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ABSTRACT: The integration of low-energy states into bottom-up
engineered graphene nanoribbons (GNRs) is a robust strategy for
realizing materials with tailored electronic band structure for
nanoelectronics. Low-energy zero-modes (ZMs) can be introduced
into nanographenes (NGs) by creating an imbalance between the
two sublattices of graphene. This phenomenon is exemplified by
the family of [n]triangulenes (n ∈ ). Here, we demonstrate the
synthesis of [3]triangulene-GNRs, a regioregular one-dimensional
(1D) chain of [3]triangulenes linked by five-membered rings.
Hybridization between ZMs on adjacent [3]triangulenes leads to
the emergence of a narrow band gap, Eg,exp ∼ 0.7 eV, and
topological end states that are experimentally verified using
scanning tunneling spectroscopy. Tight-binding and first-principles
density functional theory calculations within the local density approximation corroborate our experimental observations. Our
synthetic design takes advantage of a selective on-surface head-to-tail coupling of monomer building blocks enabling the
regioselective synthesis of [3]triangulene-GNRs. Detailed ab initio theory provides insights into the mechanism of on-surface radical
polymerization, revealing the pivotal role of Au−C bond formation/breakage in driving selectivity.

■ INTRODUCTION
Graphene nanoribbons (GNRs) are an emerging class of
bottom-up synthesized carbon nanomaterials whose electronic
structure can be tailored by the deterministic design of
molecular precursors. Laterally confining graphene to a
nanoribbon (width <2 nm) opens a highly tunable band gap
that renders these materials attractive candidates for logic
devices at the molecular scale.1,2 More recently, the engineer-
ing of low-energy states in GNRs has emerged as a robust
strategy to induce magnetic ordering in low-dimensional
phases, superlattices of topologically protected junction states,
and even intrinsically metallic band structures in bottom-up
synthesized GNRs.3−7 These advances have been realized by
designing structures that imbue nanographenes (NGs) with a
sublattice imbalance that gives rise to low-energy states.8 A
sublattice imbalance ΔN = NA − NB, where NA and NB are the
number of carbon atoms on the A and B sublattices,
respectively, leads to ΔN eigenstates at E = 0 eV, or zero-
modes (ZMs), that are polarized to the majority sublattice.9 In
a chemical picture, these ZMs can be described as the π-
radicals associated with open-shell non-Kekuleán structures.10

The interaction between adjacent ZMs can lead to hybrid-
ization and spin correlation effects shaping electronic structure
and leading to the emergence of magnetism.8 Triangular-

shaped [n]triangulenes are the archetype of sublattice
imbalance in NGs and feature a ground-state spin that scales
linearly with their size.11−15 [3]triangulene features an S = 1
ground state and interactions between proximal ZMs on
neighboring [3]triangulenes linked at their vertices have been
studied in dimers,16 trimers,17 and one-dimensional (1D) spin
chains.18 Interactions between ZMs of triangulenes joined
vertex-to-edge (thus connecting the majority and minority
sublattices) remain unexplored.
Surface-catalyzed Ullmann-type coupling is a powerful

technique for the bottom-up synthesis of [3]triangulene chains
and GNRs.19 The metal surface catalyzes the homolytic
cleavage of weak carbon−halogen bonds, facilitating radical
step-growth polymerization and subsequent cyclodehydroge-
nation to form a fully fused aromatic structure. Means of
achieving chemoselectivity, however, are limited by the
available on-surface polymerization toolkit.19 Current strat-
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egies include exploiting templating effects,20−23 modulating the
composition and structure of the metal surface,24−26 and
leveraging steric hindrance in conjunction with dominant
molecular absorption geometries.3,27 While existing approaches
place various constraints on precursor design, perhaps the most
restrictive is that to form a regioregular structure, a molecular
precursor must be symmetric with respect to a mirror plane
perpendicular to the polymerization axis (the x-axis in Figure
1A). A synthetic tool for overcoming this requirement in
forming regioregular NGs could spur the realization of
designer quantum materials exhibiting new magnetic proper-
ties and topological phases of matter.19,28

