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Abstract—This paper presents a comprehensive study on angle
of arrival (AoA) estimation techniques for wireless commu-
nication systems. In particular, signal processing techniques
including Multiple Signal Classification (MUSIC) and Estima-
tion of Signal Parameters via Rotational Invariance Techniques
(ESPRIT), as well as machine learning (ML) techniques such
as artificial neural networks (ANNs) and convolutional neural
networks (CNNs), are evaluated. The performance of these
techniques is compared using both synthetic and over-the-air
(OTA) test scenarios. Additionally, the impact of multipath
fading on the performance of these techniques is investigated.
Experimental results show that while the MUSIC algorithm
exhibits superior accuracy in synthetic scenarios, it suffers from
performance degradation in the presence of multipath fading.
On the other hand, ML algorithms demonstrate robustness and
stability under varying conditions, albeit with a slightly higher
error rate compared to simulations. Furthermore, suggestions
for improving the ML algorithm in OTA scenarios are discussed,
including updates to the synthesis model and the incorporation
of OTA samples for training.

I. INTRODUCTION

Angle of Arrival (AoA) estimation is a well-established
technique used in various fields to determine the direction
from which a signal or wavefront arrives at a receiver or
antenna array. It has been extensively applied in wireless com-
munication, radar systems, sonar, navigation, and other areas
that require spatial awareness and signal localization. AoA
estimation enables the localization of sources, beamforming,
direction finding, target tracking, and spatial multiplexing,
among other applications.

However, AoA estimation also presents certain challenges
and problems. One of the primary issues is the presence
of noise and interference in the received signals. Noise can
degrade the accuracy of AoA estimation, making it difficult to
extract reliable angle measurements. Interference from other
sources or multipath effects can further complicate the esti-
mation process by introducing additional signal components
that need to be resolved accurately. These factors can result
in errors and uncertainties in the estimated angles, affecting
the performance of systems that rely on AoA information.

Another challenge in AoA estimation arises from the
hardware limitations of antenna arrays. The accuracy of AoA
estimation depends on the characteristics and arrangement
of the antenna elements. Imperfections in the array, such
as mutual coupling between elements, non-ideal radiation
patterns, and limited dynamic range, can introduce distortions
and inaccuracies in the received signals. These imperfections
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need to be carefully accounted for and compensated to ensure
accurate AoA estimation.

In recent years, efforts have been made to address these
challenges and improve the performance of AoA estimation.
Advanced signal processing algorithms, machine learning
techniques, and adaptive array designs have been developed
to mitigate the effects of noise, interference, and hardware
limitations. The state-of-the-art signal processing methods for
finding the AoA of a wireless transmitter is the MUSIC
algorithm [1]-[4]. This is done by finding the covariance
matrix of an input antenna array, then performing eigenvalue
decomposition on it. The MUSIC algorithm reveals peaks
at each angle a signal was received. This method can be
used to find the locations of multiple transmitters. MUSIC
provides high angular resolution while operating at low SNR
levels. However, it comes at the cost of requiring full prior
knowledge of the number of sources in the environment.

Many other techniques of estimating AOA, inspired by
MUSIC, use the covariance matrix as the input into deep
learning models, such as convolutional neural networks
(CNNs) [1], [3], artificial neural networks (ANNSs) [2], [5],
and multilayer perceptrons (MLPs) [6].

In this paper, we tested and implemented various AOA es-
timation techniques. We examined signal processing methods
such as MUSIC and ESPRIT, as well as machine learning
techniques like ANN and CNN. The performance of using
1Q samples directly versus using the covariance matrix of 1Q
samples was compared for machine learning.

The rest of the paper is organized as follows: Section II
surveys AoA estimation in literature; Section III introduces
existing machine learning datasets and our synthetic datasets;
Section IV discusses our evaluation processes and results
followed by the conclusion in Section V.

