N)
)
Check for
updates

PEARL: Enabling Portable, Productive, and High-Performance
Deep Reinforcement Learning using Heterogeneous Platforms

Yuan Meng
ymeng643@usc.edu
University of Southern California

United States
Mabhesh Iyer
mahesh.iyer@intel.com
Intel Corporation
United States
ABSTRACT

Deep Reinforcement Learning (DRL) is vital in various Al applica-
tions. DRL algorithms comprise diverse compute kernels, which
may not be simultaneously optimized using a homogeneous archi-
tecture. However, even with available heterogeneous architectures,
optimizing DRL performance remains a challenge due to the com-
plexity of hardware and programming models employed in modern
data centers. To address this, we introduce PEARL, a toolkit for com-
posing parallel DRL systems on heterogeneous platforms consist-
ing of general-purpose processors (CPUs) and accelerators (GPUs,
FPGAs). Our innovations include: 1. A general training protocol
agnostic of the underlying hardware, enabling portable implemen-
tations across various platforms. 2. Incorporation of DRL-specific
optimizations on runtime scheduling and resource allocation, fa-
cilitating parallelized training and enhancing the overall system
performance. 3. Automatic optimization of DRL task-to-device as-
signments through throughput estimation. 4. High-level API for
productive development using the toolkit. We showcase our toolkit
through experimentation with two widely used DRL algorithms,
DON and DDPG, on two diverse heterogeneous platforms. The
generated implementations outperform state-of-the-art libraries
for CPU-GPU platforms by up to 2.2x throughput improvements,
and 2.4x higher performance portability across platforms.

CCS CONCEPTS

« Computing methodologies — Parallel computing methodologies;
Reinforcement learning.

KEYWORDS

Heterogeneous Computing, Deep Reinforcement Learning

ACM Reference Format:
Yuan Meng, Michael Kinsner, Deshanand Singh, Mahesh Iyer, and Viktor
Prasanna. 2024. PEARL: Enabling Portable, Productive, and High-Performance

This work is licensed under a Creative Commons Attribution International 4.0
License.

CF 24, May 7-9, 2024, Ischia, Italy

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0597-7/24/05.

https://doi.org/10.1145/3649153.3649193

Michael Kinsner
michael kinsner@intel.com
Intel Corporation
United States

41

Deshanand Singh
deshanand.singh@intel.com
Intel Corporation
United States

Viktor Prasanna
prasanna@usc.edu
University of Southern California
United States

Deep Reinforcement Learning using Heterogeneous Platforms. In 21st ACM
International Conference on Computing Frontiers (CF °24), May 7-9, 2024,
Ischia, Italy. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3649153.3649193

1 INTRODUCTION

Deep Reinforcement Learning (DRL) is extensively applied in var-
ious domains, including robotics, surveillance, etc. [7, 25]. Most
DRL algorithms involve three collaborative compute kernels: policy
execution, training, and dataset management. In policy execution,
parallel Actors gather data through inference on the policy, interact
with the environment, and deposit the data into a Prioritized Replay
Buffer for dataset storage. In training, a centralized Learner samples
data from the Prioritized Replay Buffer to update the policy model.
The dataset management within the Prioritized Replay Buffer is
facilitated by a sum tree data structure storing data priorities [27].

DRL training is highly time-consuming. Due to the distinct com-
pute kernels in DRL that may not be efficiently optimized using a
homogeneous architecture, there has been a growing trend in using
heterogeneous architectures to accelerate DRL algorithms [9, 14, 16].
However, even with access to heterogeneous resources, DRL ap-
plication developers still face several challenges: (a). Sub-optimal
performance: DRL’s distinct components require careful placement
and scheduling onto heterogeneous devices based on both compu-
tational and hardware characteristics. Sub-optimal placement and
scheduling can lead to under-utilization of heterogeneous resources,
resulting in missed opportunities for performance improvement.
(b). Lack of portability across platforms: The optimal DRL primitive-
to-hardware assignments can change based on varying algorithms
and platforms. Consistently achieving high-performance imple-
mentations requires portable solutions that can map and distribute
DRL onto various devices, but existing frameworks lack such flexi-
bility. (c). Low development productivity: The growing diversity of
heterogeneous resources in data centers [1, 24, 26] have increased
the need for hardware optimizations and bridging between differ-
ent programming models. This significantly increases the required
learning effort and programming time for application developers.

In this work, we address the above challenges by proposing PEARL,
a toolkit that enhances the performance, productivity, and portabil-
ity [20] of DRL system development on heterogeneous platforms.
PEARL provides DRL application developers with tools and familiar

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3649153.3649193&domain=pdf&date_stamp=2024-07-02

CF ’24, May 7-9, 2024, Ischia, Italy

interfaces for running DRL using heterogeneous platforms, while
abstracting away the low-level hardware intricacies. Specifically, it
takes a Python program from the user with functionalities similar
to existing RL ecosystems and frameworks (e.g., PyTorch [19], RLlib
[14]). Its main novelties compared to existing RL frameworks are
unique intermediate abstraction layers below the Python interface.
They define the runtime scheduling and automatic design space ex-
ploration to enable effective utilization of heterogeneous resources.
Additionally, they integrate fine-grained acceleration of individ-
ual primitives. These are realized by a Host Runtime Coordinator,
a System Composer, and a Parameterized Library of Accelerated
Primitives.

Our key contributions are:

e We propose a general DRL heterogeneous training protocol
that is agnostic of the types of underlying accelerators, thus
portable to different heterogeneous platforms.

e We propose a dynamic resource management mechanism, which
fine-tunes the training workload assigned to the CPUs and the
accelerators during runtime.

o We develop a parameterized library that contains accelerated
DRL primitives on various architectures (CPU, GPU, and FPGA).
We offer a Python-based User API to enable productive DRL
application development on heterogeneous platforms.

o We develop a novel System Composer for identifying optimal
device assignments and accelerator configurations, ensuring
high performance of the DRL implementation.

e We assess our toolkit using representative DRL algorithms
on various benchmarks and platforms. Compared with ex-
isting DRL frameworks, our implementations lead to up to
2.2X speedup, and 2.4X higher performance portability. Our
implementations are achieved with just dozens of lines of code,
demonstrating high development productivity.

2 BACKGROUND

2.1 Deep Reinforcement Learning

A generalized DRL training process comprises four primitives: Ac-
tors, Learner, Replay Manager (RM), and Experience (Exp) Memory.
These primitives work and interact as follows:

Actors: Each Actor maintains a Deep Neural Network (DNN) pol-
icy network, inferring an action based on an input environment
state. Each Actor operates on an instance of the environment simu-
lator, applying the inferred action. The environment responds and
generates a tuple {state, action, new state, reward}, constituting an
experience (i.e., a data point) for training. Multiple copies of the
Actor repeat this process to collect experiences, which populate a
training dataset called the Replay Buffer.

