n)
we Sparse MTTKRP Acceleration for Tensor Decomposition on GPU

Sasindu Wijeratne
University of Southern California
Los Angeles, California, USA
kangaram@usc.edu

ABSTRACT

Sparse Matricized Tensor Times Khatri-Rao Product (spMTTKRP)
is the bottleneck kernel of sparse tensor decomposition. In this
work, we propose a GPU-based algorithm design to address the
key challenges in accelerating spMTTKRP computation, includ-
ing (1) eliminating global atomic operations across GPU thread
blocks, (2) avoiding the intermediate values being communicated
between GPU thread blocks and GPU global memory, and (3) ensur-
ing a balanced distribution of workloads across GPU thread blocks.
Our approach also supports dynamic tensor remapping, enabling
the above optimizations in all the modes of the input tensor. Our
approach achieves a geometric mean speedup of 1.5x, 2.0x, and
21.7x in total execution time across widely used datasets compared
with the state-of-the-art GPU implementations. Our work is the
only GPU implementation that can support tensors with modes
greater than 4 since the state-of-the-art works have implementation
constraints for tensors with a large number of modes.

CCS CONCEPTS

« Computing methodologies — Massively parallel algorithms;
Shared memory algorithms; Concurrent algorithms.

KEYWORDS
Tensor Decomposition, spMTTKRP, GPU

ACM Reference Format:

Sasindu Wijeratne, Rajgopal Kannan, and Viktor Prasanna. 2024. Sparse
MTTKRP Acceleration for Tensor Decomposition on GPU. In 21st ACM
International Conference on Computing Frontiers (CF °24), May 7-9, 2024,
Ischia, Italy. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/
3649153.3649187

1 INTRODUCTION

Tensor Decomposition (TD) provides an intuitive method for repre-
senting multidimensional data by effectively encapsulating lower-
dimensional multi-aspect structures. TD is used in various domains,
including network analysis [8], machine learning [4, 18, 29], and sig-
nal processing [31]. Within the domain of TD, Canonical Polyadic
Decomposition (CPD) has emerged as a widely used approach, with
the computationally intensive Matricized Tensor Times Khatri-Rao
Product (MTTKRP) being the most time-consuming kernel.

This work is licensed under a Creative Commons Attribution International 4.0
License.

CF 24, May 7-9, 2024, Ischia, Italy

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0597-7/24/05.

https://doi.org/10.1145/3649153.3649187

Rajgopal Kannan
DEVCOM Army Research Lab
Los Angeles, California, USA
rajgopal.kannan.civ@army.mil

Viktor Prasanna
University of Southern California
Los Angeles, California, USA
prasanna@usc.edu

Real-world tensors often exhibit irregular shapes and nonzero
value distributions, which pose significant challenges when per-
forming spMTTKRP computations on GPU. These challenges arise
from irregular memory access patterns, load imbalances among a
large number of GPU threads, and the synchronization overhead
associated with performing atomic operations.

Recent efforts have proposed mode-agnostic tensor optimiza-
tions to address these issues by maintaining a single tensor copy,
distributing spMTTKRP computations across GPU threads, and
optimizing load balancing for the overall computation [13]. How-
ever, these implementations use global atomic operations, which
introduce a considerable synchronization latency between stream-
ing multiprocessors. Additionally, these approaches increase the
demands on external memory since they store the intermediate
computation results in GPU global memory for future use. It intro-
duces challenges in scalability, limiting the applicability of these
approaches. As the size of the tensor increases, there is a loom-
ing risk of memory explosion, further exacerbating the scalabil-
ity problem. To accommodate the irregular data access patterns
inherent in each tensor mode, proposed tensor formats in the lit-
erature rely on multiple copies, often called mode-specific tensor
formats [16, 21, 23, 26] where mode-specific optimizations are used
in each tensor copy. However, replicating the original tensor across
different permutations of nonzero tensor elements becomes im-
practical as the number of modes grows. In this paper, we compare
our work against state-of-the-art mode-agnostic and mode-specific
implementations as discussed in Section 5.1.4 and Section 5.6.

In our prior work [33], we have introduced FLYCOO, a tensor for-
mat tailored to accelerate spMTTKRP on Field Programmable Gate
Arrays (FPGAs). FLYCOO optimizes data locality across all tensor
modes when accessing the input tensor and factor matrices within
the FPGA external memory. Furthermore, [33] proposes a dynamic
tensor remapping technique that is performed during execution.
This strategic tensor reordering reduces inter-processor dependen-
cies during elementwise computations. Moreover, this approach
eliminates the need for multiple tensor copies corresponding to the
number of tensor modes and mitigates memory explosion arising
from the large number of intermediate values generated during the
execution.

In this paper, we adopt and refine the FLYCOO format to cre-
ate a parallel algorithm tailored for GPUs, effectively obviating
the necessity for specialized hardware. We introduce GPU-specific
optimizations, facilitating load-balanced computation across GPU
Streaming Multiprocessors (SMs) without global atomic operations.

The key contributions of this work are:

e We introduce a novel parallel algorithm to perform spMTTKRP
on GPU. Our algorithm eliminates the intermediate value
communication across GPU thread blocks. It achieves 2.3x

https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3649153.3649187&domain=pdf&date_stamp=2024-07-02

CF °24, May 7-9, 2024, Ischia, Italy

higher L1-cache throughput during the execution time com-

pared with the state-of-the-art.

We introduce dynamic tensor remapping on GPU to reorder

the tensor during runtime, enabling mode-specific optimiza-

tions to the tensor format. These optimizations lead to 1.2x -
1.9x higher streaming multiprocessor throughput compared
with the state-of-the-art.

e We map our proposed parallel algorithm to GPU thread
blocks where each thread block can concurrently execute
SpMTTKRP elementwise computation without global atomic
operations and perform dynamic tensor remapping without
atomic operations among GPU threads.

e Our approach achieves a geometric mean speedup of 1.5x
and 2.0x in total execution time compared with the baselines
with mode-specific optimizations. Our work also shows a
geometric mean speedup of 21.7x in execution time com-
pared with the state-of-the-art mode-agnostic implementa-
tions.

2 BACKGROUND AND RELATED WORK

2.1 Introduction to Tensors

A tensor is a generalization of an array to multiple dimensions. In
the simplest high-dimensional case, a tensor is a three-dimensional
array, which can be visualized as a data cube. For a thorough review
of tensors, refer to [12]. Table 1 summarizes the tensor notations.