Here, we report the design and on-surface synthesis of
[3]triangulene-GNRs�regioregular [3]triangulene chains fea-
turing fused cyclopentadiene rings. We describe a regiose-
lective surface-catalyzed radical step-growth polymerization
between phenyl- and anthracenyl-centered radicals and
demonstrate that a regioregular GNR can be formed even
though the molecular building block lacks a mirror plane
perpendicular to the polymerization axis. The origin of this
unusual selectivity is supported by ab initio calculations of the
on-surface coupling mechanism. Scanning tunneling spectros-
copy (STS) reveals that arranging [3]triangulene ZMs in a 1D
superlattice gives rise to GNRs with a narrow band gap (Eg =
730 meV) and ZM end states. We construct an effective tight-
binding (TB) model to describe the GNR electronic structure
on the basis of quantum mechanical hopping of electrons
between ZMs on adjacent [3]triangulene units and the
topological origin of the ZM end states.

■ RESULTS AND DISCUSSION
Synthesis of Molecular Precursors and Surface-

Assisted Growth of [3]triangulene-GNRs. The synthesis
of molecular precursor 1 for [3]triangulene GNRs is depicted
in Figure 1A. Chemoselective lithiation of 5-bromo-2-iodo-1,3-
dimethlylbenzene followed by nucleophilic addition to
anthrone gave an intermediate tertiary alcohol.9 Acid-catalyzed
dehydration and rearomatization yielded 2. Bromination of the
10-anthracenyl position in 2 using N-bromosuccinimide gave
the molecular precursor for [3]triangulene-GNRs, 9-bromo-
10-(4-bromo-2,6-dimethylphenyl)anthracene (1). Samples of
[3]triangulene-GNRs were prepared following established
surface-assisted bottom-up GNR growth protocols. Molecular
precursor 1 was sublimed in ultrahigh vacuum from a Knudsen
cell evaporator onto a Au(111) surface held at 25 °C. Figure
1B shows a representative topographic STM image of the self-
assembled molecular arrangement of precursor 1 into linear
structures (Figure S1A). Step-growth polymerization of 1 was
induced by annealing the molecule-decorated surface to T =
200 °C. Topographic STM images show linear chains of poly-1
localized exclusively along the Au(111) step edges (Figures 1C
and S1B,C). A second annealing step at T = 250 °C induced
both thermal cyclodehydrogenation and radical recombination
giving rise to fully fused [3]triangulene-GNRs. Topographic
STM images of annealed GNR samples show ribbons with
varying degrees of curvature, ranging in length from 5 to 20 nm
(Figures 1D and S1D−F). Bond-resolved STM (BRSTM)
imaging with CO-functionalized tips reveals a structure of
[3]triangulene units fused via five-membered rings along the
backbone of the GNR (Figure 1E). The relative orientation of

Figure 1. Synthesis and structural characterization of [3]triangulene-GNRs. (A) Schematic representation of the bottom-up synthesis of
[3]triangulene-GNRs from molecular precursor 1. (B) STM topographic image of a self-assembled island of molecular precursor 1 on Au(111) (Vs
= −2.0 V, It = 20 pA). (C) STM topographic image of intermediate linear chains of poly-1 following thermal annealing to 200 °C (Vs = −2.0 V, It =
30 pA). (D) STM topographic image of [3]triangulene-GNRs following annealing to 250 °C (Vs = 1.8 V, It = 20 pA). Red arrow: HH dimers at the
elbow sites of the Au(111) herringbone reconstruction. (E) Bond-resolved STM image of the region highlighted by a square in (D) showing the
[3]triangulene-GNR structure of regioregular [3]triangulene units fused by five-membered rings (Vs = 0.0 V, Vac = 20 mV, and f = 533 Hz).
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each [3]triangulene building block in the GNR backbone
suggests that the on-surface polymerization giving rise to poly-1
strongly favors C−C bond formation from a head-to-tail (HT)
configuration. We herein refer to the m-xylyl ring in 1 as the
head and the anthracenyl group as the tail end of the molecule
(Figure 1A). The observed HT selectivity is remarkable as
coupling of the radical intermediate formed from precursor 1
should in principle lead to three discrete geometries. In
addition to the observed HT coupling, we would also expect
the sterically less encumbered head-to-head (HH) coupling,
forming a biphenyl linkage, and tail-to-tail (TT) coupling,
giving rise to a bisanthene core, to occur. Despite these
alternative possible reaction pathways, the backbone of
[3]triangulene-GNRs exclusively features the HT geometry.
The only evidence for HH coupling is the observation of
dimers localized at the elbow sites of the Au(111) herringbone
reconstruction (Figure 1D). The HH reaction intermediate
appears to be trapped at the dimer stage and does not react
further to form extended oligomers or polymers.
BRSTM images further reveal that the five-membered ring

