
PEARL: Enabling Portable, Productive, and High-Performance
Deep Reinforcement Learning using Heterogeneous Platforms

Yuan Meng
ymeng643@usc.edu

University of Southern California
United States

Michael Kinsner
michael.kinsner@intel.com

Intel Corporation
United States

Deshanand Singh
deshanand.singh@intel.com

Intel Corporation
United States

Mahesh Iyer
mahesh.iyer@intel.com

Intel Corporation
United States

Viktor Prasanna
prasanna@usc.edu

University of Southern California
United States

ABSTRACT
Deep Reinforcement Learning (DRL) is vital in various AI applica-
tions. DRL algorithms comprise diverse compute kernels, which
may not be simultaneously optimized using a homogeneous archi-
tecture. However, even with available heterogeneous architectures,
optimizing DRL performance remains a challenge due to the com-
plexity of hardware and programming models employed in modern
data centers. To address this, we introduce PEARL, a toolkit for com-
posing parallel DRL systems on heterogeneous platforms consist-
ing of general-purpose processors (CPUs) and accelerators (GPUs,
FPGAs). Our innovations include: 1. A general training protocol
agnostic of the underlying hardware, enabling portable implemen-
tations across various platforms. 2. Incorporation of DRL-speci�c
optimizations on runtime scheduling and resource allocation, fa-
cilitating parallelized training and enhancing the overall system
performance. 3. Automatic optimization of DRL task-to-device as-
signments through throughput estimation. 4. High-level API for
productive development using the toolkit. We showcase our toolkit
through experimentation with two widely used DRL algorithms,
DQN and DDPG, on two diverse heterogeneous platforms. The
generated implementations outperform state-of-the-art libraries
for CPU-GPU platforms by up to 2.2⇥ throughput improvements,
and 2.4⇥ higher performance portability across platforms.

CCS CONCEPTS
•Computingmethodologies! Parallel computingmethodologies;
Reinforcement learning.

KEYWORDS
Heterogeneous Computing, Deep Reinforcement Learning

ACM Reference Format:
Yuan Meng, Michael Kinsner, Deshanand Singh, Mahesh Iyer, and Viktor
Prasanna. 2024. PEARL: Enabling Portable, Productive, andHigh-Performance

This work is licensed under a Creative Commons Attribution International 4.0
License.
CF ’24, May 7–9, 2024, Ischia, Italy
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0597-7/24/05.
https://doi.org/10.1145/3649153.3649193

Deep Reinforcement Learning using Heterogeneous Platforms. In 21st ACM
International Conference on Computing Frontiers (CF ’24), May 7–9, 2024,
Ischia, Italy. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3649153.3649193

1 INTRODUCTION
Deep Reinforcement Learning (DRL) is extensively applied in var-
ious domains, including robotics, surveillance, etc. [7, 25]. Most
DRL algorithms involve three collaborative compute kernels: policy
execution, training, and dataset management. In policy execution,
parallel Actors gather data through inference on the policy, interact
with the environment, and deposit the data into a Prioritized Replay
Bu�er for dataset storage. In training, a centralized Learner samples
data from the Prioritized Replay Bu�er to update the policy model.
The dataset management within the Prioritized Replay Bu�er is
facilitated by a sum tree data structure storing data priorities [27].
DRL training is highly time-consuming. Due to the distinct com-
pute kernels in DRL that may not be e�ciently optimized using a
homogeneous architecture, there has been a growing trend in using
heterogeneous architectures to accelerate DRL algorithms [9, 14, 16].
However, even with access to heterogeneous resources, DRL ap-
plication developers still face several challenges: (a). Sub-optimal
performance: DRL’s distinct components require careful placement
and scheduling onto heterogeneous devices based on both compu-
tational and hardware characteristics. Sub-optimal placement and
scheduling can lead to under-utilization of heterogeneous resources,
resulting in missed opportunities for performance improvement.
(b). Lack of portability across platforms: The optimal DRL primitive-
to-hardware assignments can change based on varying algorithms
and platforms. Consistently achieving high-performance imple-
mentations requires portable solutions that can map and distribute
DRL onto various devices, but existing frameworks lack such �exi-
bility. (c). Low development productivity: The growing diversity of
heterogeneous resources in data centers [1, 24, 26] have increased
the need for hardware optimizations and bridging between di�er-
ent programming models. This signi�cantly increases the required
learning e�ort and programming time for application developers.
In this work, we address the above challenges by proposing PEARL,
a toolkit that enhances the performance, productivity, and portabil-
ity [20] of DRL system development on heterogeneous platforms.
PEARL provides DRL application developers with tools and familiar

41

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3649153.3649193&domain=pdf&date_stamp=2024-07-02

CF ’24, May 7–9, 2024, Ischia, Italy Yuan Meng, Michael Kinsner, Deshanand Singh, Mahesh Iyer, and Viktor Prasanna

interfaces for running DRL using heterogeneous platforms, while
abstracting away the low-level hardware intricacies. Speci�cally, it
takes a Python program from the user with functionalities similar
to existing RL ecosystems and frameworks (e.g., PyTorch [19], RLlib
[14]). Its main novelties compared to existing RL frameworks are
unique intermediate abstraction layers below the Python interface.
They de�ne the runtime scheduling and automatic design space ex-
ploration to enable e�ective utilization of heterogeneous resources.
Additionally, they integrate �ne-grained acceleration of individ-
ual primitives. These are realized by a Host Runtime Coordinator,
a System Composer, and a Parameterized Library of Accelerated
Primitives.
Our key contributions are:
• We propose a general DRL heterogeneous training protocol
that is agnostic of the types of underlying accelerators, thus
portable to di�erent heterogeneous platforms.

• Wepropose a dynamic resourcemanagementmechanism,which
�ne-tunes the training workload assigned to the CPUs and the
accelerators during runtime.

• We develop a parameterized library that contains accelerated
DRL primitives on various architectures (CPU, GPU, and FPGA).
We o�er a Python-based User API to enable productive DRL
application development on heterogeneous platforms.

• We develop a novel System Composer for identifying optimal
device assignments and accelerator con�gurations, ensuring
high performance of the DRL implementation.

• We assess our toolkit using representative DRL algorithms
on various benchmarks and platforms. Compared with ex-
isting DRL frameworks, our implementations lead to up to
2.2⇥ speedup, and 2.4⇥ higher performance portability. Our
implementations are achieved with just dozens of lines of code,
demonstrating high development productivity.