2.1.1 Tensor mode. Table 1: Notations

In Tensor De- Symbol Details
composition, the o vector outer product
number of di- ® Kronecker product
mensions of o) Khatri-Rao product

an input ten- A matrix

sor is commonly a vector

called the num- a scalar

ber of tensor X sparse tensor
modes. For ex- X(d) mode-d matricization of X’

ample, a vec-
tor can be seen as a mode-1 tensor. A N-mode, real-valued tensor
is denoted by X € RIoXIN-1 This paper focuses on tensors of
mode three or higher for tensor decomposition.

2.1.2 Indices of a nonzero tensor element.

For a 3-mode tensor, X € RIOXIlXIZ, a nonzero tensor element is
indicated as x = X (ig, i1, i2). Here, iy, i1, and iy are the positions or
coordinates of x in the tensor X', which are commonly referred to
as indices of the tensor element.

2.1.3 Tensor matricization. X,y denotes the mode-n matricization
or matrix unfolding [7] of X. X(n) is defined as the matrix X(n) €

RInX U In-tlnsiIN-1) where the parenthetical ordering indicates,

the mode-n column vectors are arranged by sweeping all the other
mode indices through their ranges.

2.1.4 Canonical Poliyedic Tensor Decomposition (CPD). CPD de-
composes X into a sum of single-mode tensors (i.e., arrays), which
best approximates X'. For example, given a 3-mode tensor X" €

RICEXE gy goal is to approximate the original tensor as X =~

89

Sasindu Wijeratne, Rajgopal Kannan, and Viktor Prasanna

25:01 arobyocr, where R is a positive integer and a, € RIO, by € Rll,
and ¢y € R,

For each of the three modes, the spMTTKRP operation can be
expressed as

A=X(BoC),B=X,)(CoA), C=Xy,(A0B) (1)

The alternating least squares (ALS) method is used to compute
CPD. In a 3-mode tensor, CPD sequentially performs the computa-
tions in Equation 1, iteratively. This can be generalized to higher
mode tensors. Note that the matricization of X is different for each
factor matrix computation. In this paper, performing MTTKRP on
all the matricizations of an input tensor is called computing MT-
TKRP along all the modes. The outputs A, B, and C are the factor
matrices that approximate X ar, by, and ¢ refers to the P column
of A, B, and C, respectively.

In this paper, we focus on MTTKRP on sparse tensors (spMTTKRP),
which means the tensor is sparse. Note however, that the factor
matrices are dense.

2.1.5 Elementwise computation. The focus of this paper is to re-
duce the total execution time of spMTTKRP along all the modes of
the tensor. Efficiently performing the elementwise computation is
described below.

Figure 1 summarizes the elementwise computation of a nonzero
tensor element in mode 2 of a tensor with 3 modes.

In Figure 1, the
elementwise com-
putation is carried
out on a nonzero
tensor element, de-
noted as X(Z) (io, il,iz). -

In sparse tensors, 7

X(2) (io, i1, 12) is typ- X | [

ically represented S

in formats such GPU Global Memory
as COOrdinate (COO).

These formats store Figure 1: Elementwise computation

the indices (ip, i1, and iz) along with the element value (i.e.,
Ual(X(Z) (io, i1, iz))).

To perform the computation, X5 (io, i1, i) is first loaded onto
the processing units (i.e., streamings multiprocessors for GPU) from
the external memory (Step 1). The compute device retrieves the
rows A(ig,:), B(i1,:), and C(i, :) from the factor matrices using the
index values extracted from X(y) (io, i1, i2) (Step 2, Step 3, and Step
4). Then the compute device performs the following computation:

C(iz,r) = C(iz,r‘) +Val(X(2)(io, il,iz)) -A(i(),r) o B(il,r)

Here, r refers to the column index of a factor matrix row (r < R).
The operation involves performing a Hadamard product between
row A(io,:) and row B(iy, :), and then multiplying each element of
the resulting product by val(X{;) (io, i1, iz)). Finally, the updated
value is stored in the external memory (Step 5).

2.2 Related Work

A. Nguyen et al. [19] propose the Blocked Linearized CoOrdinate
(BLCO) format that enables efficient out-of-memory computation
of tensor algorithms using a unified implementation that works

Sparse MTTKRP Acceleration for Tensor Decomposition on GPU

on a single tensor copy. In contrast to BLCO, we use a dynamic
tensor format that can be used to reorder the tensor during runtime.
Our work also does not require a conflict resolution algorithm
like BLCO that can introduce additional overhead to the overall
execution time.

I. Nisa et al. [21, 23] propose a novel tensor format to distribute
the workload among GPU threads. This work requires multiple
tensor copies to perform spMTTKP along all the modes of the
input tensor. Unlike [21, 23], our work employs a dynamic tensor
remapping technique to optimize data locality during elementwise
computation and eliminate the global atomic operations.

J. Li et al. [13] introduce a GPU implementation employing
HiCOO [14] tensor format to accelerate spMTTKRP. Their approach
incorporates a block-based format with compression techniques
to handle sparse tensors efficiently. Compared with [13], our work
reduces the intermediate value communication to the GPU global
memory with a novel tensor format and introduces a novel tensor
partitioning scheme to load balance the total computations among
GPU SMs.

In our prior work [33], we developed a custom accelerator design
targeted for Field Programmable Gate Array (FPGA) to perform
spMTTKRP on sparse tensors. We introduce a specialized tensor
format called FLYCOO, which supports custom hardware-specific
optimizations. We also adopted the FLYCOO tensor format to per-
form spMTTKRP on multi-core CPU [32]. However, it is important
to note that tackling spMTTKRP on a GPU presents a unique set
of challenges compared to FPGA and CPU architectures. In this
work, we adapt the FLYCOO format and propose GPU-specific opti-
mizations, including ensuring a balanced distribution of workloads
across GPU thread blocks, eliminating global atomic operations
across GPU thread blocks, and avoiding the intermediate values
being communicated across GPU thread blocks.

3 OPTIMIZING TENSOR FORMAT FOR GPU

In this paper, we develop a GPU-specific dynamic tensor remapping
based on adapting the mode-agnostic tensor format FLYCOO [33].
In this Section, we first introduce the dynamic tensor remapping
used in FLYCOO. After that, we briefly summarize the novelty of
our work following the notion of hypergraph representation of a
tensor and then use it to describe our dynamic tensor remapping
strategy for GPUs.