formation between adjacent [3]triangulene units gives rise to
patterns of cis- and trans-linkages that induce local curvature of
the ribbon. An apparent preference for the cis-conformation,
comprising greater than 90% of the linkages, leads to the
observed spiral topology of [3]triangulene-GNRs. The
proposed poly-[3]triangulene intermediate (Figure 1A) could
not be trapped on the surface, suggesting that the activation
barrier for five-membered ring formation is small. This is
further supported by STM images of partially cyclodehydro-
genated poly-1 that show fused sections featuring the
characteristic curvature induced by the poly-[3]triangulene
backbone (Figures 1A and S1B,C). Concurrent with the initial
cyclodehydrogenation of poly-1, the emergent triplet π-radical
character localized on the C atoms of the majority sublattice
facilitates radical recombination to form additional C−C
bonds. Surface-catalyzed dehydrogenation forms the π-
conjugated five-membered rings that define the [3]-
triangulene-GNR backbone. This sequence bears resemblance

to recent reports of π-radical recombination and cyclo-
dehydrogenation in solution-based transformations.29−31 De-
spite the efficient hybridization of π-radical states of adjacent
[3]triangulene units, a finite GNR retains two unpaired
electrons (one at either end of the ribbon) that are expected
to give rise to characteristic ZMs or localized end states.

Electronic Structure Characterization of [3]-
Triangulene-GNR. After elucidating the chemical structure
of [3]triangulene-GNRs, we set out to explore their local
electronic structures using tunneling spectroscopy (Figures 2
and S2, S3). A representative dI/dV point spectrum recorded
at the position highlighted by the red cross in the topographic
STM image (Figure 2A inset) shows two prominent features: a
broad shoulder at Vs = 400 mV (state 1) and a peak at Vs =
−330 mV (state 2). Constant height dI/dV maps of state 1
(Figure 2B) show a diffuse striated pattern that closely matches
the density functional theory (DFT)-simulated LDOS map of
the LUMO for a cyclic tetradecamer, a proxy for the
conduction band (CB) (Figure 2D). Similarly, dI/dV maps
recorded at Vs = −330 mV (Figure 2C) show a distinctive
nodal pattern that closely matches the DFT-simulated LDOS
map of the corresponding HOMO, a proxy for the valence
band (VB) (Figure 2E). The resulting experimental STS band
gap of [3]triangulene-GNRs on Au(111) is then Eg,exp ∼ 0.7
eV.
Differential conductance maps recorded along the center of

[3]triangulene-GNRs show the typical signature of a bulk
semiconductor�a vanishing density of states (DOS) at Vs =
0.0 mV (Figure 2G). Both ends of the ribbon exhibit bright
nodal features generally associated with low-bias end states. dI/
dV point spectra recorded over a narrow bias window (−50
mV ≤ Vs ≤ + 50 mV) at the positions highlighted by crosses in
Figure 2G show sharp peaks centered at Vs = 0.0 mV. These
prominent features are characteristic of Kondo resonances
arising from the scattering of conduction electrons in the Au
substrate by the magnetic moment of localized unpaired
electron spins.32−35 The origin of these ZMs can be traced
back to five-membered ring formation along the backbone of