2 BACKGROUND
2.1 Deep Reinforcement Learning
A generalized DRL training process comprises four primitives: Ac-
tors, Learner, Replay Manager (RM), and Experience (Exp) Memory.
These primitives work and interact as follows:
Actors: Each Actor maintains a Deep Neural Network (DNN) pol-
icy network, inferring an action based on an input environment
state. Each Actor operates on an instance of the environment simu-
lator, applying the inferred action. The environment responds and
generates a tuple {state, action, new state, reward}, constituting an
experience (i.e., a data point) for training. Multiple copies of the
Actor repeat this process to collect experiences, which populate a
training dataset called the Replay Bu�er.
Replay Bu�er: Unlike pre-labeled datasets in supervised learning,
the Replay Bu�er in DRL is continuously �lled by online interac-
tions of Actors with the environment, and its data points are dy-
namically changing as the policy evolves. In state-of-the-art DRL,
the Prioritized Replay Bu�er is widely used for managing data with
probabilities proportional to the current policy loss to enhance
training quality [11, 23]. It incorporates a Replay Manager (RM)
associating a priority (i.e., probability of being sampled) with each
experience in the Experience (Exp) Memory. During data sampling,

a data point (i.e., experience) G8 is selected based on the proba-
bility distribution Pr(8) = % (8)/Õ8 % (8), 8 2 [0, replay bu�er size),
where % (8) represents the priority of data point 8 . This selection is
achieved by identifying the minimum index 8 for which the pre�x
sum of probabilities up to 8 is greater than or equal to G , where G is
a uniformly generated random target pre�x sum value between 0
and the total priority sum [23]:

min
8

8’
9=1

% (9) � G,G ⇠ * [0,
replay bu�er size’

9=0
% (9)] (1)

To enable rapid sampling and scalable update operations for large
ExpMemory, priorities are managed using a sum tree data structure
[23, 28]. Replay sampling and replay update operations on an n-ary
sum tree are de�ned in [27].

Learner: In each training iteration, a batch of indices are sampled
via the RM to obtain experiences by reading from the Exp Memory.
Then, the Learner performs training using stochastic gradient de-
scent (SGD, [22]) on the policy network. During the computation
of the loss function in SGD, an updated priority is produced and
written back to the Replay Bu�er via the RM. Policy network param-
eters are updated and sent to the Actors to ensure that experience
collection employs the latest policy.

DRLWorkload Characterization: The characteristics of Deep
Reinforcement Learning (DRL) primitives exhibit variations not
only among themselves but also across di�erent learning functions,
policy models, hyper parameters, etc. Consequently, relying on a
�xed architectural solution proves inadequate for optimizing hard-
ware utilization and achieving high-throughput DRL across the
diverse spectrum of algorithms and applications. As examples, In
Figure 1, we illustrate throughput performance of key compute
primitives (replay sampling, replay update, and learner) for two
algorithms (DQN [18], DDPG [15]) and policy models (MLP, CNN),
on the roo�ine models for a CPU, GPU, and FPGA. In this example,

Figure 1: DRL Primitives Workload Analysis

primitives such as small MLP policies (commonly used in classical
control and robotics benchmarks [10]) and replay operations exhibit
low arithmetic intensities and high-latency memory accesses, mak-
ing themmemory-bound and challenging to optimize on multi-core
or data-parallel architectures (CPU and/or GPU). The performance
of these primitives can bene�t from a near-memory fashion design
using spatial architecture (FPGA). Learner functions with higher
arithmetic intensity and data reuse, such as CNN policies used in
vision-based applications [18], justify the data parallel resources
provided by GPUs. Still, the characteristics of DRL performance
may vary due to signi�cant di�erences among replay and learner
con�gurations based on applications, as well as diverse roo�ines
resulting from device bandwidth and compute capabilities.

42

PEARL: Enabling Portable, Productive, and High-Performance Deep Reinforcement Learning using Heterogeneous Platforms CF ’24, May 7–9, 2024, Ischia, Italy

2.2 Target Platforms
Today’s data centers comprise highly heterogeneous machines com-
bining a variety of processors, accelerators, and memory [1, 3, 4].
Based on the DRL workload characterization in Section 2.1, we
justify that there is a compelling need for dynamic mapping of DRL
algorithms using such a heterogeneous platform to consistently
achieve high performance. Our toolkit is motivated by this need,
addressing the optimization challenges and emphasizing perfor-
mance, portability, and productivity in the design automation for
DRL application users. PEARL is designed to adapt to a wide range
of heterogeneous computing platforms with interconnected CPUs
and accelerators like GPUs and FPGAs. Developing applications on
such platforms typically demands expertise in designing hardware
and bridging between di�erent programming models, which re-
quires a learning curve that hinders the productivity of application
developers. PEARL’s strength lies in its ability to support high-
performance DRL across diverse heterogeneous hardware, while
abstracting away complex hardware details.

2.3 Related Work
A number of works have implemented DRL on parallel and dis-
tributed systems. RLlib introduces high-level abstractions for dis-
tributed reinforcement learning, built on top of the Ray library [14].
Other works, such as [12, 27], implement parallel DRL algorithms
by employing multiple parallel Actor threads and a centralized
Learner thread, utilizing deep learning libraries like Tensor�ow
and LibTorch. These works leverage CPU and GPU data parallel re-
sources for training, but do not e�ciently optimize memory-bound
primitives (such as small model training and replay operations) on
specialized hardware. In recent years, some research works have
focused on hardware acceleration for DRL algorithms. For instance,
[9] and [16] present FPGA implementations for speci�c algorithms,
the Asynchronous Advantage Actor-Critic (A3C) and the Proxi-
mal Policy Optimization (PPO). [17, 28] introduced an FPGA-based
accelerator design for the Replay Bu�er and mapped several DRL
algorithms onto an FPGA-based heterogeneous platform. However,
they only target a speci�c heterogeneous device setup and lack
performance portability across di�erent heterogeneous platforms;
Moreover, these work map each primitive onto a single device, in
the case of the Learner being the bottleneck, they lack the �exi-
bility to improve its runtime performance using di�erent devices.
Our work bridges these gaps by developing a generalized protocol
that makes the development of DRL portable to di�erent heteroge-
neous platforms, accompanied by runtime heterogeneous resource
management to fully saturate the heterogeneous compute power.

3 RUNTIME SYSTEM & TRAINING PROTOCOL
3.1 System Design
The implementation generated by PEARL is based on a parallel DRL
system managed by a Host Runtime Thread. Figure 2 shows the
setup of such a system. Multiple Actor threads generate new data
points (experiences) and periodically synchronize weights from the
Learner. They send the experiences to the Host Runtime Thread
through Data Collection Queues (DCQs). The Host Runtime Thread
interacts with the RM through an RM Request Queue (RRQ), where

Figure 2: Runtime System

the host initiates sampling (or update) requests and receives outputs
of sampled indices (or updated priorities). Parallel Learner modules
can be implemented using both CPU threads and an accelerator, and
they are initiated by the Learner Assignment Queues (LAQ). Their
outputs are aggregated by a Gradient Synchronizer to produce the
�nal weight gradients.

Figure 3: DRL Heterogeneous Training Protocol

3.2 DRL Heterogeneous Training Protocol
To perform training on a given heterogeneous system, we propose a
general DRL heterogeneous training protocol (Figure 3). The train-
ing protocol can be ported to various heterogeneous devices since
the interactions among processors and accelerators are de�ned at
the application layer (i.e., DRL logical components), and are not
bound to a speci�c type of accelerator. We show the essential data
exchange and handshake signals between modular components as
1 - 8 in Figure 3. We provide a runtime code template that manages
the thread pools and the accelerators, allowing the “plug and play"
of heterogeneous devices for DRL primitives. It is a Python program
executed on the Host Runtime Thread, which utilizes a loop whose
iterations follow this protocol.