II. SURVEY OF AOA

Estimating the AoA has been extensively studied in the
literature, with a focus on acoustic signals rather than Radio
Frequency (RF) signals [7] [8]. Acoustic AoA estimation has
garnered more attention, similar to the prevalence of literature
on image-based tasks in the field of CNNs. In this review,
we explore two main surveys on acoustic AoA estimation:
the first survey [7] provides comprehensive information on
AoA or Sound Source Localization (SSL), while the second
survey [8] focuses on AoA or Acoustic Direction Finding
(ADF). Both surveys emphasize the application of deep
learning techniques, specifically deep neural networks, for
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Ao0A estimation. Notably, the input and output of these deep
neural networks consist of a covariance square matrix, where
the matrix dimensions are determined by the number of
receivers. The output represents either a continuous angle or
a class-discrete angle. It is important to note that the same
input and output configurations apply to both RF and acoustic
signals, enabling a review of AoA methods for both types
of signals. In terms of antenna configurations, the surveys
predominantly feature linear arrays, although circular arrays
are also considered.

Several machine learning architectures have been employed
for AoA estimation, including the Convolutional Recurrent
Neural Network (CRNN) [9] (see Fig. 1a), the inception-style
network RFDOA-Net [10] (see Fig. 1b), the Fully Connected
Network (FC net) [11] (see Fig. 2a), and the CNN [5] (see
Fig. 2b).
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Fig. 1: Network Architecture Visual Layers: (a) CRNN; (b)
RFDOA-Net.

The CRNN architecture combines Long Short-Term Mem-
ory (LSTM) layers and CNN layers for AoA estimation of

acoustic signals. The network input consists of a covariance
matrix with a frame size, and frames are grouped into sets
of 25 for the LSTM layer. The performance evaluation of
this architecture employed the LOCATA dataset, with the root
mean square error (RMSE) calculated across three recordings.

The RFDOA-Net architecture utilizes an inception network
for AoA estimation in Unmanned Aerial Vehicle (UAV)
direction finding. The network input comprises the I/Q data
multiplied by the frame length and the number of receivers,
specifically 2 x 1024 x 5. The authors of this approach
employed a linear array configuration and compared the
results to the MUSIC algorithm. The performance evaluation
includes RMSE and accuracy metrics.

Layer Name Units Output Size
Input nfa (B, M?.C]
FC1 1024 (B, 1024)
Dropout1 rate = 0.2 [B, 1024
FC2 2048 [B, 2048
Dropout2 rate = 0.2 (B, 2048&]
FC3 1024 B, 1024]
Dropout3 rate = 0.2 [B, 1024
FC4 512 B, 512|
Dropoutd rate = 0.2 B,512]
Classification Head | Activation="sigmoid’ 1B, 1
Regression] Head Activation="sigmoid’ (B, 1
Regression2 Head Activation="sigmoid’ [B, 1
(a)
Layer Name Units Output Size
Input nfa [B,M,M,C]
CNNI1 512, kernel=3 x 3 [B,2,2,512]
BN nfa 1B,2,2,512]
Activation Activation="ReLU’ |1B,2,2,512]
MaxPool pool size=2 x 2 1B,1,1,512]
FC2 1024 (B, 1024]
Dropout2 rate = (.2 [B,1024]
FC3 1024 (B, 1024]
Dropout3 rate = 0.2 [B,1024]
FC4 512 [B,512]
Dropoutd rate = (.2 [B,512]
Classification Head  Activation="sigmoid’ B, 1
Regression] Head Activation="sigmoid’ B, 1]
Regression2 Head  Activation="sigmoid’ B, 1]

(b)
Fig. 2: Network Architecture Layers: (a) FC Net; (b) CNN.

In the same paper, the FC net and CNN architectures were
utilized on a self-created dataset, consisting of real signals
received from a linear array with four receivers on a Software-
Defined Radio (SDR). Both networks take the covariance
matrix as input and perform regression for AoA estimation.
The performance of these architectures was compared to the
MUSIC algorithm, with the performance metric being RMSE
as a function of Signal-to-Noise Ratio (SNR).