Figure 2. Electronic structure of [3]triangulene-GNRs. (A) Constant height STS dI/dV spectrum recorded on a [3]triangulene-GNR at the
position marked by a red cross in the inset BRSTM image (spectroscopy: Vac = 1 mV, f = 533 Hz; imaging: Vs = 0.0 V, Vac = 20 mV, f = 533 Hz).
(B,C) Constant height dI/dV maps recorded at the indicated biases (Vac = 20 mV, f = 533 Hz). (D,E) DFT-simulated LDOS maps of the CB and
VB of [3]triangulene-GNRs. A cyclic [3]triangulene-GNR 14-mer was used to reproduce the cis geometry of the [3]triangulene-GNR. (F)
Constant height low bias dI/dV spectra of the two ZMs associated with the [3]triangulene-GNR end states recorded at the positions marked by
crosses in (G) (spectroscopy: Vac = 0.5 mV, f = 533 Hz; imaging: Vs = 60 mV, Vac = 20 mV, and f = 533 Hz). (G) Constant height dI/dV map
recorded at Vs = 0.0 mV (Vac = 20 mV, and f = 533 Hz). (H,I) DFT-simulated LDOS maps (E = 0.0 eV) of the ZMs for the same [3]triangulene-
GNR structure shown in (G).
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[3]triangulene-GNRs. Pairwise π-radical recombination leaves
behind a single unpaired electron at either end of the ribbon
that manifests as a S = 1/2 ZM end state localized on the
terminating [3]triangulene unit (Figure 1A). This interpreta-
tion is further supported by DFT-simulated LDOS maps of a
finite [3]triangulene-GNR sampled near the Fermi level (EF).
The characteristic nodal structure of the ZM end states in dI/
dV maps is faithfully reproduced by theory at E = 0.0 eV
(Figure 2H,I).
First-Principles Electronic Structure Calculation. We

further explored the electronic structure of [3]triangulene-
GNRs using ab initio DFT. Figure 3A,B shows the theoretical

DOS and band structure of [3]triangulene-GNRs calculated
using the local density approximation (LDA) for the
exchange−correlation potential. The VB and CB are separated
by a semiconducting energy gap of Eg,LDA ∼ 0.36 eV. The CB
and VB are flanked by sizable energy gaps that isolate them
from the CB + 1 and VB − 1 (Figure S4). DFT-LDA typically
underestimates band gaps relative to experimental values since

it does not account for self-energy and image charge screening
effects from the metal surface.36−38 The band structure of
[3]triangulene-GNRs was also calculated using ab initio GW
calculations,38 which apply a self-energy correction (Figure
S5). A larger band gap of Eg,GW ∼ 1.86 eV was determined.
GW and LDA calculations define the upper and lower
theoretical bounds, respectively, and bracket the experimental
gap Eg,exp ∼ 0.7 eV determined by STS. A model of the all-trans
[3]triangulene-GNR was used in the calculations to ensure a
periodic unit cell (Figure 3A inset). To examine the impact of
linkage geometry on the calculations, the molecular orbital
energies of the all-cis cyclic tetradecamer were calculated using
DFT-LDA (Figure S6). The calculated HOMO−LUMO gap
Eg,DFT ∼ 0.35 eV is comparable to the LDA-calculated band
gap, and thus the ab initio calculations are minimally affected
by the linkage geometry.
The low-energy electronic structure of [3]triangulene-GNRs

that emerges from ab initio DFT can be captured in an
effective TB model (Figure 3C). Each triangulene unit bears
two ZMs (with on-site energy ε0) that form the basis states of
the TB model. The recombination of two unpaired electrons to
form a π-bond leads to the effective hybridization of ZMs on
neighboring [3]triangulene units that is described by the
hopping term t1. This interaction leads to sublattice mixing
which causes the ZMs within a [3]triangulene unit to no
longer be orthogonal. The resulting intraunit interaction is
denoted by the hopping term t2. Finally, we consider next-
nearest neighbor interactions summarized in the term tNN
which is the arithmetic mean [tNN = 1/2(t3 + t4)] of the two
possible next-nearest neighbor hoppings t3 and t4. The
Hamiltonian matrix of this TB model can be expressed as

i

k

jjjjjjj
y

{

zzzzzzz=
+ +

+ +

= + +

t ka t t e

t t t ka

t ka

H

I H

2 cos

e 2 cos

( 2 cos )

ika

ika

0 NN 2 1

2 1 0 NN

0 NN SSH

where k is the electron momentum, a is the lattice constant,
and HSSH the standard Hamiltonian of the form of the Su−
Schrieffer−Heeger (SSH) model.3,4,39 The eigenvalues of this
Hamiltonian are

