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Abstract: Amorphous Indomethacin has enhanced bioavailability over its crystalline forms, yet
amorphous forms can still possess a wide variety of structures. Here, Empirical Potential Structure
Refinement (EPSR) has been used to provide accurate molecular models on the structure of five dif-
ferent amorphous Indomethacin samples, that are consistent with their high-energy X-ray diffraction
patterns. It is found that the majority of molecules in amorphous Indomethacin are non-bonded or
bonded to one neighboring molecule via a single hydrogen bond, in contrast to the doubly bonded
dimers found in the crystalline state. The EPSR models further indicate a substantial variation in
hydrogen bonding between different amorphous forms, leading to a diversity of chain structures
not found in any known crystal structures. The majority of hydrogen bonds are associated with the
carboxylic acid group, although a significant number of amide hydrogen bonding interactions are
also found in the models. Evidence of some dipole–dipole interactions are also observed in the more
structurally ordered models. The results are consistent with a distribution of Z-isomer intramolecular
type conformations in the more disordered structures, that distort when stronger intermolecular
hydrogen bonding occurs. The findings are supported by 1H and 2H NMR studies of the hydrogen
bond dynamics in amorphous Indomethacin.

Keywords: amorphous; pair distribution function; indomethacin; X-ray diffraction; Monte Carlo
simulation

1. Introduction

Active pharmaceutical ingredients can exist in a variety of solid forms with a range
of different intermolecular interactions that affects both their bioavailability and struc-
ture [1–3]. Here, we consider the hydrogen bonded structure and properties of amorphous
Indomethacin, which has been studied extensively in the literature due to the increased
solubility over its crystalline forms [4–6]. Several previous studies have compared the
effects of different amorphization methods and storage conditions on the properties and
stability of Indomethacin. Cowley and Zografi [7] cryogenically ground five different
starting crystal phases to produce amorphous forms that exhibited significant differences
in stability. Yoshika et al. [8] showed that the crystallization rates and mechanisms differ
above and below the glass transition temperature. Andronis et al. [4,9] studied the effects of
water which changed the surface properties, crystallization rates, and polymorph formation.
Greco et al. [10] investigated the effects of processing and annealing on the dissolution
of amorphous Indomethacin. Karmwar et al. [11] prepared amorphous samples by melt
quenching, spray drying, ball milling, and cryo-milling that yielded different shapes in
their X-ray halos indicating a variation in packing between molecules.

The Indomethacin molecule (C19H16ClNO4) comprises a largely hydrophobic indole
and chlorobenzyl groups and several hydrophilic groups: namely an amide, methoxyl,
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and a carboxylic acid [12]. γ-Indomethacin is the stable crystalline form which exists
only with Z isomers [13], where hydrogen bonded dimers are connected through their
carboxylic acid groups. α-Indomethacin is a denser metastable crystalline form comprising
three different isomers Z, E, and α3 [14], and δ-Indomethacin has recently been found
to consist of a dimer of the Z and E isomers [15]. Three new polymorphs obtained from
aqueous suspensions have also yet to be characterized [15,16]. Our previous X-ray study
on amorphous Indomethacin found a range of disordered structures denoted I through
V [17]. In the amorphous forms, the chlorobenzyl ring showed evidence of distinct isomer
orientations in samples 1 and II, where the first sharp diffraction peak (FSDP) and medium
range ordering was found to be lower. However, for those amorphous samples with no
preferred torsion angles of the chlorobenzyl ring (samples IV and V), enhanced medium
range order attributed to intermolecular hydrogen bonding was observed, and this was
reflected as a 20% increase in the intensity of the FSDP.

The isomers of Indomethacin can be primarily identified from the hindered rotation
of the partial double bond between the N1 and C2 atoms (see Figure 1). This can lead to
much more potent anti-inflammatory activity associated with the Z-isomer compared to
the E isomer [12]. Therefore, in this study, we have performed Empirical Potential Structure
Refinement modeling of our previously reported high-energy X-ray diffraction data on
different amorphous Indomethacin samples, to investigate the relation between molecular
conformation and the range of intermolecular hydrogen bonding interactions. Previous
EPSR studies have demonstrated subtle but important hydrogen bonding differences be-
tween liquid and amorphous pharmaceuticals and excipients [18,19]. In addition to the
solid state NMR (ssNMR) studies on samples I–V that have previously been reported [17],
new experiments with partially deuterium exchanged amorphous indomethacin are re-
ported to further investigate the possible molecular conformations and intermolecular
bonding configurations.
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Figure 1. (Left) Starting conformation of the Indomethacin molecule used in our EPSR models
together with labels of the different atom types. (Right) Overlay of Z, E, and α3 isomers to illustrate
the choice of the five specified allowed rotations denoted by curved arrows. Carbon atoms are shown
as black, nitrogen as blue, oxygen as red, chlorine as green, and hydrogen as white.

