield, J.C., 2000. Visual and nutritional food cues fine-tune timing
708 of reproduction in a neotropical rainforest bird. *J. Exp. Zool.* 286, 494-504.

709 Helm, B., Ben-Shlomo, R., Sheriff, M.J., Hut, R.A., Foster, R., Barnes, B.M., Dominoni, D.,
710 2013. Annual rhythms that underlie phenology: biological time-keeping meets
711 environmental change. *Proc Biol Sci* 280, 20130016.

712 Henderson, L.J., Cockcroft, R.C., Kaiya, H., Boswell, T., Smulders, T.V., 2018. Peripherally
713 injected ghrelin and leptin reduce food hoarding and mass gain in the coal tit (*Periparus*
714 *ater*). *Proc. Roy. Soc. B.* 285, 20180417.

715 Hendricks, G.L., III, Hadley, J.A., Krzysik-Walker, S.M., Prabhu, K.S., Vasilatos-Younken, R.,
716 Ramachandran, R., 2009. Unique Profile of Chicken Adiponectin, a Predominantly Heavy
717 Molecular Weight Multimer, and Relationship to Visceral Adiposity. *Endocrinology* 150,
718 3092-3100.

AUTHOR'S FINAL VERSION OF: Watts, HE & Cornelius, JM. 2024. Toward understanding the endocrine regulation of diverse facultative migration strategies. *Hormones and Behavior* 158: 105465. <https://doi.org/10.1016/j.yhbeh.2023.105465>

719 Heupel, M.R., Simpfendorfer, C.A., Hueter, R.E., 2003. Running before the storm: blacktip
720 sharks respond to falling barometric pressure associated with Tropical Storm Gabrielle. *J.*
721 *Fish Biol.* 63, 1357-1363.

722 Holland, R.A., Wikelski, M., Wilcove, D.S., 2006. How and why do insects migrate? *Science*
723 313, 794-796.

724 Holloway, A.C., Reddy, P.K., Sheridan, M.A., Leatherland, J.F., 1994. Diurnal rhythms of
725 plasma growth hormone, somatostatin, thyroid hormones, cortisol and glucose
726 concentrations in rainbow trout, *Oncorhynchus mykiss*, during progressive food
727 deprivation. *Biol. Rhythm Res.* 25, 415-432.

728 Huber, S., Palme, R., Arnold, W., 2003. Effects of season, sex, and sample collection on
729 concentrations of fecal cortisol metabolites in red deer (*Cervus elaphus*). *Gen. Comp.*
730 *Endocrinol.* 130, 48-54.

731 Huo, L., Gamber, K., Greeley, S., Silva, J., Huntoon, N., Leng, X.-H., Bjørbaek, C., 2009.
732 Leptin-dependent control of glucose balance and locomotor activity by POMC neurons.
733 *Cell metabolism* 9, 537-547.

734 Imbert, H., Arrowsmith, R., Dufour, S., Elie, P., 2008. Relationships between locomotor
735 behavior, morphometric characters and thyroid hormone levels give evidence of stage-
736 dependent mechanisms in European eel upstream migration. *Horm. Behav.* 53, 69-81.

737 IPCC 2021, In Press. Climate Change 2021: The Physical Science Basis. Contribution of
738 Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on
739 Climate Change, in: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C.,
740 Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., Huang, M., Leitzell, K., Lonnoy,

AUTHOR'S FINAL VERSION OF: Watts, HE & Cornelius, JM. 2024. Toward understanding the endocrine regulation of diverse facultative migration strategies. *Hormones and Behavior* 158: 105465. <https://doi.org/10.1016/j.yhbeh.2023.105465>

741 E., Matthews, J.B.R., Maycock, T.K., Waterfield, T., Yelekçi, O., Yu, R., Zhou, B. (Eds.).
742 Cambridge University Press.

743 Jachowski, D.S., Singh, N.J., 2015. Toward a mechanistic understanding of animal migration:
744 incorporating physiological measurements in the study of animal movement. *Conservation
745 Physiology* 3, cov035.

746 Jacobs, J.D., Wingfield, J.C., 2000. Endocrine Control of Life-Cycle Stages: A Constraint on
747 Response to the Environment? *The Condor* 102, 35-51.

748 Jakes, A.F., Gates, C.C., DeCesare, N.J., Goldberg, J.F., Kunkel, K.E., Hebblewhite, M., 2018.
749 Classifying the Migration Behaviors of Pronghorn on Their Northern Range. *The Journal
750 of Wildlife Management* 82, 1229-1242.

751 Jalabert, C., Ma, C., Soma, K.K., 2021. Profiling of systemic and brain steroids in male
752 songbirds: Seasonal changes in neurosteroids. *J. Neuroendocrinol.* 33, e12922.

753 Jansen, A.S.P., Van Nguyen, X., Karpitskiy, V., Mettenleiter, T.C., Loewy, A.D., 1995. Central
754 Command Neurons of the Sympathetic Nervous System: Basis of the Fight-or-Flight
755 Response. *Science* 270, 644-646.

756 Jessop, T., Letnic, M., Webb, J., Dempster, T., 2013. Adrenocortical stress responses influence
757 an invasive vertebrate's fitness in an extreme environment. *Proc Biol Sci* 280, 20131444.

