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Abstract—This paper presents a comprehensive study on angle
of arrival (AoA) estimation techniques for wireless commu-
nication systems. In particular, signal processing techniques
including Multiple Signal Classification (MUSIC) and Estima-
tion of Signal Parameters via Rotational Invariance Techniques
(ESPRIT), as well as machine learning (ML) techniques such
as artificial neural networks (ANNs) and convolutional neural
networks (CNNs), are evaluated. The performance of these
techniques is compared using both synthetic and over-the-air
(OTA) test scenarios. Additionally, the impact of multipath
fading on the performance of these techniques is investigated.
Experimental results show that while the MUSIC algorithm
exhibits superior accuracy in synthetic scenarios, it suffers from
performance degradation in the presence of multipath fading.
On the other hand, ML algorithms demonstrate robustness and
stability under varying conditions, albeit with a slightly higher
error rate compared to simulations. Furthermore, suggestions
for improving the ML algorithm in OTA scenarios are discussed,
including updates to the synthesis model and the incorporation
of OTA samples for training.

I. INTRODUCTION

Angle of Arrival (AoA) estimation is a well-established

technique used in various fields to determine the direction

from which a signal or wavefront arrives at a receiver or

antenna array. It has been extensively applied in wireless com-

munication, radar systems, sonar, navigation, and other areas

that require spatial awareness and signal localization. AoA

estimation enables the localization of sources, beamforming,

direction finding, target tracking, and spatial multiplexing,

among other applications.

However, AoA estimation also presents certain challenges

and problems. One of the primary issues is the presence

of noise and interference in the received signals. Noise can

degrade the accuracy of AoA estimation, making it difficult to

extract reliable angle measurements. Interference from other

sources or multipath effects can further complicate the esti-

mation process by introducing additional signal components

that need to be resolved accurately. These factors can result

in errors and uncertainties in the estimated angles, affecting

the performance of systems that rely on AoA information.

Another challenge in AoA estimation arises from the

hardware limitations of antenna arrays. The accuracy of AoA

estimation depends on the characteristics and arrangement

of the antenna elements. Imperfections in the array, such

as mutual coupling between elements, non-ideal radiation

patterns, and limited dynamic range, can introduce distortions

and inaccuracies in the received signals. These imperfections

need to be carefully accounted for and compensated to ensure

accurate AoA estimation.

In recent years, efforts have been made to address these

challenges and improve the performance of AoA estimation.

Advanced signal processing algorithms, machine learning

techniques, and adaptive array designs have been developed

to mitigate the effects of noise, interference, and hardware

limitations. The state-of-the-art signal processing methods for

finding the AoA of a wireless transmitter is the MUSIC

algorithm [1]–[4]. This is done by finding the covariance

matrix of an input antenna array, then performing eigenvalue

decomposition on it. The MUSIC algorithm reveals peaks

at each angle a signal was received. This method can be

used to find the locations of multiple transmitters. MUSIC

provides high angular resolution while operating at low SNR

levels. However, it comes at the cost of requiring full prior

knowledge of the number of sources in the environment.

Many other techniques of estimating AOA, inspired by

MUSIC, use the covariance matrix as the input into deep

learning models, such as convolutional neural networks

(CNNs) [1], [3], artificial neural networks (ANNs) [2], [5],

and multilayer perceptrons (MLPs) [6].

In this paper, we tested and implemented various AOA es-

timation techniques. We examined signal processing methods

such as MUSIC and ESPRIT, as well as machine learning

techniques like ANN and CNN. The performance of using

IQ samples directly versus using the covariance matrix of IQ

samples was compared for machine learning.

The rest of the paper is organized as follows: Section II

surveys AoA estimation in literature; Section III introduces

existing machine learning datasets and our synthetic datasets;

Section IV discusses our evaluation processes and results

followed by the conclusion in Section V.