2. Materials and Methods

Crystalline γ-Indomethacin (>98% from Tokyo Chemical Industry) was used as re-
ceived without further purification. The acetonitrile (99.9% HPLC grade, Concord Tech-
nology (Tianjin, China) and the deuterium oxide (99.9% atom D, Cambridge Isotopes
Laboratories) were used as received without further purification. To prepare indomethacin
deuterated at the exchangeable acid position, 300 mg of indomethacin (0.8 mmol) was
dissolved in 7 mL of a 70:30 mixture of acetonitrile and deuterium oxide (110 mmol) under
mild heating and stirring. The solution was allowed to stir on a hot plate under mild
heating for approximately 3 h prior to solvent removal by dry nitrogen purge, followed by
vacuum drying, resulting in the α crystal form. To obtain the γ form, the indomethacin was
recrystallized by dissolving in the minimum amount of warm acetonitrile and allowing the
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solution to slowly cool to room temperature, followed by storage overnight at 5 ◦C. The
amorphous indomethacin samples were prepared by melt quenching with liquid nitrogen.

The ssNMR spectra were collected using a 400 MHz Varian VNMRS system equipped
with a 1.6 mm triple resonance HXY probe configured for 1H-13C-2H operation with
resonant frequencies of 399.739, 100.524, and 61.363 MHz, respectively. The 1H ssNMR
spectra were collected with a 1.75 µs 1H 90-degree pulse, a 30 s recycle delay, and a magic
angle spinning (MAS) speed of 20 kHz. The 2H spectra were collected with a 1.75 µs 2H
90-degree pulse, a recycle delay of 3 s, 20k scans, an MAS speed of 5 kHz, a sweep width of
500 kHz, and an acquisition time of 8.192 ms. The 1H → 13C cross polarization (CP)-MAS
spectra were collected using a 2.25 µs 1H 90-degree pulse, between 1k and 8k scans, a
recycle delay of 10 s, an MAS speed of 20 kHz, and a CP contact time of 2 ms. The CP
was achieved using a 100 kHz 13C spin-lock pulse and a ramped power (5%) 1H spin-lock
pulse optimized to the −1 spinning side band of the Hartmann–Hahn condition (80 kHz).
During 13C and 2H data collection at high power (140 kHz), two-pulse phase-modulated
(TPPM) 1H decoupling with a 3.3 µs pulse width and 8-degree phase offset was used, to
improve spectral resolution. The chemical shifts for 1H and 13C were indirectly referenced
to TMS in the solid state by setting the resonances for 1H and 13C of adamantane to 1.8 ppm
and 38.48 ppm, respectively. The 2H chemical shifts were referenced by setting the 2H
resonance of liquid D2O to 4.8 ppm. The 1H and 13C NMR data were processed using
VnmrJ 4.2, and the 2H NMR data were processed using Topspin 4.1. The 2H NMR line
shapes were fit and analyzed using DMFit [20].

To investigate the variation in hydrogen bonding between the different amorphous
forms of Indomethacin measured in our high-energy X-ray diffraction experiments on beam-
line 6-ID-D at the Advanced Photon Source, Empirical Potential Structural Refinement
(EPSR) modeling [21] was used. The five samples were all prepared by melt quenching and
their preparation and characterization has previously been reported in detail by Benmore
et al. [17]. It is important to re-iterate here that an accurate data reduction procedure
is essential in obtaining the X-ray structure factor S(Q) and associated pair distribution
function G(r). A review of the current software available for this purpose has recently
been carried out by Gallington et al. [22]. EPSR is a Monte Carlo semi-rigid body type
simulation, whereby all atoms on the molecules are defined using harmonic force constants,
and angular and dihedral angles are used to describe the molecular geometry and allowed
intramolecular rotations [23,24]. The algorithm initially uses Lennard-Jones reference poten-
tials with Coulombic terms to describe the intermolecular interactions. As the simulation
progresses, an empirical potential is employed to modify these intermolecular interactions.
This term in the potential is determined by taking the difference between the experimental
diffraction data and that predicted by the Monte Carlo model. The continuously perturbed
potential drives the model structure towards the experimental data by random changes in
atomic (molecular) coordinates, including molecular rotations if flexibility of that part of the
molecule is allowed, with each step resulting in new configurations. The change is accepted
if the potential energy decreases, or with a Boltzmann probability if it is greater, to avoid
becoming stuck in local minima. Once good fits are found between the model structures
and the measured X-ray structure factor, the simulation is collected over a large number
of configurations. When applied to X-ray diffraction data from amorphous pharmaceuti-
cals, the scattering is mainly dominated by the carbon and oxygen atoms that define the
molecular geometry and intermolecular pair correlations.

