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Abstract—Federated learning (FL) shines through in the
Internet of Things (IoT) with its ability to realize collaborative
learning and improve learning efficiency by sharing client model
parameters trained on local data. Although FL has been suc-
cessfully applied to various domains, including driver monitoring
applications (DMAs) on the Internet of Vehicles (IoV), its usages
still face some open issues, such as data and system heterogene-
ity, large-scale parallelism communication resources, malicious
attacks, and data poisoning. This article proposes a federated
transfer–ordered–personalized learning (FedTOP) framework to
address the above problems and test on two real-world data
sets with and without system heterogeneity. The performance
of the three extensions, transfer, ordered, and personalized,
is compared by an ablation study and achieves 92.32% and
95.96% accuracy on the test clients of two data sets, respec-
tively. Compared to the baseline, there is a 462% improvement
in accuracy and a 37.46% reduction in communication resource
consumption. The results demonstrate that the proposed FedTOP
can be used as a highly accurate, streamlined, privacy-preserving,
cybersecurity-oriented, and personalized framework for DMA.

Index Terms—Driver monitoring, federated learning (FL),
Internet of Things (IoT), personalization, privacy protection.

I. INTRODUCTION

W
ITH the rapid development of sensing, computing, and

communication technologies, the Internet of Things

(IoT) is a popular solution to solve problems in industry, agri-

culture, energy, transportation, etc. However, privacy issues

in IoT are often a significant concern have been raised due

to the intrusive behavior of sensors [1]. Specifically for the

Internet of Vehicles (IoV), it massively parallels each vehi-

cle and various sensors it carries, including global positioning

system (GPS), radar, camera, light detection and ranging

(LiDAR), etc., enabling pedestrian detection [2], automated

driving [3], mobility digital twins [4], and other transportation

applications. Federated learning (FL) has received extensive

attention for protecting user privacy by sharing only model

weights and not including users’ raw data. FL is widely

known for its successful business case in Google mobile key-

board prediction [5]. Nowadays, it has also become one of the

mainstream and thriving solutions for privacy protection and

efficient learning.
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A. Federated Learning and Related Work

FL is a potentially feasible solution to the privacy problem

in IoT, which is able to avoid the proliferation, distribution,

and exchange of local client data by sharing model parameters

after training the model on local client data. FL frameworks

are widely used in mobile service [6], healthcare [7], [8],

industrial [9], [10], IoV [11], [12], etc., due to their usages of
large scale and personalized data in an efficient and privacy-

preserving way. Although FL has significant contributions to

massively parallel devices and computations, it still has a

notable drawback in that it cannot efficiently handle non-

independent and identically distributed (non-i.i.d.) data. It is
required to customize the applicable FL framework according

to the features, resources, and constraints possessed by users,

data, clients, and servers.

Non-i.i.d. data and heterogeneity have always been a chal-

lenge, and a key to research in FL [13], [14], [15]. Non-i.i.d.

data is a common phenomenon for real-world clients that are

scattered and not interoperable: taking IoV as an example,

each driver is heterogeneous as a client. FedAvg [16], as one

of the first proposed feasibility methods, has been the subject

and center of research. FedAvg averages all local models to get

the global model so that the local model may deviate far from

the global optimum in the parameter space leading to some

limitations in FedAvg. It is necessary to ensure that the local

model does not deviate from the global model (prevent overfit-

ting) and, simultaneously, that the local model can effectively

learn the local client data set (prevent underfitting). Based on

FedAvg, FedProx [17] is proposed to limit the deviation of
the local model from the global model by adding a proximal

term.

Besides considering accuracy, the FL framework in IoT

should not underestimate communication and training resource

constraints, cybersecurity, and ubiquity. Some of the recent

surveys summarized challenges, threats, and solutions of the

FL decentralization paradigm for IoT, including limited com-

puting power, unreliable and limited availability, local training,

accuracy, communication overhead, etc. [18], [19], [20], [21],
[22], [23].

Transfer and edge learning are popular solutions to reduce

communication resource consumption in FL frameworks.

Zhang et al. [24] performed a federated transfer learning
framework to detect driver drowsiness, where transfer learn-

ing was employed to save the communication cost in the FL

framework. Su et al. [25] introduced edge servers as a collabo-

rative mechanism, where local models were aggregated in the

edge server and then sent to the global server to aggregate the
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global model. The benefit of the additional edge server was

that the communication between massively parallel clients and

the edge server was consumed because the edge server was

geographically close to the clients. High latency and inter-

mittent connections could be mitigated. In addition, the edge

server could also provide personalized aggregated local models

due to the similarity of geographically adjacent clients.