In the following, When performing spMTTKRP for mode d of a
tensor, we denote mode d as the output mode and its corresponding
factor matrix as the output factor matrix. The rest of the tensor
modes are called input modes, and the corresponding factor matri-
ces are called input factor matrices.

3.1 Dynamic Tensor Remapping

Dynamic tensor remapping involves reordering nonzero tensor
elements at runtime based on the next mode in which spMTTKRP
is performed.

Initially, the tensor is ordered based on the indices of mode 0.
As the spMTTKRP computation proceeds for mode 0, the tensor
is dynamically reordered according to the indices of mode 1. Con-
sequently, when the computation for mode 1 begins, the tensor is
already ordered according to the indices of mode 1.

90

CF ’24, May 7-9, 2024, Ischia, Italy

3.2 Modified FLYCOO Tensor Format

We refine the tensor element representation by introducing a novel
remap ID scheme that can perform dynamic tensor remapping
on each nonzero tensor element independently of each other (see
Section 3.5). Hence, it avoids atomic operations among GPU threads
while performing dynamic tensor remapping(see Observation 1).

We also introduce a SM-based tensor partitioning scheme that
load balances the total computations among the GPU SMs (see
Section 3.4). It reduces the idle time of SMs, resulting in higher
overall GPU compute throughput.

3.3 Hypergraph Representation

For a N mode tensor X € RI0*"*IN-1 with | X| nonzero elements,
we consider the hypergraph, € (I, Y) with vertex setI = [yul; U---U
In—-1 and each nonzero tensor element in X being represented as a
hyperedge in Y. Here, I; is the set of all the indices in mode d and
|Y| = |X|. Figure 3 shows an example hypergraph representation of
a 3-mode tensor. , ;

Observe that (Ref.
Section 2.1.5) when
computing spMTTKRP
for a row in factor
matrix of mode d
(the output mode), el-
ementwise computa-
tions are performed
on the nonzero ten-
sor elements with
the same mode d index (Ref. Section 2.1.2) as the mode d factor ma-
trix row. In the hypergraph representation, the computation of the
output factor matrix of mode d involves performing elementwise
operations on all the hyperedges connected to the same vertex in
mode d of the tensor. Hence, we propose a partitioning scheme that
brings all the hyperedges connected to the same output mode vertex
into the same partition. Doing so allows each tensor partition to
be executed without dependencies among tensor partitions while
updating the output values.

Figure 3: Example hypergraph of a
3-mode tensor

3.4 Tensor Partitioning Scheme

Algorithm 1: Tensor Partitioning Scheme

1 Input: Hypergraph (L, Y) with vertices sorted along a
given mode based on the number of hyperedges in Y
incident on each vertex

2 B with N x k empty tensor blocks

©

Output: B, where each index, iy ; mapped to a block By g
4 for each moded =0,...,N —1do

5 for each vertex j = 0,...,|I;| do

6 // identify the least filled block in mode d
7 b = min(|By ,,|); Yw

8 b.append(iy ;)

9 return B

Following the notation introduced in Section 3.3, consider the
input tensor X" and its corresponding hypergraph representation
Z where @ is partitioned into x tensor partitions along each mode.

CF ’24, May 7-9, 2024, Ischia, Italy

o oo | O
O/ 0/0 |0 O
0 |6 b

B B
(b) Partition along mode O

@ ®
®» @
& ©®

(a) Example 3-mode hypergraph

Sasindu Wijeratne, Rajgopal Kannan, and Viktor Prasanna

®, |
® © |

B1,0) By

(c) Partition along mode 1

)
@
@ @

By

@ O
k) @

© O
® O

B0
(d) Partition along mode 2

Figure 2: Example hypergraph partitioning

In &, for a given mode d, the vertices in I; are ordered based on
the number of hyperedges in Y incident on each vertex. Let us
denote the ordered vertex set for mode d as Ij_,;dered- Subsequently,
we iterate through the ordered list, I;_, dered. Vertex by vertex,
and assign each vertex to a partition in a cyclic fashion. This step
effectively partitions the vertices in mode d among the x tensor
partitions. Next, we collect all the hyperedges incident on each
tensor partition. We denote these hyperedges that map to partition
J as Partition ID By ; where 0 < j < k. Once the partitioning is
complete, we order the hyperedges based on the partition IDs (i.e.,
Bg j) and assign a remap id, by to each hyperedge, reflecting its
position within the overall tensor. This entire process is repeated
for all the modes of the hypergraph. Algorithm 1 summarizes the
tensor partitioning scheme.

Figure 2 demonstrates a partitioning scheme for an example
hypergraph with 4 hyperedges and 3 vertices along each mode
and k = 2. In the Figure, different hyperedges are represented by
lines with different colors. In mode 0, vertex i is incident to 2
hyperedges, while vertices iy and i; each have a single hyperedge
incident to them. Following the partitioning scheme outlined in
Algorithm 1, we assign hyperedges incident to iy to partition 0 of
mode 0 (i.e., By,o) and hyperedges incident to ip and i; to By ;. In
this configuration, each partition of mode 0 contains 2 hyperedges.
This process is similarly used for the remaining modes, as shown
in Figure 2.

3.4.1 Load Balancing. The proposed tensor partitioning scheme
ensures a balanced load distribution among the SMs, at most 4/3
times the optimal partitioning. It also results in the same theoretical
tight bound as the theorem in [9, 33].

3.5 Tensor Element Representation

Using the FLYCOO tensor format in [33] and the proposed tensor
partitioning scheme in Section 3.4, a tensor X’ can be represented
as a sequence xo, ..., X|x|_1» where each element x; is a tuple (a;,
Bi, val;). Here, a; = (bo,...,bn_1) represents a vector of remap
ids based on the position of x; in each output tensor mode and f;
= (co,...,cN—1) represents a vector of indices of x; in each mode
(see Section 2.1.2).