Replay Buffer: Unlike pre-labeled datasets in supervised learning,
the Replay Buffer in DRL is continuously filled by online interac-
tions of Actors with the environment, and its data points are dy-
namically changing as the policy evolves. In state-of-the-art DRL,
the Prioritized Replay Buffer is widely used for managing data with
probabilities proportional to the current policy loss to enhance
training quality [11, 23]. It incorporates a Replay Manager (RM)
associating a priority (i.e., probability of being sampled) with each
experience in the Experience (Exp) Memory. During data sampling,

42

Yuan Meng, Michael Kinsner, Deshanand Singh, Mahesh lyer, and Viktor Prasanna

a data point (i.e., experience) x; is selected based on the proba-
bility distribution Pr(i) = P(i)/2; P(i),i € [0, replay buffer size),
where P(i) represents the priority of data point i. This selection is
achieved by identifying the minimum index i for which the prefix
sum of probabilities up to i is greater than or equal to x, where x is
a uniformly generated random target prefix sum value between 0

and the total priority sum [23]:
i replay buffer size

miiniP(j)zx,x»vU[O, >

j=1 j=0
To enable rapid sjampling and scalable ujpdate operations for large
Exp Memory, priorities are managed using a sum tree data structure
[23, 28]. Replay sampling and replay update operations on an n-ary
sum tree are defined in [27].

P(j)] 1)

Learner: In each training iteration, a batch of indices are sampled
via the RM to obtain experiences by reading from the Exp Memory.
Then, the Learner performs training using stochastic gradient de-
scent (SGD, [22]) on the policy network. During the computation
of the loss function in SGD, an updated priority is produced and
written back to the Replay Buffer via the RM. Policy network param-
eters are updated and sent to the Actors to ensure that experience
collection employs the latest policy.

DRL Workload Characterization: The characteristics of Deep
Reinforcement Learning (DRL) primitives exhibit variations not
only among themselves but also across different learning functions,
policy models, hyper parameters, etc. Consequently, relying on a
fixed architectural solution proves inadequate for optimizing hard-
ware utilization and achieving high-throughput DRL across the
diverse spectrum of algorithms and applications. As examples, In
Figure 1, we illustrate throughput performance of key compute
primitives (replay sampling, replay update, and learner) for two
algorithms (DQN [18], DDPG [15]) and policy models (MLP, CNN),
on the roofline models for a CPU, GPU, and FPGA. In this example,

Replay Sampling ¢ Replay Update DQN Learner - MLP @ DDPG Learner - MLP ¢ DQN Learner - CNN

FPGA Modules

'

|

|
—

Y-Axes: Performance
(GFLOPS Per Second)

21

P

274 211 22 25 2 25 g 2 2

2 2 22 3 25
X-Axes: Arithmetic Intensity (FLOPS Per Byte)

Figure 1: DRL Primitives Workload Analysis

primitives such as small MLP policies (commonly used in classical
control and robotics benchmarks [10]) and replay operations exhibit
low arithmetic intensities and high-latency memory accesses, mak-
ing them memory-bound and challenging to optimize on multi-core
or data-parallel architectures (CPU and/or GPU). The performance
of these primitives can benefit from a near-memory fashion design
using spatial architecture (FPGA). Learner functions with higher
arithmetic intensity and data reuse, such as CNN policies used in
vision-based applications [18], justify the data parallel resources
provided by GPUs. Still, the characteristics of DRL performance
may vary due to significant differences among replay and learner
configurations based on applications, as well as diverse rooflines
resulting from device bandwidth and compute capabilities.

PEARL: Enabling Portable, Productive, and High-Performance Deep Reinforcement Learning using Heterogeneous Platforms

2.2 Target Platforms

Today’s data centers comprise highly heterogeneous machines com-
bining a variety of processors, accelerators, and memory [1, 3, 4].
Based on the DRL workload characterization in Section 2.1, we
justify that there is a compelling need for dynamic mapping of DRL
algorithms using such a heterogeneous platform to consistently
achieve high performance. Our toolkit is motivated by this need,
addressing the optimization challenges and emphasizing perfor-
mance, portability, and productivity in the design automation for
DRL application users. PEARL is designed to adapt to a wide range
of heterogeneous computing platforms with interconnected CPUs
and accelerators like GPUs and FPGAs. Developing applications on
such platforms typically demands expertise in designing hardware
and bridging between different programming models, which re-
quires a learning curve that hinders the productivity of application
developers. PEARL’s strength lies in its ability to support high-
performance DRL across diverse heterogeneous hardware, while
abstracting away complex hardware details.

2.3 Related Work

A number of works have implemented DRL on parallel and dis-
tributed systems. RLIib introduces high-level abstractions for dis-
tributed reinforcement learning, built on top of the Ray library [14].
Other works, such as [12, 27], implement parallel DRL algorithms
by employing multiple parallel Actor threads and a centralized
Learner thread, utilizing deep learning libraries like Tensorflow
and LibTorch. These works leverage CPU and GPU data parallel re-
sources for training, but do not efficiently optimize memory-bound
primitives (such as small model training and replay operations) on
specialized hardware. In recent years, some research works have
focused on hardware acceleration for DRL algorithms. For instance,
(9] and [16] present FPGA implementations for specific algorithms,
the Asynchronous Advantage Actor-Critic (A3C) and the Proxi-
mal Policy Optimization (PPO). [17, 28] introduced an FPGA-based
accelerator design for the Replay Buffer and mapped several DRL
algorithms onto an FPGA-based heterogeneous platform. However,
they only target a specific heterogeneous device setup and lack
performance portability across different heterogeneous platforms;
Moreover, these work map each primitive onto a single device, in
the case of the Learner being the bottleneck, they lack the flexi-
bility to improve its runtime performance using different devices.
Our work bridges these gaps by developing a generalized protocol
that makes the development of DRL portable to different heteroge-
neous platforms, accompanied by runtime heterogeneous resource
management to fully saturate the heterogeneous compute power.

3 RUNTIME SYSTEM & TRAINING PROTOCOL

3.1 System Design

The implementation generated by PEARL is based on a parallel DRL
system managed by a Host Runtime Thread. Figure 2 shows the
setup of such a system. Multiple Actor threads generate new data
points (experiences) and periodically synchronize weights from the
Learner. They send the experiences to the Host Runtime Thread
through Data Collection Queues (DCQs). The Host Runtime Thread
interacts with the RM through an RM Request Queue (RRQ), where

43

CF ’24, May 7-9, 2024, Ischia, Italy

Data Collection

Actor Thread 1

=) Queue 1 Host Runtime
5 : B Thread
Data Collection
Actor Thread A [d->h]
Queue A o)
Weight e . RM Request
Sync 00(@ earner T
Queues et Assignment
1.4 e Queue(s) [h>d]
Gradient Replay
Synchronizer Learner Manager

Figure 2: Runtime System

the host initiates sampling (or update) requests and receives outputs
of sampled indices (or updated priorities). Parallel Learner modules
can be implemented using both CPU threads and an accelerator, and
they are initiated by the Learner Assignment Queues (LAQ). Their
outputs are aggregated by a Gradient Synchronizer to produce the
final weight gradients.

