
TabConv: Low-Computation CNN Inference via Table Lookups
Neelesh Gupta∗

University of Southern California
Los Angeles, California, USA

neeleshg@usc.edu

Narayanan Kannan∗
University of California, Los Angeles

Los Angeles, California, USA
nkann19@ucla.edu

Pengmiao Zhang∗†
University of Southern California
Los Angeles, California, USA

pengmiao@usc.edu

Viktor Prasanna
University of Southern California
Los Angeles, California, USA

prasanna@usc.edu

ABSTRACT
Convolutional Neural Networks (CNNs) have demonstrated re-
markable ability throughout the �eld of computer vision. However,
CNN inference requires a large number of arithmetic operations,
making them expensive to deploy in hardware. Current approaches
alleviate this issue by developing hardware-supported, algorith-
mic processes to simplify spatial convolution functions. However,
these methods still heavily rely on matrix multiplication, leading
to signi�cant computational overhead. To bridge the gap between
hardware, algorithmic acceleration, and approximate matrix multi-
plication, we propose TabConv, a novel, table-based approximation
for convolution to signi�cantly reduce arithmetic operations during
inference. Additionally, we introduce a priority masking technique
based on cosine similarity to select layers for table-based approxima-
tion, thereby maintaining the model performance. We evaluate our
approach on popular CNNs: ResNet-18, ResNet-34, and NetworkIn-
Network (NIN). TabConv preserves over 93% of the original model’s
performance while reducing arithmetic operations by 36.5%, 25.8%,
and 99.4% for ResNet-18 on CIFAR-10, CIFAR-100, and MNIST, re-
spectively, 35.6% and 99.3% for ResNet-34 on CIFAR-10 and MNIST,
and 98.9% for NIN on MNIST, achieving low-computation inference.

CCS CONCEPTS
• Computing methodologies! Neural networks; Computer
vision.

KEYWORDS
convolutional neural network, table lookup, product quantization
ACM Reference Format:
Neelesh Gupta, Narayanan Kannan, Pengmiao Zhang, and Viktor Prasanna.
2024. TabConv: Low-Computation CNN Inference via Table Lookups. In
21st ACM International Conference on Computing Frontiers (CF ’24), May 7–9,
2024, Ischia, Italy. ACM, New York, NY, USA, 9 pages. https://doi.org/10.
1145/3649153.3649212
∗These authors contributed equally.
†Corresponding author.

This work is licensed under a Creative Commons Attribution International 4.0
License.
CF ’24, May 7–9, 2024, Ischia, Italy
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0597-7/24/05.
https://doi.org/10.1145/3649153.3649212

1 INTRODUCTION
Convolutional Neural Networks (CNNs) are ubiquitous in the �eld
of computer vision. They are widely adopted as solutions to tasks
in image classi�cation [38, 42], object detection [13], semantic seg-
mentation [30, 46], computer systems [48], et cetera. This utility has
fueled concerted e�orts to enhance CNN inference, yielding new
models that surpass benchmarks. Unfortunately, these improve-
ments result in a signi�cant increase in computational cost.

The continued expansion of CNN model complexity has caused
an explosion in both the number of operations and amount of
time required to process data and make predictions [16, 25, 40].
Moreover, this issue has all but rendered the traditional, multi-
core CPU obsolete as a deep learning platform, thus mandating
the usage of other dedicated hardware devices such as GPUs [20]
and FPGAs [34] to power model operations. However, they too
face their own unique set of challenges in energy consumption and
a lack of standardization, respectively. Given these issues, much
research into mitigating CNN computational costs focuses not on
hardware, but on optimizing functions of the model itself.

Many of these e�orts can be summarized as attempts to simplify
the convolution function throughmapping the process to an already
well-optimized operation, such as matrix multiplication (MM) [4,
6]. Though they achieve a de�nite reduction in complexity, these
methods leave ample room for improvement. High computational
costs remain a bottleneck for inference latency, even when limited
to re�ned processes. To combat this, techniques in approximating
MM have been incorporated into Deep Neural Network (DNN)
work�ows, including those that simplify computation [10] and
those that replace it entirely [3, 11, 47]. A promising approach
involves the use of Product Quantization (PQ) to map MMs to table
lookups [19]. However, existing works [3, 45] map only the MM of
the last linear layer in a DNN to a table and su�er a large dropo�
in accuracy when attempting more.

Motivated by shortcomings in both hardware and algorithm-
based acceleration as well as the promise of table-based computa-
tion, we introduce TabConv, a novel low-computation CNN approx-
imation based on table lookups that signi�cantly reduces MMs in a
CNN model while maintaining its performance. To achieve this, we
follow a three-step process that integrates aspects of prior works
with our own contributions: 1) Taking a trained CNN, converting
all instances of convolution into MMs, 2) Mapping these MMs to
table lookups based on product quantization, 3) Employing a novel

180

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3649153.3649212&domain=pdf&date_stamp=2024-07-02

CF ’24, May 7–9, 2024, Ischia, Italy Gupta et al.

priority masking approach to determine which layers should retain
their exact computations rather than table-based approximations.

We solve two key problems during the development of TabConv-
based CNN approximations. 1) The issue of mapping entire neural
network layers with various operations–We introduce novel table
approximation solutions for convolution, linear operations, batch
normalization, and activation functions. 2) The compounding in-
crease in error by layer oncemapped to a table-based approximation–
We combat this issue using a novel priority masking method that
identi�es which layers are best left in neural network form.

We summarize our main contributions below:
• We propose TabConv, a novel low-computation CNN approx-
imation through table lookups, which signi�cantly reduces
the arithmetic operations required during inference while
maintaining the CNN model performance.

• We design tabular primitives for operations in CNNs models,
including convolution, batch normalization, linear opera-
tions, and activation functions.

• We propose a novel priority masking strategy that selectively
converts certain layers in a model to table lookups while
retaining other layers as exact calculations, balancing the
trade-o� between computation and accuracy.

• We evaluate TabConv on popular CNNs ResNet-18, ResNet-
34, and NetworkInNetwork (NIN). Results show that while
preserving higher than 93% of the original model perfor-
mance, TabConv reduces 36.5%, 25.8%, and 99.4% of arith-
metic operations for ResNet-18 on CIFAR-10, CIFAR-100, and
MNIST, reduces 35.6% and 99.3% of arithmetic operations for
ResNet-34 on CIFAR-10 and MNIST, and reduces 98.9% of
arithmetic operations for NIN on MNIST.