3.5.1 Memory Requirements. Following the tensor element rep-
resentation, a tensor element x; is a tuple (;, fi, val;). A single
nonzero element in the FLYCOO format requires N x log, (| X|) +
Zﬁ:’;ol log, |I| + 8qat bits, where Jp,; is the number of bits needed
to store the floating-point value of the nonzero tensor element.

ai| = N xlog, (X)), |i| = 55" log, 1Ty

Here, , and |val;| = goat-

91

4 PARALLEL ALGORITHM
4.1 Elementwise Computation on GPU

Algorithm 2 describes the elementwise computation carried out
on each nonzero tensor element. In Algorithm 2, the rows of the
input factor matrices are loaded from GPU global memory (Algo-
rithm 2: lines 9-10) depending on the indices of the current tensor
element (f;) that is being executed in the GPU thread. Each GPU
thread block locally updates the output factor matrix (Algorithm 2:
lines 15) while each thread inside the thread block maintains the
coherency to ensure the correctness of the program. The elemen-
twise computation between the tensor element and the rows of
the input factor matrices (Algorithm 2, lines 9-15) is the same as in
Section 2.1.5.

Algorithm 2: Elementwise Computation for mode d

1 EC(Bi, value, Y):

2 Input: Mode indices of xj, f; = (¢o,...,cN-1)
3 Value of x; value
4 Factor matrices Y = {Yy, Y1, ..., YN_1}

5 Output: Updated Y

6 // £ is a vector of size R

7 for each rank r in R parallel do

8 L £(r) < value

o for input mode w € {0,...,N -1} \ {d} do

10 vec < Load(row ¢y from wt factor matrix)

1 // Row 0 to R — 1 of the thread block perform
independent computations

12 for each rank r in R parallel do

13 L £(r) < £(r) x vec(r)

14 for each rank r in R parallel do
15 L Y;(cg,r) < Threadblock_Update(Y;(cg,r) + £(r))

4.2 Dynamic Tensor Remapping on GPU

Algorithm 3 shows executing dynamic tensor remapping on a
nonzero tensor element. As described in Section 3.1, dynamic tensor
remapping reorders the tensor during execution time to support the
spMTTKRP computation along the subsequent mode. Algorithm 3
shows the dynamic tensor remapping performed during mode d
elementwise computation. Hence, Algorithm 3 remap the tensor
according to the remap ids of mode bout = p(441) mod N tO support
the spMTTKRP computation along the subsequent mode (d + 1)
mod N. The reordered nonzero tensor elements are collected in the
tensor copy, Tour (Algorithm 3: line 6). With the proposed tensor
partitioning scheme in Section 3.4, all the threads in a GPU thread
block that perform dynamic tensor remapping can independently

Sparse MTTKRP Acceleration for Tensor Decomposition on GPU

operate on nonzero elements, avoiding atomic operations among
the GPU threads as demonstrated in Observation 1.

Algorithm 3: Dynamic Tensor Remapping

1 DR(xis bout, Tout):
2 Input: Tensor element, (x;)

3 Next mode position of X;, Prext mode
4 Remapping tensor Toyt

5 Output: Remapped tensor, Tour

6 Tour < xj U Tour at bout

4.3 Parallel Algorithm Mapping to GPU Thread
Blocks

Algorithm 4: Parallel Algorithm on GPU thread block (for
mode d)

1 Thread Block(Bd’Z, Y, Tout):
2 Input: Input tensor partition, By ,

3 Factor matrices Y = {Yy, Y1,..., YN—1}

4 Remapping tensor, Tour

5 Output: Updated factor matrix of mode d, Yy

6 Remapped tensor, Tout

7 nnz <0

8 for nnz <|B, .| parallel do

9 for each column, t in thread block parallel do
10 if nnz +t <|By | then

1 Load(x; at (nnz +t))

12 value < val;

13 Bi = (co,....cn-1)

14 [¢4] I(b(),...,bN_l)

15 bout < b(gs1)ymod(N)

16 // Algorithm 2 & 3 are executed in parallel
17 Y; < EC(f;, value, Y)

18 if thread block raw = R — 1 then

19 L Tout < DR(xi, bout, Tout)

20 // P is the number of columns in a thread block
21 nnz < nnz + P

The basic computing unit of a GPU is a thread. According to the
GPU programming model, a multi-threaded program is partitioned
into blocks of threads (i.e., thread blocks) that operate indepen-
dently. Thread blocks are organized into a multi-dimensional grid.
For a thorough overview of the GPU programming model, please
refer to [1, 34].

We propose a GPU implementation where GPU thread blocks can
perform Elementwise Computation (i.e., Algorithm 2) and Dynamic
Tensor Remapping (i.e., Algorithm 3). Figure 4 shows a thread
block with the dimensions of R x P, where R denotes the rank of
the factor matrices and P indicates the number of nonzero tensor
elements parallelly loaded to a thread block. In Figure 4, each thread
corresponds to a distinct square within the thread block. Each

92

CF ’24, May 7-9, 2024, Ischia, Italy

column of the thread block shares the same nonzero tensor element.
In the Figure 4, we indicate the threads that only perform the
elementwise computation in blue and the threads that perform
elementwise computation with dynamic tensor remapping in green.

Algorithm 4 outlines the computations executed on each GPU
thread block. In Algorithm 4, B; , corresponds to 2™ tensor parti-
tion in mode d (see Section 3.4). When a GPU SM is idle, a thread
block and its corresponding tensor partition are assigned to the
SM for computation. Once a tensor partition is assigned for com-
putation, the thread block performs elementwise spMTTKRP com-
putation and dynamic tensor remapping on the assigned partition.
Each column in the thread block loads a single nonzero tensor
element at a time and shares it across the threads in the same col-
umn. Each thread column extracts the embedded information from
the loaded nonzero tensor element (Algorithm 4: line 12-15). Sub-
sequently, each thread block performs elementwise computation
(Algorithm 4: line 17). Only the last row (R — 1) of the thread block
performs dynamic tensor remapping (Algorithm 4: line 18-19) on
each loaded tensor element. To achieve threadwise parallelism in
elementwise computation, each thread in a column only executes
the computations on its corresponding rank (Algorithm 2: line 12 -
15).