3.2.1 Replay-Collision-Free Scheduling. Our protocol features a
novel scheduling optimization to encourage concurrency while
maintaining algorithm correctness. We adopt a strategy of deferring
the immediate insertion of experiences into the Replay Bu�er when
experiences are received from Actor threads. We maintain a data
collection bu�er to cache experiences generated by the Actors, and
only insert them when the bu�er is full. Upon experience insertion,
we schedule the batched insertion operations after the sampling
process concludes. This optimization has two advantages. Firstly,
this approach permits us to compare the insertion index against the
sampled indices, hence e�ectively mitigating the potential contam-
ination of data when the Learner and Actors concurrently modify
the same indices of the Replay memory. We refer to this procedure
as “collision-free data collection" shown in Figure 3. Secondly, by

43

CF ’24, May 7–9, 2024, Ischia, Italy Yuan Meng, Michael Kinsner, Deshanand Singh, Mahesh Iyer, and Viktor Prasanna

sequencing data insertion after the sampling phase, we align its ex-
ecution concurrently with the training process. This hides the time
overheads of the priority retrieval and update operations initiated
by experience insertion in the training pipeline.

3.3 Runtime System Optimizations
Algorithm 1 Dynamic Resource Management
1: Input: Actor thread-pool size �, training batch size ⌫(, sub-batch size

trained on CPU 1 (initially, 1 = 0); runtime-pro�led execution time
of all Actor threads)�2C>A in one iteration, a Learner (accelerator)
gradient step)!40A=4A in one iteration, the Host gradient synchro-
nization)B~=2�⌘>BC and CPU training time (initially,)CA08=�⇠%* =
)B~=2�⌘>BC = 0)

2: sorted = sort(decreasing,)�2C>A
� ,)!40A=4A⌫(,)CA08=�⇠%* ,)B~=2�⌘>BC)

3: if sorted[0]==)!40A=4A
⌫(and sorted[0]>2 ⇥)�2C>A

� then
4: freed = ?>>;�2C>AB .size()/2; ?>>;�2C>AB .size() � = freed;
5: activate ?>>;CA08=�⇠%* ; ?>>;CA08=�⇠%* .size() = freed;
6: ?>>;CA08=�⇠%* .submit(train(1 + +), sync-host())
7: learner.submit(train(⌫(� = 1))
8: else if sorted[0]==)CA08=�⇠%* then
9: ?>>;CA08=�⇠%* .submit(train(1 � �), sync-host())
10: learner.submit(train(⌫(� = 1))
11: else if sorted[0]==)B~=2�⌘>BC then
12: ?>>;CA08=�⇠%* .size() ��;
13: ?>>;�2C>AB .size() ++;

PEARL’s runtime system design integrates a few optimizations
that increase the e�ective utilization of heterogeneous resources
and hide communication overheads.
3.3.1 Dynamic Heterogeneous Resource Allocation. To e�ciently
map DRL onto a heterogeneous platform, we �rst utilize the pre-
dicted result from our performance model (Section 5.2) to initially
determine the mapping of each primitive onto a single accelerator
at compile time. Even when optimally mapped to the most suitable
accelerator, the Learner can remain the system’s bottleneck. Mean-
while, if the Actors’ data generation rate is signi�cantly higher than
the Learner’s data consumption rate, the sample e�ciency of DRL
[6] can be negatively a�ected due to squandering of experiences
information. To further �ne tune Learner acceleration using hetero-
geneous hardware and avoid severe Actors-Learner load unbalanc-
ing, we develop a mechanism that supports dynamic re-allocation
of CPU threads to process a sub-batch training. This mechanism is
iteratively executed within the host runtime thread, as outlined in
Algorithm 1. In instances where the amortized Learner latency dom-
inates compared to the Actors by a large factor, it activates a pool of
threads for training on CPU (?>>;CA08=�⇠%*) and re-assign Actor
threads into CPU-training threads (which functions as a parallel
sub-module of the Learner). Accordingly, the runtime thread also
performs gradient synchronization to aggregate the gradients from
the learner accelerator and the CPU-training threads. This logic is
only activated if CPU threads are involved in training, and overhead
from waiting for intermediate gradients is pro�led and recorded in
the variable storing host synchronization time)B~=2�⌘>BC . When
the host gradient synchronization time emerges as a bottleneck, the
number of CPU training threads is reduced to alleviate its overhead.
This optimization strategy helps fully exploit the heterogeneity
o�ered by both processors and accelerators, facilitating parallelized
policy training and ensuring workload balance.

3.3.2 Communication Overhead Reduction. Our scheduling allows
concurrent execution of the Actor threads (data collection) and
the sampling ! policy training (Learner) ! experience update
(RM) process. We also overlap Learner computation with replay
operations. This is achieved by host-device (or on-chip) streaming
communication queues between the RM and the Learner, so that
training using each data point starts asynchronously as soon as the
Learner receives them (rather than waiting for the full batched sam-
pling). Additionally, we use double bu�ering to alleviate the weight
transfer overheads between the processor and Learner accelerator.
Two bu�ers with sizes of the complete policy weights is allocated
in the host memory (shared by Actors threads and runtime thread).
In each iteration 8 , the CPU threads read from bu�er 8%2 while the
Learner writes into bu�er 1 � 8%2.

4 PARAMETERIZED LIBRARY OF PRIMITIVES
4.1 Replay Manager (RM)
The RM performs three replay operations on a sum tree, where leaf
nodes store the priorities for all experiences, and a parent node
stores the sum of priorities of its children: (1) Priority sampling:
Based on Equation 1, sampled indices are obtained by traversing
the tree performing pre�x sum from root to leaf. The computations
are explained in [27]. (2) Priority retrieval: Given the indices of the
experiences, it outputs the priorities stored at the corresponding leaf
nodes. (3) Priority update: the inputs are the indices of experiences
and the changes to their priorities �; It applies the changes � to the
priorities (and sums of priorities) stored in parent nodes in all the
tree levels. Note that Insertion of priorities is realized with priority
retrievals followed by priority updates.

4.1.1 RM on CPU and GPU. The computations in replay operations
can be viewed as a sequence of operations traversing all levels of the
sum tree from the root to a leaf. Our RM implementations on CPU
and GPU are parameterized with the tree depth, fanout, ⌫(, and
, , where ⌫(is the batch size of the replay operation requests, and
, is the number of workers (degree of parallelism) allocated. Each
worker is responsible for sampling or updating ⌫(

, priorities. All
workers share concurrent accesses to the sum tree. We use mutex to
ensure the correctness of parallel priority updates that potentially
collide on the same node.