2 BACKGROUND
2.1 Product Quantization
Our approach is built upon the Product Quantization (PQ) algo-
rithm [19], notable for its use in accelerating and approximating
vector inner products through quantization and precomputation. In
general, given an arbitrary vector a 2 R⇡ drawn from a training set
Ã 2 R#⇥⇡ with # samples, and a �xed weight vector b 2 R⇡ , PQ
generates a quantized approximation â of a such that â>b ⇡ a>b.
In order to carry out this process, ⇡-dimensional a is split into (
disjoint, + -dimensional subspaces, within each of which quan-
tized subvectors are learned as prototypes. Note that since â is
quantized and b is �xed, their corresponding inner product is easily
precomputed and reused in a query. Figure 1 provides an overview
of the PQ process, while a detailed description follows below.

2.1.1 Training. The PQ training process includes both a prototype
learning phase and table construction phase.
Prototype Learning (?): Consider Ãs 2 R#⇥+ , the vectors of the
B-th subspace of Ã. In the Prototype Learning phase, prototypes,
PB: , where : is the index of the prototypes within the B-th subspace,
of ÃB are learned by minimizing the distance between the vectors
of ÃB and their nearest corresponding prototype PB: . The process
is formulated in Equation 1 below.

?2 (Ã) , argmin
%

’
B

’
8

��ÃB8 � PB:��2 (1)

(a) During PQ training, prototypes within each subspace are learned and their
dot products with weight vector b are precomputed for storage in a table.

(b) During PQ query, the query vector is encoded to �nd the indices of its
nearest prototypes, whose dot products are then looked up in the table and
subsequently aggregated to yield the �nal result.

Figure 1: Training and query of product quantization.

Table Construction (⌘): Next, we construct a table with entries
consisting of inner products between prototypes PB: and the weight
vector bB where B signi�es the vector belonging to the B-th subspace.
The function ⌘B (b): describes the B:-th entry of the table.

⌘B (b): , bB> · PB: (2)

2.1.2 �ery. The query process eliminates the need for multipli-
cation operations in the inner product calculation by encoding the
query vector to its nearest prototype, looking up its corresponding
table entries, and aggregating to yield the �nal result.
Vector Encoding (6): For arbitrary query vector a, 6B (a) locates its
closest prototype PB: in each subspace B by �nding the index : with
minimal distance to aB . The function, as formulated below, outputs
a set of indices representing the encoded vector of a.

6B (a) , argmin
:

��aB � PB:��2 (3)

Lookup and Aggregation (5): After using the encoded indices
to lookup the precomputed values, the corresponding entries by
subspace are aggregated through the following function 5 (·, ·),
yielding a �nal approximation for a>b.

5 (a, b) =
’
B

⌘B (b): ,: = 6B (a) (4)

Thus, the actual dot product operation in a>b is avoided by
approximating the result through table lookups. We use locality
sensitive hashing [3] for encoding and parallel summation for ag-
gregation, resulting in signi�cantly lower complexity than the dot
product, especially for large dimensional vectors.

181

TabConv: Low-Computation CNN Inference via Table Lookups CF ’24, May 7–9, 2024, Ischia, Italy

2.2 Im2col Convolution
The im2col method [4, 6] transforms the convolution function into
a general instance of matrix multiplication (MM) by converting
both the input image and kernel into patch matrices. An outline
of this process is depicted in Figure 2. For simplicity’s sake, we
consider the case when stride is 1 and padding is 0.

Figure 2: Outline of the im2col Method.

Input Patch Matrix. Given an input image with ⇠8= channels of
size�⇥, and⇠>DC kernels (�lters) of size �⇥� , the input patch ma-
trix is formed by taking kernel-sized patches of each input channel
and �attening them into column vectors which are then concate-
nated to form a new matrix of size � 2⇠8= ⇥ (� � � + 1) (, � � + 1).
Kernel PatchMatrix. The kernel patchmatrix is formed by reshap-
ing each channel of each kernel into row vectors which are then
concatenated similarly as above. The result is of size ⇠>DC ⇥ � 2⇠8= .

We apply im2col as an intermediate step to transform the convo-
lution function into an MM operation. Following this conversion,
we replace subsequent MMs with approximate table lookups.

3 RELATEDWORK
3.1 CNN Acceleration
There exists a rich body of literature on techniques to accelerate
CNNs. Of particular note are those utilizing algorithmic processes,
model compression methods, and hardware implementation. Many
algorithm-based methods implement a mapping of the convolu-
tion function to an instance of matrix multiplication (MM), includ-
ing the following processes: the im2col transformation [4, 6, 39],
kn2row transformation [43], Winograd Minimal Filtering Method
[26], Toeplitz matrix conversion [5], and Fast Fourier Transform
convolutions [7, 22]. Model compression techniques like pruning
[28, 35], quantization [15, 37], and knowledge distillation [14, 17] re-
duce redundancy and model size to help performance. Acceleration
through hardware entails the usage of GPUs with high performance
computing capability [33, 36], and energy e�cient FPGAs o�ering
parallel acceleration tailored for CNNs [1, 41]. While these methods
are successful in accelerating computation, they heavily feature
MM. Eliminating these costly operations o�ers a new opportunity
for advancement in CNN acceleration. In this paper, we introduce
a novel approach that maps CNN to a series of fast tabular lookups.

3.2 Approximate Matrix Multiplication
Techniques in approximate matrix multiplication use algorithmic
methods to simplify computation. For example, sampling input ma-
trices [10], �nding sketches of matrices [32, 44], and random projec-
tion to lower dimensional subspaces [8, 31] all attempt to reduce the
number of rows or columns being operated on. Other approaches
go further by replacing MM outright through techniques in hash-
ing, averaging, logarithm computation, and designing distributed
algorithms [3, 12, 21, 27]. Notably, the Product Quanitzation (PQ)
algorithm [19] is used to convert traditional instances of MM into
a series of tabular lookups [3]. Our work presents a comprehensive
design methodology and acceleration strategy that both maintains
and accelerates performance when applying PQ to CNNs.

4 APPROACH
4.1 Problem De�nition
Our objective is to re�ne CNN inference by employing table lookups
to approximate its computations. LetM be a CNN model charac-
terized by its parameters) where M(x;)) represents the model’s
output given input x. Our objective is to construct a table-based
approximation T with parameters 5 such that T (x; 5) closely ap-
proximates the output ofM. We formalize this as follows:

min
5

"
1
#

#’
8=1
kM(x8 ;)) � T (x8 ; 5)k2

#
(5)

We aim to minimize the discrepancy between the outputs of the
conventional and the table-based models, ensuring that the latter
is able to reduce arithmetic operations while maintaining accuracy.

