
A Heterogeneous Acceleration System for
Attention-Based Multi-Agent

Reinforcement Learning
Samuel Wiggins1, Yuan Meng1, Mahesh A. Iyer2, Viktor Prasanna1

1Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California
2Intel Corporation

Contact: {wigginss, ymeng643, prasanna}@usc.edu, mahesh.iyer@intel.com

Abstract—Multi-Agent Reinforcement Learning (MARL) is
an emerging technology that has seen success in many AI
applications. Multi-Actor-Attention-Critic (MAAC) is a state-
of-the-art MARL algorithm that uses a Multi-Head Attention
(MHA) mechanism to learn messages communicated among
agents during the training process. Current implementations of
MAAC using CPU and CPU-GPU platforms lack fine-grained
parallelism among agents, sequentially executing each stage of
the training loop, and their performance suffers from costly
data movement involved in MHA communication learning. In
this work, we develop the first high-throughput accelerator for
MARL with attention-based communication on a CPU-FPGA
heterogeneous system. We alleviate the limitations of existing
implementations through a combination of data- and pipeline-
parallel modules in our accelerator design and enable fine-
grained system scheduling for exploiting concurrency among
heterogeneous resources. Our design increases the overall system
throughput by 4.6⇥ and 4.1⇥ compared to CPU and CPU-GPU
implementations, respectively.

Index Terms—Multi-Agent Reinforcement Learning, Hard-
ware Accelerator, Heterogeneous Computing

I. INTRODUCTION

Multi-agent reinforcement learning has seen success in a
variety of applications, including swarm systems [1], federated
control [2], NoC design [3], etc. Compared to single-agent
learning, multi-agent settings introduce partial observabil-
ity and non-stationarity, which can hinder agents’ collective
learning performance [4]. As a result, one key optimization
focus for MARL algorithm developers is effective inter-agent
communication. Multi-Actor-Attention-Critic (MAAC) [5] is a
state-of-the-art MARL algorithm. It addresses the communica-
tion problem in MARL by adopting attention-based training.
The training of MAAC agent policies involves sending embed-
ded messages to a centralized Multi-Head Attention (MHA)
mechanism, which allows agents to dynamically select which
agents to attend to, thus improving reward convergence in
cooperative and competitive settings [6], [7]. This is at the
expense of adding complexity to the training function, leading
to higher computation cost [8]. In real-world applications
of MARL algorithms (e.g., recommendation systems [9] and
traffic networks [10]), the agent policies are trained in a

This work was supported by Intel Corporation and in part by the U.S.
National Science Foundation (NSF) under grants CNS-2009057 and SPX-
2333009.

centralized manner on a data-center device, leveraging actors
collecting data using simulation software on processors.

However, MARL training is a highly time-consuming pro-
cess. The necessity of training a centralized MHA mechanism
alongside several Multi-Layer Perceptrons (MLPs) for actor
and critic networks, each with varying compute and memory
characteristics, poses unique challenges when optimizing for
system throughput: 1. System Resource Utilization: on emerg-
ing heterogeneous platforms, efficient mapping, scheduling
and load balancing of tasks to saturate the compute power
of the heterogeneous devices in the system is a critical
challenge. Current CPU-GPU implementations of MARL [11],
[12] simply partition the entire simulation and training phases
onto different devices, where the load imbalance between
CPU and GPU leads to underutilization of the heterogeneous
compute power. 2. Intensive Data Movement: the attention-
based communication learning mechanism involves intricate
data aggregation paths and significant data movement. Even if
agents are parallelized using data-parallel resources on CPU
or GPU, the communication overhead from these operations
cannot be trivially hidden. These challenges are not efficiently
addressed in current CPU and CPU-GPU implementations of
MAAC [11], leading to suboptimal system throughput and
poor scalability with increasing number of agents.

CPU-FPGA heterogeneous systems have emerged as popu-
lar platforms for accelerating AI workloads [13]–[17]. In this
work, we propose a novel acceleration system based on a
CPU-FPGA heterogeneous platform to address the challenges
discussed above and achieve high-throughput MAAC training.
Such a system is naturally suitable for MARL tasks because
the data-movement-intensive computations in attention-based
training can be improved using a spatial architecture, while
the environment simulations placed on CPU processors allow
plug-and-play of application-specific software. Our main con-
tributions are:

• We parallelize environment sampling on the CPU with
the training pipeline on the FPGA, and further exploit
concurrency by partitioning and scheduling the training
process onto both the CPU and the FPGA. This improves
the system throughput by minimizing device idle times.