Figure 4: FPGA - Replay Manager Hardware Module

4.1.2 RM on FPGA. We develop an accelerator template (parame-
terized with the tree depth and fanout) that can be re-con�gured
to support a range of fanout and tree sizes. We adopt a design of
multiple pipeline stages processing a stream of operation requests
as shown in Figure 4. Each pipeline stage is a hardware module
responsible for operating on a certain tree level and exclusively
stores all the nodes on that level. Di�erent replay operation requests
in a batch are concurrently processed by di�erent pipeline stages.

44

PEARL: Enabling Portable, Productive, and High-Performance Deep Reinforcement Learning using Heterogeneous Platforms CF ’24, May 7–9, 2024, Ischia, Italy

The request fed into the accelerator has a uni�ed operation code
as shown in the top of Figure 4. The requests are decoded at each
pipeline stage, and the corresponding operations are executed in
an online manner. We apply the memoization technique in the up-
daters by using a dedicated register to store the sampled indices at
each tree level so that the replay update does not need to backtrace
through the tree, re-computing these indices.

4.2 Learner
The Learner takes a batch of experiences, and performs SGD con-
stituting forward propagation (FP), loss function (LOSS), backward
propagation (BP), and gradient aggregation (GA).

4.2.1 Learner on CPU and GPU. We use PyTorch [2, 19] to im-
plement DNN training on CPUs and GPUs. On the GPU, PyTorch
utilizes CuDNN [19] or Xe Matrix Extensions [2] backend to ex-
ploit SIMD parallelism. We also support using multiple streams,
each stream independently processes the FP, LOSS, BP, and GA
on a sub-batch of experiences. Compared to bulk processing a full
batch of data, this helps overlap the data transfer and computation
time between sub-batches of data. The GPU-based Learner code is
parameterized to specify the number of streams.

Figure 5: FPGA - Learner Hardware Module
4.2.2 Learner on FPGA. On FPGA, we design a Learner Module
that supports both pipeline parallelism across di�erent neural net-
work layers and data parallelism among sub-batches of data. As an
example, we show the design for an # -layer MLP in Figure 5. Each
pipeline stage uses bu�ers to store intermediate activations, and
uses an array of multiplier-accumulator units to compute matrix-
vector multiplication for a given input. The number of multiplier-
accumulator units allocated to each layer is controlled by a unique
unroll factor *� , which will be tuned to ensure load balancing for
best performance (Section 5.1). To realize data streaming between
modules, they are connected by on-chip FIFO pipes. To support data
parallelism, we make ⇡% copies of such pipelines. Each pipeline
generates the gradients for a sub-batch of experiences, which are
accumulated before sending them back to the host.

5 SYSTEM COMPOSER
Given the user-speci�ed Replay Manager (RM) and Learner meta-
data in the Optimizer Construction Program as inputs, the goals
of the system composer are to (A) determine the best-performing
accelerator con�guration within each device for all the primitives,
and (B) determine an optimal primitive-to-device assignment that
maximizes system performance.

5.1 Accelerator Setup and Performance
Estimation

To realize goal (A), we customize the parameterized accelerators
described in Section 4 to suit the user-input RM and Learner spec-
i�cations. Based on the customized accelerators, we obtain the
expected latency of executing each primitive in one DRL iteration
on each of the available devices, and store these latency numbers
in a Primitive Device Assignment Matrix for further analysis of
system performance in goal (B).
The Primitive Device Assignment Matrix is a 3⇥# table. The #
rows denote the # available devices; each column refers to either
one primitive or a combination of both primitives to be assigned
to one device. Each entry)G

~ in the table denotes the latency of
performing one iteration of a given primitive (or a combination of
2 primitives) G on device ~ (For RM, the latency includes times of
the sampling, updates and insertions). We explain how the table
entries are populated based on accelerator setups as follows:
Primitive Setup on a CPU/GPU : For the primitives that can be
mapped to the CPU, i.e., RM and Actors, we allocate their number
of threads initially based on the ratio of their single-iteration latency
for processing/producing one experience in order to match their
throughput. Note that based on this setup, if RM ends up being
mapped to an accelerator that provide faster RM processing, the
Actors will be initially set to occupy all available threads, and will be
further dynamically adjusted based on the runtime data processing
speed of Actors and Learner (Section 3.3.1). For the RM on a GPU,
the degree of parallelism is set to ⌫(. The sum tree is stored in
the GPU global memory. For the Learner on a GPU, we search
for the best-performing number of streams in the range [1,⌫(] by
recording their per-SGD-step latencies.
Accelerator Con�guration on an FPGA: The RM and the Learner can
both be mapped to the same FPGA device only if the total bu�er
size required by the RM and Learner modules is smaller than the
total amount of SRAM resources. This is to avoid e�ciency losses
in accesses to o�-chip memory. For the RM, the number of Autorun
kernels in the pipeline is con�gured to match the tree depth, and
the bu�er sizes are con�gured based on their corresponding tree
levels. For the Learner, the number of pipelines ⇡% is set to the
largest value within resource capacity. The amount of compute
resources allocated to each pipeline stage,*� , is tuned such that
all pipeline stages are load balanced (for the maximal e�ective
hardware utilization):

)BC064 =
#"�⇠FP L1

*� FP L1
= ... =

#"�⇠GA L#

*� FP L#
;where

’
*�  #DSPs

⇡%
.

(2)
We obtain the latency of accelerators on FPGA through performance
modeling:

)
sampling
'" = 2 ⇥ � ⇥ (⌫(+ ⇡) +) (8!�%⌧�)

2><< (3)

)
update or insert
'" = 2 ⇥ (⌫(+ ⇡) +) (8!�%⌧�)

2><< (4)
)!40A=4A =)BC064 ⇥ (⌫(+ 3 ⇥ (#layers � 1)) (5)

In equations 3-5, the pipeline latencies are calculated bymultiplying
single pipeline stage latency by the batch size ⌫(and pipeline
�ll/drain overhead ⇡ (⇡ equals the sum tree depth in RM and #
layer propagation’s in Learner, respectivaly).)2><< refers to the
communication time of taking inputs from device 8 executing other

45

CF ’24, May 7–9, 2024, Ischia, Italy Yuan Meng, Michael Kinsner, Deshanand Singh, Mahesh Iyer, and Viktor Prasanna

primitives. They are �lled in Algorithm 2 - Equation 6 depending on
whether the communication is within the same device (e.g., through
DDR) or across di�erent devices (e.g., through PCIe).