4.2 Overview of TabConv
For a given CNN-based model, we generate its approximation, a
TabConv-based model, through a three-step strategy, as depicted in
Figure 3, including: 1) Converting convolution operations within
a model into matrix multiplications (MM) format; 2) Mapping the
resulting MMs to table lookups; 3) Employing a novel priority mask-
ing strategy to strike a balance between accuracy and computation.
Next, we introduce the detailed work�ow.

Conv

Conv

Conv

MLP

… …

Conv

Input:
CNN-Based

Model

… …

… …

… …

… …

… …

… …

Step 1:
Converting

to MMs

… …

Step 2:
Mapping to

Table Lookups

…

Step 3:
Priority
Masking

… …

… …

… …

Output:
TabConv-Based

Model

Figure 3: Work�ow of converting a CNN-based model to the
proposed TabConv-based model.

Input: CNN-based model. The input to the TabConv process is a
CNN-based model that has already been trained for a speci�c task.

182

CF ’24, May 7–9, 2024, Ischia, Italy Gupta et al.

This model likely consists of convolutional layers, batch normal-
ization, linear layers, and activation functions, depending on the
architecture and task it was designed for.
Step 1: Converting to MMs. In the initial step, the key opera-
tions within the original CNN-based model are transformed into
the format of MMs. For convolution operations, we use im2col [6]
as described in Section 2.2. For batch normalization operations, we
fold the operation into the im2col MMs by merging the normalized
weights into the convolution weights (Section 4.3.4). This conver-
sion facilitates the subsequent steps by providing a more structured
and e�cient representation of the operations involved in the model.
Step 2: Mapping to table lookups. The resulting MMs are then
mapped to table lookups based on product quantization (Section 2.1).
We quantize the input data of each CNN and linear layer into a
�xed size of prototypes (Section 4.3), precompute the dot product
of the quantized vectors and the layer weights, and store the results
in a table. In inference, we lookup the layer results from the closest
prototypes to the input vectors, avoiding any MM operations.
Step 3: Prioritymasking. In deep CNNs, increasing the number of
layers mapped to table lookups can lead to degraded approximation
performance and accuracy, as deeper layers are likely to compound
existing input errors. To address this, we introduce a novel priority
masking method, employing a "similarity drop" metric to quantify
di�erences between table and original CNN layers (Section 4.3.5).
Output: TabConv-based model. The output of this process is
the TabConv-based model, an approximation of the original CNN-
based model. This TabConv-based model closely approximates the
predictive performance of the original model while signi�cantly
reduces the number of arithmetic operations involved in inference.

4.3 Mapping CNN to Table Lookups
We map operations in CNN to table lookups based on im2col and
product quantization. In the following, we describe the process
of constructing table CNN operations and how the table-based
inference eliminates MM operations.

4.3.1 Table Construction for Convolution. Figure 4 illustrates the ta-
ble construction for precomputed convolutional results. The im2col
algorithm reshapes convolutional layer inputs from⇠8= ⇥� ⇥, to
�, ⇥ � 2⇠8= (assuming with paddings). This process creates a 2D
matrix of dimensions #�, ⇥ � 2⇠8= by combining # data points
from the training dataset. The � 2⇠8= dimension is divided into (
subspaces, each learning prototypes through methods like unsu-
pervised clustering or locality-sensitive hashing [3]. After learning
the prototypes for each subspace, dot products are computed
between these prototypes and the corresponding subspace of the
kernel patch matrix, reshaped from ⇠>DC ⇥ � 2⇠8= kernel weights.
This results in⇠>DC sub-tables, one for each output channel, storing
dot products between prototypes and channel weights with each
entry representing the product for a subspace.

4.3.2 Table Lookups for Convolution Inference. Figure 5 shows
the convolutional layer inference using the constructed table via
lookup operations. Incoming query data (either an input image or a
CNN layer input data) is reshaped to a patch matrix following the
rule of im2col to a 2D matrix. Each row is split into (subspaces.
Then, for each subvector in a subspace, we �nd the corresponding

Figure 4: Table construction for convolutional operation.

Figure 5: Table lookup for convolutional operation inference.

prototype by running the trained clustering or hashing function. All
the �, ⇥ (subvectors are independent and can run the prototype
matching in parallel. Using the index of the matched prototypes, the
precomputed dot product for each output channel can be directly
acquired by looking up from the ⇠>DC trained tables. The output
lookup operations are also independent between output channels
and canwork in parallel. Finally, the subspace is aggregated through
a simple sum operation, avoiding all MMs in convolution inference.

4.3.3 Linear Operation via Table Lookups. A linear operation is
commonly used as the �nal classi�er at the end of a CNN model. It
transforms input x into an output y through a linear transformation,
de�ned by the equation:

y = Wx + b (6)

where W is the layer’s weight matrix and b is the layer’s biases.
Figure 6 shows the process of constructing tables for a linear layer.
For a training set of # inputs with input dimension ⇡8= , we divide
⇡8= into (subspaces, each with prototypes. The linear layer
weights are split similarly. We create a table with ⇡>DC sub-tables
of ⇥ (entries by storing dot product results between weight and
prototype subvectors. To include the bias from the linear layer, we
add it to a table column, ensuring its inclusion during the �nal
aggregation in inference, as depicted in Figure 7. The linear layer
inference then relies solely on prototype matching via hashing and
table lookups, similar to table-based convolution.

4.3.4 Folding Batch Normalization. Batch normalization is widely
used to speed up training and provide regularization for deep
CNNs [18]. While batch normalization helps convergence, it re-
quires an inference calculation after each convolution. To further
reduce operations in a CNN model, we fold batch normalization

183

TabConv: Low-Computation CNN Inference via Table Lookups CF ’24, May 7–9, 2024, Ischia, Italy

. . .

. . .

. . .$

#×(

Prototypes
)!"

Training Input Table Construction

'

.

.

.
… … …

'

.

#

.

.
… … …

……

) $
%&
×'

.'

)!"

Weight Matrix

#×(

… …)$%&
+bias

(

Figure 6: Table construction for linear operation.

Figure 7: Table lookup for for linear layer inference.

operations into the convolution process, merging these two layers
by transforming the weights and bias using the following equations:

W0 = W
Wp
f2 + n

b0 =
Wp
f2 + n

(b � `) + V
(7)

where W and V are trained parameters, f2 is the variance, ` is the
mean, and n is a small constant.