• We develop dedicated acceleration modules for the spe-
cialized multi-head attention and MLP layers in MAAC

236

2024 34th International Conference on Field-Programmable Logic and Applications (FPL)

DOI 10.1109/FPL64840.2024.00040

20
24

 3
4t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 F
ie

ld
-P

ro
gr

am
m

ab
le

 L
og

ic
 a

nd
 A

pp
lic

at
io

ns
 (F

PL
) |

 9
79

-8
-3

31
5-

30
07

-5
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

D
O

I:
10

.1
10

9/
FP

L6
48

40
.2

02
4.

00
04

0

979-8-3315-3007-5/24/$31.00 ©2024 IEEE

Authorized licensed use limited to: University of Southern California. Downloaded on October 23,2024 at 02:34:17 UTC from IEEE Xplore. Restrictions apply.

training. We further apply optimizations to maximize
system throughput and reduce resource consumption.

• We parameterize our design and propose an efficient
design space exploration (DSE) method that returns op-
timal combinations of key design parameters to gener-
ate high-throughput accelerator implementations on any
target FPGA. Our DSE runs in linear time and avoids
exponential-time exhaustive search over the design pa-
rameter choices.

• We implement our design on a CPU-FPGA platform and
demonstrate a 4.6⇥ and 4.1⇥ higher system throughput
compared to CPU and CPU-GPU implementations, re-
spectively.

II. BACKGROUND

A. Multi-Actor-Attention-Critic

We consider a partially observable variant of N -agent
Markov Games [18], where each agent i receives an ob-
servation (oi) that contains only partial information from a
state space S . Each agent i aims to find an optimal policy
⇡i, denoted as a probability distribution over its action space
⇡i : S ! P (Ai) that maximizes its own total expected reward
over time T : Ri =

P
T

t=0 �
trt

i
, where � is a discount factor.

MAAC uses a policy-critic approach in training [19], which
leverages training of two separate Deep Neural Networks
(DNNs) collaboratively for each agent i - one to estimate
a value based on input observations and actions (i.e., critic
network Qi(o, a)) and another to approximate the agent’s
policy function (i.e., policy network ⇡i(o)).

Fig. 1. Training Process of Multi-Actor-Attention-Critic (MAAC)

MAAC involves attention-based communication learning
during its critic and policy networks training process. As
shown in Figure 1, the training process of MAAC can be
viewed as two phases: (1) Data Collection: Multiple actors
perform parallel inferences on agents’ policy networks to inter-
act with the environment, generating and storing experiences
(i.e., data points for training) into a global replay buffer D.
(2) Model Update: Batches of experience are sampled from
the global replay buffer to perform stochastic gradient descent
(SGD) [20] on all agents’ policy and critic networks. The
communication learning refers to inference and weight updates
of a Multi-Head Attention (MHA), which occurs during critic
network training. In the MHA, each agent queries other agents

for their observation and action embedding information in
order to collaboratively estimate their own value function.

Calculating each agent’s Q-value (i 2 1...N) involves MLPs
unique to each agent, as well as the centralized shared MHA.

Q

i
(o, a) = fi(gi(oi, ai), xi) (1)

gi is a 1-layer MLP embedding function used to calculate
embeddings and fi is a 2-layer MLP. Embeddings from all
agents are sent to the MHA to compute a unique contribution
message xi for each agent per head as follows:

xi =
X

j 6=i

"
softmax

e
T

j W
T

k Wqeip
Dk

!
h(Wvgj(oj , aj))

#
(2)

h is an activation function. Wk, Wq and Wv are projection
matrices that transform embeddings (ei and ej) into Keys,
Queries and Values [21]. Dk is the dimension of the Keys.
Messages for each agent are then concatenated across each
head, then sent to each agent’s unique 2-layer MLP fi as
shown in Equation 1 to calculate final Q-values. DNNs are
trained using SGD for optimization. All critic networks are
updated to minimize a joint regression loss function [5].

The computations in MHA used in MAAC are different
compared to MHA in image classification or representation
models [21] in the following aspects: First, every agent i
computes Queries and Values from a different set of embed-
dings from all agents other than itself (shown as j 6= i in
Equation 2), requiring specialized index handling for different
agents; Second, instead of sharing the same tensor input for
Keys, Queries and Values in [21], the MHA in MAAC takes
a one-dimensional observation embedding for the Keys and
takes (N � 1)-dimensional observation-action embeddings as
the inputs to the Queries and Values computations. These
unique characteristics make the computation of MHA in
MAAC memory-bound, where stacking data-parallel resources
proves to be inadequate, while leveraging large distributed on-
chip SRAM of spatial architectures becomes advantageous for
alleviating memory-bound problems.