Here, EPSR simulations were performed on 64 molecules within a cubic box under pe-
riodic boundary conditions. The starting configuration of our model was constructed from
a random array of Z isomer molecules since this is the most common isomer, particularly
at low density. In addition, molecular dynamics simulations of amorphous Indomethacin
predict that the Z isomer is more favorable than the E isomer by a factor of about 5.7 [1]. To
allow for other conformations in the model and improve the fit to the X-ray data, rotations
of five molecular groups were enabled, including the rotation of the chlorobenzyl ring. The
atom labels for the different atom types used in the simulation and the allowed molecular
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rotations are illustrated in Figure 1. To prevent unrealistic hydrogen bonding, an additional
“soft” minimum distance constraint of 2.6 Å was applied for the oxygen–oxygen (O-O)
interactions between adjacent molecules. This constraint increases the repulsive part of
the inter-atomic potential but may come to equilibrium at a lower atom–atom distance if
necessary, in order to maintain an adequate fit to the data.

The parameters associated with the starting Lennard-Jones reference potentials are
shown in Table 1. For simplicity, only the most influential partial charges were employed
based on the molecular dynamics simulations of Xiang and Anderson [12], namely, the
negative acceptor oxygen and positive carbon charges, with the charge balance placed on
the OH donor hydrogen. Best fits to the more disordered high-energy X-ray diffraction
signals (from samples I and II) were obtained using a ~5% lower density and the semi-rigid
molecular models, whereby rotation about the 5 specified axes was allowed. The more
ordered signals from samples IV and V were better fit using rigid Z-isomer molecules with
rotations restricted to only a few degrees. Sample III was fit with an intermediate density
and all but 5 rotations enabled.

Table 1. Starting Lennard-Jones parameters and partial charges.

Atom ε (kJ/mol) σ (Å)
Partial

Charge, Q

O1 (acceptor), O2 (donor) 0.65 3.1 −0.6
O3 (acceptor) 0.65 3.1 −0.4

C4, C8 0.8 3.7 +0.7
H2 0 0 +0.8
H1 0 0 0.0

C1, C2, C3, C5, C6, C7, C9, C10 0.8 3.7 0.0
Cl 0.8 3.2 0.0

Following initial Monte Carlo equilibration, the empirical potential term was refined
to improve agreement with scattering data. Once the goodness-of-fit parameter was
minimized between the model and the experimental S(Q), structural data were collected
over ensembles of at least 10,000 configurations. While the EPSR fit to the data does not
necessarily give a unique structural 3D configuration of molecules, it does provide an
important insight into the types of interactions that are likely in the disordered state. Since
X-rays are scattered by electrons, the S(Q)s and corresponding PDFs are most sensitive to
the heavier atoms and in particular the orientations of the carbon rings, oxygens, and the
chlorine atom interactions.

3. Results
3.1. EPSR Models

In order to best fit the periodicity in the high-Q region of the X-ray diffraction pattern,
the average intramolecular bond lengths of the molecule needed to be lengthened by 1 to
3% compared to the Z-isomer molecule in the γ-form [14]. This average C-X (where C=C, N
or O) bond length is defined in real space by the first peak in the pair distribution function
D(r). The results of the fits are shown in Figure 2 and listed in Table 2.