In Khan et al [2], the authors fed the covariance matrix
into an ANN, which performed regression to find the AoA.
Their approach outperformed MUSIC, with a mean absolute
error (MAE) of 16° at 0 dB SNR and an MAE of 8° at 10 dB
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SNR. In Alteneiji et al [1], the authors borrow further steps
from MUSIC, by performing eigenvalue decomposition on
the covariance matrix and feeding the results into a CNN.
They test their system using OFDM signals, impaired by
AWGN and multipath fading. They find their model to greatly
outperform MUSIC, with a RMSE of 3° at 10 dB SNR, and
12° at -10 dB SNR. Comparatively, MUSIC has an RMSE
of approximately 42° at —10 dB SNR and 26° at 10 dB
SNR. The channel appears to have a very large effect on
performance. Specifically, multipath fading can be a difficult
challenge. From the literature, it appears that using eigenvalue
decomposition on a covariance matrix is an effective way of
finding the AoA, in both traditional methods and using ML
for regression.

III. MACHINE LEARNING DATASETS

One of the real datasets used in the literature for acoustic
AoA estimation is the LOCATA dataset [12]. This dataset
comprises six different tasks, each consisting of 26 recordings
of spoken words. For instance, Task 1 focuses on a single
sound source with spoken words, while the AoA changes
throughout the recording. The receiver array used in LOCATA
consists of 15 receivers arranged on a plane. Consequently,
each recording includes 15 distinct received signals, one for
each receiver. To evaluate their proposed methods, researchers
in the acoustic AoA papers compare their results to LOCATA
by calculating MAE across a single recording using their
respective methods. The correct AoA labels are available
at specific timestamps within each recording, enabling the
calculation of errors. The DeepAoAnet dataset [11] comprises
real signals received from an array with four receivers using
SDRs. This dataset contains five folders, consisting of a total
of 766 recordings and 57,000 frames. The recordings cover
15 different angles ranging from -70 to 70 degrees. The five
folders correspond to different types of data, namely line of
sight, line of sight with reflector, not line of sight office,
not line of sight corridor, and not line of sight indoor to
outdoor. When comparing results to the DeepAoAnet dataset,
researchers employ either classification accuracy or RMSE for
the tested frames, considering one or more types of data.

In addition to the real datasets, we generated a simulated
dataset for evaluation purposes. In this simulation, we as-
sumed a receiver with four antennas arranged linearly, with
a spacing of \/2. A single transmitter with one antenna
was positioned at angles between -45° and +45° relative
to the receiver. The multipath model followed a Rician
distribution, with SNR ranging from -10 dB to +30 dB.
We applied a global phase offset equally to each receiver
channel and introduced a center frequency offset between the
radios, constrained between £2kHz. The receiver operated at
a baseband sample rate of 200kHz, and the samples were
organized into frames of size 1024 samples. The modulation
type adopted for this simulated dataset was Binary Phase-Shift
Keying (BPSK).

IV. EVALUATION RESULTS

A. Signal Processing Method Results

The performance evaluation of the MUSIC and ESPRIT al-
gorithms was conducted by implementing them in MATLAB
and testing them on a synthesized dataset. The objective of
these tests was to analyze the impact of different parameters
on the estimation performance. In the first set of tests, the
parameters under investigation were the number of antenna
elements and the spacing between antenna elements. The tests
were performed with a received SNR of 20 dB.

Table I presents the results illustrating the effects of antenna
spacing and the number of antennas on the estimation per-
formance of both MUSIC and ESPRIT. It is evident from the
table that employing a 4-element array yields a significantly
improved AoA estimate compared to using only 2 elements.
Furthermore, increasing the number of antenna elements in
the receiver enhances the performance of both MUSIC and
ESPRIT.

The table also highlights the impact of increasing the
inter-element spacing in the receiver. When the spacing is
increased to A, we observed multiple peaks in the decomposed
eigenvector space, indicating the possibility of spatial aliasing.
Subsequently, when the spacing exceeds half the wavelength,
the beam pattern of the linear array exhibits additional peaks,
aside from the main lobe as observed. Consequently, the
receiver lacks the ability to distinguish signals arriving from
different directions. Thus, to mitigate spatial aliasing, it is
crucial to limit the spacing to /2.