5.2 Heterogeneous System Composition
Algorithm 2 Heterogeneous System Composition Algorithm
1: Input: Primitive Device Assignment Matrix" ,
2: # Step 1: Primitive Placement
3: D[RM], ⇡ [Learner] = 0A6<0G8,9 { Iteration Batch Size

)itr
}

4: where 8, 9 denotes available devices for RM and Learner in" ,

)itr =) sampling
'" (8) +max() insert

'" (8) ,) update
'" (8) +)Learner (9)) (6)

) (8!9)
comm) (9!8)

comm) (2?D!8)
comm

5: Output ⇡ [Learner],⇡ [RM]
6: # Step 2: Memory Component Placement
7: Initialize ⇡ [Exp Memory]; min_tra�c 1
8: ⇠Learner ⌫(⇥ (⇢ + 1) ;⇠Actor #�2C>A ⇥ ⇢;⇠RM ⌫(
9: for 8 in [Learner, Actors, RM] do
10: Total data tra�c =

Õ80 2{Learner,Actors,RM} ⇠80
bandwidth(⇡ [8],⇡ [80])

11: if Total data tra�c < min_tra�c then
12: min_tra�c Total data tra�c; ⇡ [Exp Memory] ⇡ [8];
13: Output ⇡ [Exp Memory]

Based on a completed Primitive Device Assignment Matrix, we de-
velop a Heterogeneous System Composition Algorithm (Algorithm
2). It �rst determines the best device assignment of the primitives to
maximize achievable compute throughput, then places the memory
component (Exp Memory) to minimize the total data tra�c.
In Step 1 (lines 2-5, Algorithm 2), the training throughput can be
estimated using the processed batch size in each iteration, ⌫(, and
the iteration execution time,)8CA .)8CA is de�ned in Equation 6. The
critical path in an iteration is the priority sampling followed by
SGD training and priority update, while the other replay operations
overlap with the training process. The required costs of commu-
nication with other compute modules are encapsulated in each
component of Equation 6 corresponding to the candidate devices
8, 9 for RM and Learner, where 8, 9 are permutated to include all the
device assignment choices. When 8 = 9 , the latencies are sampled
from the third column of the Compute-Performance Table. The
complexity of Step 1 is $ (# 2), given # available devices on the
heterogeneous platform. In Step 2 (lines 7-13, Algorithm 2), we de-
cide on the device assignment of the Exp Memory. The data tra�c
wrt the Exp Memory during each iteration includes ⌫(words of
sampling indices from the ⇡Learner, ⌫(⇥ ⇢ sampled experiences to
the ⇡Learner (where ⇢ is the size of each experience for the given
benchmark), and #�2C>A ⇥ ⇢ inserted experiences from the Actors.
These communication costs are denoted as ⇠ in Algorithm 2. We
place Exp Memory on the device that minimizes the total data traf-
�c based on available bandwidths between devices (e.g., PCIe) and
within each device (e.g., DDR). The complexity of Step 2 is$ (1), as
the number of primitives is constant.

6 EVALUATION
6.1 Experiment Setup
To show the portability of our toolkit to di�erent platforms, we
conduct our experiments on two heterogeneous platforms. The
�rst platform, (4AE4A⇠⌧ , has a Host CPU and an integrated GPU
that shares the same die. The second platform, (4AE4A⇠⌧� , consists

Table 1: Speci�cation of Heterogeneous Platforms
Platform (4AE4A⇠⌧ (4AE4A⇠⌧�

Device
CPU

Intel Core
i9-

11900KB

GPU
Intel UHD
Graphics

Xe

CPU
Intel
Xeon

Gold 6326

GPU
Nvidia
Geforce
3090

FPGA
Intel
DE10-
Agilex

Processs 10 nm 10 nm 10 nm 8 nm 10 nm
Hardware
Parallelism

2 sockets,
16 cores

32 Uni�ed
Pipelines

2 sockets,
64 cores

10496
CUDA Cores

4510
DSPs

External
Memory 32 GB 32 GB 256 GB,

DDR4
24 GB,
HBM

32 GB,
DDR4

Frequency 3.3 GHz 1.6 GHz 2.9 GHz 1.7 GHz 400 MHz

Table 2: Benchmarking Environments and Algorithms

Environment Algorithm
State
Dim.

Action
Dim.

DNN
Policy

CartPole DQN 4 1 3-layer MLP,
hidden size 64

MountainCar DDPG 8 4 4-layer MLP,
hidden sizes 256,128

Pong DQN 84 ⇥ 84 6 CNN in [18]

of a Host CPU connected to a GPU and an FPGA, both through
PCIe with 16 GB/s bandwidth. The speci�cations of these platforms
are summarized in Table 1. For FPGA bitstream generation, we
follow the oneAPI development �ow [13]. We select three widely-
used RL benchmarking environments: CartPole, MountainCar, and
Pong, in the OpenAI Gym software simulation environment [5]. We
demonstrate our toolkit using two representative DRL algorithms
widely applied in various applications, DQN [18] and DDPG [15].
The algorithm, size of the states and actions, and policy model for
solving each benchmark are shown in Table 2. We evaluate the
training throughput as the number of Experiences processed Per
Second (⇢%(= Training batch size

)8CA
, where)8CA is the execution time

of one training iteration de�ned in Equation 6).

6.2 Performance of Accelerated Primitives
Since ⇢%(is bounded by latencies of the primitives in each iteration,
we �rst show the device assignment tradeo�s for each primitive.
In Figures 6, we present the total execution latencies for batched
Replay Manager (RM) operations. They are plotted across a range
of commonly used training batch sizes (a signi�cant DRL hyper-
parameter a�ecting DRL iteration time). For PCIe-connected GPU
and FPGA on (4AE4A⇠⌧� , all the latencies of primitives in Figure
6 include the data transfer (PCIe) time. Note that the latencies

(a) Priority Sampling

(b) Priority Retrieval and Update

Figure 6: Replay Manager

46

PEARL: Enabling Portable, Productive, and High-Performance Deep Reinforcement Learning using Heterogeneous Platforms CF ’24, May 7–9, 2024, Ischia, Italy

for priority retrieval and update are combined since these oper-
ations are typically performed together during priority insertion
and update processes. Our observations reveal superior scalabil-
ity of GPU- and FPGA-accelerated replay operations compared to
the multi-threaded CPU implementation. The RM operations are
memory-bound. While GPU data parallel compute resources ex-
hibit good scalability, they are underutilized due to high-latency
global memory accesses that cannot be hidden by the computa-
tions. The FPGA accelerator processes the sum tree operations in
a near-memory manner, storing the data structure on-chip, thus
delivering the highest scalability.

Figure 7: Learner

In Figure 7, we show the Learner execution times for one gradi-
ent update iteration. Batched layer propagations exhibit a higher
arithmetic intensity compared to replay operations. Consequently,
the advantages of utilizing data parallel architectures (GPUs) lead
to consistently lower gradient update latency compared to CPU.
The FPGA accelerator design surpasses GPU performance when
arithmetic intensity is low. This is particularly evident when deal-
ing with smaller neural network sizes and batch sizes. As the batch
size increases, the execution time of training primitives on GPU
begins to outperform that on FPGA. This shift is due to hidden
memory overhead at larger batch computations and a higher clock
frequency on the GPU.