4.3.5 Activation Function. The most commonly used non-linear
activation function in CNNs is ReLU [2]. This step is combined with
aggregation after table lookups, as shown in Equation 8.

502C (a, b) = max{0,
’
B

⌘B (b): },: = 6B (a) (8)

4.4 Priority Masking
When mapping more CNN layers to table lookups, the approxi-

mation error accumulates, and the prediction performance drops.
To address this, we propose a novel priority masking strategy to
retain exact operations crucial for maintaining model performance.

We introduce a priority masking rate " 2 [0, 1] to adjust the
masking, de�ned as the rate between the number of layers to be
masked (not mapped to table) and the total number of model layers.

Given a CNN model M, its table-based approximation T , and
a priority masking rate " , we calculate the cosine similarity (⇠
of each layer’s output to compute the similarity drop between
consecutive layers (lines 9-16). We sort the similarity drop list in
descending order, giving layers with the most signi�cant drops in

Algorithm 1 Priority Masking

1: Input: Trained # -layer CNN modelM
2: Input: Trained table-based approximation model T
3: Input: Training input data D
4: Input: Priority masking rate"
5: Initialize: Layer similarity list (8< of size #
6: Initialize: Similarity di�erence list (8<⇡A>? of size # � 1
7: Initialize: Priority list %A8>A8C~ of size # � 1
8: Initialize:Mask list"0B: of size # , initialized as 1
9: for 8 in 0 to # � 1 do ù Get layer-wise similarity drop
10: yi M[0 : 8] (D)
11: ŷi T [0 : 8] (D)
12: (8<[8] (⇠ (yi, ŷi)
13: if 8 > 0 then:
14: (8<⇡A>? [8] ((8<[8] � (8<[8 � 1], 8)
15: end if
16: end for
17: %A8>A8C~ Sorted((8<⇡A>? , Reverse=True)
18: for 8 in 0 to b" (# � 1)e do ù Mask list update
19: j = %A8>A8C~[i][1]
20: "0B:[j] = 0
21: end for
22: for 8 in 0 to # � 1 do ù Retrain using mask list
23: if "0B: [8] = 0 then
24: T [8] M[8]
25: else
26: T [8] Retrain (T [8])
27: end if
28: end for

(⇠ the highest priority for masking (line 17). Based on this priority
list, we update the mask list to 0 for layer indices holding the
b" (# �1)e largest drops in similarity (lines 18-21). We then retrain
the table-based model based on the mask list. Retraining the tables
is necessary since the new architecture alters the input distribution
to layers, a�ecting prototype matching and potentially amplifying
existing input errors.

This selective masking ensures critical features are preserved,
maintaining the accuracy of the model’s inference while still bene-
�ting from the e�ciency of table lookups where appropriate.
4.5 Complexity Analysis
We analyze the computational complexity of our approach by exam-
ining arithmetic operations–an established indicator of inference
latency [7, 26]–and storage costs.

4.5.1 Arithmetic Operations. Arithmetic operations result from
the following two processes: vector encoding 6 to get table indices
and aggregation 5 after the table lookup to output results. For a
convolution of an inputwith⇠8= channels of size�⇥, , stride (, and
padding % with ⇠>DC kernels of size � ⇥ � , it follows that 6 results
in � 0, 0(log2 () operations and 5 results in � 0, 0⇠>DC ;>62 (()
operations, where � 0 = ���+2%

) + 1 and, 0 = , ��+2%
) + 1. The

total number of arithmetic operations (FLOPs) is then:

� 0, 0
⇥
(log2 () +⇠>DC log2 (()

⇤
(9)

184

CF ’24, May 7–9, 2024, Ischia, Italy Gupta et al.

Table 1: Complexity analysis of TabConv and state-of-the-art acceleration methods.

Arithmetic Operations (MFLOPs) Storage Cost (MBytes)

Approach Expression⇤ Example† Expression Example

im2col [6] ⇠>DC� 0, 0 (2� 2⇠8= � 1) 5.105 ⇠8=⇠>DC� 23 0.036
kn2row [43] ⇠>DC� 0, 0 (2� 2⇠8= � 1) 5.105 ⇠8=⇠>DC� 23 0.036
Toeplitz [5] ⇠>DC� 0, 0 (2� 2⇠8= � 1) 5.105 ⇠8=⇠>DC� 23 0.036
FFT [7] V⇠8=⇠>DC� 0, 0 + U2⇠>DC� 0, 0

� 1
2⇠8= + 13

16⇠>DC
�

0.272 V⇠8=⇠>DC� 23 + U2⇠>DC3
� 1
2⇠8= + 3

2⇠>DC
�

0.032
TabConv � 0, 0

⇥
(log2 () +⇠>DC log2 (()

⇤
0.081 � 0, 0(log2 () +⇠>DC(3 16.02

⇤ � 0 := ���+2%
) + 1,, 0 := , ��+2%

) + 1, V := 1 � U2

† Example based on the �rst convolution in ResNet-18: � = 32,, = 32, � = 7,% = 3,) = 2,⇠8= = 3,⇠>DC = 64,U = 0.5,(= 8, = 8192,3 = 4

4.5.2 Storage Cost. Storage costs consist of the vector encoding
results and table entries, where one index of an encoded prototype
incurs a cost of log2 () bytes and we denote the data byte-length
of a precomputed entry as 3 . The actual prototypes need not be
stored, as we use the encoded indices to look up table results di-
rectly. Considering the same convolution setup and parameters as
in Section 4.5.1, there are � 0, 0 prototype indices and⇠>DC(total
table entries. Thus, the resulting storage in bytes is:

� 0, 0(log2 () +⇠>DC(3 (10)

4.5.3 Comparison with State-of-the-Art. We compare our approach
to various widely used, well-optimized algorithmic acceleration
methods, each of which is outlined below.

• im2col [6]: Im2col, as seen in Section 2.2, transforms convo-
lution into matrix multiplication by creating patch matrices
from the input image and kernels.

• kn2row [43]: Kn2row turns each � ⇥ � convolution into � 2
1 ⇥ 1 convolutions by shifting the �nal feature map.

• Toeplitz [5]: Toeplitz convolutions convert the input image
to a Toeplitz matrix by unrolling kernel-sized patches.

• Fast Fourier Transform (FFT) [7]: FFT convolutions ef-
�ciently compute large kernel convolutions using Fourier
transforms to avoid direct spatial convolutions.