B. Limitations of Existing MAAC Implementations

CPU-GPU implementations of MAAC [11] offload the
training of critic and policy networks to the GPU. The GPU
performs full batch data-parallel layer propagations sequen-
tially, moving aggregated results back and forth from GPU
global memory. However, the attention-based training process
of MAAC consists of various kernels (i.e., linear layers, batch
normalization, softmax, scaled-dot product, etc.) with different
memory and compute characteristics with intricate data index-
ing and aggregation paths. Even if agents are parallelized using
data-parallel resources on CPU or GPU, the communication
overheads from these data movements cannot be trivially
hidden, and they increase as the number of agents is scaled up.
Moreover, existing CPU and CPU-GPU implementations of
MAAC execute the data collection and model update process
sequentially, with no exploitation of overlapping these two
distinct phases. Parallelizing and balancing these two phases

237

Authorized licensed use limited to: University of Southern California. Downloaded on October 23,2024 at 02:34:17 UTC from IEEE Xplore. Restrictions apply.

on heterogeneous systems is crucial for achieving high system
resource utilization and throughput.

Figure 2 summarizes the single-training-iteration execution
time breakdown across two different environment benchmarks
from the widely-used multi-agent particle environment (MPE)
[22] on CPU and CPU-GPU platforms, with Data Collection
times normalized to 1. We observe that the Model Update
phase is a major bottleneck of existing MAAC implemen-
tations across both platforms and environment benchmarks.
Even if the two phases are fully parallelized, the system
utilization would still be low due to the severe load-imbalance
causing significant idling of the CPU.

Fig. 2. Normalized Execution Time Breakdown

C. Related Work
MARL is an emerging area where there are limited works

for parallelization and acceleration. Most works in Multi-
Agent RL focus on optimizing reward convergence through al-
gorithmic methods on novel inter-agent communication mech-
anisms. This leads to unique challenges in acceleration which
are unaddressed in existing literature [23]. In [24], a CPU-
FPGA heterogeneous design for Multi-Agent Deep Determin-
istic Policy Gradient (MADDPG) accelerates the training of
agent critic and policy networks, utilizing a ring interconnect
for its all-to-all communication of pre-defined static messages.
In [25], a centralized controller on FPGA for table-based Q-
learning is used to coordinate microcontroller-based agents.
[26] introduces a real-time sparse training accelerator for
MARL algorithm IC3Net [27] focused on a network pruning
system. To our knowledge, our work is the first to accelerate
MARL with attention-based inter-agent communication.

III. HETEROGENEOUS ACCELERATION SYSTEM DESIGN

A. System Overview
Figure 3 shows the system overview of MAAC on our

CPU-FPGA heterogeneous platform. Our acceleration system
is composed of a pool of parallel CPU Simulation Threads,
a CPU Host Thread that coordinates the necessary data trans-
fers between the CPU and FPGA, an FPGA, and a CPU
Training Thread. We perform the Data Collection phase on
the CPU Simulation Threads, which deploys general-purpose
software [22] that can simulate a wide range of application
environments. We deploy R parallel environment simulations
for Data Collection. Each one of the N actors holds a
unique agent’s policy network. The inference processes of
all agents sharing an environment are computed sequentially
on a CPU Simulation Thread. Experiences tuples are sent to
replay buffer D that resides in CPU DDR memory. The Model
Update phase performs SGD (involving Forward Propagations
(FP) and Backward Propagations (BP) through all the agent
DNNs and centralized Attention modules) using a batch of

experiences from D. The FPGA and the CPU Training Thread
collaboratively execute the Model Update phase.

To address the challenge of System Resource Utilization,
we partition the tasks in the Model Update phase and de-
ploy them on both CPU and FPGA. By allocating part of
the training process to the CPU, we effectively utilize the
resources on both devices. Specifically, as shown in Figure
3, we assign the BP of the policy update on the CPU Training
Thread, where new policy weights can be directly used in
the Data Collection phase by the CPU Simulation Threads
without causing additional PCIe weight transfer overheads.
The complete critic update and the FP of the policy update
are accelerated on the FPGA. Q-values and policy activations
are sent from the FPGA via PCIe to the CPU. Overall, our
partitioning technique only introduces a size of {batch size ⇥
N ⇥ (policy activations + Q-values)} ⇡ in the magnitude of
hundreds of kilobytes additional data traffic compared to the
alternative mapping choice of offloading the entire Model
Update on the accelerator. The latency overheads from this
additional data traffic are trivial compared to the performance
gain of load-balancing the computations on CPU and FPGA.