Experience Collection Experience Sampling Policy Training Updates & Sync
Actor T
Threads INF ENV | -

1Wsas

Ack. & Weight
Synchronization

1L1DQs__|

Runtime
Thread

0; DCQs 1
Data (Exp) Replay || Training Collision-free
Buffering Sampling || Initiation Data Collection
RQQ___Raqf [LAQ 1Y R_QQ
Write Exp 9 :
23 L R
Sum tree: @
Retrieval & Update
3
|

SGD Batch | —-| _ Gradient
\m‘j | Synchronizer |

——— Task signals

Experience

Read Ex
(Exp) Memory P Raa

Sum tree:
Sampling

Replay
Manager

cpu/
Accelerator
Runtime

Learner (s)
& Synchronizer

-Data (experience) transfer ——» Policy weights/gradients transfer

ENV: environment simulation INF: policy infe]

i Sampling Sampled Training Insertion
@cweriences @ A" @A osignal esignal

[Exp: experience |

Update Policy
O o @oone @i,

Figure 3: DRL Heterogeneous Training Protocol

3.2 DRL Heterogeneous Training Protocol

To perform training on a given heterogeneous system, we propose a
general DRL heterogeneous training protocol (Figure 3). The train-
ing protocol can be ported to various heterogeneous devices since
the interactions among processors and accelerators are defined at
the application layer (i.e., DRL logical components), and are not
bound to a specific type of accelerator. We show the essential data
exchange and handshake signals between modular components as
@-0 in Figure 3. We provide a runtime code template that manages
the thread pools and the accelerators, allowing the “plug and play"
of heterogeneous devices for DRL primitives. It is a Python program
executed on the Host Runtime Thread, which utilizes a loop whose
iterations follow this protocol.

3.2.1 Replay-Collision-Free Scheduling. Our protocol features a
novel scheduling optimization to encourage concurrency while
maintaining algorithm correctness. We adopt a strategy of deferring
the immediate insertion of experiences into the Replay Buffer when
experiences are received from Actor threads. We maintain a data
collection buffer to cache experiences generated by the Actors, and
only insert them when the buffer is full. Upon experience insertion,
we schedule the batched insertion operations after the sampling
process concludes. This optimization has two advantages. Firstly,
this approach permits us to compare the insertion index against the
sampled indices, hence effectively mitigating the potential contam-
ination of data when the Learner and Actors concurrently modify
the same indices of the Replay memory. We refer to this procedure
as “collision-free data collection" shown in Figure 3. Secondly, by

CF ’24, May 7-9, 2024, Ischia, Italy

sequencing data insertion after the sampling phase, we align its ex-
ecution concurrently with the training process. This hides the time
overheads of the priority retrieval and update operations initiated
by experience insertion in the training pipeline.

3.3 Runtime System Optimizations

Algorithm 1 Dynamic Resource Management

1: Input: Actor thread-pool size A, training batch size BS, sub-batch size
trained on CPU b (initially, b = 0); runtime-profiled execution time
of all Actor threads Taczor in one iteration, a Learner (accelerator)
gradient step Treqrner in one iteration, the Host gradient synchro-
nization Tsync—hose and CPU training time (initially, Tyrqin-cpu =
Tsync—host = 0)

2: sorted = sort(decreasing, TAX"’

3: if sorted[0]==% and sorted[0]>2 X % then

4 freed = poolacrors-size()/2; poolacrors-size() — = freed;

5 activate poolyrgin—cpu; poolirain-cpru -size() = freed;

6: poolsyqin—cpy.submit(train(b + +), sync-host())

7

8

9.

L
s % s Ttrain-cpU, Tsyncfhost)

learner.submit(train(BS— = b))
. else if sorted[0]==T}qin-cpu then
P0o0ltrain—cpu -submit(train(b — —), sync-host())
10: learner.submit(train(BS— = b))
11: else if sorted[0]==T;ync—pos: then
12: pOoolsrain-cpu size() ——;
13: poolacrors-size() ++;

PEARL’s runtime system design integrates a few optimizations
that increase the effective utilization of heterogeneous resources
and hide communication overheads.

3.3.1 Dynamic Heterogeneous Resource Allocation. To efficiently
map DRL onto a heterogeneous platform, we first utilize the pre-
dicted result from our performance model (Section 5.2) to initially
determine the mapping of each primitive onto a single accelerator
at compile time. Even when optimally mapped to the most suitable
accelerator, the Learner can remain the system’s bottleneck. Mean-
while, if the Actors’ data generation rate is significantly higher than
the Learner’s data consumption rate, the sample efficiency of DRL
[6] can be negatively affected due to squandering of experiences
information. To further fine tune Learner acceleration using hetero-
geneous hardware and avoid severe Actors-Learner load unbalanc-
ing, we develop a mechanism that supports dynamic re-allocation
of CPU threads to process a sub-batch training. This mechanism is
iteratively executed within the host runtime thread, as outlined in
Algorithm 1. In instances where the amortized Learner latency dom-
inates compared to the Actors by a large factor, it activates a pool of
threads for training on CPU (poolsr4in—cpyu) and re-assign Actor
threads into CPU-training threads (which functions as a parallel
sub-module of the Learner). Accordingly, the runtime thread also
performs gradient synchronization to aggregate the gradients from
the learner accelerator and the CPU-training threads. This logic is
only activated if CPU threads are involved in training, and overhead
from waiting for intermediate gradients is profiled and recorded in
the variable storing host synchronization time Ty, pos:- When
the host gradient synchronization time emerges as a bottleneck, the
number of CPU training threads is reduced to alleviate its overhead.
This optimization strategy helps fully exploit the heterogeneity
offered by both processors and accelerators, facilitating parallelized
policy training and ensuring workload balance.

44

Yuan Meng, Michael Kinsner, Deshanand Singh, Mahesh lyer, and Viktor Prasanna

3.3.2 Communication Overhead Reduction. Our scheduling allows
concurrent execution of the Actor threads (data collection) and
the sampling — policy training (Learner) — experience update
(RM) process. We also overlap Learner computation with replay
operations. This is achieved by host-device (or on-chip) streaming
communication queues between the RM and the Learner, so that
training using each data point starts asynchronously as soon as the
Learner receives them (rather than waiting for the full batched sam-
pling). Additionally, we use double buffering to alleviate the weight
transfer overheads between the processor and Learner accelerator.
Two buffers with sizes of the complete policy weights is allocated
in the host memory (shared by Actors threads and runtime thread).
In each iteration i, the CPU threads read from buffer i%2 while the
Learner writes into buffer 1 — i%2.

4 PARAMETERIZED LIBRARY OF PRIMITIVES
4.1 Replay Manager (RM)

The RM performs three replay operations on a sum tree, where leaf
nodes store the priorities for all experiences, and a parent node
stores the sum of priorities of its children: (1) Priority sampling:
Based on Equation 1, sampled indices are obtained by traversing
the tree performing prefix sum from root to leaf. The computations
are explained in [27]. (2) Priority retrieval: Given the indices of the
experiences, it outputs the priorities stored at the corresponding leaf
nodes. (3) Priority update: the inputs are the indices of experiences
and the changes to their priorities A; It applies the changes A to the
priorities (and sums of priorities) stored in parent nodes in all the
tree levels. Note that Insertion of priorities is realized with priority
retrievals followed by priority updates.

4.1.1 RMon CPU and GPU. The computations in replay operations
can be viewed as a sequence of operations traversing all levels of the
sum tree from the root to a leaf. Our RM implementations on CPU
and GPU are parameterized with the tree depth, fanout, BS, and
W, where BS is the batch size of the replay operation requests, and
W is the number of workers (degree of parallelism) allocated. Each
worker is responsible for sampling or updating B—‘; priorities. All
workers share concurrent accesses to the sum tree. We use mutex to
ensure the correctness of parallel priority updates that potentially
collide on the same node.