Table 1 describes the number of FLOPs and parameter counts for
these methods alongside our TabConv implementation. ⇠8= and
⇠>DC represent the number of input and output channels of an
arbitrary image, respectively, while� and, signify its dimensions,
� denotes kernel size,) stride, % padding, and 3 the data byte
length (� 0 and, 0 are the output dimensions, calculated using
the expressions outlined in ⇤ in the Table legend). Additionally,
U 2 [0, 1] in the FFT row is a parameter that varies by layer and
kernel size [7], and (and in the TabConv row are the number of
subspaces and prototypes per subspace, respectively.

We provide example FLOPs and storage calculations for imple-
mentation in the �rst convolution of ResNet-18, with parameters
as stated in †. Our work results in a 98.4% decrease in MFLOPs
compared to im2col, kn2row, and Toeplitz, and a 70.2% decrease
in MFLOPs compared to FFT. The con�guration (= 8, = 8192
in this case incurs large storage costs. Using (= 2, = 2048
would increasingly reduce MFLOPs while requiring a lesser 29.3x
storage compared to other approaches. Though storage cost is non-
negligible, the number of arithmetic operations is largely reduced.

5 EXPERIMENTS
5.1 Experimental Setup
5.1.1 Models. We apply our approach, TabConv, to three distinct
CNN models for evaluation, including ResNet-18, ResNet-34, and
NetworkInNetwork (NIN). The models complexity of accuracy per-
formance on a variety of datasets are shown in Table 2. The models,
selected for their varied architectural features, are as follows:

• ResNet-18 [16]: ResNet-18 is a part of the Residual Network
family with 18 layers organized into blocks, allowing for apt
training and better performance by using skip connections.

• ResNet-34 [16]: ResNet-34 extends ResNet-18 by increasing
its depth to 34 layers. It leverages extended residual blocks
and skip connections to best capture complex features.

• Network In Network (NIN) [29]: NIN integrates micro
networks asmultilayer perceptrons into convolutional layers.
We implement a 9 layer NIN for evaluation.

Table 2: Complexity and accuracy ofmodelswe implemented.

Complexity Accuracy

Model MFLOPs Size (MB) C10 C100 MN

ResNet-18 [16] 37.67 47.76 0.844 0.493 0.983
ResNet-34 [16] 75.49 87.19 0.821 0.515 0.986
NIN [29] 223.90 3.78 0.851 0.319 0.879

5.1.2 Datasets. TabConv is assessed on three datasets, consisting
of varying image complexities and class diversities, as follows:

• CIFAR-10 (C10) [23] with 60K images and 10 classes.
• CIFAR-100 (C100) [24] with 60K images and 100 classes.
• MNIST (MN) [9] with 70K images and 10 classes.

5.1.3 Metrics. To comprehensively evaluate our approach against
standard CNN performance, we consider the following metrics:

• Accuracy: determined by the percentage of test images cor-
rectly predicted as their true class, measuring the model’s
ability in prediction.

• Arithmetic operations in FLOPs: the number of �oating-
point operations (FLOPs) needed for a single inference, mea-
sures a model’s computational complexity.

• Storage cost in Bytes: the number of bytes required to store
the model, assessing the memory footprint of the model.

185

TabConv: Low-Computation CNN Inference via Table Lookups CF ’24, May 7–9, 2024, Ischia, Italy

5.2 Evaluation of Table Lookup Mapping
We thoroughly investigate the performance of mapping CNNs to
table lookups by tuning the following con�gurations: number of
subspaces (, number of prototypes per subspace , and priority
masking rate " . Based on a case con�guration (= 8, = 8192
(8K), and" = 0.4, we explore the design space of each dimension
through variable control, as shown in Table 3, Table 4, and Table 5.

Table 3: Accuracy when varying the number of subspaces (.

ResNet18 ResNet34 NIN

(" C10 C100 MN C10 C100 MN C10 C100 MN

1 8K 0.4 0.540 0.134 0.970 0.586 0.108 0.972 0.164 0.032 0.646
2 8K 0.4 0.542 0.116 0.980 0.636 0.130 0.974 0.274 0.038 0.716
4 8K 0.4 0.634 0.162 0.974 0.698 0.126 0.986 0.298 0.048 0.804
8 8K 0.4 0.696 0.172 0.982 0.728 0.164 0.986 0.472 0.064 0.812
16 8K 0.4 0.766 0.218 0.984 0.780 0.204 0.986 0.612 0.118 0.822

Table 4: Accuracy when varying the number of prototypes
per subspace.

ResNet-18 ResNet-34 NIN

(" C10 C100 MN C10 C100 MN C10 C100 MN

8 1K 0.4 0.684 0.162 0.978 0.736 0.132 0.978 0.336 0.040 0.726
8 2K 0.4 0.686 0.186 0.980 0.710 0.142 0.978 0.366 0.060 0.774
8 4K 0.4 0.722 0.180 0.982 0.724 0.154 0.980 0.422 0.064 0.806
8 8K 0.4 0.696 0.172 0.982 0.728 0.164 0.986 0.472 0.064 0.812
8 16K 0.4 0.684 0.136 0.984 0.718 0.110 0.978 0.512 0.060 0.816

Table 5: Accuracy when varying the priority masking rate" .

ResNet-18 ResNet-34 NIN

(" C10 C100 MN C10 C100 MN C10 C100 MN

8 8K 0 0.248 0.068 0.964 0.284 0.058 0.964 0.276 0.042 0.818
8 8K 0.2 0.590 0.130 0.976 0.416 0.096 0.986 0.372 0.038 0.814
8 8K 0.4 0.696 0.172 0.982 0.728 0.164 0.986 0.472 0.064 0.812
8 8K 0.6 0.840 0.254 0.988 0.806 0.220 0.988 0.474 0.186 0.838
8 8K 0.8 0.822 0.492 0.984 0.820 0.408 0.986 0.500 0.228 0.852

In Table 3, we examine how changing the number of subspaces (()
from 1 to 16 a�ects the accuracy of table-basedmodel inferences. For
ResNet-18, the accuracy drop on CIFAR-10, CIFAR-100, and MNIST
is 0.226, 0.084, and 0.014 respectively. Similarly, for ResNet-34 and
NIN across these datasets, we observe accuracy drops of 0.194, 0.096,
0.014, and 0.448, 0.086, 0.176 respectively with decreasing (. The
results indicate that more subspaces enhance the approximation
capability of table-based models.