The X-ray patterns for the different amorphous samples are qualitatively similar; how-
ever, important quantitative differences exist. A strong test of the validity of the different
models is demonstrated by taking differences between the less ordered forms (I and II) and
more ordered forms (IV and V), as shown in Figure 3. The main difference between the
measured amorphous structure factors occurs in the low-Q region, which can be associated
with the packing (and hydrogen bonding interactions) between molecules [25].
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Figure 2. The X-ray structure factors of the five amorphous Indomethacin samples reported by
Benmore et al. [17]. (Left panel) shows the S(Q) low-Q region encompassing the first sharp diffraction
peak. The (right panel) shows the entire measured Q-range (circles) using the formalism Q[S(Q)-1] to
emphasize high-Q, together with the EPSR model fits from this study (lines).

Table 2. EPSR simulation box parameters, densities, and average C-C, C-O, and C-N intramolecular
bond lengths compared to the crystal used in this study.

Sample Atomic Number Density
(AtomsÅ−3) Number of Rotations within Molecule Intramolecular C-X Bond

Length or Expansion (Å)

γ-form (crystal) 0.0952 None (Z isomer fixed geometry) 1.380 (initial bond)
I 0.0900 5 +0.015
II 0.0900 5 +0.015
III 0.0925 5 +0.036
IV 0.0950 None (slight variation) +0.041
V 0.0950 None (slight variation) +0.036

The O2H2-O1 hydrogen bonded distance in the γ-form is 2.67Å and is associated with
the formation of carboxylic acid dimers. In α-Indomethacin, the structure comprises three
molecules in the asymmetric unit, with each molecule having a different conformation,
forming a trimer. The trimer comprises a hydrogen-bonded carboxylic acid dimer, with
the third molecule forming a hydrogen bond between the carboxylic acid and an amide
carbonyl in the dimer, spanning O2H2-O1 distances between 2.59 and 2.74 Å. In contrast,
our EPSR models of the amorphous forms show a wide range of O2H2-O1 distances,
from 2.50 to 2.85 Å. The partial pair distribution function gO2O1(r) in Figure 4 shows the
distribution of O2H2-O1 hydrogen bonding interactions as a function of distance in the
different amorphous Indomethacin samples.

The EPSR models for the more-ordered samples (IV and V) exhibit strong hydrogen
bonds in the form of a single intense peak at ~2.5 Å, a minimum at 3.2 Å, and second shell
maximum at ~3.5 Å. The less-ordered samples (I and II) span a broad (and continuous)
range of O2H2-O1 distances from 2.5 to 3.5 Å. This variation in the average number of
hydrogen-bonded molecules as a function of distance between different amorphous forms
is reflected in the running coordination number, nO2-O1(r) in Figure 4. Nevertheless, a value
of nO2-O1(r)~0.38 was found for all the amorphous samples at a distance of r = 3.2 Å. This
compares to the value of 1.0 in the crystalline γ- and α-forms.

In our amorphous models, hydrogen bonding intermolecular interactions were also
found between the carboxyl acid oxygen O2 and the O3 amide oxygen, which is not
found in crystalline forms and likely arises from the highly disordered arrangement of
molecules. Interestingly, the strongest O2-O3 interactions are found in sample III which
exhibited the sharpest FSDP, see Figure 5. In other words, it is the sample with the most
intermolecular hydrogen bonding of the models with the most flexibility, by allowing all
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five intramolecular rotations. Although, we note that the most-ordered models, namely III,
IV, and V, all exhibit a O2-O3 coordination number, nO2-O3(r)~0.2, at a distance of r = 3.2 Å.
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In addition, since the amide carbonyl atoms C4 and O1 have large and opposite
charges of +0.7 and −0.6 (see Table 1) they have the potential to induce dipole–dipole
bonds between adjacent Indomethacin molecules. Indeed, in models IV and V, evidence of
short intermolecular C4···O1 distances of ~3.2 Å are found, similar to those observed in the
γ-crystalline form, but these interactions are largely absent in models I, II, and III.