According to Al- O 1 D eeeeeeereesresseeaneieaces pP-2 p-1
gorithm 4, the dy- Plid ilifo
namic tensor remap- REREE i Plige
ping and the ele- 5§ % §Computat|on Blocks i i5
mentwise computa- AEEE i 13 k-2
tion update data in
the memory during |t [Compdtation & Remap Block { -1

the execution time. I
Since there are mul-
tiple thread blocks
operating in parallel,
the threads should Figure 4: Mapping algorithm to
not cause any race thread blocks

conditions while updating the data to maintain the correctness
of the program. In our work, we avoid race conditions in dynamic
tensor remapping and elementwise computation as follows:

(1) Dynamic tensor remapping: GPU threads in all the thread blocks
update different locations of tensor copy Tou: during the execu-
tion time using the unique remap IDs embedded in nonzero tensor
elements as discussed in Section 3.4. It leads to avoiding atomic op-
erations in the implementation during dynamic tensor remapping
(See Observation 1). Atomic operations are used to prevent race
conditions between threads in the same thread block or different
thread blocks [5, 24], which leads to synchronization overheads.
(2) spMTTKRP elementwise computation: During the spMTTKRP
elementwise computation, multiple threads can simultaneously up-
date the same row of the output factor matrix. Therefore, we need
atomic operations among the threads, ensuring the correctness of
spMTTKRP elementwise computation. Since each tensor partition
is assigned to a single thread block, the proposed Algorithm 4 elim-
inates the need for global atomic operations among GPU thread
blocks (See Observation 2). Global atomic operations are used to
prevent conflicts while updating values between threads in different
thread blocks [5, 24]. Global atomic operations lead to significant

Shared Local Memory

CF ’24, May 7-9, 2024, Ischia, Italy

synchronization overhead among threads in different GPU thread
blocks.
Observation 1. For a N mode input tensor X in FLYCOO format,
the GPU threads can perform dynamic tensor remapping for each
mode d (0 < d < N) without atomic operations among any GPU
threads.

Proof: According to the FLYCOO tensor representation discussed
in Section 3.5, we define x; as (a;, f;, val;), representing a nonzero
tensor element, each x; has a distinct remap id, denoted as b,
which denotes the location of x; in Toys during the dynamic tensor
remapping process. As per the tensor partitioning scheme defined
in Section 3.4, it is guaranteed that b, is a unique remap ID for x; in
mode d. Consequently, the thread responsible for dynamic tensor
remapping of x; can independently perform x; UToys at the location
by without interference from other GPU threads. Given that this
condition holds for all x; € X', dynamic tensor remapping for tensor
X can be executed without the need for atomic operations.

Observation 2. Elementwise computations of spMTTKRP can be
performed without global atomic operations among GPU thread blocks.

Proof: Consider tensor element x; € By ; where By ; is a partition
of the input tensor X in mode d. Let the index of x; in mode d be c 4
where x; update the c;'h row of output factor matrix of mode d dur-
ing the elementwise computation. Consequently, race conditions
for x; can only occur with threads that execute nonzero tensor ele-
ments with index cg;. According to the tensor partitioning scheme
described in Section 3.4, all the tensor elements with index c; are in
Bg,j. Since all the nonzero tensor elements of tensor partition By ;
are executed on a single thread block, race conditions correspond-
ing to row ctdh only occur inside the same thread block. Thus, there
is no need for global atomic operations between GPU thread blocks
while executing elementwise computation on x;. Given that this
condition holds for all x; € X, there is no need for global atomic op-
erations among GPU thread blocks during spMTTKRP elementwise
computation.

Algorithm 5: Overall Proposed Algorithm

1 Input: Input tensor ordered according to the order of

2 mode 0, T;,
3 Randomly initialized factor matrices,
4 Y= {Yo, Y1, Y1}

s Output: Updated factor matrices ¥ = {¥y, 1, ..., Yy _1}
Init(Toy:) //Initialize tensor copy for dynamic remapping

for each moded =0,...,N —1do

7 for each partition of mode d, B , in Ty, parallel do

| {Y4, Tout} < Thread Block(By ., Y, Tout)

9 __Global Barrier__

=N

o

=
15

//Prepare tensor copies for the next mode
{Tout, Tin} < Swap(Tin, Tout)

-
oy

4.4 Overall Algorithm

Algorithm 5 shows the overall parallel Algorithm for performing
spMTTKRP along all the modes of an input tensor on GPU. Algo-
rithm 5 takes (1) T;, which is an input tensor ordered according to
bo, and (2) factor matrices denoted as Y = {Yo, Y1, ..., YN—1 }-

93

Sasindu Wijeratne, Rajgopal Kannan, and Viktor Prasanna

As shown in Algorithm 5, the spMTTKRP is performed mode by
mode (Algorithm 5: line 7). Within each mode, each thread block
(Algorithm 5: line 9) executes a tensor partition mapped to it. At
the end of all the computations of a mode, the GPU is globally
synchronized before the next mode’s computations to maintain the
correctness of the program (Algorithm 5: line 10). Since we perform
dynamic tensor remapping, Tous holds a tensor copy ordered ac-
cording to the next mode to be computed at the end of each mode
computation. Hence, the memory pointers to each tensor copy are
swapped, preparing them for the subsequent mode computation
(Algorithm 5: line 12).

5 EXPERIMENTAL RESULTS

5.1 Experimental Setup

5.1.1 Platforms. We conduct experiments on the NVIDIA RTX
3090, featuring the Ampere architecture. The platform has 82 Stream-
ing Multiprocessors (SMs) and 10496 cores running at 1.4 GHz, shar-
ing 24 GB of GDDR6X global memory. Table 2 shows the details of
the platform.

We use a 2- Table 2: Platform specifications

socket A.MD Ryzen Frequency 1695 MHz
Thr ead.r ipper 3990X Peak Performance 35.6 TFLOPS
F:PU with 32 phys- On-chip Memory 6 MB L2 Cache
ical cs)res (64 threads) Memory Bandwidth 936.2 GB/s
running at 2.2 GHz,

sharing 256 GB of external CPU memory for preprocessing the input
tensors.

5.1.2 Implementation. We develop the source code using the CUDA
C++ [34] and compile it using CUDA version 11.8 [6].

5.1.3 Datasets. We use tensors from the Formidable Repository of
Open Sparse Tensors and Tools (FROSTT) dataset [30] and Recom-
mender Systems and Personalization Datasets [2, 10, 17, 27]. Table 3
summarizes the characteristics of the tensors.