758 Jessop, T., Webb, J., Dempster, T., Feit, B., Letnic, M., 2018. Interactions between
759 corticosterone phenotype, environmental stressor pervasiveness and irruptive movement-
760 related survival. *The Journal of Experimental Biology* 221, jeb.187930.

761 Jimeno, B., Hau, M., Verhulst, S., 2017. Strong association between corticosterone levels and
762 temperature-dependent metabolic rate in individual zebra finches. *J. Exp. Biol.* 220, 4426-
763 4431.

AUTHOR'S FINAL VERSION OF: Watts, HE & Cornelius, JM. 2024. Toward understanding the endocrine regulation of diverse facultative migration strategies. *Hormones and Behavior* 158: 105465. <https://doi.org/10.1016/j.yhbeh.2023.105465>

764 Jönsson, E., 2013. The role of ghrelin in energy balance regulation in fish. *Gen. Comp. Endocrinol.* 187, 79-85.

766 Kaczensky, P., Ganbataar, O., Altansukh, N., Enkhsaikhan, N., Stauffer, C., Walzer, C., 2011. The Danger of Having All Your Eggs in One Basket—Winter Crash of the Re-Introduced Przewalski's Horses in the Mongolian Gobi. *PLOS ONE* 6, e28057.

769 Kaiya, H., Kangawa, K., Miyazato, M., 2013. What is the general action of ghrelin for vertebrates? – Comparisons of ghrelin's effects across vertebrates. *Gen. Comp. Endocrinol.* 181, 187-191.

772 Kingsford, R.T., Roshier, D.A., Porter, J.L., 2010. Australian waterbirds time and space travellers in dynamic desert landscapes. *Marine and Freshwater Research* 61, 875-884.

774 Knutie, S.A., Pereyra, M.E., 2012. A Comparison of Winter Stress Responses in Cardueline Finches. *The Auk* 129, 479-490.

776 Koenig, W.D., Knops, J.M.H., 2001. Seed-crop size and eruptions of North American boreal seed-eating bird. *J. Anim. Ecol.* 70, 609-620.

778 Kojima, M., Kangawa, K., 2005. Ghrelin: Structure and Function. *Physiol. Rev.* 85, 495-522.

779 Koob, G.F., Heinrichs, S.C., 1999. A role for corticotropin releasing factor and urocortin in behavioral responses to stressors. *Brain Res.* 848, 141-152.

781 Koob, G.F., Heinrichs, S.C., Pich, E.M., Menzaghi, F., Baldwin, H., Miczek, K., Britton, K.T., 2007. The Role of Corticotropin-Releasing Factor in Behavioural Responses to Stress, Ciba Foundation Symposium 172 - Corticotropin-Releasing Factor, pp. 277-295.

784 Krause, J.S., Pérez, J.H., Chmura, H.E., Meddle, S.L., Hunt, K.E., Gough, L., Boelman, N., Wingfield, J.C., 2018. Weathering the storm: Do arctic blizzards cause repeatable changes

AUTHOR'S FINAL VERSION OF: Watts, HE & Cornelius, JM. 2024. Toward understanding the endocrine regulation of diverse facultative migration strategies. *Hormones and Behavior* 158: 105465. <https://doi.org/10.1016/j.yhbeh.2023.105465>

786 in stress physiology and body condition in breeding songbirds? *Gen. Comp. Endocrinol.*
787 267, 183-192.

788 Krause, J.S., Pérez, J.H., Meddle, S.L., Wingfield, J.C., 2017. Effects of short-term fasting on
789 stress physiology, body condition, and locomotor activity in wintering male white-crowned
790 sparrows. *Physiol. Behav.* 177, 282-290.

791 Kuo, T., McQueen, A., Chen, T.-C., Wang, J.-C., 2015. Regulation of Glucose Homeostasis by
792 Glucocorticoids. *Adv. Exp. Med. Biol.* 872, 99-126.

793 Landys, M.M., Ramenofsky, M., Wingfield, J.C., 2006. Actions of glucocorticoids at a seasonal
794 baseline as compared to stress-related levels in the regulation of periodic life processes.
795 *Gen. Comp. Endocrinol.* 148, 132-149.

796 Lennox, R.J., Chapman, J.M., Souliere, C.M., Tudorache, C., Wikelski, M., Metcalfe, J.D.,
797 Cooke, S.J., 2016. Conservation physiology of animal migration. *Conservation physiology*
798 4, cov072.

799 Lowry, C.A., Moore, F.L., 2006. Regulation of behavioral responses by corticotropin-releasing
800 factor. *Gen. Comp. Endocrinol.* 146, 19-27.

801 Lupi, S., Morbey, Y.E., MacDougall-Shackleton, S.A., Kaiya, H., Fusani, L., Guglielmo, C.G.,
802 2022. Experimental ghrelin administration affects migratory behaviour in a songbird.
803 *Horm. Behav.* 141, 105139.

804 Lynn, S.E., Breuner, C.W., Wingfield, J.C., 2003. Short-term fasting affects locomotor activity,
805 corticosterone, and corticosterone binding globulin in a migratory songbird. *Horm. Behav.*
806 43, 150-157.

807 Marasco, V., Kaiya, H., Pola, G., Fusani, L., 2023. Ghrelin, not corticosterone, is associated with
808 transitioning of phenotypic states in a migratory Galliform. *Frontiers in Endocrinology* 13.