3.2. ssNMR Experiments

The 1H magic angle spinning (MAS) spectra of the natural abundance amorphous and
crystalline γ- and α-Indomethacin samples are shown in Figure 6A along with partially
deuterium exchanged amorphous indomethacin (overlaid grey spectrum). The reduction in
the 1H MAS spectral intensity in the 10–14 ppm range for the amorphous d1-indomethacin
in comparison to the natural abundance amorphous indomethacin is confirmation of the
selective acid exchanged deuteration of the sample. The 1H MAS spectra clearly indicate
that the amorphous indomethacin has hydrogen bonding components that are similar
to the dimer carboxylic acid configuration found in γ-Indomethacin (~13 ppm) as well
as the carboxylic acid hydrogen bonding to the carbonyl as observed in α-Indomethacin
(~11 ppm) [26]. The 1H acid region in amorphous indomethacin is broad compared
with the crystalline samples due to the larger dispersion of hydrogen bonding and acid
environments found in disordered molecular solids (Supplementary Material Figure S1).
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Figure 6. (A) 1H solid-state MAS (νr = 20 kHz) NMR spectra of alpha, gamma, and amorphous
indomethacin. A selectively acid deuterium-enriched amorphous indomethacin sample was made
through 1H to 2H exchange prior to melt quenching. The 1H solid-state MAS (νr = 20 kHz) NMR
spectrum of the (grey) partially acid deuterated amorphous indomethacin sample (d1-indomethacin)
is overlaid with the (black) standard amorphous indomethacin and shows a reduction in 1H signal
due to the partial acid deuteration. Dotted vertical lines are shown at 12.7 and 11.5 ppm and labeled
(a) and (c), respectively. These are the approximate 1H chemical shifts for the acid (COOH) protons in
a (a) hydrogen-bonded dicarboxylic acid environment (gamma-indomethacin) and (c) in a weaker
hydrogen-bonded carbonyl—carboxylic acid environment. (B) 2H solid-state MAS (νr = 5 kHz) NMR
spectra (black) and DMFit simulation (Blue) of amorphous d1-indomethacin (~50% 2H exchanged at
the acid site). The best fit 2H quadrupolar tensor gave a coupling constant (CQ) of 178 kHz with no
asymmetry (η = 0) with a 2H chemical shift of 8 ppm and a linewidth of 10 ppm. Above the full 2H
spectrum and simulation is a zoomed in plot to more clearly show the center band and the first few
satellite transitions (black) and associated simulation fit (blue) of amorphous d1-indomethacin.
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The 2H MAS NMR of d1-Indomethacin (~50% deuterated at the carboxylic acid based
on 1H MAS NMR integration) allowed for elucidation of dynamic processes and fur-
ther structural probing of the amorphous indomethacin hydrogen bonding environment
(Supplementary Material Figure S2). The 2H MAS NMR of amorphous d1-Indomethacin
is shown in Figure 6B along with a first-order quadrupolar simulation using DMFit to
estimate the 2H quadrupolar coupling constant [20]. Both the isotropic chemical shift and
the quadrupolar coupling constant (CQ) can be of interest in studies of hydrogen bonds
and any associated exchange or molecular motion dynamics. The deuterium quadrupolar
coupling constants for carboxylic acids are typically 140–200 kHz and the quadrupole
coupling constant for heavy water and common hydrates is ~220 kHz [27,28]. The residual
quadrupolar interaction is directly influenced by translational diffusion, molecular rotation,
and exchange dynamics. The observation of a quadrupole coupling constant of 178 kHz
for d1-Indomethacin indicates that that amorphous indomethacin below Tg (at room tem-
perature) does not have any appreciable exchange dynamics and exists as distributions
of rigid intermolecular hydrogen-bonded molecular units. The ssNMR measurements
were supported by Fourier Transform-Infra Red (FT-IR) spectra of the Indomethacin poly-
morphs (Supplementary Material Figure S1) and deuterated versus natural abundance
Indomethacin (Figures S4 and S5). The carbonyl stretching region contains assignments of
characteristic stretching bands for each polymorph and were made in reference to the work
of Van Duong, et al. [29].