" Replay Op. Op field [3-bit]: Sample field [64-bit]:

H Request sample|retrieval|update pointer index, target prefix sum
i

\

sompler__ughter
On-chip memory

T o N
Figure 4: FPGA - Replay Manager Hardware Module

Retrieval field Update field [64-bit]: | |
[32-bit]: index index, value !
H
/

—> replay op. requests

» on-chip
comm. pipes

Host
Runtime

4.1.2 RM on FPGA. We develop an accelerator template (parame-
terized with the tree depth and fanout) that can be re-configured
to support a range of fanout and tree sizes. We adopt a design of
multiple pipeline stages processing a stream of operation requests
as shown in Figure 4. Each pipeline stage is a hardware module
responsible for operating on a certain tree level and exclusively
stores all the nodes on that level. Different replay operation requests
in a batch are concurrently processed by different pipeline stages.

PEARL: Enabling Portable, Productive, and High-Performance Deep Reinforcement Learning using Heterogeneous Platforms

The request fed into the accelerator has a unified operation code
as shown in the top of Figure 4. The requests are decoded at each
pipeline stage, and the corresponding operations are executed in
an online manner. We apply the memoization technique in the up-
daters by using a dedicated register to store the sampled indices at
each tree level so that the replay update does not need to backtrace
through the tree, re-computing these indices.

4.2 Learner

The Learner takes a batch of experiences, and performs SGD con-
stituting forward propagation (FP), loss function (LOSS), backward
propagation (BP), and gradient aggregation (GA).

4.2.1 Learner on CPU and GPU. We use PyTorch [2, 19] to im-
plement DNN training on CPUs and GPUs. On the GPU, PyTorch
utilizes CuDNN [19] or Xe Matrix Extensions [2] backend to ex-
ploit SIMD parallelism. We also support using multiple streams,
each stream independently processes the FP, LOSS, BP, and GA
on a sub-batch of experiences. Compared to bulk processing a full
batch of data, this helps overlap the data transfer and computation
time between sub-batches of data. The GPU-based Learner code is
parameterized to specify the number of streams.

State inputs, DNN weights im
Producer .
Pl —
iy 1z : v
AL, [C
FI%N | G2 L1 >
RS
LOSS
Gradients Reductior;\\ BEN
| T
Qmer : : GA Ly :j>:>.
1 =)
\ BP LZ | = pipes

Updated DNN weights
Figure 5: FPGA - Learner Hardware Module

4.2.2 Learner on FPGA. On FPGA, we design a Learner Module
that supports both pipeline parallelism across different neural net-
work layers and data parallelism among sub-batches of data. As an
example, we show the design for an N-layer MLP in Figure 5. Each
pipeline stage uses buffers to store intermediate activations, and
uses an array of multiplier-accumulator units to compute matrix-
vector multiplication for a given input. The number of multiplier-
accumulator units allocated to each layer is controlled by a unique
unroll factor UF, which will be tuned to ensure load balancing for
best performance (Section 5.1). To realize data streaming between
modules, they are connected by on-chip FIFO pipes. To support data
parallelism, we make DP copies of such pipelines. Each pipeline
generates the gradients for a sub-batch of experiences, which are
accumulated before sending them back to the host.

5 SYSTEM COMPOSER

Given the user-specified Replay Manager (RM) and Learner meta-
data in the Optimizer Construction Program as inputs, the goals
of the system composer are to (A) determine the best-performing
accelerator configuration within each device for all the primitives,
and (B) determine an optimal primitive-to-device assignment that
maximizes system performance.

45

CF ’24, May 7-9, 2024, Ischia, Italy

5.1 Accelerator Setup and Performance
Estimation

To realize goal (A), we customize the parameterized accelerators
described in Section 4 to suit the user-input RM and Learner spec-
ifications. Based on the customized accelerators, we obtain the
expected latency of executing each primitive in one DRL iteration
on each of the available devices, and store these latency numbers
in a Primitive Device Assignment Matrix for further analysis of
system performance in goal (B).

The Primitive Device Assignment Matrix is a 3xXN table. The N
rows denote the N available devices; each column refers to either
one primitive or a combination of both primitives to be assigned
to one device. Each entry T in the table denotes the latency of
performing one iteration of a given primitive (or a combination of
2 primitives) x on device y (For RM, the latency includes times of
the sampling, updates and insertions). We explain how the table
entries are populated based on accelerator setups as follows:

Primitive Setup on a CPU/GPU : For the primitives that can be
mapped to the CPU, i.e., RM and Actors, we allocate their number
of threads initially based on the ratio of their single-iteration latency
for processing/producing one experience in order to match their
throughput. Note that based on this setup, if RM ends up being
mapped to an accelerator that provide faster RM processing, the
Actors will be initially set to occupy all available threads, and will be
further dynamically adjusted based on the runtime data processing
speed of Actors and Learner (Section 3.3.1). For the RM on a GPU,
the degree of parallelism is set to BS. The sum tree is stored in
the GPU global memory. For the Learner on a GPU, we search
for the best-performing number of streams in the range [1, BS] by
recording their per-SGD-step latencies.

Accelerator Configuration on an FPGA: The RM and the Learner can
both be mapped to the same FPGA device only if the total buffer
size required by the RM and Learner modules is smaller than the
total amount of SRAM resources. This is to avoid efficiency losses
in accesses to off-chip memory. For the RM, the number of Autorun
kernels in the pipeline is configured to match the tree depth, and
the buffer sizes are configured based on their corresponding tree
levels. For the Learner, the number of pipelines DP is set to the
largest value within resource capacity. The amount of compute
resources allocated to each pipeline stage, UF, is tuned such that
all pipeline stages are load balanced (for the maximal effective
hardware utilization):

—_— #MACTPL1 4 MACOAIN N uF < TDSPs
stage = UFFP L = UFFP Iy ;ywhere Z = "pp
@)

We obtain the latency of accelerators on FPGA through performance
modeling:

TSP — 5 5 F x (BS + D) + Tl O 3)
T;]}\)/}iate or insert _ 2% (BS +D) + Tc(oir;)ripGA) (4)

TLearner = Tstage X (BS + 3 X (#layers — 1)) (5)
In equations 3-5, the pipeline latencies are calculated by multiplying
single pipeline stage latency by the batch size BS and pipeline
fill/drain overhead D (D equals the sum tree depth in RM and #
layer propagation’s in Learner, respectivaly). Tcomm refers to the
communication time of taking inputs from device i executing other

CF ’24, May 7-9, 2024, Ischia, Italy

primitives. They are filled in Algorithm 2 - Equation 6 depending on
whether the communication is within the same device (e.g., through
DDR) or across different devices (e.g., through PCle).