AUTHOR'S FINAL VERSION OF: Watts, HE & Cornelius, JM. 2024. Toward understanding the endocrine regulation of diverse facultative migration strategies. *Hormones and Behavior* 158: 105465. <https://doi.org/10.1016/j.yhbeh.2023.105465>

809 Matich, P., Heithaus, M., 2012. Effects of an extreme temperature event on the behavior and age
810 structure of an estuarine top predator (*Carcharhinus leucas*). *Mar. Ecol. Prog. Ser.* 447,
811 165-178.

812 Meier, U., Gressner, A.M., 2004. Endocrine Regulation of Energy Metabolism: Review of
813 Pathobiochemical and Clinical Chemical Aspects of Leptin, Ghrelin, Adiponectin, and
814 Resistin. *Clin. Chem.* 50, 1511-1525.

815 Méquignon, M., Foldi, C.J., Andrews, Z.B., 2020. The Ghrelin-AgRP Neuron Nexus in Anorexia
816 Nervosa: Implications for Metabolic and Behavioral Adaptations. *Frontiers in Nutrition* 6.

817 Midwood, J.D., Larsen, M.H., Aarestrup, K., Cooke, S.J., 2016. Stress and food deprivation:
818 linking physiological state to migration success in a teleost fish. *J. Exp. Biol.* 219, 3712-
819 3718.

820 Moagi, L.L., Bourne, A.R., Cunningham, S.J., Jansen, R., Ngcamphalala, C.A., Ganswindt, A.,
821 Ridley, A.R., McKechnie, A.E., 2021. Hot days are associated with short-term
822 adrenocortical responses in a southern African arid-zone passerine bird. *J. Exp. Biol.* 224,
823 jeb242535.

824 Mueller, T., Olson, K.A., Dressler, G., Leimgruber, P., Fuller, T.K., Nicolson, C., Novaro, A.J.,
825 Bolgeri, M.J., Wattles, D., DeStefano, S., Calabrese, J.M., Fagan, W.F., 2011. How
826 landscape dynamics link individual- to population-level movement patterns: a multispecies
827 comparison of ungulate relocation data. *Global Ecol. Biogeogr.* 20, 683-694.

828 Newton, I., 2006a. Advances in the study of irruptive migration. *Ardea* 94, 433-460.

829 Newton, I., 2006b. Movement patterns of Common Crossbills *Loxia curvirostra* in Europe. *Ibis*
830 148, 782-788.

831 Newton, I., 2008. The Migration Ecology of Birds. Academic Press, London.

AUTHOR'S FINAL VERSION OF: Watts, HE & Cornelius, JM. 2024. Toward understanding the endocrine regulation of diverse facultative migration strategies. *Hormones and Behavior* 158: 105465. <https://doi.org/10.1016/j.yhbeh.2023.105465>

832 Newton, I., 2012. Obligate and facultative migration in birds: ecological aspects. *Journal of*
833 *Ornithology* 153, S171-S180.

834 Niewiarowski, P.H., Balk, M.L., Londraville, R.L., 2000. Phenotypic effects of leptin in an
835 ectotherm: a new tool to study the evolution of life histories and endothermy? *J. Exp. Biol.*
836 203, 295-300.

837 Nisembaum, L.G., Martin, P., Fuentes, M., Besseau, L., Magnanou, E., McCormick, S.D.,
838 Falcón, J., 2020. Effects of a temperature rise on melatonin and thyroid hormones during
839 smoltification of Atlantic salmon, *Salmo salar*. *Journal of Comparative Physiology B* 190,
840 731-748.

841 Nosal, A.P., Cartamil, D.P., Ammann, A.J., Bellquist, L.F., Ben-Aderet, N.J., Blincow, K.M.,
842 Burns, E.S., Chapman, E.D., Freedman, R.M., Klimley, A.P., Logan, R.K., Lowe, C.G.,
843 Semmens, B.X., White, C.F., Hastings, P.A., 2021. Triennial migration and philopatry in
844 the critically endangered soupfin shark *Galeorhinus galeus*. *J. Appl. Ecol.* 58, 1570-1582.

845 Nourbakhsh-Rey, M., Markham, M.R., 2021. Leptinergic Regulation of Vertebrate
846 Communication Signals. *Integr. Comp. Biol.* 61, 1946-1954.

847 O'Connor, C.M., Gilmour, K.M., Arlinghaus, R., Hasler, C.T., Philipp, D.P., Cooke, S.J., 2010.
848 Seasonal Carryover Effects following the Administration of Cortisol to a Wild Teleost
849 Fish. *Physiol. Biochem. Zool.* 83, 950-957.

850 O'Neill, J.P., Parker, T.A.I., 1978. Responses of birds to a snowstorm in the Andes of southern
851 Peru. *Wilson Bull.* 90, 446-449.

852 Oh, Y.T., Oh, K.-S., Kang, I., Youn, J.H., 2012. A Fall in Plasma Free Fatty Acid (FFA) Level
853 Activates the Hypothalamic-Pituitary-Adrenal Axis Independent of Plasma Glucose:
854 Evidence for Brain Sensing of Circulating FFA. *Endocrinology* 153, 3587-3592.