TABLE I: MAE of AoA Estimation by MUSIC & ESPRIT
Estimation by Different Array Element and Spacing

Algorithm | 2-element, % 2-element, A | 4-element, %
MUSIC 0.11 41.6 0.02
ESPRIT 254 23.9 0.06

In the second set of tests, the performance of both MUSIC
and ESPRIT algorithms was evaluated with respect to varying
SNR levels. Figure 3 depicts the MAE for both algorithms
when utilizing a 4-element antenna array with spacing at
half of the wavelength, \.The results presented in the figure
indicate that MUSIC outperforms ESPRIT at low SNR values.
As the SNR increases, the performance gap between the two
algorithms gradually diminishes. Notably, both algorithms
converge to the same level of performance at high SNR.

In order to assess the performance of the MUSIC algorithm
in real-world conditions, we conducted tests using our RF
testbed, as shown in Fig. 4, consisting of 4 element antenna
array spacing 62.5mm, as shown in Fig. 5, which is A\/2
distance apart from each other based on our testing frequency.
The tests were carried out with the antenna array facing two
different angles: 0° and -30°. The results of these tests are
presented in Table IV. Fig. 6 displays the estimated AoA
over the entire duration of the tests.

While the estimated AoA generally follows the actual AoA,
noticeable sudden changes in the estimate can be observed,
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Fig. 3: Performance comparison between MUSIC and ES-
PRIT with 4-element antenna array

Fig. 4: Our SDR-based AoA Testbed

which significantly affect the overall performance. In a prac-
tical setting, most of these perturbations can be mitigated by
applying a lowpass filter. It is evident from the results that the
performance of the MUSIC algorithm deteriorates for OTA
samples, with a best-case MAE of 2.1° compared to nearly
zero-degree MAE in simulation under high SNR conditions.
Furthermore, when the antenna array faced 0°, the error was
considerably high, with an MAE of 7.3. However, when the
perturbations are absent, the MUSIC algorithm closely tracks
the real AoA.

Fig. 5: Details on the antenna holder of Our SDR-based AoA
Testbed

AoA Estimation using MUSIC on OTA Data
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Fig. 6: Estimating OTA AoA using Music (0° to -30°)

B. Machine Learning Results

In the machine learning performance testing, we initially
evaluated multiple potential network types on the LOCATA
dataset before the simulated frames were able to be generated.
The networks, as detailed in Table II, were tested on the
LOCATA dataset, which contains multiple receivers and has
similarity to simulated frames due to its formatting, which is
achieved by splitting the dataset into small frames as Frame
X Samples X IQ.

TABLE II: LOCATA Dataset Machine Learning Results

Network Type Raw Data Input Covariance Input
1 x 400 x 15 (MAE) | 1 x 15 x 15 (MAE)

ResNet 11.7° 12.8°
ResNet+LSTM | 9.4° 12.8°

AMC CNN 14.3° 13.7°

MCNET 15.8° N/A

DeepAoANet 17.3° 14.67°

CRNN 12.46° 12.54°

Upon testing, the ResNet with LSTM layers (further re-

ferred to as just ResNet) emerged as the best performer for
raw data input, while the CRNN was the best performer using
covariance matrix input. Considering ResNet’s similar perfor-
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mance to CRNN in covariance matrix input and superiority in
raw data input, we selected it for further use. Subsequently,
more tests were conducted on the simulated dataset using
ResNet and additional potential networks listed in Table III.
These tests were using a simulated dataset. For the ML
methods, we had two major metrics; the RMSE in a test
case, as well as the time it takes for the network to produce
a result, given one input, also called the inference time. In
both cases, each network performs regression, predicting a
real-valued number for the AoA. Each network was trained
with the Adam optimizer and used mean squared error (MSE)
for the loss.

The results revealed a performance similar to the LOCATA
dataset, as hypothesized due to the similarity in the datasets’
formats. Networks with Cov have input using the covariance
matrix and networks without cov are using raw data input.
ResNet showed the highest performance in terms of MAE
and RMSE. However, being a larger network in terms of the
number of layers, it also had the highest inference time. In
contrast, networks like ANN or CNN with covariance input
reported lower inference times but higher MAE and RMSE
than ResNet.