5.2 Heterogeneous System Composition

Algorithm 2 Heterogeneous System Composition Algorithm

1: Input: Primitive Device Assignment Matrix M,

2: # Step 1: Primitive Placement

3: D[RM], D[Learner] = argmax; ; { Leration Batch Size i’j‘mh Size }

4: where i, j denotes available devices for RM and Learner in M,

li . i . date , . .
Tie = Topp o(i) +max(Tar (i) o Tpay" (i) + Tieamer(J)) (6)
A o VTt A Lo’

: Output D[Learner], D[RM]

: # Step 2: Memory Component Placement

: Initialize D[Exp Memory|; min_traffice— co

: CLearner <— BS X (E +1); Cactor < Nactor X E; Crm < BS
: for i in [Learner, Actors, RM] do

0: Total data traffic = Zi’e(Learner,Actors,RM)
11: if Total data traffic < min_traffic then
12: min_traffic «— Total data traffic; D[Exp Memory] « D[i];
3: Output D[Exp Memory]

O 0 N o W

Ci’

[

—_

Based on a completed Primitive Device Assignment Matrix, we de-
velop a Heterogeneous System Composition Algorithm (Algorithm
2). It first determines the best device assignment of the primitives to
maximize achievable compute throughput, then places the memory
component (Exp Memory) to minimize the total data traffic.

In Step 1 (lines 2-5, Algorithm 2), the training throughput can be
estimated using the processed batch size in each iteration, BS, and
the iteration execution time, T;sr. Tjzr is defined in Equation 6. The
critical path in an iteration is the priority sampling followed by
SGD training and priority update, while the other replay operations
overlap with the training process. The required costs of commu-
nication with other compute modules are encapsulated in each
component of Equation 6 corresponding to the candidate devices
i, j for RM and Learner, where i, j are permutated to include all the
device assignment choices. When i = j, the latencies are sampled
from the third column of the Compute-Performance Table. The
complexity of Step 1 is O(N?), given N available devices on the
heterogeneous platform. In Step 2 (lines 7-13, Algorithm 2), we de-
cide on the device assignment of the Exp Memory. The data traffic
wrt the Exp Memory during each iteration includes BS words of
sampling indices from the Dy earner, BS X E sampled experiences to
the Dpearer (Where E is the size of each experience for the given
benchmark), and N¢zor X E inserted experiences from the Actors.
These communication costs are denoted as C in Algorithm 2. We
place Exp Memory on the device that minimizes the total data traf-
fic based on available bandwidths between devices (e.g., PCle) and
within each device (e.g., DDR). The complexity of Step 2 is O(1), as
the number of primitives is constant.

6 EVALUATION
6.1 Experiment Setup

To show the portability of our toolkit to different platforms, we
conduct our experiments on two heterogeneous platforms. The
first platform, Servercg, has a Host CPU and an integrated GPU
that shares the same die. The second platform, Servercgr, consists

Yuan Meng, Michael Kinsner, Deshanand Singh, Mahesh lyer, and Viktor Prasanna

Table 1: Specification of Heterogeneous Platforms

Platform Servercg ServercGr
CPU GPU CPU GPU FPGA
Device Intel Core | Intel UHD Intel Nvidia Intel
i9- Graphics Xeon Geforce DE10-
11900KB Xe Gold 6326 3090 Agilex
Processs 10 nm 10 nm 10 nm 8 nm 10 nm
Hardware 2 sockets, 32 Unified 2 sockets, 10496 4510
Parallelism 16 cores Pipelines 64 cores CUDA Cores DSPs
External 256 GB, 24 GB, 32 GB,
Memory 32GB 32GB DDR4 HBM DDR4
Frequency 3.3 GHz 1.6 GHz 2.9 GHz 1.7 GHz 400 MHz

Table 2: Benchmarking Environments and Algorithms

Stat Acti D
Environment | Algorithm Dt:me. Dci::.n P OII\IiI:y
3-Jayer MLP,
CartPole DON 4 1 hidden size 64
. 4-layer MLP,
MountainCar | DDPG 8 hidden sizes 256,128
Pong DON 34X 84 5 CNN in [18]

of a Host CPU connected to a GPU and an FPGA, both through
PCle with 16 GB/s bandwidth. The specifications of these platforms
are summarized in Table 1. For FPGA bitstream generation, we
follow the oneAPI development flow [13]. We select three widely-
used RL benchmarking environments: CartPole, MountainCar, and
Pong, in the OpenAI Gym software simulation environment [5]. We
demonstrate our toolkit using two representative DRL algorithms
widely applied in various applications, DQN [18] and DDPG [15].
The algorithm, size of the states and actions, and policy model for
solving each benchmark are shown in Table 2. We evaluate the
training throughput as the number of Experiences processed Per

Training batch si . . .
Second (EPS = w, where Tj;r is the execution time
tr

of one training iteration defined in Equation 6).

6.2 Performance of Accelerated Primitives

Since EPS is bounded by latencies of the primitives in each iteration,
we first show the device assignment tradeoffs for each primitive.

In Figures 6, we present the total execution latencies for batched
Replay Manager (RM) operations. They are plotted across a range
of commonly used training batch sizes (a significant DRL hyper-
parameter affecting DRL iteration time). For PCle-connected GPU
and FPGA on Servercgr, all the latencies of primitives in Figure
6 include the data transfer (PCle) time. Note that the latencies

Serverce Servercer
8
—m— CPU m| 187 -9 cPU —e FPGA
w4 GPU 5 i —e— GPU
g ,J/; 81 6____@_.9—-9——6-—'—9'—9
@ 27 P
£ — 44
E o1 A - P
il 2 1 £
8 16 32 64 128 256 512 8 16 32 64 128256512
Batch Size Batch Size
(a) Priority Sampling
Serverce Servercer
1003 —m cpPu = CPU —&— FPGA
-~ GPU vl —e— GPU
£ N 2.0
o 1.0 o ﬁ : i)
£ P 1.0 4 -
= g >
o1 0.5 16
8 16 32 64 128256512 8 16 32 64 128256512
Batch Size Batch Size

(b) Priority Retrieval and Update
Figure 6: Replay Manager

PEARL: Enabling Portable, Productive, and High-Performance Deep Reinforcement Learning using Heterogeneous Platforms

for priority retrieval and update are combined since these oper-
ations are typically performed together during priority insertion
and update processes. Our observations reveal superior scalabil-
ity of GPU- and FPGA-accelerated replay operations compared to
the multi-threaded CPU implementation. The RM operations are
memory-bound. While GPU data parallel compute resources ex-
hibit good scalability, they are underutilized due to high-latency
global memory accesses that cannot be hidden by the computa-
tions. The FPGA accelerator processes the sum tree operations in
a near-memory manner, storing the data structure on-chip, thus
delivering the highest scalability.

Servercg, MLP Servercer, MLP Servercer, CNN

N
=1
S

CcPU
. GPU

. CPU
GPU
FPGA

CcPU
. GPU
FPGA

®
S

150

o
w

-
~

~
1]
3

MLP Gradient Update Time (ms)
=

MLP Gradient Update Time (ms)
CNN Gradient Update Time (ms)
=
5
g

o
o
o

&
Y

FATRIPL P -
YA S
Batch Size

D Ao A P AR L
P AP P
Batch Size

o A P A2 o0 @ o
A &P R
Batch Size

Figure 7: Learner

In Figure 7, we show the Learner execution times for one gradi-
ent update iteration. Batched layer propagations exhibit a higher
arithmetic intensity compared to replay operations. Consequently,
the advantages of utilizing data parallel architectures (GPUs) lead
to consistently lower gradient update latency compared to CPU.
The FPGA accelerator design surpasses GPU performance when
arithmetic intensity is low. This is particularly evident when deal-
ing with smaller neural network sizes and batch sizes. As the batch
size increases, the execution time of training primitives on GPU
begins to outperform that on FPGA. This shift is due to hidden
memory overhead at larger batch computations and a higher clock
frequency on the GPU.