Cyber attack is a problem that cannot be ignored for FL

frameworks. Sun et al. [26] developed an attack method for

FL framework in IoT, in which a bi-level optimization frame-

work was proposed to compute optimal poisoning attacked

FL framework, including direct, indirect, and hybrid attacks.

Meanwhile, Zhang et al. [27] utilized a generative adversarial

network (GAN)-based approach to attack the FL framework,

especially since the attacker did not need any prior knowledge

to carry out the attack.

Personalization is a common approach for FL frameworks to

improve applicability for diverse users [28]. Fallah et al. [29]

proposed a personalized variant of the FL, which allowed

clients to perform several gradient descent iterations on an

initial global model using local data to obtain a personalized

local model. Wu et al. [30] explored a cloud edge-based per-

sonalized FL framework for in-home health monitoring, which

addressed the problem that a single global model performed

poorly on a specific client. Since the global model could

only capture the common features of all clients, it lacked the

ability to analyze fine-grained information of specific clients.

Ma et al. [31] proposed a personalized FL framework of

layer-wised weighted aggregation, which determines mutual

contribution factors through a hypernetwork on the server to

identify similarity between users at the layer granularity.

B. Federated Learning in Driver Monitoring Applications

Driver monitoring application (DMA) in IoV is adopted as

the research direction in this article due to its real and visual

image data, valuable application scenarios, and relatively blank

research area. DMA also has challenges in terms of driver

privacy issues, communication, and diverse and personalized

driver state and behavior. Related DMA literature covers a

wide variety of devices with algorithms to achieve different

purposes, such as dangerous state detection [32], driver emo-

tion recognition [33], driver lane change inference [34], etc.

Compared to other methods [35], [36], [37], FL not only high-

lights efficient learning but also effectively protects the privacy

of driver, passenger, and pedestrian biometric information,

driving routes, and confidential driving areas such as military

installations.

In this article, we introduce and adapt FL to DMA. Although

some FL frameworks exist for DMA, they all suffer from

some critical problems. Doshi and Yilmaz [38] proposed

an FL edge-device framework to obtain a global model by

aggregation feature representations and obtained considerable

accuracy in recognizing driver activities. For the i.i.d. setting,

the data set was partitioned for each edge node in a random

way, while for the non-i.i.d. setting, the data set was assigned

selectively. Zhao et al. [39] proposed an FL framework to mon-

itor fatigue driving, where the non-i.i.d. setting was simulated

Fig. 1. Structure illustration of an FL framework for IoV. The server inter-
acts with the local client and saves different scenarios as different models.
Transparent neurons are nontrainable parameters, and nontransparent neurons
are trainable parameters.

by controlling the number of images per client. The above

FL frameworks for DMA did not really take into account the

actual situation of the application but artificially created a sim-

ulation scenario. Therefore, there is an urgent need for realistic

analysis and research for real-world DMA, considering that the

user (driver) should exist independently and be noninteroper-

able with different clients (vehicles). Moreover, in addition to

the necessity of test data sets, the test client is also a criti-

cal evaluation criterion, which can reflect the universality of

the FL framework. We summarize the existing neglects and

challenges in the current FL for DMA frameworks as follows.

1) Clients in FL for DMA frameworks are often defined in

unreasonable and incomprehensible forms. A real and

natural definition of a client should be a driver or a

vehicle.

2) There is no paper proposing to test on a testing client

(not involved in the training process), which lacks

universal testing for the FL framework.

3) For the DMA scenario, there is a great diversity and

individuality of driver behaviors, postures, and facial

expressions, which call for more personalized studies

than other general IoV scenarios.

4) Similarly, DMA also has diverse scenarios, includ-

ing diverse vehicle models, interior colors, seat posi-

tions, etc., which will greatly increase the learning

difficulty.

C. Proposed Solution and Contribution

In this article, we aim to propose an FL framework appli-

cable and specific to practical applications in IoV, especially

DMA, where an imaginary FL framework for IoV is illustrated

in Fig. 1. Each local client, i.e., vehicle, includes a training

module and a perception module. The training module uploads

the model parameters to the server after learning and training

the local data. After aggregation and optimizing the parame-

ters of the local client models, the server downloads the global

model parameters to the perception module in the local client.