= + ± + +

= + ±

E t ka t t t t ka

t ka E k

2 cos 2 cos

2 cos ( )

0 NN 1
2

2
2

1 2

0 NN SSH

where the positive and negative solutions describe the CB and
VB, respectively. This result is identical to the SSH model
except for the next-nearest neighbor interaction term, which
adds a cosinusoidal modulation to the VB and CB that breaks
electron−hole symmetry and accounts for the observed
asymmetry between the VB and CB in the band structure
(Figure 3A,B). Optimization of the parameters (ε0 = −3.77 eV,
t1 = −428 meV, t2 = 106 meV, tNN = −145 meV) provides a
good match with the DFT band structure (see Figure S7 for
the unfolded band structure).
Provided that |tNN| < ||t1| − |t2||, the cosine term does not

induce a crossing between the VB and CB, and the
[3]triangulene-GNR features the same topological properties
as the SSH model. When the unit cell is centered on a π-bond
between [3]triangulene units, the intracell coupling is defined
by t1 and the intercell coupling by t2. Thus, the intracell
coupling is larger than the intercell coupling, and the

Figure 3. First-principle calculations and effective TB model of
[3]triangulene-GNRs. (A) DOS of [3]triangulene-GNRs calculated
from DFT-LDA (red) and an effective TB model (black) showing
density increase at band edges characteristic of 1D bands. A model of
the fully trans-linked [3]triangulene-GNR shown in the inset was used
in DFT calculations. (B) Band structure of [3]triangulene-GNRs
calculated from DFT-LDA (red) and an effective TB model (black).
(C) Effective TB model using basis states that represent the isolated
[3]triangulene ZMs coupled via nearest-neighbor electronic hopping
parameters t1 (black) and t2 (yellow) and next-nearest-neighbor
hopping parameters t3 and t4 (cyan). A ZM at each ribbon end that is
weakly coupled to the other ZMs forms an S = 1/2 end state. Blue
and red filled circles represent ZMs on the A and B sublattice,
respectively.

Journal of the American Chemical Society pubs.acs.org/JACS Article

https://doi.org/10.1021/jacs.4c02386
J. Am. Chem. Soc. 2024, 146, 15879−15886

15882

https://pubs.acs.org/doi/suppl/10.1021/jacs.4c02386/suppl_file/ja4c02386_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.4c02386/suppl_file/ja4c02386_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.4c02386/suppl_file/ja4c02386_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.4c02386/suppl_file/ja4c02386_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.4c02386/suppl_file/ja4c02386_si_001.pdf
https://pubs.acs.org/doi/10.1021/jacs.4c02386?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c02386?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c02386?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c02386?fig=fig3&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://doi.org/10.1021/jacs.4c02386?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


[3]triangulene-GNR is topologically trivial. However, when the
unit cell is centered on a [3]triangulene, then the intracell
hopping is defined by t2 and the intercell by t1. Thus, intercell
coupling dominates, and the [3]triangulene-GNR is topolog-
ically nontrivial. The GNR explored in Figure 2F,G is
terminated by [3]triangulenes units, and the ZMs observed
at either end of the ribbon correspond to the topological
boundary states predicted by theory.
Computational Model for the HT Selective On-