In Table 4, we explore the in�uence of varying the number of
prototypes per subspace () from 1K to 16K on model accuracy.
Notably, in ResNet-18 on CIFAR-10, the performance drops by 0.038
when changes from 4K to either 1K or 16K, suggesting an for
certain cases. While increasing to 16K maximizes performance

in speci�c scenarios, such as ResNet-18 for MNIST and NIN for
CIFAR-10 and MNIST, too many prototypes can sometimes result in
lower accuracy. Thus, carefully calibrating is crucial, especially
when operations are more straightforward to approximate. Despite
this, increasing provides higher accuracy in most cases even
when the best accuracy is not from the maximum value of .

Table 5 shows the impact of varying the priority masking rate
(") over 0, 0.2, 0.4, 0.6, and 0.8’s e�ect on the accuracy of Tab-
Conv inference. When decreasing " from 0.8 to 0, ResNet-18 on
CIFAR-10, CIFAR-100, and MNIST has an accuracy drop of 0.574,
0.424, 0.020 respectively. For ResNet-34 on CIFAR-10, CIFAR-100,
and MNIST, table-based models undergo an accuracy drop of 0.536,
0.350, and 0.022 respectively. For NIN on CIFAR-10, CIFAR-100,
and MNIST, table-based models undergo an accuracy drop of 0.224,
0.186, and 0.034 respectively. In particular, the accuracy drops for
the MNIST dataset are low and tell that when models are able to
achieve certain performance on speci�c datasets, increasing" does
not help as much as it would on harder to approximate data.

5.3 Evaluation of Priority Masking
In evaluating the priority masking technique, we methodically re-
place 20%, 40%, 60%, and 80% of matrix multiplication operations
in the forward pass with exact neural network counterparts based
on cosine similarity, prioritizing layers with signi�cant similarity
reductions (" = 0.2, 0.4, 0.6, and 0.8). This strategy helps us to
measure the e�ects of substituting matrix operations with exact cal-
culations on a per-layer basis, highlighting key trade-o�s between
accuracy, computational complexity, and storage requirements.

In Figure 8, we present the curve of (⇠ for all models and all
datasets with (= 8 subspaces and = 8 prototypes. For ResNet-
18 on CIFAR-10 dataset, the full table average layer-wise (⇠ drop is
0.402. However, this decreases signi�cantly to 0.289, 0.245, 0.182,
and 0.019 as the masking rate (") is increased to 0.2, 0.4, 0.6, and
0.8, respectively. Furthermore, (⇠ in the last layer increases from
0.602 for the full table to 0.735, 0.793, 0.851, and 0.989 for varying
values of " . This trend holds for all models over all datasets but
not to the same severity. Since degree of approximation’s closeness
impacts the �nal accuracy, we want to minimize layer-wise drops in
(⇠ as well as maximize (⇠ in last layer. In the case of NIN, applying
more aggressive masking percentages does not improve accuracy
nor cosine similarity to the same degree. We reason this is due to
varying model architectures since NIN does not contain a linear
layer, making �nal layer approximations more di�cult.

5.4 Evaluation of Complexity
We comprehensively evaluate table-based models’ complexity and
tradeo�s, noting our work is a time-space tradeo� approach. Figure
9 shows the trade o� between storage and number of operations
for table-based models under varying values of" . For example in
CIFAR-10, ResNet-18 shows a FLOPs decrease from 39.5 million
to as low as 260,000 in the process of converting the full CNN to
tables. For ResNet-34, the reduction is from 79.1 million to around
388,000 FLOPs. The NIN model shows a signi�cant drop from 234.8
million to about 2.5 million FLOPs. In terms of storage, ResNet-18’s
memory footprint goes from 11.7 MB to 343.0 MB when converting
all operations to table lookups. ResNet-34’s memory footprint goes

186

CF ’24, May 7–9, 2024, Ischia, Italy Gupta et al.

Figure 8: Layer-wise cosine similarity ((⇠) when varying" .

from 21.8 MB to 594.5 MB when converting all operations to table
lookups. NIN’s memory footprint goes from 997.0 KB to 88.6 MB
when converting all operations to table lookups.

5.5 Evaluation of Overall Performance
We introduce three metrics to evaluate the relative performance
against standard CNNs: '� , '� , and '(where '� measures the
accuracy ratio, '� measures the ratio of total operations, and '(
measures the storage cost ratio between TabConv and CNNs.

In Table 6, we summarize the selection of priority masking rate"
and TabConv overall performance given the lower bounds of '� at
0.9, 0.8, and 0.7. For a bound '� � 0.9, TabConv retains at least 93%
of the original model’s accuracy ('� � 0.93), achieving a reduction
in FLOPs of 36.5%, 25.8%, and 99.4% for ResNet-18 on CIFAR-10,
CIFAR-100, and MNIST, respectively. It also reduces FLOPs by 35.6%
and 99.3% for ResNet-34 on CIFAR-10 and MNIST, respectively, and
achieves a 98.9% reduction in FLOPs for NIN on MNIST. When
attaining over 80% of initial CNN accuracy, TabConv is able to
reduce 58.6% and 60.5% of total operations during inference for
ResNet-18 and ResNet-34 on CIFAR-10 respectively. When attaining
over 70% of CNN accuracy, TabConv is able to reduce 77.2% of FLOPs
for ResNet-18 on CIFAR-10, reduce 36.3% FLOPs for ResNet-34 on
CIFAR-100, and reduce 10.8% FLOPs for NIN on CIFAR-100.

TabConv-based models exhibit a space-time tradeo�, necessi-
tating on average a 32.0⇥, 33.4⇥, and 29.8⇥ increase in memory
footprint to retain 90%, 80%, and 70% accuracy, respectively, com-
pared to CNN-based models. In general, our work e�ectively re-
duces the number of operations required for CNN inference while
maintaining model accuracy, albeit with increased storage costs.

6 CONCLUSION
We proposed TabConv, a novel CNN approximation based on con-
verting key operations to table lookups. The key steps in our pro-
cess include taking a trained CNN and converting all instances
of convolution to matrix multiplication, mapping these to table

Figure 9: Operations and storage costs when varying" .

Table 6: TabConv masking selection and performance when
maintaining thresholds of original CNN accuracy.