4. Discussion

Previous structural characterization methods of crystalline, liquid, and amorphous
forms of Indomethacin have included Raman and infra-red spectroscopy [30], nuclear mag-
netic resonance [28], X-ray crystallography [14], and molecular dynamics simulations [31].
The extraction of the pair distribution function from diffraction measurements provides yet
another powerful tool capable of probing both intra- and intermolecular configurations of
molecules, especially with regard to the most disordered forms [32–34]. The five amorphous
Indomethacin samples modeled here have previously been characterized in detail using
high-energy X-ray diffraction, nuclear magnetic resonance, Raman scattering, and differ-
ential scanning calorimetry [17]. From our EPSR models, we can interrogate the variation
in the model structures more thoroughly. A comparison of the ∠O3-N-Cl intramolecular
angle of the three different isomers found in α- and γ-Indomethacin are shown in Figure 7,
along with the distribution of angles found in the EPSR models for all five amorphous
samples. The most structured intermolecular amorphous forms have the broadest range of
intramolecular conformations (around ~90◦). This is a consequence of our EPSR constraints,
since our models of samples IV and V used Z-isomer molecules with rotations limited to
only a few degrees. In contrast, our models for our more disordered samples, I, II, and III,
allowed for five rotations within the Z-isomer molecules. This additional flexibility resulted
in the exhibition of sharper peaks in the ∠O3-N-Cl angle distribution and is attributed to
preferred intramolecular conformations. None of the models I, II, or III found configura-
tions with any significant population of E-isomers, suggesting that the pure amorphous
forms likely act as better anti-inflammatory agents compared to the α-form. However, it
has been pointed out that the distribution of Indomethacin conformations is sensitive to
the physical environment, with the Z isomer conformation being preferred in solution and
the E-isomer favored in inclusion complexes with β-cyclodextrin [35].

The broad range of molecular conformations observed in our models leads to a high
degree of intermolecular structural disorder associated with amorphous solids, and more
complex hydrogen bonding patterns compared to the crystalline forms. Previous MD
simulations on amorphous Indomethacin [12] have shown a much lower probability of
carboxylic dimers than that found in the crystals, and the most readily identified hydrogen
bonded patterns were found to be short chains of Indomethacin molecules connected via
carboxylic acid bonds. An analysis of the chain size distributions shows a high degree of con-
sistency across all of our EPSR models (see Figure 8), with ~46% of Indomethacin molecules
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being non-bonded (isolated), and only ~39% bonded to one neighboring molecule via a
single hydrogen bond, see Figure 9. The remaining 15% are associated with trimers and
bifurcated hydrogen bonds leading to a diversity of chain structures in the amorphous
forms. This result compares to 21% non-bonded molecules, 31% singly hydrogen-bonded
molecules, and 48% with two or three hydrogen-bonded neighbors in a previously reported
molecular dynamics model of 10 mole.% water containing Indomethacin glass [12].
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Figure 8. The percent of the number of hydrogen bonds per molecule as a function of chain size for
our amorphous Indomethacin samples.

1H and 2H NMR support the molecular model of amorphous indomethacin having
a broad range of molecular conformations and intermolecular structural disorder with
complex hydrogen bonding patterns. Furthermore, deuteration and 2H NMR are shown
as a promising direction for probing hydrogen bonding and molecular structure, motion,
and exchange dynamics in pharmaceutical compounds [36]. This is especially relevant
with the increased interest in deuterated pharmaceutics [37]. Our future directions involve
more closely integrating molecular computations of quadrupolar and chemical shift NMR
quantities from ab initio computational model molecular configurations to better combine
the experimental and computational elucidation of complex distributions of conformations
and intermolecular distributions common to amorphous pharmaceutical compounds.
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chlorine as green, and hydrogen as white.

5. Conclusions

Semi-rigid molecular models fitted to five amorphous Indomethacin X-ray diffraction
patterns have been interrogated to determine the main similarities and differences between
the amorphous samples. All intramolecular conformations are consistent with a wide
distribution of configurations similar to the Z-isomer but not the E-isomer. The majority
of amorphous Indomethacin hydrogen bonds were found to include the donor carboxylic
acid group and one of several hydrogen bond acceptor oxygen sites including the amide
carbonyl oxygen, the methoxyl, and the carboxylic acid. Consequently, a wide range
of hydrogen bonding strengths and interactions are found across the different models
resulting in complex interaction patterns, although the primary hydrogen bond is found to
be via carboxylic acid donor O2-O1 acceptor interactions. To a lesser extent, O2-O3 amide
hydrogen bonding interactions were also observed, and C4-O1 dipole–dipole interactions
occurred in the more structurally ordered models. Overall, the majority of Indomethacin
molecules were found to be either isolated (~46%) or form singly hydrogen-bonded dimers
(39%). Our amorphous models were consistent with our previous findings that there is
competition between preferred intramolecular conformations and stronger intermolecular
hydrogen bonding. From a wider perspective, this study shows that the method of EPSR
modeling of high-energy X-ray diffraction patterns from amorphous pharmaceuticals is a
powerful tool in exploring the range of possible molecular structures.
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