II. SURVEY OF AOA

Estimating the AoA has been extensively studied in the

literature, with a focus on acoustic signals rather than Radio

Frequency (RF) signals [7] [8]. Acoustic AoA estimation has

garnered more attention, similar to the prevalence of literature

on image-based tasks in the field of CNNs. In this review,

we explore two main surveys on acoustic AoA estimation:

the first survey [7] provides comprehensive information on

AoA or Sound Source Localization (SSL), while the second

survey [8] focuses on AoA or Acoustic Direction Finding

(ADF). Both surveys emphasize the application of deep

learning techniques, specifically deep neural networks, for
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AoA estimation. Notably, the input and output of these deep

neural networks consist of a covariance square matrix, where

the matrix dimensions are determined by the number of

receivers. The output represents either a continuous angle or

a class-discrete angle. It is important to note that the same

input and output configurations apply to both RF and acoustic

signals, enabling a review of AoA methods for both types

of signals. In terms of antenna configurations, the surveys

predominantly feature linear arrays, although circular arrays

are also considered.

Several machine learning architectures have been employed

for AoA estimation, including the Convolutional Recurrent

Neural Network (CRNN) [9] (see Fig. 1a), the inception-style

network RFDOA-Net [10] (see Fig. 1b), the Fully Connected

Network (FC net) [11] (see Fig. 2a), and the CNN [5] (see

Fig. 2b).

(a)

(b)

Fig. 1: Network Architecture Visual Layers: (a) CRNN; (b)

RFDOA-Net.

The CRNN architecture combines Long Short-Term Mem-

ory (LSTM) layers and CNN layers for AoA estimation of

acoustic signals. The network input consists of a covariance

matrix with a frame size, and frames are grouped into sets

of 25 for the LSTM layer. The performance evaluation of

this architecture employed the LOCATA dataset, with the root

mean square error (RMSE) calculated across three recordings.

The RFDOA-Net architecture utilizes an inception network

for AoA estimation in Unmanned Aerial Vehicle (UAV)

direction finding. The network input comprises the I/Q data

multiplied by the frame length and the number of receivers,

specifically 2 × 1024 × 5. The authors of this approach

employed a linear array configuration and compared the

results to the MUSIC algorithm. The performance evaluation

includes RMSE and accuracy metrics.

(a)

(b)

Fig. 2: Network Architecture Layers: (a) FC Net; (b) CNN.

In the same paper, the FC net and CNN architectures were

utilized on a self-created dataset, consisting of real signals

received from a linear array with four receivers on a Software-

Defined Radio (SDR). Both networks take the covariance

matrix as input and perform regression for AoA estimation.

The performance of these architectures was compared to the

MUSIC algorithm, with the performance metric being RMSE

as a function of Signal-to-Noise Ratio (SNR).

In Khan et al [2], the authors fed the covariance matrix

into an ANN, which performed regression to find the AoA.

Their approach outperformed MUSIC, with a mean absolute

error (MAE) of 16ç at 0 dB SNR and an MAE of 8ç at 10 dB
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SNR. In Alteneiji et al [1], the authors borrow further steps

from MUSIC, by performing eigenvalue decomposition on

the covariance matrix and feeding the results into a CNN.

They test their system using OFDM signals, impaired by

AWGN and multipath fading. They find their model to greatly

outperform MUSIC, with a RMSE of 3ç at 10 dB SNR, and

12ç at -10 dB SNR. Comparatively, MUSIC has an RMSE

of approximately 42ç at −10 dB SNR and 26ç at 10 dB

SNR. The channel appears to have a very large effect on

performance. Specifically, multipath fading can be a difficult

challenge. From the literature, it appears that using eigenvalue

decomposition on a covariance matrix is an effective way of

finding the AoA, in both traditional methods and using ML

for regression.