Table 3: Characteristics of the sparse tensors

Tensor Name ‘ Shape ‘ #NNZs ‘
Amazon ratings only (Amazon) [10, 17] 15.2M x 43.5M x 7.8K 233.1M
Delicious [30] 532.9K x 17.3M x 2.5M x 1.4K 140.1M
Freebase Music (Music) [2] 23.3M x 23.3M x 166 99.5M
Nell1 [30] 2.9M x 2.1M x 25.5M 143.6M
Twitch [17, 27] 15.5M x 6.2M x 783.9K x 6.1K x 6.1K | 474.7M
Vast [30] 165.4K x 11.4K x 2 x 100 x 89 26M

5.1.4 Baselines. We evaluate the performance of our work by com-
paring it with the state-of-the-art GPU implementations: BLCO [19],
MM-CSF [23], and ParTI-GPU [13]. To achieve optimal results with
ParTI-GPU, we use the recommended configurations provided in the
source code [15]. For our experiments, we utilize the open-source
BLCO repository [20], ParTI repository [15], and MM-CSF [22]
repository. The BLCO [19] repository allows running MTTKRP
mode-by-mode (i.e., mode-specific MTTKRP) where the input ten-
sor is ordered specific to the given mode before running MTTKRP
on GPU [20].

5.1.5 Default Configuration. We use RTX 3090 with P = 32,k = 82,
and R = 32 as our configuration for conducting the experiments.

Sparse MTTKRP Acceleration for Tensor Decomposition on GPU

5.2 Performance of Dynamic Remapping

M Elementwise Computation B Dynamic Tensor Remapping
Vast

Amazon

Delicious
Music

Nelll

L1 cache throughput (%)

Twitch

o

0.2 0.4 0.6 0.8
Total execution time (Normalized)

Figure 5: Execution time breakdown

Juny

Figure 5 shows a detailed breakdown of the total execution time
(normalized) between elementwise computation and dynamic ten-
sor remapping. To determine the execution time of elementwise
computations in each mode, we use a mode-specific tensor copy for
the computations in that mode where each tensor copy is in FLY-
COO format and ordered according to the remap id (see Section 3.4)
of the corresponding mode.

As shown in Figure 5, the remapping overhead ranges from
5% to 35% for all the datasets. The overhead of dynamic tensor
remapping is significantly reduced due to the thread block design
(see Section 4.3) and the tensor partitioning scheme (see Section 3.4).

5.3

100

Compute SM Throughput

our work
BLCO
MM-CSF

IS oy ©
S 3 3
T

pport

SM throughput (%)
Does not support

N
)

Z |Does not su
S |Does not support
4 |Does not support

a
S

Amazon Delicious Nelll

Tensor

Figure 6: SM throughput comparison

Music

4

Compute SM throughput is a commonly used metric introduced
by NVIDIA Nsight Compute [11] for GPU to report the utilization
achieved by the SMs while executing a kernel with respect to the
theoretical maximum utilization of the selected GPU [11]. NVIDIA
Nsight Compute provides the achieved throughput of the kernel as
a percentage value.

Figure 6 compares the SM throughput of our work for each
dataset against the state-of-the-art. We use NVIDIA Nsight Com-
pute to measure the throughput, as mentioned above. In all the
datasets, our work shows 1.2x - 1.4x and 1.3x - 2.0x higher com-
pute throughput than BLCO and MM-CSF, respectively. Our work
shows higher throughout due to the minimum SM idle time of the
proposed load balancing scheme and eliminating the intermediate
results communication between the SMs. Since the baselines do not
support tensors with a large number of modes, we could not report
the SM throughput values for BLCO and MM-CSF on Twitch and
Vast.

5.4 L1 Cache Throughput

L1 cache throughput is defined as the sustained memory through-
put between all the L1 caches and their connected SMs as a percent-
age of the maximum theoretical throughput that can be achieved [25]

94

CF ’24, May 7-9, 2024, Ischia, Italy

during the execution time of a kernel. We use NVIDIA Nsight Com-
pute to evaluate the L1 cache throughput. Figure 7 shows the L1
cache throughput comparison of our work against the baselines. In
all the datasets, our work shows 1.5x - 2.7x and 1.7x - 3.0x higher
L1 cache throughput compared with BLCO and MM-CSF. This is
due to the significant amount of data in the L1 cache being reused

during the execution time.
100

Our work
BLCO
80 MM-CSF

60

40

20

oes not support
oes not support

S [Does not support
4 |Does not support

4
£ D
3 b
=

Nelll
Tensor

Amazon Delicious Music

Figure 7: L1 cache throughput
5.5 Impact of Algorithm to GPU Block Mapping

In our work, we map our computational model onto the GPU
thread block. The number of columns in the thread block is set to
match the parallel loading of nonzero tensor elements (P). Figure 8
illustrates the impact of varying P on SM throughput for R = 32. In
our thread block design, R equals the number of rows in a thread

block (see Section 4.3).
100

YN

80

60 32
64

40

SM throughput (%)

20

Delicious Nelll

Tensor

Figure 8: Impact of the GPU block design

We observe a linear increase in throughput as P increases from
1 to 32. However, for P = 64, a decrease in throughput is noted due
to multiple elementwise computations associated with different
columns of the output factor matrix map into the same row of the
thread block. Note that each thread block of the RTX 3090 GPU
accommodates 1024 threads. Hence, keeping P = 32 distributes the
elementwise computations among the threads (i.e., R x P = 1024,
when R = 32 and P = 32), optimally. It is consistent across all the
tensors. Therefore, we set the parameter value P = 32.

Table 4: Speedup of our work over state-of-the-art

Baseline Geometric Mean
Speedup over BLCO [19] 1.5
Speedup over MM-CSF [23] 2.0
Speedup over ParTI-GPU [13] 21.7
Overall Geometric Mean Speedup 4.1

5.6 Overall Performance

Figure 9 shows the total execution time of our work and the
baselines on the RTX 3090. The corresponding speedup achieved by
our work over each baseline is displayed at the top of the respective

CF ’24, May 7-9, 2024, Ischia, Italy

Sasindu Wijeratne, Rajgopal Kannan, and Viktor Prasanna

20.8x

v
(ST |

&~
n

21.8x

Total Execution Time (s)
=] w
= N W s

3.3x
1.3x

1.6x 1.4x

o
n

2.4%
1.9x 1x

Amazon Delicious Music

22.9x

Qur work
[BLCO

MM-CSF
B ParTI-GPU

24.8x

jury
x

1x

Does not support

1x L% 2.0x

-iDoes not support

(=g
S Does not support

< Does not support
1Does not support
~ Does not support

Nelll

_{
g

Tensor

Figure 9: Total execution time

bar. Similar to the baselines [13, 19, 23], we set the rank of the factor
matrices (R) to 32. Our work demonstrates a geometric mean of
1.5%, 2.0, and 21.7x in speedup compared to BLCO, MM-CSF, and
ParTI-GPU. Table 4 summarizes the overall speedup achieved by
our approach compared to each baseline.