6.3 System Composition

Batch Size 32 Batch Size 512

Batch Size 32

Batch Size 512

CcPU
CPU

Learner Device
GPU

Learner Devices
GPU

FPGA
FPGA

CPU GPU FPGA CPU GPU FPGA
RM Device RM Device

(b) DON - Pong, ServercGr
Batch Size 32 Batch Size 512

CPU GPU FPGA CPU GPU FPGA
RM Device RM Device

(a) DDPG - MC, ServercGr
Batch Size 32 Batch Size 512

Gl ~ o o o
>)) 1 o > o & 1
3818 & | |& g5 |8 @
5) @
£ ¥ N £
© 2 o 1 o © 2 1
LE & |5 LE
T T
CPU GPU CcPU GPU CcPU GPU CcPU GPU

RM Device RM Device RM Device

(c) DON - CP, Servercg

RM Device

(d) DDPG - MC, Servercg

Figure 8: System Composition.
In Figures 8, we show the achieved throughput EPS for all device
assignment choices, as well as the compositions returned by the
PEARL toolkit, on both heterogeneous platforms. In all the sub-
figures, the color gradients in the grids are proportional to the

47

CF 24, May 7-9, 2024, Ischia, Italy

magnitudes of the achieved throughput on their corresponding de-
vice assignment. The stars denote the optimal mappings returned
by our System Composer. We observe that the choice of device
for the primitive with the highest latency significantly influences
variations in throughput. Specifically, for small-batch computations
(i.e., grid plots with batch size 32), the color gradient changes most
drastically along the horizontal axis, because replay operations re-
sult in significant overheads as Learner computations are small; On
the other hand, for large-batch computations (i.e., grids with batch
size 512), the color gradient changes most drastically along the
vertical axis, as the Learner dominates each training iteration and
replay operation overheads are hidden. Note that when multiple
device assignment choices lead to the same throughput, our toolkit
selects the one with the lowest total data traffic (e.g., Figure 8b).

6.4 Comparison with Existing DRL Libraries

We compare PEARL-generated optimal implementations with two
state-of-the-art DRL frameworks, RLIib [14] and OpenAI Stable
Baselines 3 (SB3) [21], on Servercgr. The performance of RLlib
and SB3 are obtained using the optimal settings required by each
of them (i.e., using GPU for training). The detailed performance
across different benchmarks are shown in Table 3.

System Throughput. The additional flexibility of supporting FPGA

accelerators along with our runtime optimizations enable PEARL to
achieve up to 1.9%, 2.2 and 1.4X improvements in EPS for the three
benchmarks. Even using the same set of hardware (CPU-GPU), our
novel scheduling and resource allocation leads to 21% to 55% higher
EPS. We also evaluate the effect of our runtime dynamic hetero-
geneous resource allocation. In our experiments, the cases where
CPU actor threads are re-allocated for collaborative training are
labeled with * in Table 3. These are the scenarios where the Learner
requires large-batched data or a large model for training, and this
re-allocation leads to a 15% to 35% improvement in EPS. Another
study focused on mapping DRL onto FPGA-based heterogeneous
platforms [28], and evaluated using the CartPole benchmark. Due to
the different hardware and optimal device assignments, EPS is not
directly comparable. Nonetheless, we compare the effective hetero-
geneous resource utilization (achieved throughput given the peak
throughput of all the processors and accelerators in the platform).
For CartPole DQN batch-32 training, PEARL achieves 7.9K EPS
using a CPU-FPGA with a total peak performance of 0.46 TFLOPS;
[28] achieved an amortized throughput of 7.1K EPS using a CPU-
FPGA with 0.72 TFLOPS. Despite having 36% lower available device
performance, our result shows a 11% higher EPS.

Portability. To show the performance portability of our toolkit,
we adopt the portability metric for a framework to be consistent
with that described in [20]:

0 if, 3i € H,EPS; = 0

—1Hl
Lien mps5;
where H can be either D or P: D denotes a set of device assignment
choices using a single heterogeneous platform; P denotes a set of
heterogeneous platforms; EPS; is the achieved EPS using the i’ h
device assignment choice or platform in the set H. If the imple-
mentation cannot be portable to the i’ h device assignment choice
or platform in the set H, EPS; = 0. The results are shown in the
last two rows of Table 3. (D) quantizes the ability to use different

O(H) = (7)

otherwise

CF ’24, May 7-9, 2024, Ischia, Italy

Yuan Meng, Michael Kinsner, Deshanand Singh, Mahesh lyer, and Viktor Prasanna

Table 3: Comparison with Existing DRL Frameworks

DQN-CartPole DDPG-MountainCar DQN-Pong
Entry: Batch 32,512 | PEARL RLIib Stable PEARL RLIib Stable PEARL | RLIb Stable
Baselines3 Baselines3 Baselines3
EPS (Optimal) 7.93K, 95.2K | 4.1K, 50.3K | 4.6K, 56.1K | 7.85K, 95.2K | 3.6K, 48.5K | 4.3K, 50.1K | 7.3K, 9.6K* | 5.6K, 6.2K | 5.2K, 6.9K
EPS(CPU-GPU) 7.7K, 69K | 4.1K, 50.3K | 4.6K, 56.1K | 7.4K, 58.2K* | 3.6K, 48.5K | 4.3K, 50.1K | 6.1K, 9.6K* | 5.6K, 6.2K | 5.2K, 6.9K
(D) 49K, 21.4K 0,0 0,0 4.5K, 20.3K 0,0 0,0 2.9K, 4.6K 0,0 0,0
d(P) 7.3K, 63.7K | 3.7K, 49.8K | 3.5K, 50.2K | 6.9K, 68.2K | 2.88K, 46.8K | 3.3K, 44.5K | 6.1K, 8.9K | 5.4K, 6.8K | 4.0K, 7.5K
heterogeneous resources given by a single platform. Other existing Table 4: User Productivity
works that do not support accelerated RM or FPGA-based Learner Algorithms DON DDPG
are not portable to these device assignments.(Ei € D,EPS; = 0), User code ~75 lines 110 lines
thus havingh ?(D) =0 Iél Zolr)ltr;st, our Wor(l)(1 portle:ble tt())l alltz;ls- Development effort * ~12 minutes ~17 minutes
signment choices provide ervercgr. Our work enables the ..
& P Y cor Productivity across platforms (CD) ~0.06 ~0.04

ability to utilize compute powers of a wider range of heterogeneous
devices, thus achieving better device portability and higher perfor-
mance. (P) quantizes the ability to achieve performance across
different platforms (i.e., both Servercg and Servercgr), where EPS;
is the highest throughput achieved on the ith platform. Our toolkit
consistently achieves higher platform-throughput portability ®(P)
compared with the existing works.
CartPole

e

—— RLIib
Stable Baselines 3
- PEARL

T T T T
1000 1500 2000 2500

MountainCar

~10 4
—— RLIib

Stable Baselines 3
- PEARL

—20

rewards

—30

T T T T T T T
o 100 200 300 400 500 600 700

Pong

20

—— RLlib
Stable Baselines 3
- PEARL

rewards
o
!