ResNet-18 ResNet-34 NIN

Bound Res C10 C100 MN C10 C100 MN C10 C100 MN
" 0.6 0.8 0 0.6 - 0 - - 0

0.9 '� 0.995 0.998 0.981 0.982 - 0.984 - - 0.931
'� 0.636 0.742 0.006 0.644 - 0.007 - - 0.011
'(20.61 7.377 27.26 17.81 - 25.21 - - 94.80
" 0.4 0.8 0 0.4 - 0 - - 0

0.8 '� 0.825 0.998 0.981 0.887 - 0.984 - - 0.931
'� 0.414 0.742 0.006 0.395 - 0.007 - - 0.011
'(23.62 7.377 27.26 22.08 - 25.21 - - 94.80
" 0.2 0.8 0.0 0.4 0.8 0 - 0.8 0

0.7 '� 0.700 0.998 0.981 0.887 0.792 0.984 - 0.715 0.931
'� 0.228 0.742 0.006 0.395 0.637 0.007 - 0.892 0.011
'(24.64 7.38 27.26 22.08 12.09 25.21 - 26.03 94.80

lookups via product quantization, and employing a priority mask-
ing technique to identify which layers should be replaced by table
approximation and which should retain their original form. Our
TabConv-based model signi�cantly reduces arithmetic operations
while maintaining performance. In future work, we plan to opti-
mize the table-based approximation through developing automatic
con�guration tools for table structure, quantized table entries for
compression, and better hashing functions for prototype matching.

ACKNOWLEDGMENT
This work has been supported by the U.S. National Science Founda-
tion (NSF) under grants CNS-2009057 and SaTC-2104264, as well as
theDEVCOMArmyResearch Lab (ARL) under grantW911NF2220159.

REFERENCES
[1] Kamel Abdelouahab, Maxime Pelcat, Jocelyn Serot, and François Berry. 2018.

Accelerating CNN inference on FPGAs: A Survey. arXiv:1806.01683 [cs.DC]
[2] Abien Fred Agarap. 2018. Deep learning using recti�ed linear units (relu). arXiv

preprint arXiv:1803.08375 (2018).
[3] Davis Blalock and John Guttag. 2021. Multiplying matrices without multiplying.

In International Conference on Machine Learning. PMLR, 992–1004.

187

TabConv: Low-Computation CNN Inference via Table Lookups CF ’24, May 7–9, 2024, Ischia, Italy

[4] Kumar Chellapilla, Sidd Puri, and Patrice Simard. 2006. High performance convo-
lutional neural networks for document processing. In Tenth international work-
shop on frontiers in handwriting recognition. Suvisoft.

[5] Yiran Chen, Yuan Xie, Linghao Song, Fan Chen, and Tianqi Tang. 2020. A survey
of accelerator architectures for deep neural networks. Engineering 6, 3 (2020),
264–274.

[6] Sharan Chetlur, Cli� Woolley, Philippe Vandermersch, Jonathan Cohen, John
Tran, Bryan Catanzaro, and Evan Shelhamer. 2014. cudnn: E�cient primitives
for deep learning. arXiv preprint arXiv:1410.0759 (2014).

[7] Lu Chi, Borui Jiang, and Yadong Mu. 2020. Fast Fourier Convolution. In
Advances in Neural Information Processing Systems, H. Larochelle, M. Ran-
zato, R. Hadsell, M.F. Balcan, and H. Lin (Eds.), Vol. 33. Curran Associates,
Inc., 4479–4488. https://proceedings.neurips.cc/paper_�les/paper/2020/�le/
2fd5d41ec6cfab47e32164d5624269b1-Paper.pdf

[8] Michael B Cohen, Jelani Nelson, and David P Woodru�. 2015. Optimal approx-
imate matrix product in terms of stable rank. arXiv preprint arXiv:1507.02268
(2015).

[9] Li Deng. 2012. The mnist database of handwritten digit images for machine
learning research. IEEE Signal Processing Magazine 29, 6 (2012), 141–142.

[10] Petros Drineas and Ravi Kannan. 2001. Fast Monte-Carlo algorithms for approxi-
mate matrix multiplication. In Proceedings 42nd IEEE Symposium on Foundations
of Computer Science. IEEE, 452–459.

[11] Mostafa Elhoushi, Zihao Chen, Farhan Sha�q, Ye Henry Tian, and Joey Yiwei Li.
2021. Deepshift: Towards multiplication-less neural networks. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition. 2359–2368.

[12] Deena P Francis and Kumudha Raimond. 2022. A practical streaming approximate
matrix multiplication algorithm. Journal of King Saud University-Computer and
Information Sciences 34, 1 (2022), 1455–1465.

[13] Ross Girshick. 2015. Fast r-cnn. In Proceedings of the IEEE international conference
on computer vision. 1440–1448.

[14] Neelesh Gupta, Pengmiao Zhang, Rajgopal Kannan, and Viktor Prasanna. 2023.
PaCKD: Pattern-Clustered Knowledge Distillation for Compressing Memory
Access Prediction Models. In 2023 IEEE High Performance Extreme Computing
Conference (HPEC). 1–7. https://doi.org/10.1109/HPEC58863.2023.10363610

[15] Song Han, Huizi Mao, andWilliam J Dally. 2015. Deep compression: Compressing
deep neural networks with pruning, trained quantization and hu�man coding.
arXiv preprint arXiv:1510.00149 (2015).

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[17] Geo�rey Hinton, Oriol Vinyals, and Je� Dean. 2015. Distilling the knowledge in
a neural network. arXiv preprint arXiv:1503.02531 (2015).

[18] Sergey Io�e and Christian Szegedy. 2015. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In International conference
on machine learning. pmlr, 448–456.

[19] Herve Jegou, Matthijs Douze, and Cordelia Schmid. 2010. Product quantization
for nearest neighbor search. IEEE transactions on pattern analysis and machine
intelligence 33, 1 (2010), 117–128.

[20] Heehoon Kim, Hyoungwook Nam, Wookeun Jung, and Jaejin Lee. 2017. Per-
formance analysis of CNN frameworks for GPUs. In 2017 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS). IEEE,
55–64.

[21] Min Soo Kim, Alberto A Del Barrio, Hyunjin Kim, and Nader Bagherzadeh. 2021.
The e�ects of approximate multiplication on convolutional neural networks.
IEEE Transactions on Emerging Topics in Computing 10, 2 (2021), 904–916.

[22] Jong Hwan Ko, Burhan Mudassar, Taesik Na, and Saibal Mukhopadhyay. 2017.
Design of an energy-e�cient accelerator for training of convolutional neural
networks using frequency-domain computation. In Proceedings of the 54th Annual
Design Automation Conference 2017. 1–6.