AUTHOR'S FINAL VERSION OF: Watts, HE & Cornelius, JM. 2024. Toward understanding the endocrine regulation of diverse facultative migration strategies. *Hormones and Behavior* 158: 105465. <https://doi.org/10.1016/j.yhbeh.2023.105465>

855 Olsson, I.C., Greenberg, L.A., Bergman, E., Wysujack, K., 2006. Environmentally induced
856 migration: the importance of food. *Ecol. Lett.* 9, 645-651.

857 Øverli, Ø., Kotzian, S., Winberg, S., 2002. Effects of Cortisol on Aggression and Locomotor
858 Activity in Rainbow Trout. *Horm. Behav.* 42, 53-61.

859 Páez, D.J., Restif, O., Eby, P., Plowright, R.K., 2018. Optimal foraging in seasonal
860 environments: implications for residency of Australian flying foxes in food-subsidized
861 urban landscapes. *Philos. Trans. Roy. Soc. B.* 373, 20170097.

862 Pant, K., Chandola-Saklani, A., 1993. A role for thyroid hormones in the development of
863 premigratory disposition in redheaded bunting, *Emberiza bruniceps*. *Journal of
864 Comparative Physiology B* 163, 389-394.

865 Pedler, R.D., Ribot, R.F.H., Bennett, A.T.D., 2014. Extreme nomadism in desert waterbirds:
866 flights of the banded stilt. *Biol. Lett.* 10.

867 Pérez, J.H., Furlow, J.D., Wingfield, J.C., Ramenofsky, M., 2016. Regulation of vernal migration
868 in Gambel's white-crowned sparrows: Role of thyroxine and triiodothyronine. *Horm.
869 Behav.* 84, 50-56.

870 Pérez, J.H., Krause, J.S., Bishop, V.R., Reid, A.M.A., Sia, M., Wingfield, J.C., Meddle, S.L.,
871 2021. Seasonal differences in hypothalamic thyroid-stimulating hormone β , gonadotropin-
872 releasing hormone-I and deiodinase expression between migrant and resident subspecies of
873 white-crowned sparrow (*Zonotrichia leucophrys*). *J. Neuroendocrinol.* 33, e13032.

874 Péron, G., Ferrand, Y., Gossmann, F., Bastat, C., Guénézan, M., Gimenez, O., 2011. Escape
875 migration decisions in Eurasian Woodcocks: insights from survival analyses using large-
876 scale recovery data. *Behav. Ecol. Sociobiol.* 65, 1949-1955.

AUTHOR'S FINAL VERSION OF: Watts, HE & Cornelius, JM. 2024. Toward understanding the endocrine regulation of diverse facultative migration strategies. *Hormones and Behavior* 158: 105465. <https://doi.org/10.1016/j.yhbeh.2023.105465>

877 Pitman, R.L., Durban, J.W., Joyce, T., Fearnbach, H., Panigada, S., Lauriano, G., 2020. Skin in
878 the game: Epidermal molt as a driver of long-distance migration in whales. *Mar. Mamm.*
879 *Sci.* 36, 565-594.

880 Plotkin, P.T., 2010. Nomadic behavior of the highly migratory olive ridley sea turtle
881 *Lepidochelys olivacea* in the eastern tropical Pacific Ocean. *Endangered Species Research*
882 13, 33-40.

883 Pradhan, D.S., Van Ness, R., Jalabert, C., Hamden, J.E., Austin, S.H., Soma, K.K., Ramenofsky,
884 M., Schlinger, B.A., 2019. Phenotypic flexibility of glucocorticoid signaling in skeletal
885 muscles of a songbird preparing to migrate. *Horm. Behav.* 116, 104586.

886 Ramenofsky, M., Cornelius, J.M., Helm, B., 2012. Physiological and behavioral responses of
887 migrants to environmental cues. *Journal of Ornithology* 153, S181-S191.

888 Rensel, M.A., Schlinger, B.A., 2016. Determinants and significance of corticosterone regulation
889 in the songbird brain. *Gen. Comp. Endocrinol.* 227, 136-142.

890 Robart, A.R., McGuire, M.M.K., Watts, H.E., 2018. Increasing photoperiod stimulates the
891 initiation of spring migratory behaviour and physiology in a facultative migrant, the pine
892 siskin. *Royal Society Open Science* 5, 180876.

893 Robart, A.R., Morado, M.I., Watts, H.E., 2019. Declining food availability, corticosterone, and
894 migratory response in a nomadic, irruptive migrant. *Horm. Behav.* 110, 56-67.

895 Robart, A.R., Watts, H.E., 2023. Integration of social and temperature cues alters facultative
896 migratory response to declining food availability. *Anim. Behav.* 198, 153-164.

897 Rogers, C.M., Ramenofsky, M., Ketterson, E.D., Nolan, V., Jr., Wingfield, J.C., 1993. Plasma
898 Corticosterone, Adrenal Mass, Winter Weather, And Season In Nonbreeding Populations
899 Of Dark-Eyed Juncos (*Junco Hyemalis Hyemalis*). *The Auk* 110, 279-285.

AUTHOR'S FINAL VERSION OF: Watts, HE & Cornelius, JM. 2024. Toward understanding the endocrine regulation of diverse facultative migration strategies. *Hormones and Behavior* 158: 105465. <https://doi.org/10.1016/j.yhbeh.2023.105465>

900 Roshier, D.A., Asmus, M., Klaassen, M., 2008. What drives long-distance movements in the
901 nomadic Grey Teal *Anas gracilis* in Australia? *Ibis* 150.