It is worth noting that MM-CSF operates as a mode-specific
implementation, necessitating multiple copies of the tensor during
execution. BLCO’s implementation involves ordering the tensor at
the beginning of each mode computation and optimizing the input
tensor for efficient execution of the specific mode. These overheads
of MM-CSF and BLCO are not considered in the reported timings
in Figure 9. Note that our work considers dynamic remapping
overhead.

Our work stands out as the only GPU implementation capable
of executing large tensors with a higher number of modes, such as
Twitch and Vast. In contrast, BLCO, MM-CSF, and ParTI-GPU lack
support for tensors with the number of modes greater than 4.

Our work avoids communicating intermediate values among
SMs and between SMs and GPU global memory. These intermediate
values are stored in the L1 cache and reused with high L1 cache
throughput (see Figure 7). Also, our load-balancing scheme im-
proves the overall SM throughput, reducing the idle time of the
GPU SMs.

5.7 Preprocessing Time

1000
Our work

s BLCO
= ParTI-GPU

pport

Does not support

S Poes not support

4 Ioes not support

= Poes not sy

g
5

Nelll
Tensor

Figure 10: Tensor format generation time comparison

Amazon Delicious Music

4

The preprocessing of an input tensor involves generating ten-
sor partitions and converting the tensor into FLYCOO format by
representing a nonzero tensor element in FLYCOO tensor element

95

representation. To accelerate this process, we use OpenMP [3] and
Boost library [28].

Although this work does not focus on the accelerating prepro-
cessing time, we have included a comparison of preprocessing times
in Figure 10 for the sake of completeness. For the comparison, we
use the baselines that report their preprocessing time. The CPU
configuration used for preprocessing can be found in Section 5.1.1.

Our preprocessing is faster than ParTI-GPU as our preprocess-
ing approach only looks at the nonzero tensor elements during
partitioning. In contrast, the ParTI-GPU partitioning scheme [13]
spans the entire index space across all the modes of a tensor, which
is much larger than the number of nonzero tensor elements.

As described in Section 3.4, we partition the tensor along all
the modes. BLCO [19] partitions the tensor once before executing
spMTTKRP along a specific mode. Hence, BLCO preprocesses the
tensor faster than our work. Note that we compare the preprocess-
ing time of BLCO to order the tensor for a single mode.

6 CONCLUSION AND FUTURE WORK

This paper introduced a parallel algorithm design for GPUs to
accelerate spMTTKRP across all the modes of an input tensor. The
experimental results demonstrate that Our approach achieves a
geometric mean speedup of 1.5x and 2.0x in total execution time
compared with the state-of-the-art mode-specific implementations
and 21.7x geometric mean speedup with the state-of-the-art mode-
agnostic implementations.

Our future work focuses on adapting the proposed parallel algo-

rithm on heterogeneous computing platforms. It will ensure that
our work can be effectively applied across various hardware.

ACKNOWLEDGEMENT

This work is supported by the National Science Foundation (NSF)
under grant CNS-2009057 and in part by DEVCOM Army Research
Lab under grant W911NF2220159.

Distribution Statement A: Approved for public release. Distribu-
tion is unlimited.

Sparse MTTKRP Acceleration for Tensor Decomposition on GPU

REFERENCES

[1] Richard Ansorge. 2022. Programming in parallel with CUDA: a practical guide.

[2

[11
[12

(13

[14

(16

[17

(18

(19

Cambridge University Press.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Tay-
lor. 2008. Freebase: A Collaboratively Created Graph Database for Structur-
ing Human Knowledge. In Proceedings of the 2008 ACM SIGMOD International
Conference on Management of Data (Vancouver, Canada) (SIGMOD °08). As-
sociation for Computing Machinery, New York, NY, USA, 1247-1250. https:
//doi.org/10.1145/1376616.1376746

Rohit Chandra. 2001. Parallel programming in OpenMP. Morgan kaufmann.
Zhiyu Cheng, Baopu Li, Yanwen Fan, and Yingze Bao. 2020. A novel rank se-
lection scheme in tensor ring decomposition based on reinforcement learning
for deep neural networks. In ICASSP 2020-2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 3292-3296.

Shane Cook. 2012. CUDA programming: a developer’s guide to parallel computing
with GPUs. Newnes.

Massimiliano Fatica. 2008. CUDA toolkit and libraries. In 2008 IEEE hot chips 20
symposium (HCS). IEEE, 1-22.

Gérard Favier and André LF de Almeida. 2014. Overview of constrained PARAFAC
models. EURASIP Journal on Advances in Signal Processing 2014, 1 (2014), 1-25.
Sofia Fernandes, Hadi Fanaee-T, and Jodo Gama. 2020. Tensor decomposition
for analysing time-evolving social networks: An overview. Artificial Intelligence
Review (2020), 1-26.

Ronald L. Graham. 1969. Bounds on multiprocessing timing anomalies. SIAM
Jjournal on Applied Mathematics 17, 2 (1969), 416-429.

Ruining He and Julian McAuley. 2016. Ups and Downs: Modeling the Vi-
sual Evolution of Fashion Trends with One-Class Collaborative Filtering. In
Proceedings of the 25th International Conference on World Wide Web (Mon-
tréal, Québec, Canada) (WWW ’16). International World Wide Web Confer-
ences Steering Committee, Republic and Canton of Geneva, CHE, 507-517.
https://doi.org/10.1145/2872427.2883037

Kumar Iyer and Jeffrey Kiel. 2016. GPU debugging and Profiling with NVIDIA
Parallel Nsight. Game Development Tools (2016), 303-324.

Tamara G Kolda and Brett W Bader. 2009. Tensor decompositions and applica-
tions. SIAM review 51, 3 (2009), 455-500.

Jiajia Li, Yuchen Ma, and Richard Vuduc. 2018. ParTI!: A parallel tensor infrastruc-
ture for multicore CPUs and GPUs. A parallel tensor infrastructure for multicore
CPUs and GPUs (2018).