Fig. 3. System Overview

B. Accelerator Design

Figure 4 shows the overall accelerator design of MAAC
training on FPGA. It is a pipelined design composed of
forward and backward propagations of two types of pipeline
stages: (1) Linear Layer stages and (2) Multi-Head Attention
(MHA) stages. Each pipeline stage computes a single experi-
ence (i.e., a tuple of {observationi, actioni, next observationi,
rewardi} for all N agents, 0  i < N) from the batch of BS
experiences at a time, where different experiences in a batch
are processed in a pipelined concurrent manner. To address
the challenge of training with Intensive Data-Movement, we
allocate on-chip FIFO pipes to directly stream intermediate
outputs among agents’ embedding layers and the MHA. This
ensures 1-cycle amortized latency in embedding collection
from each agent before computing attention score. Each linear
layer stage is composed of an array of multiplier-accumulator
units used to compute matrix-vector multiplication for a given
input. Note that a BP linear layer stage also performs gradient
aggregation of the corresponding layer (vector outer product).

238

Authorized licensed use limited to: University of Southern California. Downloaded on October 23,2024 at 02:34:17 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. FPGA Training Architecture

We use a feature-parallel factor PFF to control the degree
of concurrent processing of different output features (i.e.,
neurons) in a data-parallel manner for each individual stage
in the pipeline. A higher feature-parallel factor corresponds to
higher throughput for each stage at the cost of higher resource
consumption. For linear layer stages, we also exploit agent-
level parallelism by dedicating parallel modules for each agent
or subset of agents depending on an agent-parallel factor PFA.

Multi-Head Attention stages are composed of multiple
sub-stages, including linear layers for Key, Query, Value
generation, (scaled) dot-product layers, and a softmax layer
as seen in Figure 4. Each head calculates message xi for
one agent, thus needing N rounds through these sub-stages
to calculate messages for all agents in a pipelined manner.
We exploit parallelism among attention heads using MHA
head-parallel factor PFH , corresponding to the number of
dedicated attention-head modules that execute in parallel.
Linear layers for Key and Value generation use systolic arrays
that fully exploit parallelism (i.e., spatially unroll the loop)
across its input dimension of size N � 1 (ej embeddings
include embeddings for all agents except for agent i, while
ei denotes the embeddings for only agent i). Furthermore, to
mitigate performance degradation resulting from high-latency
data movement during the computation of attention scores
and softmax functions, we allocate an SRAM buffer to store
the complete attention score. This strategy restricts external
memory accesses to only retrieving weights, which do not
scale up with increasing number of agents.

Given a set of MAAC algorithm hyper-parameters, the
parallel factors described above need to be tuned in order to
deliver the optimal performance for a target FPGA device.
The exploration for optimal parallel factors (PFA, PFH , and
PFF for all layers) is later discussed in Section IV. We also
leverage hardware and algorithm optimizations for delivering
high system throughput with minimal hardware resources:

Partial Hardware Re-use for Policy and Critic: The policy
update has identical feature dimensions and compute dataflow
as the critic update, but with different DNN weights. Laying
out the (FP) training pipeline of these two DNNs spatially
would require doubling the number of modules in the update
stages, thus severely limiting the parallel factors adoptable
within each stage. To alleviate this issue and reduce resource

consumption, we opt to reuse the hardware modules used for
the target policy and critic FPs in the attention-critic update
for the policy update phase. Reusing hardware reduces the cost
of allocating additional resources, with a very small additional
latency overhead since switching to different weight matrices
can be executed within the pipeline.

Intra-Iteration Dependency Relaxation with Inter-Iteration
Dependency Preservation: In MAAC, policy and critic net-
works are trained interactively (the training process of policy
networks needs a forward propagation through updated critic
networks). We use a “lagged critic” mechanism to facilitate
concurrent training of policy and critic networks in the same
iteration, similar to parallelizing single-agent DDPG [28]. The
implementation of a lagged critic mechanism decouples the
training iterations of the policy network from the most recent
critic updates. Specifically, we let policy training utilize a
slightly outdated critic network, i.e., the critic updated one
training iteration behind, to guide and inform the policy net-
work updates. This method effectively mitigates the sequential
dependency inherent in the same iteration, promoting a concur-
rent and synchronized training process for both networks, but
still preserves their dependency and weight synchronization
between adjacent iterations. Although policy network updates
lag the critic updates by one training iteration, its effect is
negligible compared to the millions of training iterations that
take place in the end-to-end training process [29].