902 Rossi, G.S., Welch, K.C., Jr., 2023. Leptin Resistance Does Not Facilitate Migratory Fattening in
903 Ruby-Throated Hummingbirds (*Archilochus Colubris*). *Integr. Comp. Biol.*, icad046.

904 Sánchez-Gurmaches, J., Cruz-Garcia, L., Gutiérrez, J., Navarro, I., 2012. Adiponectin effects and
905 gene expression in rainbow trout: an in vivo and in vitro approach. *J. Exp. Biol.* 215, 1373-
906 1383.

907 Sanderfoot, O.V., Bassing, S.B., Brusa, J.L., Emmet, R.L., Gillman, S.J., Swift, K., Gardner, B.,
908 2021. A review of the effects of wildfire smoke on the health and behavior of wildlife.
909 *Environmental Research Letters* 16, 123003.

910 Sapolsky, R.M., Romero, L.M., Munck, A.U., 2000. How Do Glucocorticoids Influence Stress
911 Responses? Integrating Permissive, Suppressive, Stimulatory, and Preparative Actions*.
912 *Endocr. Rev.* 21, 55-89.

913 Schmidt-Nielsen, K., 1972. Locomotion: Energy Cost of Swimming, Flying, and Running.
914 *Science* 177, 222-228.

915 Schwabl, H., Wingfield, J.C., Farner, D.S., 1985. Influence of winter on endocrine state and
916 behavior in European blackbirds (*Turdus merula*). *Zeitschrift für Tierpsychologie* 68, 244-
917 252.

918 Shaw, A.K., 2016. Drivers of animal migration and implications in changing environments.
919 *Evol. Ecol.* 30, 991-1007.

920 Smith, G.T., Wingfield, J.C., Veit, R.R., 1994. Adrenocortical Response to Stress in the
921 Common Diving Petrel, *Pelecanoides urinatrix*. *Physiol. Zool.* 67, 526-537.

AUTHOR'S FINAL VERSION OF: Watts, HE & Cornelius, JM. 2024. Toward understanding the endocrine regulation of diverse facultative migration strategies. *Hormones and Behavior* 158: 105465. <https://doi.org/10.1016/j.yhbeh.2023.105465>

922 Snell, K.R.S., Young, R.C., Krause, J.S., Collinson, J.M., Wingfield, J.C., Thorup, K., 2022.
923 Integrating orientation mechanisms, adrenocortical activity, and endurance flight in
924 vagrancy behaviour. *Scientific Reports* 12, 22104.

925 Spée, M., Marchal, L., Thierry, A.-M., Chastel, O., Enstipp, M., Maho, Y.L., Beaulieu, M.,
926 Raclot, T., 2011. Exogenous corticosterone mimics a late fasting stage in captive Adélie
927 penguins (*Pygoscelis adeliae*). *American Journal of Physiology-Regulatory, Integrative*
928 and *Comparative Physiology* 300, R1241-R1249.

929 Streby, Henry M., Kramer, Gunnar R., Peterson, Sean M., Lehman, Justin A., Buehler, David A.,
930 Andersen, David E., 2015. Tornadic Storm Avoidance Behavior in Breeding Songbirds.
931 *Curr. Biol.* 25, 98-102.

932 Stuber, E.F., Verpeut, J., Horvat-Gordon, M., Ramachandran, R., Bartell, P.A., 2013.
933 Differential Regulation of Adipokines May Influence Migratory Behavior in the White-
934 Throated Sparrow (*Zonotrichia albicollis*). *PLOS ONE* 8, e59097.

935 Tang, N., Zhang, X., Chen, D., Li, Z., 2021. The Controversial Role of Adiponectin in Appetite
936 Regulation of Animals, Nutrients.

937 Teitelbaum, C.S., Bachner, N.C., Hall, R.J., 2023. Post-migratory nonbreeding movements of
938 birds: A review and case study. *Ecology and Evolution* 13, e9893.

939 Teitelbaum, C.S., Mueller, T., 2019. Beyond Migration: Causes and Consequences of Nomadic
940 Animal Movements. *Trends Ecol. Evol.* 34, 569-581.

941 Terrill, S.B., Able, K.P., 1988. Bird migration terminology. *Auk* 105, 205-206.

942 Terrill, S.B., Ohmart, R.D., 1984. Facultative extension of fall migration by yellow-rumped
943 warblers (*Dendroica coronata*). *The Auk* 101, 427-438.

AUTHOR'S FINAL VERSION OF: Watts, HE & Cornelius, JM. 2024. Toward understanding the endocrine regulation of diverse facultative migration strategies. *Hormones and Behavior* 158: 105465. <https://doi.org/10.1016/j.yhbeh.2023.105465>

944 Tomasi, T.E., Mitchell, D.A., 1996. Temperature and photoperiod effects on thyroid function
945 and metabolism in cotton rats (*Sigmodon hispidus*). Comparative Biochemistry and
946 Physiology Part A: Physiology 113, 267-274.

947 Tsutsui, K., Haraguchi, S., Vaudry, H., 2018. 7 α -Hydroxypregnенolone regulating locomotor
948 behavior identified in the brain and pineal gland across vertebrates. Gen. Comp.
949 Endocrinol. 265, 97-105.