Moreover, transfer learning can be used to reduce the number

of trainable parameters, resulting in reduced communication
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consumption. The server can save different global models for

different scenarios, such as road types, weather types, and

vehicle types, so that the model can have better applicability.

Therefore, a federated transfer–ordered–personalized learn-

ing (FedTOP) framework is proposed to address the prob-

lems of accuracy, cybersecurity, communication resources,

and diversified scenarios. In addition to the transfer-extension

shown in Fig. 1, the FedTOP framework also enhances robust-

ness and cybersecurity by orderly dropout clients due to their

possible overfitting and poisoning of the data. Furthermore,

the FedTOP framework is able to remarkably improve accu-

racy by adapting all clients through personalized-extension.

The contributions of this article are as follows.

1) For realistic problems and usage scenarios in DMA,

we propose a feasible FL framework FedTOP, realizing

privacy protection, high accuracy, low communication

requirements, cybersecurity, and pervasiveness. To the

best of our knowledge, this is one of the first papers to

establish a feasible FL framework for DMA.

2) The proposed FedTOP framework is tested on two

real-world driver monitoring data sets with and with-

out system heterogeneity, systematically characterizing

system heterogeneity in real-world data sets and achiev-

ing considerable accuracies with 92.32% and 95.96%,

respectively.

3) The experiments highlight a realistic and natural client

setup, i.e., drivers and vehicles are naturally formed as

clients. Moreover, we innovatively propose evaluation

criteria for training and testing clients to test the gen-

eralization ability of the proposed FedTOP on different

clients.

4) Through an ablation study, we demonstrate the

performance and utility of the transfer, ordered, and per-

sonalized extensions. These detachable extensions can

be selectively installed according to the task description,

and the FL framework combined with different exten-

sions can effectively adapt to different IoT application

scenarios.

The presentation of this article is as follows. The problem

statement and proposed solution are described in Section II.

The experimental setup, heterogeneity, and results have been

demonstrated in Section III. Section IV discusses the perfor-

mances of three extensions of the proposed framework, fol-

lowed by Section V summarizing this article and expounding

on future work.

II. METHODOLOGIES

A. Problem Statement

FL frameworks are able to protect privacy, increase training

efficiency, and save communication resources by sharing only

model parameters in IoT. In this article, the FL framework

is used to solve a driver activity classification task in DMA.

Clients in real-world IoT are independent and heterogeneous

due to the presence of only a minimal number of users per

client. Considering the more general application scenarios, the

global model ω for training clients C aggregation needs to

be compatible with nontraining clients C′ in addition to C.

Fig. 2. Illustration of the FL algorithm finds the optimal global model
solution in the parameter space. The shaded areas are accuracy contour areas.
The farther the optimal local model dissociates from the global model, the
lower the client accuracy. Local models enclosed by shaded areas have similar
accuracies.

The data of each client Dc is non-i.i.d. when the data is not

interoperable. We can consider a nested model

Lc = ωc(Dc) (1)

where ωc is the classifier model corresponding to client c ∈ C.

Dc ∈ R
nc×i×j×d is the image set with nc samples, i rows,

j columns, and d channels. Lc ∈ Z
nc is the corresponding

label set. The global model ω is obtained by aggregating, e.g.,

averaging the weights of the local models

ω =
∑

c∈C

pcωc = E[ωc|c ∈ C] (2)

where pc ∈ [0, 1] is a weight density function of clients, for

which
∑

pc = 1, pc will be assigned according to the number

of samples. Therefore, the optimization problem of the FL

algorithm can be formulated as minimizing the global loss,

which is equivalent to minimizing the sum of the local losses

min
ω

L(ω) =
∑

c∈C

pcL(ωc) = E[L(ωc)|c ∈ C] (3)

where L is the loss function that will be assigned.

For real-world classification tasks, we assume that the dis-

tribution of the local model in the parameter space presents

a multivariate Normal distribution ωc ∼ N (µω, σ 2
ω), where

µω is the mean of all local models, and σ 2
ω is the variance

of all local models. Fig. 2 shows the process of the FL algo-

rithm finding the optimal solution of the global model in the

parameter space. After the initial model is trained locally, com-

municated, and aggregated globally, the final global model will

be obtained by averaging and can be estimated as ω̂ = µω.

Especially in the large-scale parallel application scenarios of

IoT, according to the law of large numbers, ω̂ = µω = ω∗ is

an unbiased estimation.