Surface Polymerization. Having resolved the electronic
structure of [3]triangulene-GNRs, we return our attention to
the unusual HT regioselectivity observed in the surface-
assisted radical step-growth polymerization of 1. In an effort to
gain insights into the underlying mechanism that gives rise to
this curious selectivity, we performed ab initio modeling using
the all-electron FHI-aims code.40 We calculated the activation
barriers for the three possible C−C bond formation geometries
on a Au(111) surface using DFT at the PBE + vdW + ZORA
level (Figure 4A).40−42 All three modeled reactions are
exothermic, ranging between ΔE = −3.4 to −5.8 eV. The
highest transition state (TS) energy is predicted for the
sterically challenging TT coupling (Ea = 3.2 eV), followed by
HT (Ea = 2.0 eV) and HH (Ea = 0.6 eV) coupling. Activation
barriers were determined by calculating the energies of relaxed
molecular structures along the reaction sequence. The
optimized adsorption geometries for the HT coupling pathway
are depicted in Figure 4B−I (see Figures S6 and 7 for the TT
and HH coupling pathways). Notably, anthracenyl radical
intermediates formed in the thermally induced homolytic
cleavage of the C−Br bonds in molecular precursor 1 are
stabilized by a covalent interaction with a single Au atom
protruding ∼0.8−1.0 Å from the plane of the Au(111) surface.
The gradual buildup of strain in the coordination of the Au-
atom, culminating in Au−C bond breakage in the TS, provides
a major contribution to the activation barrier of the HT and
TT reaction profile. While the former mechanism only involves
the dissociation of a single Au−C bond in the TS, the latter
requires the dissociation of two Au−C bonds to form the TT
dimer, and accordingly its activation energy is ∼1.2 eV higher
(Figure S8). Curiously, the calculated activation barrier for the
formation of the HH dimer from a pair of phenyl radicals

derived from 1 is small and should in principle compete with
the HT polymerization (Figure S9).
While the calculated activation barriers qualitatively

reproduce the experimental selectivity for the HT over the
TT coupling, the absence of HH coupling along the backbone
or the ends of [3]triangulene-GNRs requires some additional
discussion. A hint can be found in the presence of dimers
featuring the HH bonding geometry that adsorb preferentially
at the elbow sites of the Au(111) herringbone reconstruction
(Figure 1D). Figure S10 shows the relaxed adsorption
geometry of the corresponding intermediate at the gold
surface. Anthracenyl radicals at either end of the molecule are
coordinated to Au atoms of the Au(111) surface. This divalent
coordination may represent a kinetic trap that precludes the
participation of the HH dimer intermediate in further chain
growth before the temperature reaches the threshold of
desorption. The annealing of molecule-decorated surfaces to
T = 250 °C induces a significant decrease in coverage
suggesting that small-molecule HH dimers may desorb from
the surface before cyclodehydrogenation of [3]triangulene-
GNRs is complete. In addition to our hypotheses informed
from our mechanistic calculations, a variety of other factors
that may influence the observed reaction selectivity are
addressed in Supporting Information Discussion 1.

■ CONCLUSIONS
We have demonstrated rational band engineering using the
ZMs of [3]triangulenes assembled vertex-to-edge in a
regioregular superlattice. Five-membered ring formation
along the GNR backbone facilitates hybridization between
ZMs that gives rise to a narrow band gap (Eg,exp ∼ 0.7 eV) on a
Au surface and topological boundary states akin to those
described by the SSH model. The chemical bonding, band
structure, and ZM end states of [3]triangulene-GNRs are fully
characterized with atomic resolution using STM. TB and first-
principles DFT-LDA calculations support our experimental
observations. Our on-surface synthetic strategy shows that a
regioregular GNR can be formed even though the molecular
precursor does not feature a mirror plane perpendicular to the
polymerization axis. Our results provide a framework for the
deterministic design of GNR electronic structure using ZMs

Figure 4. Mechanistic calculations of the regioselective coupling of molecular precursor 1 on Au(111). (A) Calculated reaction coordinate diagram
showing TS energies corresponding to the HT, HH, and TT coupling geometries. (B) Minimized geometries of molecular precursor 1, (C−H)
intermediates, and (I) the product dimer along the HT coupling pathway.
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and offer a new strategy for selective on-surface polymer-
ization.
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