950 Udyawer, V., Chin, A., Knip, D.M., Simpfendorfer, C.A., Heupel, M.R., 2013. Variable
951 response of coastal sharks to severe tropical storms: environmental cues and changes in
952 space use. Mar. Ecol. Prog. Ser. 480, 171-183.

953 Vaanholt, L.M., Meerlo, P., Garland, T., Jr., Visser, G.H., Gh, V., van Dijk, G., 2007. Plasma
954 adiponectin is increased in mice selectively bred for high wheel-running activity, but not by
955 wheel running per sé. Hormone and Metabolic Research 39, 377-383.

956 Vernasco, B.J., Emmerson, M.G., Gilbert, E.R., Sewall, K.B., Watts, H.E., 2021. Migratory state
957 and patterns of steroid hormone regulation in the pectoralis muscle of a nomadic migrant,
958 the pine siskin (*Spinus pinus*). Gen. Comp. Endocrinol. 309, 113787.

959 Vivas, Y., Azpeleta, C., Feliciano, A., Velarde, E., Isorna, E., Delgado, M.J., De Pedro, N., 2011.
960 Time-dependent effects of leptin on food intake and locomotor activity in goldfish.
961 Peptides 32, 989-995.

962 Wada, M., 1993. Low Temperature and Short Days Together Induce Thyroid Activation and
963 Suppression of LH Release in Japanese Quail. Gen. Comp. Endocrinol. 90, 355-363.

964 Ward, P., 1971. The migration patterns of *Quelea quelea* in Africa Ibis 113, 275-297.

965 Watts, H.E., 2020. Seasonal regulation of behaviour: what role do hormone receptors play? Proc.
966 Roy. Soc. B. 287, 20200722.

AUTHOR'S FINAL VERSION OF: Watts, HE & Cornelius, JM. 2024. Toward understanding the endocrine regulation of diverse facultative migration strategies. *Hormones and Behavior* 158: 105465. <https://doi.org/10.1016/j.yhbeh.2023.105465>

967 Watts, H.E., Cornelius, J.M., Fudickar, A.M., Pérez, J., Ramenofsky, M., 2018. Understanding
968 variation in migratory movements: A mechanistic approach. *Gen. Comp. Endocrinol.* 256,
969 112-122.

970 Watts, H.E., Rittenhouse, J.L., Sewall, K.B., Bowers, J.M., 2019. Migratory state is not
971 associated with differences in neural glucocorticoid or mineralocorticoid receptor
972 expression in pine siskins. *Animal Migration* 6, 19-27.

973 Weber, J.-M., 2009. The physiology of long-distance migration: extending the limits of
974 endurance metabolism. *J. Exp. Biol.* 212, 593-597.

975 Wilcove, D.S., Wikelski, M., 2008. Going, going, gone: Is animal migration disappearing? *PLoS*
976 *Biol.* 6, 1361-1364.

977 Williams, K.W., Elmquist, J.K., 2012. From neuroanatomy to behavior: central integration of
978 peripheral signals regulating feeding behavior. *Nat. Neurosci.* 15, 1350-1355.

979 Wingfield, J.C., 2005. The concept of allostasis: Coping with a capricious environment. *J.*
980 *Mammal.* 86, 248-254.

981 Wingfield, J.C., Kitaysky, A.S., 2002. Endocrine responses to unpredictable environmental
982 events: Stress or anti-stress hormones? *Integr. Comp. Biol.* 42, 600-609.

983 Wingfield, J.C., Maney, D.L., Breuner, C.W., Jacobs, J.D., Lynn, S., Ramenofsky, M.,
984 Richardson, R.D., 1998. Ecological Bases of Hormone—Behavior Interactions: The
985 “Emergency Life History Stage”. *Am. Zool.* 38, 191-206.

986 Wingfield, J.C., Ramenofsky, M., 1997. Corticosterone and facultative dispersal in response to
987 unpredictable events. *Ardea* 85, 155-166.

988 Wingfield, J.C., Vleck, C.M., Moore, M.C., 1992. Seasonal changes of the adrenocortical
989 response to stress in birds of the Sonoran desert. *J. Exp. Zool.* 264, 419-428.

AUTHOR'S FINAL VERSION OF: Watts, HE & Cornelius, JM. 2024. Toward understanding the endocrine regulation of diverse facultative migration strategies. *Hormones and Behavior* 158: 105465. <https://doi.org/10.1016/j.yhbeh.2023.105465>

990 Wingfield, J.C., Wacker, D.W., Bentley, G.E., Tsutsui, K., 2018. Brain-Derived Steroids,
991 Behavior and Endocrine Conflicts Across Life History Stages in Birds: A Perspective.
992 Frontiers in Endocrinology 9.
993 Wittert, G.A., Turnbull, H., Hope, P., 2005. Exogenously administered leptin leads to weight loss
994 and increased physical activity in the marsupial *Sminthopsis crassicaudata*. *Physiol. Behav.*
995 85, 613-620.
996 Wysujack, K., Greenberg, L.A., Bergman, E., Olsson, I.C., 2009. The role of the environment in
997 partial migration: food availability affects the adoption of a migratory tactic in brown trout
998 *Salmo trutta*. *Ecol. Freshwat. Fish* 18, 52-59.
999 Xie, S., Romero, L.M., Htut, Z.W., McWhorter, T.J., 2017. Stress Responses to Heat Exposure
1000 in Three Species of Australian Desert Birds. *Physiol. Biochem. Zool.* 90, 348-358.
1001
1002

Box 1. Terminology related to facultative migration

The terms **obligate** and **facultative** are applied to migration in two ways. First, they are used to distinguish between individuals that always migrate (obligate) versus individuals that only migrate under certain circumstances (facultative) (see Partial migration). Many obligate migrants are also highly consistent in their timing, distance and direction of migration.