IV. DESIGN SPACE EXPLORATION

As detailed in Section III-B, the design parameters need
to be tuned for delivering optimal performance on a given
FPGA device. To perform the design space exploration (DSE),
we develop an accurate performance model to estimate the
impact of these design parameters (agent-parallel factor PFA,
MHA head-parallel factor PFH , and feature-parallel factors
PF i

F
, i 2 S, where S represents the set of all pipeline stages

performing FP and BP through linear and MHA layers), and
constraints such as the available SRAM, DSPs, etc. on the
performance of the design.

The objective of DSE is to maximize the system throughput
(defined in Equation 6), which is inversely proportional to the
total latency of performing a batched gradient update of the
networks for all agents on the FPGA. Therefore, we aim to

239

Authorized licensed use limited to: University of Southern California. Downloaded on October 23,2024 at 02:34:17 UTC from IEEE Xplore. Restrictions apply.

minimize the total latency of the pipeline accelerator design
for processing a batch of BS experiences:

Ttotal = max
i2S

(Tstage i)⇥ (num stages +BS) (3)

Specifically, based on our accelerator design, assuming there
are N agents in the MARL application, the pipeline stage
latency Tstage for a linear layer with input feature size Fin and
output feature size Fout in FP and BP are:

Tstage i=linear = max{ (N/PFA)⇥ Fin ⇥ (Fout/PF
i

F)
freq

, TLoadW }
(4)

where TLoadW denotes the latency for loading weights from
external memory computed as FinFout

bandwidth .
The pipeline stage latency Tstage for a MHA layer with input

feature size Fin, output feature size Fout, and H attention
heads can be derived by multiplying the number of agents
processed and pipeline 4-sub-stage fill/drain with the longest
latency in the sub pipeline stage of a MHA module (i.e., the
key and value encoding stage):

Tstage MHA = (N + 4)⇥max{Fin ⇥ (Fout/PFH)
freq

, TLoadW } (5)

For all (FP and BP) linear layer and MHA stages, we
monitor the DSP usage and on-chip SRAM buffer require-
ments. These metrics, parameterized by the parallel factors,
are assessed to ensure they remain within resource limits.

To accomplish the objective of minimizing Ttotal (Equation
3) is essentially to minimize the bottleneck stage, i.e., the
stage with the longest latency to complete. This optimization
problem is thus equivalent to finding the combinations of
PFA, PFH , and PF i

F
8i 2 S that ideally load balances all the

pipeline stages. An exhaustive search over the entire design
space would lead to an O(N ⇥H ⇥ F |S|) complexity. In this
work, we propose an efficient heuristic to identify optimal
design parameter choices in O(|S|+H+N) time complexity,
as shown in Algorithm 1. Our algorithm first determines the
computation requirement ratios among all linear layers, and
fixes the relative ratio among assigned parallel resources along
the feature dimensions PFF ; Then, it proceeds to balance the
pipeline stage latencies between the bottleneck linear stage
and the MHA stage by tuning PFH (which controls the MHA
stage latency) and PFA (which controls the linear layer laten-
cies) in an interleaving manner until reaching resource limit.
Finally, it fine-tunes the PFF based on available resources.

Our DSE generalizes our design to support arbitrary hyper-
parameters of different MAAC applications, and is able to
quickly generate optimal designs on different FPGA devices.

V. EVALUATION

A. Experiment Setup
Metrics: The main metric optimized by an acceleration

system for MARL is the system throughput in terms of number
of Agent-gradient-updates Per Second (APS):

APS =
number of agents ⇥ batch size

Titeration

, (6)

where Titeration is the single-training-iteration execution
time. For our CPU-FPGA acceleration system, Titeration =

Algorithm 1 Design Parameters Search
1: Inputs: Layer dimensions and number of operations (#ops) in

the set of all layer propagations S = Slinear [SMHA
2: Initialize PFA 1, PFH 1
3: . Step 1: Balance FP/BP modules for linear layer propagations
4: Find the linear layer with the minimal #ops in Slinear !

min linear, Set PF
min linear
F 1

5: for all other layer propagations i 2 Slinear, i 6= min linear do
6: Set PF

i

F d #ops(i)
#ops(min linear)PF

min linear
F e

7: . Step 2: Balance MHA modules with linear layer propagations
8: Find the linear layer stage with the longest latency Tstage linear

based on all PFF ! max linear
9: while Tstage MHA  Tstage max linear and PFH < H do

10: Increment PFH and update Tstage MHA

11: while synthesized design is valid wrt all resource bounds do
12: Increment PFA; update Tstage i and DSPstage i8i 2 Slinear
13: if maxi2Slinear{Tstage i} < Tstage MHA and PFH == H then
14: break; . Increasing PFA no longer improves speed
15: if maxi2Slinear{Tstage i} < Tstage MHA and PFH < H then
16: Increment PFH