6.3 System Composition

(a) DDPG - MC, (4AE4A⇠⌧� (b) DQN - Pong, (4AE4A⇠⌧�

(c) DQN - CP, (4AE4A⇠⌧ (d) DDPG - MC, (4AE4A⇠⌧

Figure 8: System Composition.
In Figures 8, we show the achieved throughput ⇢%(for all device
assignment choices, as well as the compositions returned by the
PEARL toolkit, on both heterogeneous platforms. In all the sub-
�gures, the color gradients in the grids are proportional to the

magnitudes of the achieved throughput on their corresponding de-
vice assignment. The stars denote the optimal mappings returned
by our System Composer. We observe that the choice of device
for the primitive with the highest latency signi�cantly in�uences
variations in throughput. Speci�cally, for small-batch computations
(i.e., grid plots with batch size 32), the color gradient changes most
drastically along the horizontal axis, because replay operations re-
sult in signi�cant overheads as Learner computations are small; On
the other hand, for large-batch computations (i.e., grids with batch
size 512), the color gradient changes most drastically along the
vertical axis, as the Learner dominates each training iteration and
replay operation overheads are hidden. Note that when multiple
device assignment choices lead to the same throughput, our toolkit
selects the one with the lowest total data tra�c (e.g., Figure 8b).
6.4 Comparison with Existing DRL Libraries
We compare PEARL-generated optimal implementations with two
state-of-the-art DRL frameworks, RLlib [14] and OpenAI Stable
Baselines 3 (SB3) [21], on (4AE4A⇠⌧� . The performance of RLlib
and SB3 are obtained using the optimal settings required by each
of them (i.e., using GPU for training). The detailed performance
across di�erent benchmarks are shown in Table 3.

SystemThroughput. The additional �exibility of supporting FPGA
accelerators along with our runtime optimizations enable PEARL to
achieve up to 1.9⇥, 2.2⇥ and 1.4⇥ improvements in ⇢%(for the three
benchmarks. Even using the same set of hardware (CPU-GPU), our
novel scheduling and resource allocation leads to 21% to 55% higher
⇢%(. We also evaluate the e�ect of our runtime dynamic hetero-
geneous resource allocation. In our experiments, the cases where
CPU actor threads are re-allocated for collaborative training are
labeled with * in Table 3. These are the scenarios where the Learner
requires large-batched data or a large model for training, and this
re-allocation leads to a 15% to 35% improvement in ⇢%(. Another
study focused on mapping DRL onto FPGA-based heterogeneous
platforms [28], and evaluated using the CartPole benchmark. Due to
the di�erent hardware and optimal device assignments, ⇢%(is not
directly comparable. Nonetheless, we compare the e�ective hetero-
geneous resource utilization (achieved throughput given the peak
throughput of all the processors and accelerators in the platform).
For CartPole DQN batch-32 training, PEARL achieves 7.9K ⇢%(
using a CPU-FPGA with a total peak performance of 0.46 TFLOPS;
[28] achieved an amortized throughput of 7.1K ⇢%(using a CPU-
FPGA with 0.72 TFLOPS. Despite having 36% lower available device
performance, our result shows a 11% higher ⇢%(.
Portability. To show the performance portability of our toolkit,
we adopt the portability metric for a framework to be consistent
with that described in [20]:

�(�) =
8>><
>>:

0 if, 98 2 � , ⇢%(8 = 0
|� |Õ

82�
1

⇢%(8

otherwise (7)

where � can be either ⇡ or % : ⇡ denotes a set of device assignment
choices using a single heterogeneous platform; % denotes a set of
heterogeneous platforms; ⇢%(8 is the achieved ⇢%(using the 8C⌘
device assignment choice or platform in the set � . If the imple-
mentation cannot be portable to the 8C⌘ device assignment choice
or platform in the set � , ⇢%(8 = 0. The results are shown in the
last two rows of Table 3. �(⇡) quantizes the ability to use di�erent

47

CF ’24, May 7–9, 2024, Ischia, Italy Yuan Meng, Michael Kinsner, Deshanand Singh, Mahesh Iyer, and Viktor Prasanna

Table 3: Comparison with Existing DRL Frameworks

DQN-CartPole DDPG-MountainCar DQN-Pong

Entry: Batch 32, 512 PEARL RLlib Stable
Baselines3

PEARL RLlib Stable
Baselines3

PEARL RLlib Stable
Baselines3

⇢%((Optimal) 7.93K, 95.2K 4.1K, 50.3K 4.6K, 56.1K 7.85K, 95.2K 3.6K, 48.5K 4.3K, 50.1K 7.3K, 9.6K* 5.6K, 6.2K 5.2K, 6.9K

⇢%((⇠%* -⌧%*) 7.7K, 69K 4.1K, 50.3K 4.6K, 56.1K 7.4K, 58.2K* 3.6K, 48.5K 4.3K, 50.1K 6.1K, 9.6K* 5.6K, 6.2K 5.2K, 6.9K

�(⇡) 4.9K, 21.4K 0, 0 0, 0 4.5K, 20.3K 0, 0 0, 0 2.9K, 4.6K 0, 0 0, 0

�(%) 7.3K, 63.7K 3.7K, 49.8K 3.5K, 50.2K 6.9K, 68.2K 2.88K, 46.8K 3.3K, 44.5K 6.1K, 8.9K 5.4K, 6.8K 4.0K, 7.5K

heterogeneous resources given by a single platform. Other existing
works that do not support accelerated RM or FPGA-based Learner
are not portable to these device assignments (98 2 ⇡, ⇢%(8 = 0),
thus having �(⇡) = 0. In contrast, our work is portable to all as-
signment choices provided by (4AE4A⇠⌧� . Our work enables the
ability to utilize compute powers of a wider range of heterogeneous
devices, thus achieving better device portability and higher perfor-
mance. �(%) quantizes the ability to achieve performance across
di�erent platforms (i.e., both (4AE4A⇠⌧ and (4AE4A⇠⌧�), where ⇢%(8
is the highest throughput achieved on the 8C⌘ platform. Our toolkit
consistently achieves higher platform-throughput portability �(%)
compared with the existing works.

Figure 9: Rewards over Time
Algorithm Performance. Figure 9 plots the cumulative rewards
collected by the agent policy over wall clock time. The curves are
smoothed to show the sliding average rewards obtained in a win-
dow of 100 training iterations, and each curve is the mean of 5
runs of the algorithm-benchmark pair. For all the algorithms and
benchmark applications, we consistently observe faster conver-
gence, meaning our implementation improves throughput without
signi�cantly sacri�cing algorithm performance in terms of reward
and convergence rate.
6.5 User Productivity
For a quick assessment of programmability, we enlisted 5 graduate
students familiar with RL but lacking expertise in heterogeneous
hardware, aligning with PEARL’s target user community, to imple-
ment two algorithms using PEARL. Table 4 quanti�es the average
development e�ort involved. Note that we exclude FPGA image

Table 4: User Productivity

Algorithms DQN DDPG
User code ⇠75 lines ⇠110 lines

Development e�ort û ⇠12 minutes ⇠17 minutes
Productivity across platforms (⇠⇡) ⇠0.06 ⇠0.04
û The compiling time for the FPGA image is excluded.