Consequently, the term **obligate migration** has been used to describe a broad suite of relatively predictable migratory behavior (also called to-and-fro, true, and calendar migrations). In contrast, the term **facultative migration** is applied to a variety of movements that are flexible in one or more aspects of timing and spatial patterning, thus encompassing more than partial migration (e.g., Newton, 2008).

Forms of facultative migration

Nomadic migration describes migrations that are irregular or variable with respect to direction and destination that occur repeatedly throughout an individual's life. Nomads exhibit low site fidelity and movements can be temporally irregular. For more see Dingle (2014); Dingle and Drake (2007); Teitelbaum and Mueller (2019).

Irruptive migration refers to temporally irregular movements that move animals away from unfavorable conditions (typically declining food availability). Irruption is often associated with large numbers of individuals moving outside of their typical range and can frequently occur in nomadic migrants if movements fail to locate resources within their typical range. This term is sometimes applied to facultative altitudinal and winter migrations, and escape migrations. For more see Newton (2012); Wingfield and Ramenofsky (1997).

Facultative altitudinal migration has been applied to movement to a new elevation in response to poor or deteriorating conditions at a given elevation (e.g., to lower elevation in response to rain or snow). Movements are often short in distance and may involve relocation for days to months. E.g., (Boyle et al., 2010; e.g., Hahn et al., 2004).

Facultative winter migration has been applied to movements in the winter away from poor or deteriorating conditions (e.g., caused by snow or cold), typically to lower latitudes. These have also been called facultative extension of fall migration. E.g., Jakes et al. (2018); Terrill and Ohmart (1984).

Escape or **fugitive migration** are general terms for movements away from poor or deteriorating conditions. They include facultative altitudinal and winter migrations. For more see Newton (2008); Péron et al. (2011); Watts et al. (2018).

Other related terminology

Partial migration refers to a population in which some individuals migrate and others do not, in a given year. Among partial migrants, individuals may be obligate migrants (i.e., an individual is always migratory or not) or facultative migrants (i.e., an individual may migrate in some years but not others). For more see Chapman et al. (2011); Terrill and Able (1988).

Differential migration refers to variation in migratory behavior (e.g., distance traveled, timing of movement) between different demographic classes of individuals within a

population (e.g., age class or sex). Differential migration can occur among both obligate and facultative migrants. For more see Terrill and Able (1988)

1003
1004
1005
1006
1007
1008
1009
1010

Table 1. Summary of evidence for the role of glucocorticoid (GC) signaling in vertebrate facultative migration across movement types. Associations between changes in (1) GCs and/or (2) other elements of the HPA-axis in association with the environmental conditions expected to trigger migration are suggestive, but are considered to be relatively weak evidence. (3) Correlations between GC signaling and the expression of facultative migratory behavior and/or (4) hormone manipulations that change expression of facultative migratory behavior provide stronger evidence, particularly in combination. See main text for more detailed descriptions of findings. Note that in some cases evidence comes from very few studies or species.

		Exploitative	Predictive evasive	Reactive evasive
1)	Circulating GCs elevated under conditions expected to trigger migration	No ^a	Yes, but only elevated to modest levels ^d	Yes, in many species, particularly if body condition is negatively impacted ^h
2)	Other elements of GC signaling pathways altered under conditions expected to trigger migration	No ^b	Indirect - receptors change in response to social cues about food ^e	Lack of data
3)	Correlation between elevated GCs (or other elements of GC signaling) and migratory behavior	No ^c	Yes, based on captive studies only ^f	Evidence for correlation with locomotor activity from captive studies ⁱ , but lack of data on free-living animals
4)	Changes in expression of behavior in response to hormonal manipulation	Lack of data	No, but data only from a single study (in different taxon from evidence for #1,2,3) ^g	Evidence of causal relationship with locomotor behavior from captive ^j and free-living animals ^k , but lack of data on migratory movements in free-living animals

1011^aRobart et al., 2018

1012^bVernasco et al., 2021; Watts et al., 2019

1013^cDeSimone et al., 2023

1014^dCornelius et al., 2010; de Bruijn and Romero, 2018; Guinet et al., 2004; Jimeno et al., 2017