—20

T T T T T
15000 20000 25000 30000 35000

time (sec)
Figure 9: Rewards over Time

T T T
0 5000 10000

Algorithm Performance. Figure 9 plots the cumulative rewards
collected by the agent policy over wall clock time. The curves are
smoothed to show the sliding average rewards obtained in a win-
dow of 100 training iterations, and each curve is the mean of 5
runs of the algorithm-benchmark pair. For all the algorithms and
benchmark applications, we consistently observe faster conver-
gence, meaning our implementation improves throughput without
significantly sacrificing algorithm performance in terms of reward
and convergence rate.

6.5 User Productivity

For a quick assessment of programmability, we enlisted 5 graduate
students familiar with RL but lacking expertise in heterogeneous
hardware, aligning with PEARL’s target user community, to imple-
ment two algorithms using PEARL. Table 4 quantifies the average
development effort involved. Note that we exclude FPGA image

48

“ The compiling time for the FPGA image is excluded.

compilation time in Table 4 (as consistent with established practice
[8]), since it is an integral part of the oneAPI workflow, and is not a
step directly specified by PEARL users. In addition to illustrating the
effort required for developing a specific algorithm, we also present
the Code Divergence (CD) to demonstrate productivity differences
between development on the two distinct platforms. CD between
% [20], where ¢
represents the lines of user code. The CD value falls within the
range [0,1]: a value of 0 indicates that a “single-source" code can be
shared between both platforms, while a value of 1 implies that the
user code is entirely different for the two platforms. In our case, CD
is close to 0, as the only required changes when porting to different
devices involve modifying the paths to input files.

platforms i and j is computed by CD =1 —

Overall, DRL application development through training in simu-
lation is for tuning the best model and set of hyper-parameters
before physical deployment. This requires repeated rounds of test-
ing with different algorithms, hyper-parameters, and environmental
scenarios to ensure the reliability of the agent. In state-of-the-art
data centers, it is unrealistic for application users to hand-tune
each round of testing. With PEARL, developers write only dozens
of lines of code to generate the accelerated DRL implementation
within minutes, significantly reducing the development effort and
leading to more robust Al agents with faster development cycles.

7 CONCLUSION & FUTURE WORK

We presented PEARL, a toolkit for productive development of
performance-portable DRL on heterogeneous platforms. Future di-
rections include scaling the primitives across heterogeneous nodes,
and developing general-purpose tools based on intermediate graph
representations for mapping custom-defined training algorithms
onto heterogeneous hardware.

ACKNOWLEDGMENTS

This work is supported by the U.S. National Science Foundation
under grants CNS-2009057 and SPX-2333009, and the Intel Corpora-
tion. This work is also supported by the DEVCOM Army Research
Lab under grant W911NF2220159.

PEARL: Enabling Portable, Productive, and High-Performance Deep Reinforcement Learning using Heterogeneous Platforms

REFERENCES

(1]
[2]

[
-

[12

[13

(14

(15

[16]

(17]

(18

[19

[20

[
—=

[22]

2021. Intel Heterogeneous DevCloud. https://devcloud.intel.com/oneapi/
2022. Intel Extension for PyTorch. https://github.com/intel/intel-extension-for-
pytorch

AMD. 2022. AMD Heterogeneous Accelerated Compute Clusters.
www.amd-haccs.io/

Lorena A Barba, Andreas Klockner, Prabhu Ramachandran, and Rollin Thomas.
2021. Scientific computing with Python on high-performance heterogeneous
systems. Computing in Science & Engineering 23, 04 (2021), 5-7.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang, and Wojciech Zaremba. 2016. OpenAl Gym.
arXiv:arXiv:1606.01540

Tianyue Cao. 2020. Study of sample efficiency improvements for reinforcement
learning algorithms. In 2020 IEEE Integrated STEM Education Conference (ISEC).
IEEE, 1-1.

Konstantinos Chatzilygeroudis, Roberto Rama, Rituraj Kaushik, Dorian Goepp,
Vassilis Vassiliades, and Jean-Baptiste Mouret. 2017. Black-box data-efficient
policy search for robotics. In 2017 IEEE/RS] International Conference on Intelligent
Robots and Systems (IROS). IEEE, 51-58.

Xinyu Chen, Hongshi Tan, Yao Chen, Bingsheng He, Weng-Fai Wong, and Dem-
ing Chen. 2021. ThunderGP: HLS-based graph processing framework on FPGAs.
In The 2021 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays. 69-80.

Hyungmin Cho, Pyeongseok Oh, Jiyoung Park, Wookeun Jung, and Jaejin Lee.
2019. FA3C: FPGA-Accelerated Deep Reinforcement Learning. In Proceedings of
the Twenty-Fourth International Conference on Architectural Support for Program-
ming Languages and Operating Systems. ACM, 499-513.

Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. 2016.
Benchmarking deep reinforcement learning for continuous control. In Interna-
tional conference on machine learning. PMLR, 1329-1338.

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostro-
vski, Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver.
2018. Rainbow: Combining improvements in deep reinforcement learning. In
Proceedings of the AAAI conference on artificial intelligence, Vol. 32.

Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel,
Hado van Hasselt, and David Silver. 2018. Distributed Prioritized Experience
Replay. CoRR abs/1803.00933 (2018). arXiv:1803.00933 http://arxiv.org/abs/
1803.00933

Intel. 2022. Intel OneAPL https://www.intel.com/content/www/us/en/
developer/tools/oneapi/overview.html

Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Joseph Gon-
zalez, Ken Goldberg, and Ion Stoica. 2017. Ray RLLib: A Composable and Scalable
Reinforcement Learning Library. CoRR abs/1712.09381 (2017). arXiv:1712.09381
http://arxiv.org/abs/1712.09381

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Manfred Otto
Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. 2016. Continuous
control with deep reinforcement learning. CoRR abs/1509.02971 (2016).

Yuan Meng, Sanmukh Kuppannagari, and Viktor Prasanna. 2020. Accelerating
proximal policy optimization on cpu-fpga heterogeneous platforms. In 2020 IEEE
28th Annual International Symposium on Field-Programmable Custom Computing
Machines (FCCM). IEEE, 19-27.

Yuan Meng, Chi Zhang, and Viktor Prasanna. 2022. FPGA acceleration of deep
reinforcement learning using on-chip replay management. In Proceedings of the
19th ACM International Conference on Computing Frontiers. 40-48.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin A. Riedmiller. 2013. Playing Atari
with Deep Reinforcement Learning. CoRR abs/1312.5602 (2013). arXiv:1312.5602
http://arxiv.org/abs/1312.5602

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. In Advances in Neural Information Processing Systems 32, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.). Cur-
ran Associates, Inc., 8024-8035. http://papers.neurips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-deep-learning-library.pdf

S John Pennycook, Jason D Sewall, Douglas W Jacobsen, Tom Deakin, and Simon
McIntosh-Smith. 2021. Navigating performance, portability, and productivity.
Computing in Science & Engineering 23, 5 (2021), 28-38.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus,
and Noah Dormann. 2021. Stable-Baselines3: Reliable Reinforcement Learning
Implementations. Journal of Machine Learning Research 22, 268 (2021), 1-8.
http://jmlr.org/papers/v22/20-1364.html

H. Robbins and S. Monro. 1951. A stochastic approximation method. Annals of
Mathematical Statistics 22 (1951), 400-407.

https://

49

(23]

[24]

[25]

[26]

[27]

(28]

CF ’24, May 7-9, 2024, Ischia, Italy

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. 2015. Prioritized
experience replay. arXiv preprint arXiv:1511.05952 (2015).