compilation time in Table 4 (as consistent with established practice
[8]), since it is an integral part of the oneAPI work�ow, and is not a
step directly speci�ed by PEARL users. In addition to illustrating the
e�ort required for developing a speci�c algorithm, we also present
the Code Divergence (⇠⇡) to demonstrate productivity di�erences
between development on the two distinct platforms. ⇠⇡ between
platforms 8 and 9 is computed by ⇠⇡ = 1 � |28\2 9 |

|28[2 9 | [20], where 2
represents the lines of user code. The ⇠⇡ value falls within the
range [0,1]: a value of 0 indicates that a “single-source" code can be
shared between both platforms, while a value of 1 implies that the
user code is entirely di�erent for the two platforms. In our case,⇠⇡
is close to 0, as the only required changes when porting to di�erent
devices involve modifying the paths to input �les.
Overall, DRL application development through training in simu-
lation is for tuning the best model and set of hyper-parameters
before physical deployment. This requires repeated rounds of test-
ingwith di�erent algorithms, hyper-parameters, and environmental
scenarios to ensure the reliability of the agent. In state-of-the-art
data centers, it is unrealistic for application users to hand-tune
each round of testing. With PEARL, developers write only dozens
of lines of code to generate the accelerated DRL implementation
within minutes, signi�cantly reducing the development e�ort and
leading to more robust AI agents with faster development cycles.

7 CONCLUSION & FUTUREWORK
We presented PEARL, a toolkit for productive development of
performance-portable DRL on heterogeneous platforms. Future di-
rections include scaling the primitives across heterogeneous nodes,
and developing general-purpose tools based on intermediate graph
representations for mapping custom-de�ned training algorithms
onto heterogeneous hardware.

ACKNOWLEDGMENTS
This work is supported by the U.S. National Science Foundation
under grants CNS-2009057 and SPX-2333009, and the Intel Corpora-
tion. This work is also supported by the DEVCOM Army Research
Lab under grant W911NF2220159.

48

PEARL: Enabling Portable, Productive, and High-Performance Deep Reinforcement Learning using Heterogeneous Platforms CF ’24, May 7–9, 2024, Ischia, Italy

REFERENCES
[1] 2021. Intel Heterogeneous DevCloud. https://devcloud.intel.com/oneapi/
[2] 2022. Intel Extension for PyTorch. https://github.com/intel/intel-extension-for-

pytorch
[3] AMD. 2022. AMD Heterogeneous Accelerated Compute Clusters. https://

www.amd-haccs.io/
[4] Lorena A Barba, Andreas Klockner, Prabhu Ramachandran, and Rollin Thomas.

2021. Scienti�c computing with Python on high-performance heterogeneous
systems. Computing in Science & Engineering 23, 04 (2021), 5–7.

[5] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang, and Wojciech Zaremba. 2016. OpenAI Gym.
arXiv:arXiv:1606.01540

[6] Tianyue Cao. 2020. Study of sample e�ciency improvements for reinforcement
learning algorithms. In 2020 IEEE Integrated STEM Education Conference (ISEC).
IEEE, 1–1.

[7] Konstantinos Chatzilygeroudis, Roberto Rama, Rituraj Kaushik, Dorian Goepp,
Vassilis Vassiliades, and Jean-Baptiste Mouret. 2017. Black-box data-e�cient
policy search for robotics. In 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 51–58.

[8] Xinyu Chen, Hongshi Tan, Yao Chen, Bingsheng He, Weng-Fai Wong, and Dem-
ing Chen. 2021. ThunderGP: HLS-based graph processing framework on FPGAs.
In The 2021 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays. 69–80.

[9] Hyungmin Cho, Pyeongseok Oh, Jiyoung Park, Wookeun Jung, and Jaejin Lee.
2019. FA3C: FPGA-Accelerated Deep Reinforcement Learning. In Proceedings of
the Twenty-Fourth International Conference on Architectural Support for Program-
ming Languages and Operating Systems. ACM, 499–513.

[10] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. 2016.
Benchmarking deep reinforcement learning for continuous control. In Interna-
tional conference on machine learning. PMLR, 1329–1338.

[11] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostro-
vski, Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver.
2018. Rainbow: Combining improvements in deep reinforcement learning. In
Proceedings of the AAAI conference on arti�cial intelligence, Vol. 32.

[12] Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel,
Hado van Hasselt, and David Silver. 2018. Distributed Prioritized Experience
Replay. CoRR abs/1803.00933 (2018). arXiv:1803.00933 http://arxiv.org/abs/
1803.00933

[13] Intel. 2022. Intel OneAPI. https://www.intel.com/content/www/us/en/
developer/tools/oneapi/overview.html

[14] Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Joseph Gon-
zalez, Ken Goldberg, and Ion Stoica. 2017. Ray RLLib: A Composable and Scalable
Reinforcement Learning Library. CoRR abs/1712.09381 (2017). arXiv:1712.09381
http://arxiv.org/abs/1712.09381

[15] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Manfred Otto
Heess, Tom Erez, Yuval Tassa, David Silver, and DaanWierstra. 2016. Continuous
control with deep reinforcement learning. CoRR abs/1509.02971 (2016).

[16] Yuan Meng, Sanmukh Kuppannagari, and Viktor Prasanna. 2020. Accelerating
proximal policy optimization on cpu-fpga heterogeneous platforms. In 2020 IEEE
28th Annual International Symposium on Field-Programmable Custom Computing
Machines (FCCM). IEEE, 19–27.

[17] Yuan Meng, Chi Zhang, and Viktor Prasanna. 2022. FPGA acceleration of deep
reinforcement learning using on-chip replay management. In Proceedings of the
19th ACM International Conference on Computing Frontiers. 40–48.

[18] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin A. Riedmiller. 2013. Playing Atari
with Deep Reinforcement Learning. CoRR abs/1312.5602 (2013). arXiv:1312.5602
http://arxiv.org/abs/1312.5602

[19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. In Advances in Neural Information Processing Systems 32, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.). Cur-
ran Associates, Inc., 8024–8035. http://papers.neurips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-deep-learning-library.pdf

[20] S John Pennycook, Jason D Sewall, Douglas W Jacobsen, Tom Deakin, and Simon
McIntosh-Smith. 2021. Navigating performance, portability, and productivity.
Computing in Science & Engineering 23, 5 (2021), 28–38.

[21] Antonin Ra�n, AshleyHill, AdamGleave, Anssi Kanervisto, Maximilian Ernestus,
and Noah Dormann. 2021. Stable-Baselines3: Reliable Reinforcement Learning
Implementations. Journal of Machine Learning Research 22, 268 (2021), 1–8.
http://jmlr.org/papers/v22/20-1364.html

[22] H. Robbins and S. Monro. 1951. A stochastic approximation method. Annals of
Mathematical Statistics 22 (1951), 400–407.

[23] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. 2015. Prioritized
experience replay. arXiv preprint arXiv:1511.05952 (2015).

[24] Brian Van Essen, Chris Macaraeg, Maya Gokhale, and Ryan Prenger. 2012. Ac-
celerating a random forest classi�er: Multi-core, GP-GPU, or FPGA?. In 2012
IEEE 20th International Symposium on Field-Programmable Custom Computing
Machines. IEEE, 232–239.