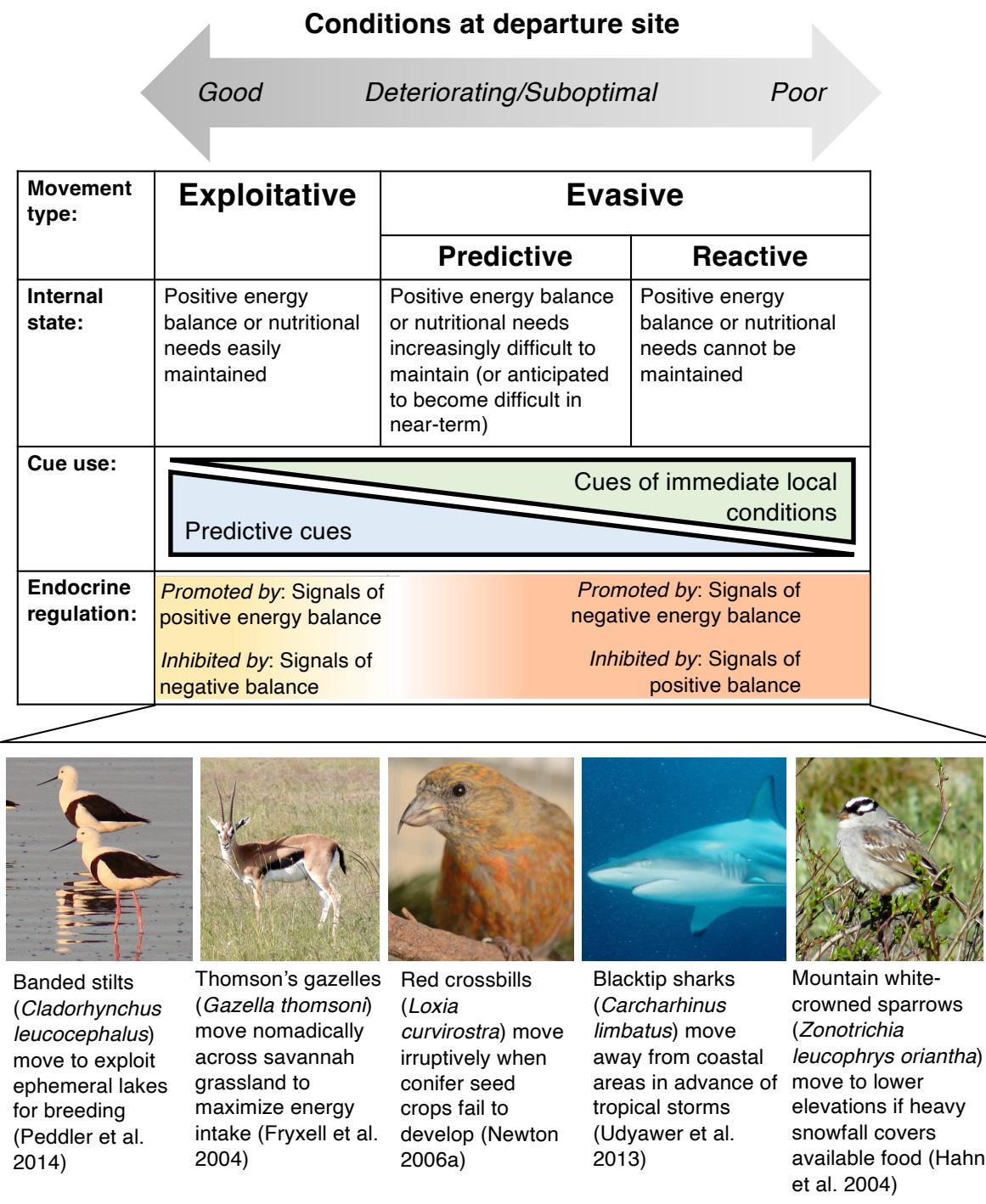
1015^eCornelius et al., 2018

1016^fAstheimer et al., 1992; Cornelius et al., 2010; Cornelius et al., 2018; DeSimone et al., 2021; Robart et al., 2019; Robart and Watts, 2023

1017^gMidwood et al., 2016

1018^hE.g., de Bruijn and Romero, 2018; Huber et al., 2003; Jessop et al., 2013; Rogers et al., 1993; Schwabl et al., 1985; Xie et al., 2017; see main text for additional references

AUTHOR'S FINAL VERSION OF: Watts, HE & Cornelius, JM. 2024. Toward understanding the endocrine regulation of diverse facultative migration strategies. *Hormones and Behavior* 158: 105465. <https://doi.org/10.1016/j.yhbeh.2023.105465>


1021 ⁱ Challet et al., 1995; Cornelius et al., 2010; DeSimone et al., 2021; Krause et al., 2017; Lynn et al., 2003;
1022 Spée et al., 2011

1023 ^j Astheimer et al., 1992; Breuner et al., 1998; Cash and Holberton, 1999; Challet et al., 1995; Øverli et al.,
1024 2002; Spée et al., 2011

1025 ^k Breuner and Hahn, 2003; Jessop et al., 2018; O'Connor et al., 2010

AUTHOR'S FINAL VERSION OF: Watts, HE & Cornelius, JM. 2024. Toward understanding the endocrine regulation of diverse facultative migration strategies. *Hormones and Behavior* 158: 105465. <https://doi.org/10.1016/j.yhbeh.2023.105465>

1026 **Figure 1.** Conceptual framework describing variation in facultative migrations across a range of
1027 conditions at departure, with examples to illustrate movements across the continuum. Note that a
1028 given species may engage in more than one form of facultative migration (e.g., red crossbills
1029 make both exploitative and reactive movements). Hypothesized patterns of cue use and
1030 endocrine regulation across the movement types are also shown. Photo credits from left to right:
1031 Cas Liber, Heather Watts, Jamie Cornelius; Albert Kok, Tom Hahn.
1032