17: if PFA == N then
18: Increment all PF

i

F8i 2 Slinear

19: Outputs: Design parameters PFA, PFH , PF
i

F8i 2 Slinear

max(TCPU

DC
+ TCPU

MU
, TFPGA

MU
). TDC and TMU are the single-

training-iteration execution times of the Data Collection and
Model Update phases, respectively. TFPGA

MU
is obtained by

implementing the design guided by our DSE.
Evaluation Environment: We evaluate our implementation

using the Rover Tower simulation from the MPE. Different
benchmarks share similar environment simulation times, ob-
servation and action dimensions, so the performance obser-
vations in our experiment is representative across different
benchmarks. Our implementations use a batch size of 1024,
four attention heads, and DNN hidden dimensions of 128 for
training, consistent with the original MAAC hyper-parameter
specifications [11].

We compare our CPU-FPGA implementation against two
different setups: CPU-only homogeneous platform and CPU-
GPU heterogeneous platform. The specifications for the de-
vices used in each platform are detailed in Table I. CPU and
CPU-GPU implementations use PyTorch to implement DNN
training. We use the oneAPI development flow to implement
our FPGA kernels [30].

TABLE I
PLATFORM SPECIFICATIONS

Platform CPU
Intel Xeon Gold 6326

GPU
NVIDIA RTX 3090

FPGA
Intel DE10 Agilex 7

Technology 10 nm 8 nm 10 nm
Frequency 2.9 GHz 1.7 GHz 250 MHz

Memory Bandwidth 171 GB/s 936 GB/s 85 GB/s
On-Chip Memory 24 MB L3 Cache 6 MB L2 Cache 64 MB
Peak Performance 537 GFLOPS 35.6 TFLOPS 38 TFLOPS

FPGA Accelerator Setup: We perform DSE (Algorithm 1)
to obtain the design parameters of our target FPGA device. We
run the design parameter search algorithm on the Intel Xeon
Gold 6326 CPU, which only takes under 2 seconds to generate
the design parameters for each experiment on the target FPGA.
The optimal design point to load-balance the system for our
target hardware is determined at PFA = 1, PFH = 1, and

240

Authorized licensed use limited to: University of Southern California. Downloaded on October 23,2024 at 02:34:17 UTC from IEEE Xplore. Restrictions apply.

PFF for each stage ranging from 1 � 16 across all layer
propagations. Table II describes our resource utilization for
the Rover Tower simulation with varying numbers of agents.

TABLE II
FPGA ACCELERATOR RESOURCE UTILIZATION

Parallel Factors
(PFA, PFH , PFF) ALUTs DSPs RAMs MLABs

(1, 1, 1-16) 76-83% 19-23% 71-84% 52-56%

B. MAAC Training Latency Breakdown
Figure 5 shows a timeline with latency breakdown of the

various Data Collection and Model Update tasks assigned onto
the CPU and FPGA for a 4�agent scenario. The figure high-
lights our performance gain from two perspectives: (1) 3.8⇥
speedup in single-training-iteration latency due to our novel
spatial architecture that exploits the compute and memory
characteristics of each stage, processing each sample of the
batch in a pipelined manner; (2) better exploitation of hetero-
geneous resource concurrency by mapping the backward prop-
agation of policy updates onto the CPU. Note that even if we
parallelize the CPU-GPU system by enabling concurrent data
collection and training, we still observe 3.6⇥ (compared to
3.8⇥ with no overlap) higher performance in terms of single-
training-iteration latency on our CPU-FPGA system, directly
indicating higher APS. Although we incur additional PCIe
latencies due to sending activations and Q-values compared to
GPU training, the relatively small overheads can be completely
overlapped with computation by our heterogeneous system as
shown in Figure 5. The behavior in Figure 5 is generalizable
to varying number of agents and hyper-parameters. With more
agents, the ratio between PCIe transfer and compute times are
still the same, so the overlaps shown in Figure 5 still apply.
With varying hyper-parameters, such as increased batch size
and hidden dimensions for policy and critic networks, both
network updates will have higher latency, and the observations
in Figure 5 remain the sam.e

Fig. 5. Latency breakdown of a single training iteration

C. System Throughput & Scalability
The bar plots in Figure 6 show an APS comparison between

all three platforms with a varying number of agents. Our
CPU-FPGA accelerator outperforms both CPU and CPU-GPU
systems across all agent scenarios, with up to 4.6⇥ and 4.1⇥
higher system throughput, respectively.