[23] Alex Krizhevsky, Vinod Nair, and Geo�rey Hinton. [n. d.]. CIFAR-10 (Canadian
Institute for Advanced Research). ([n. d.]). http://www.cs.toronto.edu/~kriz/cifar.
html

[24] Alex Krizhevsky, Vinod Nair, and Geo�rey Hinton. [n. d.]. CIFAR-100 (Canadian
Institute for Advanced Research). ([n. d.]). http://www.cs.toronto.edu/~kriz/cifar.
html

[25] Alex Krizhevsky, Ilya Sutskever, and Geo�rey E Hinton. 2012. ImageNet Clas-
si�cation with Deep Convolutional Neural Networks. In Advances in Neural
Information Processing Systems, F. Pereira, C.J. Burges, L. Bottou, and K.Q. Wein-
berger (Eds.), Vol. 25. Curran Associates, Inc. https://proceedings.neurips.cc/
paper_�les/paper/2012/�le/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

[26] Andrew Lavin and Scott Gray. 2016. Fast algorithms for convolutional neural
networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition. 4013–4021.

[27] Rui Li, Yufan Xu, Aravind Sukumaran-Rajam, Atanas Rountev, and P. Sadayappan.
2021. E�cient distributed algorithms for Convolutional Neural Networks. CoRR
abs/2105.13480 (2021). arXiv:2105.13480 https://arxiv.org/abs/2105.13480

[28] Tailin Liang, John Glossner, Lei Wang, Shaobo Shi, and Xiaotong Zhang. 2021.
Pruning and quantization for deep neural network acceleration: A survey. Neu-
rocomputing 461 (2021), 370–403.

[29] Min Lin, Qiang Chen, and Shuicheng Yan. 2014. Network In Network.
arXiv:1312.4400 [cs.NE]

[30] Jonathan Long, Evan Shelhamer, and Trevor Darrell. 2015. Fully convolutional
networks for semantic segmentation. In Proceedings of the IEEE conference on
computer vision and pattern recognition. 3431–3440.

[31] Avner Magen and Anastasios Zouzias. 2011. Low rank matrix-valued Cherno�
bounds and approximate matrix multiplication. In Proceedings of the twenty-
second annual ACM-SIAM symposium on Discrete Algorithms. SIAM, 1422–1436.

[32] Youssef Mroueh, Etienne Marcheret, and Vaibahava Goel. 2017. Co-occurring
directions sketching for approximate matrix multiply. In Arti�cial Intelligence
and Statistics. PMLR, 567–575.

[33] Eriko Nurvitadhi, Ganesh Venkatesh, Jaewoong Sim, Debbie Marr, Randy Huang,
Jason Ong Gee Hock, Yeong Tat Liew, Krishnan Srivatsan, Duncan Moss, Suchit
Subhaschandra, et al. 2017. Can FPGAs beat GPUs in accelerating next-generation
deep neural networks?. In Proceedings of the 2017 ACM/SIGDA international
symposium on �eld-programmable gate arrays. 5–14.

[34] Andrew Putnam, Adrian M Caul�eld, Eric S Chung, Derek Chiou, Kypros Con-
stantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth
Gopal, Jan Gray, et al. 2015. A recon�gurable fabric for accelerating large-scale
datacenter services. IEEE Micro 35, 3 (2015), 10–22.

[35] Valentin Radu, Kuba Kaszyk, Yuan Wen, Jack Turner, José Cano, Elliot J. Crowley,
Björn Franke, Amos Storkey, and Michael O’Boyle. 2019. Performance Aware
Convolutional Neural Network Channel Pruning for Embedded GPUs. In 2019
IEEE International Symposium onWorkload Characterization (IISWC). 24–34. https:
//doi.org/10.1109/IISWC47752.2019.9042000

[36] Simon Rovder, José Cano, and Michael O’Boyle. 2019. Optimising convolutional
neural networks inference on low-powered GPUs. (2019).

[37] Annachiara Ruospo, Ernesto Sanchez, Marcello Traiola, Ian O’Connor, and Al-
berto Bosio. 2021. Investigating data representation for e�cient and reliable
Convolutional Neural Networks. Microprocessors and Microsystems 86 (08 2021).
https://doi.org/10.1016/j.micpro.2021.104318

[38] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.
2015. Imagenet large scale visual recognition challenge. International journal of
computer vision 115 (2015), 211–252.

[39] Caio Salvador Rohwedder, João Paulo Labegalini de Carvalho, José Amaral, Guido
Araujo, Giancarlo Colmenares, and Amy Wang. 2021. Pooling Acceleration in
the DaVinci Architecture Using Im2col and Col2im Instructions. 46–55. https:
//doi.org/10.1109/IPDPSW52791.2021.00016

[40] Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. arXiv:1409.1556 [cs.CV]

[41] L. Sterpone, S. Azimi, and C. De Sio. 2023. CNN-Oriented Placement Algorithm
for High-Performance Accelerators on Rad-Hard FPGAs. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (2023), 1–13. https:
//doi.org/10.1109/TCAD.2023.3331976

[42] Hugo Touvron, Andrea Vedaldi, Matthijs Douze, and Hervé Jégou. 2019. Fixing
the train-test resolution discrepancy. Advances in neural information processing
systems 32 (2019).

[43] Aravind Vasudevan, Andrew Anderson, and David Gregg. 2017. Parallel multi
channel convolution using general matrix multiplication. In 2017 IEEE 28th inter-
national conference on application-speci�c systems, architectures and processors
(ASAP). IEEE, 19–24.

[44] Qiaomin Ye, Luo Luo, and Zhihua Zhang. 2016. Frequent direction algorithms
for approximate matrix multiplication with applications in CCA. computational
complexity 1, m3 (2016), 2.

[45] Tan Yu, Junsong Yuan, Chen Fang, and Hailin Jin. 2018. Product quantization
network for fast image retrieval. In Proceedings of the European Conference on
Computer Vision (ECCV). 186–201.

[46] Yuhui Yuan, Xilin Chen, and Jingdong Wang. 2020. Object-contextual representa-
tions for semantic segmentation. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part VI 16. Springer,
173–190.

[47] Pengmiao Zhang, Neelesh Gupta, Rajgopal Kannan, and Viktor K. Prasanna. 2024.
Attention, Distillation, and Tabularization: Towards Practical Neural Network-
Based Prefetching. arXiv:2401.06362 [cs.NE]

[48] Pengmiao Zhang, Ajitesh Srivastava, Anant V. Nori, Rajgopal Kannan, and Vik-
tor K. Prasanna. 2022. Fine-grained address segmentation for attention-based
variable-degree prefetching. In Proceedings of the 19th ACM International Confer-
ence on Computing Frontiers (Turin, Italy) (CF ’22). Association for Computing Ma-
chinery, New York, NY, USA, 103–112. https://doi.org/10.1145/3528416.3530236

188