Jiajia Li, Jimeng Sun, and Richard Vuduc. 2018. HiCOO: Hierarchical Storage of
Sparse Tensors. In SC18: International Conference for High Performance Computing,
Networking, Storage and Analysis. 238-252. https://doi.org/10.1109/SC.2018.00022
Jiajia Li, Bora Ugar, Umit V. Catalyiirek, Jimeng Sun, Kevin Barker, and Richard
Vuduc. 2019. Efficient and Effective Sparse Tensor Reordering. https:
//github.com/hpcgarage/ParTI

Bangtian Liu, Chengyao Wen, Anand D. Sarwate, and Maryam Mehri Dehnavi.
2017. A Unified Optimization Approach for Sparse Tensor Operations on GPUs.
In 2017 IEEE International Conference on Cluster Computing (CLUSTER). 47-57.
https://doi.org/10.1109/CLUSTER.2017.75

Julian McAuley. 2021. Recommender Systems and Personalization Datasets.
https://cseweb.ucsd.edu/~jmcauley/datasets.html#

Marco Mondelli and Andrea Montanari. 2019. On the connection between
learning two-layer neural networks and tensor decomposition. In The 22nd Inter-
national Conference on Artificial Intelligence and Statistics. PMLR, 1051-1060.
Andy Nguyen, Ahmed E. Helal, Fabio Checconi, Jan Laukemann, Jesmin Jahan
Tithi, Yongseok Soh, Teresa Ranadive, Fabrizio Petrini, and Jee W. Choi. 2022.

96

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]

[30]

(31]

(32]

(33]

[34]

CF ’24, May 7-9, 2024, Ischia, Italy

Efficient, out-of-Memory Sparse MTTKRP on Massively Parallel Architectures. In
Proceedings of the 36th ACM International Conference on Supercomputing (Virtual
Event) (ICS °22). Association for Computing Machinery, New York, NY, USA,
Article 26, 13 pages. https://doi.org/10.1145/3524059.3532363

Andy Nguyen, Ahmed E Helal, Fabio Checconi, Jan Laukemann, Jesmin Jahan
Tithi, Yongseok Soh, Teresa Ranadive, Fabrizio Petrini, and Jee W Choi. 2022.
Efficient, out-of-memory sparse MTTKRP on massively parallel architectures.
https://github.com/jeewhanchoi/blocked-linearized-coordinate

Israt Nisa, Jiajia Li, Aravind Sukumaran-Rajam, Prasant Singh Rawat, Sriram
Krishnamoorthy, and P. Sadayappan. 2019. An Efficient Mixed-Mode Represen-
tation of Sparse Tensors. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (Denver, Colorado)
(SC ’19). Association for Computing Machinery, New York, NY, USA, Article 49,
25 pages. https://doi.org/10.1145/3295500.3356216

Israt Nisa, Jiajia Li, Aravind Sukumaran-Rajam, Prasant Singh Rawat, Sriram
Krishnamoorthy, and Ponnuswamy Sadayappan. 2019. An Efficient Mixed-Mode
Representation of Sparse Tensors. https://github.com/isratnisa/MM-CSF

Israt Nisa, Jiajia Li, Aravind Sukumaran-Rajam, Richard Vuduc, and P. Sa-
dayappan. 2019. Load-Balanced Sparse MTTKRP on GPUs. In 2019 IEEE In-
ternational Parallel and Distributed Processing Symposium (IPDPS). 123-133.
https://doi.org/10.1109/IPDPS.2019.00023

Takashi Nishitsuji. 2023. Basics of OpenCL. In Hardware Acceleration of Compu-
tational Holography. Springer, 83-95.

NVIDIA. 2023. DEVELOPER TOOLS Documentation. https://docs.nvidia.com/
nsight-compute/ProfilingGuide/index html#

Eric T. Phipps and Tamara G. Kolda. 2019. Software for Sparse Tensor De-
composition on Emerging Computing Architectures. SIAM Journal on Scien-
tific Computing 41, 3 (2019), C269-C290. hitps://doi.org/10.1137/18M1210691
arXiv:https://doi.org/10.1137/18M1210691

Jérémie Rappaz, Julian McAuley, and Karl Aberer. 2021. Recommendation on
Live-Streaming Platforms: Dynamic Availability and Repeat Consumption. In
Proceedings of the 15th ACM Conference on Recommender Systems (Amsterdam,
Netherlands) (RecSys "21). Association for Computing Machinery, New York, NY,
USA, 390-399. https://doi.org/10.1145/3460231.3474267

Boris Schiling. 2014. The boost C++ libraries. Vol. 3. XML press Laguna Hills.
Nicholas D. Sidiropoulos, Lieven De Lathauwer, Xiao Fu, Kejun Huang, Evan-
gelos E. Papalexakis, and Christos Faloutsos. 2017. Tensor Decomposition for
Signal Processing and Machine Learning. IEEE Transactions on Signal Processing
65, 13 (2017), 3551-3582. https://doi.org/10.1109/TSP.2017.2690524

Shaden Smith, Jee W. Choi, Jiajia Li, Richard Vuduc, Jongsoo Park, Xing Liu, and
George Karypis. 2017. FROSTT: The Formidable Repository of Open Sparse Tensors
and Tools. http://frostt.io/

Fuxi Wen, Hing Cheung So, and Henk Wymeersch. 2020. Tensor decomposition-
based beamspace esprit algorithm for multidimensional harmonic retrieval. In
ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 4572-4576.

Sasindu Wijeratne, Rajgopal Kannan, and Viktor Prasanna. 2023. Dynasor: A
Dynamic Memory Layout for Accelerating Sparse MTTKRP for Tensor Decom-
position on Multi-core CPU. arXiv:2309.09131 [cs.DC]

Sasindu Wijeratne, Ta-Yang Wang, Rajgopal Kannan, and Viktor Prasanna. 2023.
Accelerating Sparse MTTKRP for Tensor Decomposition on FPGA. In Proceedings
of the 2023 ACM/SIGDA International Symposium on Field Programmable Gate
Arrays (Monterey, CA, USA) (FPGA ’23). Association for Computing Machinery,
New York, NY, USA, 259-269. https://doi.org/10.1145/3543622.3573179

Cyril Zeller. 2011. CUDA C/C++ Basics. (2011).