III. MACHINE LEARNING DATASETS

One of the real datasets used in the literature for acoustic

AoA estimation is the LOCATA dataset [12]. This dataset

comprises six different tasks, each consisting of 26 recordings

of spoken words. For instance, Task 1 focuses on a single

sound source with spoken words, while the AoA changes

throughout the recording. The receiver array used in LOCATA

consists of 15 receivers arranged on a plane. Consequently,

each recording includes 15 distinct received signals, one for

each receiver. To evaluate their proposed methods, researchers

in the acoustic AoA papers compare their results to LOCATA

by calculating MAE across a single recording using their

respective methods. The correct AoA labels are available

at specific timestamps within each recording, enabling the

calculation of errors. The DeepAoAnet dataset [11] comprises

real signals received from an array with four receivers using

SDRs. This dataset contains five folders, consisting of a total

of 766 recordings and 57,000 frames. The recordings cover

15 different angles ranging from -70 to 70 degrees. The five

folders correspond to different types of data, namely line of

sight, line of sight with reflector, not line of sight office,

not line of sight corridor, and not line of sight indoor to

outdoor. When comparing results to the DeepAoAnet dataset,

researchers employ either classification accuracy or RMSE for

the tested frames, considering one or more types of data.

In addition to the real datasets, we generated a simulated

dataset for evaluation purposes. In this simulation, we as-

sumed a receiver with four antennas arranged linearly, with

a spacing of λ/2. A single transmitter with one antenna

was positioned at angles between -45ç and +45ç relative

to the receiver. The multipath model followed a Rician

distribution, with SNR ranging from -10 dB to +30 dB.

We applied a global phase offset equally to each receiver

channel and introduced a center frequency offset between the

radios, constrained between ±2kHz. The receiver operated at

a baseband sample rate of 200kHz, and the samples were

organized into frames of size 1024 samples. The modulation

type adopted for this simulated dataset was Binary Phase-Shift

Keying (BPSK).

IV. EVALUATION RESULTS

A. Signal Processing Method Results

The performance evaluation of the MUSIC and ESPRIT al-

gorithms was conducted by implementing them in MATLAB

and testing them on a synthesized dataset. The objective of

these tests was to analyze the impact of different parameters

on the estimation performance. In the first set of tests, the

parameters under investigation were the number of antenna

elements and the spacing between antenna elements. The tests

were performed with a received SNR of 20 dB.

Table I presents the results illustrating the effects of antenna

spacing and the number of antennas on the estimation per-

formance of both MUSIC and ESPRIT. It is evident from the

table that employing a 4-element array yields a significantly

improved AoA estimate compared to using only 2 elements.

Furthermore, increasing the number of antenna elements in

the receiver enhances the performance of both MUSIC and

ESPRIT.

The table also highlights the impact of increasing the

inter-element spacing in the receiver. When the spacing is

increased to λ, we observed multiple peaks in the decomposed

eigenvector space, indicating the possibility of spatial aliasing.

Subsequently, when the spacing exceeds half the wavelength,

the beam pattern of the linear array exhibits additional peaks,

aside from the main lobe as observed. Consequently, the

receiver lacks the ability to distinguish signals arriving from

different directions. Thus, to mitigate spatial aliasing, it is

crucial to limit the spacing to λ/2.

TABLE I: MAE of AoA Estimation by MUSIC & ESPRIT

Estimation by Different Array Element and Spacing

Algorithm 2-element, λ

2
2-element, λ 4-element, λ

2

MUSIC 0.11 41.6 0.02

ESPRIT 25.4 23.9 0.06

In the second set of tests, the performance of both MUSIC

and ESPRIT algorithms was evaluated with respect to varying

SNR levels. Figure 3 depicts the MAE for both algorithms

when utilizing a 4-element antenna array with spacing at

half of the wavelength, λ.The results presented in the figure

indicate that MUSIC outperforms ESPRIT at low SNR values.

As the SNR increases, the performance gap between the two

algorithms gradually diminishes. Notably, both algorithms

converge to the same level of performance at high SNR.