TABLE III: Simulated Dataset Machine Learning Results

Network RMSE | MAE Inference Time
CNN Cov 0.81° 0.54° 0.0027s
CNN 26.40° | 22.92° | 0.0040s
ResNet Cov | 0.76° 0.58° 0.0078s
ResNet 0.51° 0.36° 0.0145s
ANN Cov 2.28° 1.36° 0.0040s
ANN 25.80° | 22.28° | 0.0027s

Based on these findings, ResNet had the highest perfor-
mance, and thus was used for OTA tests; We chose to use the
IQ architecture as it had absolute lowest RMSE.

We tested the ML architecture on data collected through a
4 antenna array. To perform metric tests, we collected data
through the SDRs and antenna array and saved it to a file.
For a test case, we started recording when the AoA was zero
degrees, then rotated the array to -30°. This is the same test
performed for MUSIC results. We measured the RMSE and
MAE at 0° and -30°; these results are summarized alongside
the MUSIC results in Table IV. Additionally, we measure
the AoA throughout the entire recorded session, to observe
changes in the estimate as the array is rotated; this could
be seen in Fig. 7. The estimated error increases for OTA
compared to simulation, increasing from an MAE of 0.58° to
4.4° for the best OTA case.

TABLE IV: Over-the-Air Results

0° —30°
Algorithm MAE | RMSE | MAE | RMSE
MUSIC 7.30 11.4 1.10 2.10
ResNet ML | 2.22 2.23 5.87 5.88

From the results table, we can see that the perturbations
MUSIC experiences significantly hinder the results, while the
ML approach is not subject to these perturbations. When
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Fig. 7: Estimating OTA AoA using ML (0° to -30°)

comparing the estimates over time for ML (Fig. 7) and
MUSIC (Fig. 6), the ML graph is much smoother, without
large perturbations. However, outside of these, the MUSIC
algorithm has a lower error, which is reflected between the
plots and the results table. When the array is at -30°, the
MUSIC estimate is far more stable, and the MAE is lower
than for ML at the same angle.

For further testing of the ML architecture over the air under
the same setup, we have loaded the ML architecture to FPGA
ZCU102 for acceleration under the usage of Vitis by using
Xilinx’s prebuilt OS image. Table V shows the comparison
of FPGA to PC side, at which the inference cycle is reduced
by 28.2%.

TABLE V: FPGA Acceleration

Device | RMSE(deg) | Power Consumption | Inference Cycle
FPGA 0.51 22.8W 81.9¢6
PC 0.51 150W 114.2e6

V. CONCLUSION

In this study, we conducted tests and implemented vari-
ous AoA estimation techniques, including signal processing
methods (MUSIC and ESPRIT) and machine learning (ML)
approaches utilizing ANNs and CNNs. The performance
of ML techniques was compared using direct I/Q samples
and covariance matrices as inputs. We employed synthesized
samples to assess performance differences.

Our findings revealed that MUSIC outperformed ESPRIT
in terms of MAE in synthetic scenarios. Among the ML
techniques, a CNN based on the ResNet architecture exhibited
the best MAE performance, albeit with slower execution
speed. The ML architecture that utilized a basic CNN on the
covariance matrix and an ANN on I/Q samples demonstrated
the fastest execution time.

To evaluate the robustness of these techniques in real-
world scenarios, we conducted over-the-air (OTA) tests using
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a custom-designed RF testbed. We observed that the per-
formance of the MUSIC algorithm deteriorated in the pres-
ence of multipath fading, unlike its performance in synthetic
scenarios. However, under favorable conditions, MUSIC dis-
played the lowest error rate. In contrast, the ML algorithms
exhibited stable performance as the antenna array rotated
and experienced minimal perturbations compared to MUSIC.
Nevertheless, both ML and MUSIC algorithms showed in-
creased error rates in OTA tests compared to simulations, with
the ML algorithm aligning better with simulation results.

To enhance the ML algorithm’s performance, potential
improvements involve diagnosing the differences between
OTA and synthetic scenarios and updating the synthesis
model accordingly. Alternatively, incorporating OTA samples
into the training dataset can enhance the ML algorithm’s
robustness by increasing sample diversity.

Overall, this study provides valuable insights into the
performance of various AoA estimation techniques in differ-
ent scenarios. Our findings contribute to the understanding
of the strengths and limitations of signal processing and
ML approaches and offer suggestions for improving their
performance in real-world OTA scenarios.
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