Brian Van Essen, Chris Macaraeg, Maya Gokhale, and Ryan Prenger. 2012. Ac-
celerating a random forest classifier: Multi-core, GP-GPU, or FPGA?. In 2012
IEEE 20th International Symposium on Field-Programmable Custom Computing
Machines. IEEE, 232-239.

Oriol Vinyals, Igor Babuschkin, Junyoung Chung, Michael Mathieu, Max Jader-
berg, Wojciech M Czarnecki, Andrew Dudzik, Aja Huang, Petko Georgiev, Richard
Powell, et al. 2019. Alphastar: Mastering the real-time strategy game starcraft ii.
DeepMind blog 2 (2019).

Abdurrahman Yasar, Sivasankaran Rajamanickam, Jonathan W Berry, and Umit V
Catalyurek. 2022. PGAbB: A Block-Based Graph Processing Framework for
Heterogeneous Platforms. arXiv preprint arXiv:2209.04541 (2022).

Chi Zhang, Sanmukh Rao Kuppannagari, and Viktor K Prasanna. 2021. Parallel
actors and learners: A framework for generating scalable RL implementations.
In 2021 IEEE 28th International Conference on High Performance Computing, Data,
and Analytics (HiPC). IEEE, 1-10.

Chi Zhang, Yuan Meng, and Viktor Prasanna. 2023. A Framework for Mapping
DRL Algorithms With Prioritized Replay Buffer Onto Heterogeneous Platforms.
IEEE Transactions on Parallel and Distributed Systems (2023).

CF ’24, May 7-9, 2024, Ischia, Italy

A ARTIFACT APPENDIX

A.1 Abstract

We developed PEARL, a toolkit for system implementation of Deep
Reinforcement Learning (DRL) on Heterogeneous platforms. From
a user execution perspective, PEARL consists of two main parts: Sys-
tem Composer and Runtime Program. PEARL’s System Composer
produces the device assignments for DRL primitives (Learner and
Replay Manager), given algorithm and device metadata. PEARL’s
Runtime Program takes a device-assignment configuration file as
input and deploys the DRL training-in-simulation process on the
heterogeneous platform.

A.2 Artifact check-list (meta-information)

e Algorithm: Deep Q Network (DQN) and Deep Deterministic Policy
Gradient (DDPG) for benchmarking PEARL.

e Compilation: Required: Python 3.8, Torch 2.0, CuDNN
Optional: oneAPI and PyBind11 for compiling SYCL implementations.

e Run-time environment: Conda installed on a CPU with Linux OS.

e Hardware: A platform consisting of an Nvidia GPU connected to an
Intel(R) Xeon(R) CPU via PCle, or a CPU with integrated GPU (e.g.,
A core-i9 11900KB node on Intel DevCloud). Optional: an FPGA with
oneAPI support connected to the CPU described above via PCle.

o Execution: We have provided a set of steps to demonstrate the two
parts of PEARL (e.g., for artifact evaluation), which takes approximately
10 minutes to complete.

Metrics: Throughput (number of experiences or samples processed

per second), rewards over time.

e Output: Terminal console outputs (e.g., printing messages indicating
the program states), intermediate output files, and performance results.

e Experiments: Instructions are provided in PEARL’s Github page
under the “Example Usage” section (see Section A.5).

o How much time is needed to prepare workflow (approximately)?:
Installing all the minimal dependencies through the Conda environment
takes around 30 minutes.

o Publicly available?: Yes.

A.3 Description

A.3.1 How to access. We have made PEARL available at https:
//github.com/pgroupATusc/HeteroRL.

A.3.2 Hardware dependencies. Minimal Requirement for demon-
stration: A platform consisting of an Nvidia GPU connected to a
multi-core CPU via PCle or a CPU with integrated GPU (e.g., A
core-i9 11900KB node on Intel DevCloud).

A.3.3 Software dependencies. The dependencies for using PEARL
are explained at https://github.com/pgroupATusc/HeteroRL?tab=
readme-ov-file#dependencies--installation. The minimal require-
ments include Conda, Python, Torch, CuDNN, and Gym.

A.4 Installation
We have provided the Conda environment file (install_env.yml)
that contains metadata on the library dependencies for PEARL.
First, install PEARL using
git clone https://github.com/pgroupATusc/HeteroRL.git.
Then, install these library dependencies using
conda env create —-f HeteroRL/install_env.yml
and activate the installed environment by

50

Yuan Meng, Michael Kinsner, Deshanand Singh, Mahesh lyer, and Viktor Prasanna

conda activate htroRLatari

A.5 Experiment workflow

We have provided a sequence of steps in the Example Usage section
of the GitHub repository page https://github.com/pgroupATusc/
HeteroRL?tab=readme-ov-file#example-usage. The Example Usage
showecases three experiments: the first is for running the System
Composer to generate an intermediate mapping (.json) file, the sec-
ond and third are for executing the Runtime Program based on in-
termediate mapping files, which include two algorithm-benchmark
pairs on different device mappings.

A.6 Evaluation and expected results

Main claims. Our paper presents PEARL, a toolkit for implement-
ing DRL using heterogeneous platforms consisting of CPU, GPU,
and/or FPGA devices. We claim that using PEARL, we are able
to generate high performance implementation of DRL, portable to
different device combinations or heterogeneous platforms while
providing simple APIs to facilitate productive development.

Key results.

e Portability is demonstrated by the ability of the System Com-
poser and Runtime Program to support various combinations of
devices and interconnects. In the examples provided, we demon-
strate the System Composer operating on a CPU-FPGA platform
and the Runtime Program supporting two different mappings
on a CPU-GPU platform. These can also be customized to sup-
port other device mappings and platforms (see Section A.7).

o Productivity is evident from the library interfaces (Python mod-
ule imports for all primitive implementations in the libraries)
and Python user APIs for specifying algorithms, device meta-
data, and deploying implementations. When adapting to differ-
ent algorithms, the only code changes required are the Learner
functions in the Libs_Torch directory and the configuration
files (e.g., alg_hp. jsonand Config.py).

e Performance is quantified by the throughput metric, the number
of experiences (samples) processed per second. As detailed in
the Example Usage section of the GitHub page, these experi-
ments demonstrate both throughput (as indicated in the console
output) and reward convergence over training iterations (illus-
trated in output figures from Actor processes). These results
corroborate our findings in Section 6.4.

A.7 Experiment customization

The experiments described in the Example Usage can be also ex-
tended to support other DRL algorithms and platforms.
Customize algorithms. To customize the algorithm hyper parame-
ters, directly change the entriesin Config.pyandalg_hp. json.
To implement new algorithms, additionally edit the update_all
_gradients function, and import the corresponding modules in
the Runtime Program.

Customize for platforms with configurable devices. To use
SYCL implementations on integrated GPU and FPGA devices, make
sure oneAPI and PyBind are installed as instructed in the “De-
pendencies & Installation" section of the Git page, and follow the
step detailed in https://github.com/pgroupATusc/HeteroRL?tab=
readme-ov-file#step- 1-optional-compiling-py-sycl-libraries.