In order to assess the performance of the MUSIC algorithm

in real-world conditions, we conducted tests using our RF

testbed, as shown in Fig. 4, consisting of 4 element antenna

array spacing 62.5mm, as shown in Fig. 5, which is λ/2
distance apart from each other based on our testing frequency.

The tests were carried out with the antenna array facing two

different angles: 0° and -30°. The results of these tests are

presented in Table IV. Fig. 6 displays the estimated AoA

over the entire duration of the tests.

While the estimated AoA generally follows the actual AoA,

noticeable sudden changes in the estimate can be observed,
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Fig. 3: Performance comparison between MUSIC and ES-

PRIT with 4-element antenna array

Fig. 4: Our SDR-based AoA Testbed

which significantly affect the overall performance. In a prac-

tical setting, most of these perturbations can be mitigated by

applying a lowpass filter. It is evident from the results that the

performance of the MUSIC algorithm deteriorates for OTA

samples, with a best-case MAE of 2.1ç compared to nearly

zero-degree MAE in simulation under high SNR conditions.

Furthermore, when the antenna array faced 0ç, the error was

considerably high, with an MAE of 7.3. However, when the

perturbations are absent, the MUSIC algorithm closely tracks

the real AoA.

62.5mm

Fig. 5: Details on the antenna holder of Our SDR-based AoA

Testbed

Predicted
Truth

Fig. 6: Estimating OTA AoA using Music (0ç to -30ç)

B. Machine Learning Results

In the machine learning performance testing, we initially

evaluated multiple potential network types on the LOCATA

dataset before the simulated frames were able to be generated.

The networks, as detailed in Table II, were tested on the

LOCATA dataset, which contains multiple receivers and has

similarity to simulated frames due to its formatting, which is

achieved by splitting the dataset into small frames as Frame

X Samples X IQ.

TABLE II: LOCATA Dataset Machine Learning Results

Network Type
Raw Data Input
1× 400× 15 (MAE)

Covariance Input
1× 15× 15 (MAE)

ResNet 11.7° 12.8°

ResNet+LSTM 9.4° 12.8°

AMC CNN 14.3° 13.7°

MCNET 15.8° N/A

DeepAoANet 17.3° 14.67°

CRNN 12.46° 12.54°

Upon testing, the ResNet with LSTM layers (further re-

ferred to as just ResNet) emerged as the best performer for

raw data input, while the CRNN was the best performer using

covariance matrix input. Considering ResNet’s similar perfor-
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mance to CRNN in covariance matrix input and superiority in

raw data input, we selected it for further use. Subsequently,

more tests were conducted on the simulated dataset using

ResNet and additional potential networks listed in Table III.

These tests were using a simulated dataset. For the ML

methods, we had two major metrics; the RMSE in a test

case, as well as the time it takes for the network to produce

a result, given one input, also called the inference time. In

both cases, each network performs regression, predicting a

real-valued number for the AoA. Each network was trained

with the Adam optimizer and used mean squared error (MSE)

for the loss.

The results revealed a performance similar to the LOCATA

dataset, as hypothesized due to the similarity in the datasets’

formats. Networks with Cov have input using the covariance

matrix and networks without cov are using raw data input.

ResNet showed the highest performance in terms of MAE

and RMSE. However, being a larger network in terms of the

number of layers, it also had the highest inference time. In

contrast, networks like ANN or CNN with covariance input

reported lower inference times but higher MAE and RMSE

than ResNet.

TABLE III: Simulated Dataset Machine Learning Results

Network RMSE MAE Inference Time

CNN Cov 0.81° 0.54° 0.0027s

CNN 26.40° 22.92° 0.0040s

ResNet Cov 0.76° 0.58° 0.0078s

ResNet 0.51° 0.36° 0.0145s

ANN Cov 2.28° 1.36° 0.0040s

ANN 25.80° 22.28° 0.0027s

Based on these findings, ResNet had the highest perfor-

mance, and thus was used for OTA tests; We chose to use the

IQ architecture as it had absolute lowest RMSE.