We demonstrate consistent speedup with scalability com-
pared to the baseline platforms. This is evident as the APS

shows minimal to no throughput degradation with increasing
number of agents. On the CPU, as the number of agents
increases, a larger amount of communication overheads lower
the throughput. Both GPU and FPGA-based implementation
demonstrate better scalability than CPU, while our FPGA
design shows consistent speedup due to spatial architecture
design that streams MHA and linear layer results in a near-
memory fashion. A more powerful FPGA device would en-
able our design to further increase its performance gap over
the other platforms, where higher parallel factors would be
discovered from our DSE algorithm.

We use effective resource utilization (the line plots in
Figure 6), defined as the achieved throughput divided by
the theoretical peak throughput using the allocated compute
resources, to demonstrate the speedup from the FPGA design
compared to the GPU implementation. The effective resource
utilization of the FPGA ranges from 56% to 68% depending
on the number of agents compared to the GPU’s 11% to 20%
utilization. This low utilization is attributed to the full-batch
layer propagation scheme of MAAC training on GPU, where
it is unable to saturate the large number of available data-
parallel CUDA cores. The intricate datapath of MAAC training
is suited for FPGA, with its rich set of logic resources that
can be tailored toward MAAC’s various compute and memory-
intensive operations.

Fig. 6. APS comparison across CPU, CPU-GPU and CPU-FPGA systems

VI. CONCLUSION

We developed the first work to accelerate MARL with
attention-based communication. We proposed a mapping on
a CPU-FPGA heterogeneous system along with DSE for the
FPGA accelerator design, which led to speedups of up to
4.6⇥ compared to CPU and CPU-GPU baselines. Our work
showcases promising opportunities for adopting FPGA and
spatial architectures in the field of multi-agent systems with
sophisticated communication adaptation. There are multiple
future research directions to explore. For instance, the de-
velopment of a general-purpose scheduling algorithm that
automatically assigns training tasks (MHA and MLP layers)
onto heterogeneous devices based on the task dependency
graph among training agents, as well as the development of
scalable distributed FPGA systems tailored to support multi-
agent systems.

241

Authorized licensed use limited to: University of Southern California. Downloaded on October 23,2024 at 02:34:17 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] M. Hüttenrauch, A. Šošić, and G. Neumann, “Guided deep reinforce-
ment learning for swarm systems,” arXiv preprint arXiv:1709.06011,
2017.

[2] S. Kumar, P. Shah, D. Hakkani-Tur, and L. Heck, “Federated con-
trol with hierarchical multi-agent deep reinforcement learning,” arXiv
preprint arXiv:1712.08266, 2017.

[3] N. Anantharajaiah, Y. Xu, F. Lesniak, T. Harbaum, and J. Becker,
“Dream: Distributed reinforcement learning enabled adaptive mixed-
critical noc,” in 2023 IEEE Computer Society Annual Symposium on
VLSI (ISVLSI). IEEE, 2023, pp. 1–6.

[4] T. T. Nguyen, N. D. Nguyen, and S. Nahavandi, “Deep reinforcement
learning for multiagent systems: A review of challenges, solutions, and
applications,” IEEE transactions on cybernetics, vol. 50, no. 9, pp. 3826–
3839, 2020.

[5] S. Iqbal and F. Sha, “Actor-attention-critic for multi-agent reinforcement
learning,” in International conference on machine learning. PMLR,
2019, pp. 2961–2970.

[6] Z. Zhu, S. Wan, P. Fan, and K. B. Letaief, “An edge federated marl
approach for timeliness maintenance in mec collaboration,” in 2021
IEEE International Conference on Communications Workshops (ICC
Workshops). IEEE, 2021, pp. 1–6.

[7] Z. Liang, J. Cao, S. Jiang, D. Saxena, J. Chen, and H. Xu, “From multi-
agent to multi-robot: A scalable training and evaluation platform for
multi-robot reinforcement learning,” arXiv preprint arXiv:2206.09590,
2022.

[8] S. Wiggins., Y. Meng., R. Kannan., and V. Prasanna., “Characterizing
speed performance of multi-agent reinforcement learning,” in Proceed-
ings of the 12th International Conference on Data Science, Technology
and Applications - DATA, INSTICC. SciTePress, 2023, pp. 327–334.

[9] M. M. Afsar, T. Crump, and B. Far, “Reinforcement learning based
recommender systems: A survey,” ACM Computing Surveys, vol. 55,
no. 7, pp. 1–38, 2022.

[10] J. Lee, J. Chung, and K. Sohn, “Reinforcement learning for joint control
of traffic signals in a transportation network,” IEEE Transactions on
Vehicular Technology, vol. 69, no. 2, pp. 1375–1387, 2019.