[25] Oriol Vinyals, Igor Babuschkin, Junyoung Chung, Michael Mathieu, Max Jader-
berg,WojciechMCzarnecki, AndrewDudzik, AjaHuang, PetkoGeorgiev, Richard
Powell, et al. 2019. Alphastar: Mastering the real-time strategy game starcraft ii.
DeepMind blog 2 (2019).

[26] Abdurrahman Yasar, Sivasankaran Rajamanickam, JonathanW Berry, and Umit V
Catalyurek. 2022. PGAbB: A Block-Based Graph Processing Framework for
Heterogeneous Platforms. arXiv preprint arXiv:2209.04541 (2022).

[27] Chi Zhang, Sanmukh Rao Kuppannagari, and Viktor K Prasanna. 2021. Parallel
actors and learners: A framework for generating scalable RL implementations.
In 2021 IEEE 28th International Conference on High Performance Computing, Data,
and Analytics (HiPC). IEEE, 1–10.

[28] Chi Zhang, Yuan Meng, and Viktor Prasanna. 2023. A Framework for Mapping
DRL Algorithms With Prioritized Replay Bu�er Onto Heterogeneous Platforms.
IEEE Transactions on Parallel and Distributed Systems (2023).

49

CF ’24, May 7–9, 2024, Ischia, Italy Yuan Meng, Michael Kinsner, Deshanand Singh, Mahesh Iyer, and Viktor Prasanna

A ARTIFACT APPENDIX
A.1 Abstract
We developed PEARL, a toolkit for system implementation of Deep
Reinforcement Learning (DRL) on Heterogeneous platforms. From
a user execution perspective, PEARL consists of twomain parts: Sys-
tem Composer and Runtime Program. PEARL’s System Composer
produces the device assignments for DRL primitives (Learner and
Replay Manager), given algorithm and device metadata. PEARL’s
Runtime Program takes a device-assignment con�guration �le as
input and deploys the DRL training-in-simulation process on the
heterogeneous platform.

A.2 Artifact check-list (meta-information)
• Algorithm: Deep Q Network (DQN) and Deep Deterministic Policy
Gradient (DDPG) for benchmarking PEARL.

• Compilation: Required: Python 3.8, Torch 2.0, CuDNN
Optional: oneAPI and PyBind11 for compiling SYCL implementations.

• Run-time environment: Conda installed on a CPU with Linux OS.
• Hardware: A platform consisting of an Nvidia GPU connected to an
Intel(R) Xeon(R) CPU via PCIe, or a CPU with integrated GPU (e.g.,
A core-i9 11900KB node on Intel DevCloud). Optional: an FPGA with
oneAPI support connected to the CPU described above via PCIe.

• Execution: We have provided a set of steps to demonstrate the two
parts of PEARL (e.g., for artifact evaluation), which takes approximately
10 minutes to complete.

• Metrics: Throughput (number of experiences or samples processed
per second), rewards over time.

• Output: Terminal console outputs (e.g., printing messages indicating
the program states), intermediate output �les, and performance results.

• Experiments: Instructions are provided in PEARL’s Github page
under the “Example Usage” section (see Section A.5).

• Howmuch time is needed to prepare work�ow (approximately)?:
Installing all theminimal dependencies through the Conda environment
takes around 30 minutes.

• Publicly available?: Yes.

A.3 Description
A.3.1 How to access. We have made PEARL available at https:
//github.com/pgroupATusc/HeteroRL.

A.3.2 Hardware dependencies. Minimal Requirement for demon-
stration: A platform consisting of an Nvidia GPU connected to a
multi-core CPU via PCIe or a CPU with integrated GPU (e.g., A
core-i9 11900KB node on Intel DevCloud).

A.3.3 So�ware dependencies. The dependencies for using PEARL
are explained at https://github.com/pgroupATusc/HeteroRL?tab=
readme-ov-�le#dependencies--installation. The minimal require-
ments include Conda, Python, Torch, CuDNN, and Gym.

A.4 Installation
Wehave provided the Conda environment �le (install_env.yml)
that contains metadata on the library dependencies for PEARL.
First, install PEARL using
git clone https://github.com/pgroupATusc/HeteroRL.git.
Then, install these library dependencies using
conda env create -f HeteroRL/install_env.yml

and activate the installed environment by

conda activate htroRLatari

A.5 Experiment work�ow
We have provided a sequence of steps in the Example Usage section
of the GitHub repository page https://github.com/pgroupATusc/
HeteroRL?tab=readme-ov-�le#example-usage. The Example Usage
showcases three experiments: the �rst is for running the System
Composer to generate an intermediate mapping (.json) �le, the sec-
ond and third are for executing the Runtime Program based on in-
termediate mapping �les, which include two algorithm-benchmark
pairs on di�erent device mappings.

A.6 Evaluation and expected results
Main claims. Our paper presents PEARL, a toolkit for implement-
ing DRL using heterogeneous platforms consisting of CPU, GPU,
and/or FPGA devices. We claim that using PEARL, we are able
to generate high performance implementation of DRL, portable to
di�erent device combinations or heterogeneous platforms while
providing simple APIs to facilitate productive development.
Key results.
• Portability is demonstrated by the ability of the System Com-
poser and Runtime Program to support various combinations of
devices and interconnects. In the examples provided, we demon-
strate the SystemComposer operating on a CPU-FPGAplatform
and the Runtime Program supporting two di�erent mappings
on a CPU-GPU platform. These can also be customized to sup-
port other device mappings and platforms (see Section A.7).

• Productivity is evident from the library interfaces (Python mod-
ule imports for all primitive implementations in the libraries)
and Python user APIs for specifying algorithms, device meta-
data, and deploying implementations. When adapting to di�er-
ent algorithms, the only code changes required are the Learner
functions in the Libs_Torch directory and the con�guration
�les (e.g., alg_hp.json and Config.py).

• Performance is quanti�ed by the throughput metric, the number
of experiences (samples) processed per second. As detailed in
the Example Usage section of the GitHub page, these experi-
ments demonstrate both throughput (as indicated in the console
output) and reward convergence over training iterations (illus-
trated in output �gures from Actor processes). These results
corroborate our �ndings in Section 6.4.

A.7 Experiment customization
The experiments described in the Example Usage can be also ex-
tended to support other DRL algorithms and platforms.
Customize algorithms. To customize the algorithm hyper parame-
ters, directly change the entries inConfig.py andalg_hp.json.
To implement new algorithms, additionally edit the update_all

_gradients function, and import the corresponding modules in
the Runtime Program.
Customize for platforms with con�gurable devices. To use
SYCL implementations on integrated GPU and FPGA devices, make
sure oneAPI and PyBind are installed as instructed in the “De-
pendencies & Installation" section of the Git page, and follow the
step detailed in https://github.com/pgroupATusc/HeteroRL?tab=
readme-ov-�le#step-1-optional-compiling-py-sycl-libraries.

50