We tested the ML architecture on data collected through a

4 antenna array. To perform metric tests, we collected data

through the SDRs and antenna array and saved it to a file.

For a test case, we started recording when the AoA was zero

degrees, then rotated the array to -30ç. This is the same test

performed for MUSIC results. We measured the RMSE and

MAE at 0ç and -30ç; these results are summarized alongside

the MUSIC results in Table IV. Additionally, we measure

the AoA throughout the entire recorded session, to observe

changes in the estimate as the array is rotated; this could

be seen in Fig. 7. The estimated error increases for OTA

compared to simulation, increasing from an MAE of 0.58ç to

4.4ç for the best OTA case.

TABLE IV: Over-the-Air Results

0ç −30
ç

Algorithm MAE RMSE MAE RMSE

MUSIC 7.30 11.4 1.10 2.10

ResNet ML 2.22 2.23 5.87 5.88

From the results table, we can see that the perturbations

MUSIC experiences significantly hinder the results, while the

ML approach is not subject to these perturbations. When

Predicted
Truth

Fig. 7: Estimating OTA AoA using ML (0ç to -30ç)

comparing the estimates over time for ML (Fig. 7) and

MUSIC (Fig. 6), the ML graph is much smoother, without

large perturbations. However, outside of these, the MUSIC

algorithm has a lower error, which is reflected between the

plots and the results table. When the array is at -30ç, the

MUSIC estimate is far more stable, and the MAE is lower

than for ML at the same angle.

For further testing of the ML architecture over the air under

the same setup, we have loaded the ML architecture to FPGA

ZCU102 for acceleration under the usage of Vitis by using

Xilinx’s prebuilt OS image. Table V shows the comparison

of FPGA to PC side, at which the inference cycle is reduced

by 28.2%.

TABLE V: FPGA Acceleration

Device RMSE(deg) Power Consumption Inference Cycle

FPGA 0.51 22.8W 81.9e6

PC 0.51 150W 114.2e6

V. CONCLUSION

In this study, we conducted tests and implemented vari-

ous AoA estimation techniques, including signal processing

methods (MUSIC and ESPRIT) and machine learning (ML)

approaches utilizing ANNs and CNNs. The performance

of ML techniques was compared using direct I/Q samples

and covariance matrices as inputs. We employed synthesized

samples to assess performance differences.

Our findings revealed that MUSIC outperformed ESPRIT

in terms of MAE in synthetic scenarios. Among the ML

techniques, a CNN based on the ResNet architecture exhibited

the best MAE performance, albeit with slower execution

speed. The ML architecture that utilized a basic CNN on the

covariance matrix and an ANN on I/Q samples demonstrated

the fastest execution time.

To evaluate the robustness of these techniques in real-

world scenarios, we conducted over-the-air (OTA) tests using
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a custom-designed RF testbed. We observed that the per-

formance of the MUSIC algorithm deteriorated in the pres-

ence of multipath fading, unlike its performance in synthetic

scenarios. However, under favorable conditions, MUSIC dis-

played the lowest error rate. In contrast, the ML algorithms

exhibited stable performance as the antenna array rotated

and experienced minimal perturbations compared to MUSIC.

Nevertheless, both ML and MUSIC algorithms showed in-

creased error rates in OTA tests compared to simulations, with

the ML algorithm aligning better with simulation results.

To enhance the ML algorithm’s performance, potential

improvements involve diagnosing the differences between

OTA and synthetic scenarios and updating the synthesis

model accordingly. Alternatively, incorporating OTA samples

into the training dataset can enhance the ML algorithm’s

robustness by increasing sample diversity.

Overall, this study provides valuable insights into the

performance of various AoA estimation techniques in differ-

ent scenarios. Our findings contribute to the understanding

of the strengths and limitations of signal processing and

ML approaches and offer suggestions for improving their

performance in real-world OTA scenarios.
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