[11] “Maac implementation on cpu-gpu platform,” 2023. [Online]. Available:
https://github.com/shariqiqbal2810/MAAC

[12] “Graph convolutional marl implementation on cpu-gpu platform,” 2023.
[Online]. Available: https://github.com/PKU-RL/DGN

[13] F. Kreß, J. Hoefer, T. Hotfilter, I. Walter, E. M. El Annabi, T. Harbaum,
and J. Becker, “Automated search for deep neural network inference
partitioning on embedded fpga,” in Joint European Conference on
Machine Learning and Knowledge Discovery in Databases. Springer,
2022, pp. 557–568.

[14] J. Su, J. Liu, D. B. Thomas, and P. Y. Cheung, “Neural network based
reinforcement learning acceleration on fpga platforms,” ACM SIGARCH
Computer Architecture News, vol. 44, no. 4, pp. 68–73, 2017.

[15] T. C. Chau, X. Niu, A. Eele, J. Maciejowski, P. Y. Cheung, and W. Luk,
“Mapping adaptive particle filters to heterogeneous reconfigurable sys-
tems,” ACM Transactions on Reconfigurable Technology and Systems
(TRETS), vol. 7, no. 4, pp. 1–17, 2014.

[16] T. Santos, J. Bispo, and J. M. Cardoso, “A cpu-fpga holistic source-
to-source compilation approach for partitioning and optimizing c/c++
applications,” in 2023 32nd International Conference on Parallel Archi-
tectures and Compilation Techniques (PACT). IEEE, 2023, pp. 320–322.

[17] L. Stornaiuolo, M. Santambrogio, and D. Sciuto, “On how to efficiently
implement deep learning algorithms on pynq platform,” in 2018 IEEE
Computer Society Annual Symposium on VLSI (ISVLSI). IEEE, 2018,
pp. 587–590.

[18] M. L. Littman, “Markov games as a framework for multi-agent rein-
forcement learning,” in Machine learning proceedings 1994. Elsevier,
1994, pp. 157–163.

[19] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in International conference on machine learning. PMLR, 2018,
pp. 1861–1870.

[20] S.-i. Amari, “Backpropagation and stochastic gradient descent method,”
Neurocomputing, vol. 5, no. 4-5, pp. 185–196, 1993.

[21] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[22] R. Lowe, Y. I. Wu, A. Tamar, J. Harb, O. Pieter Abbeel, and I. Mordatch,
“Multi-agent actor-critic for mixed cooperative-competitive environ-
ments,” Advances in neural information processing systems, vol. 30,
2017.

[23] S. Wiggins, Y. Meng, R. Kannan, and V. Prasanna, “Evaluating multi-
agent reinforcement learning on heterogeneous platforms,” in Artificial
Intelligence and Machine Learning for Multi-Domain Operations Ap-
plications V, vol. 12538. SPIE, 2023, pp. 493–497.

[24] ——, “Accelerating multi-agent ddpg on cpu-fpga heterogeneous plat-
form,” in 2023 IEEE High Performance Extreme Computing Conference
(HPEC). IEEE, 2023, pp. 1–7.

[25] G. C. Cardarilli, L. Di Nunzio, R. Fazzolari, D. Giardino, M. Re,
A. Ricci, and S. Spano, “An fpga-based multi-agent reinforcement
learning timing synchronizer,” Computers and Electrical Engineering,
vol. 99, p. 107749, 2022.

[26] J. Yang, J. Kim, and J.-Y. Kim, “Learninggroup: A real-time sparse train-
ing on fpga via learnable weight grouping for multi-agent reinforcement
learning,” in 2022 International Conference on Field-Programmable
Technology (ICFPT). IEEE, 2022, pp. 1–9.

[27] A. Singh, T. Jain, and S. Sukhbaatar, “Learning when to communicate
at scale in multiagent cooperative and competitive tasks,” arXiv preprint
arXiv:1812.09755, 2018.

[28] C. Zhang, Y. Meng, and V. Prasanna, “A framework for mapping drl
algorithms with prioritized replay buffer onto heterogeneous platforms,”
IEEE Transactions on Parallel and Distributed Systems, 2023.

[29] Y. Meng, C. Zhang, and V. Prasanna, “Fpga acceleration of
deep reinforcement learning using on-chip replay management,”
in Proceedings of the 19th ACM International Conference on
Computing Frontiers, ser. CF ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 40–48. [Online]. Available:
https://doi.org/10.1145/3528416.3530227

[30] “Intel oneapi.” [Online]. Available: https://www.intel.com/content/
www/us/en/developer/tools/oneapi/ overview.html

242

Authorized licensed use limited to: University of Southern California. Downloaded on October 23,2024 at 02:34:17 UTC from IEEE Xplore. Restrictions apply.