However, there are still some defects in the method of

obtaining the global model through average aggregation. First,

we can confirm that there is enormous system heterogeneity

in IoT, and the global model cannot ensure high accuracy for

all clients. Second, we inevitably need a measure to prevent

system heterogeneity and potential attacks and poisoning. As

shown in Fig. 2, the farther the optimal local model is from

the global model, the lower the accuracy, and vice versa.

Therefore, it is conceivable that in the FL problem with het-

erogeneity, the clients’ accuracy will also obey a Normal

distribution.
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B. Proposed Solution

According to the problem statement, we propose a FedTOP

algorithm to address all of the following issues. First, the

aggregation of global models needs to be more stable, which

can be achieved by preventing the overfitting of local mod-

els. Second, considering the actual communication situation

in IoT, we propose a transfer learning method to reduce the

trainable parameters and hence reduce communication require-

ments. Third, the global model should have the ability to

resist interference, attacks, and data poisoning, which can be

achieved by orderly dropping out local models with a large

loss. Fourth, a global model cannot take into account the sit-

uation of all clients, especially in the presence of data and

system heterogeneity. Therefore, we recommend personalizing

the global model to suit all the training and testing clients.

We refer to FedProx [17] using a proximal term to prevent

local models ωc from deviating from the global model ω.

In which the proximal item Lp that computes the distance

between the local and global model is added to the loss

function

Lp =
µ

2
‖ωc − ω‖2 (4)

where µ is the deviation coefficient, ωc is local client model

parameters, and ω is global model parameters. The overall loss

function can be updated as

L = Ll + Lp (5)

where Ll is the loss between the true labels and the predicted

labels, such as the negative log-likelihood loss used in our

experiments.

Transfer-extension is a common and popular solution in

many learning frameworks. In particular, FL frameworks

are favored because they can effectively reduce local client

training resources and communication resources. In our exper-

iments, the base model is ResNet34 [40] pretrained on

ImageNet, where only the last residual block and fully con-

nected layer are trainable parameters. Although ImageNet is

a large object classification data set far from DMA images,

the lower layers are similar to convolutional neural networks

(CNNs) and are used to extract image features. Therefore, the

upper layers that are used to obtain high-level features and

representations are given more attention. The ratio of reduced

communication resource requirement in the network is approx-

imately equal to the ratio of nontrainable parameters to total

parameters

Commun↓ ≈
|ωnon-trainable|

|ω|
= 37.46% (6)

where Commun↓ is the reduced communication resource

requirement, |ωnon-trainable| is the number of nontrainable

model parameters, and |ω| is the total number of model

parameters. Therefore, the transfer-extension reduces the com-

munication requirement by 37.46% by decreasing the trainable

parameters.

Ordered-extension is for orderly dropout clients with enor-

mous variance, which may be subject to malicious attacks and

poisoning, extensive data and system heterogeneity, and model

Fig. 3. Schematic of the proposed FedTOP system, where transfer, ordered,
and personalized extensions are deployed on the communication, server, and
client sides, respectively. They operate independently and do not interfere with
each other.

underfitting. These local clients with large losses should be

discarded to enhance the generalizability of the global model.

Ordered-extension not only enhances accuracy and robustness

but also secures the global model. After all of the clients

upload the local model parameters and the final training loss

to the server, the server only aggregates the q ∈ N ≤ |C| local

models with the lowest loss as the global model. The set of q

local models can be expressed as

Cq ∈ q − arg min
c∈C

L(ωc). (7)

Therefore, only the models of clients in Cq with lower loss

will be used to aggregate the global model.

Personalized-extension is to promote, popularize, and adapt

the global model to the heterogeneity of all clients. As shown

in Fig. 2, the global model cannot be applied to all clients due

to the ubiquitous heterogeneity. The region of interest (ROI)

of the model may vary depending on system heterogeneity,

such as different camera angles, seat positions, and vehicle

structures, resulting in differences in the relative position of

the driver in the image. However, personalized-extension pro-

poses to train the global model several times in each client to

obtain a more personalized local model to improve accuracy.

On the one hand, compared with the traditional FL algorithm,

the personalized-extension can significantly and effectively

improve accuracy and confidence. On the other hand, com-

pared to the method that only trains locally, the personalized

FL algorithm improves the training efficiency and avoids the

overfitting of the local model. In particular, the personalized

FL algorithm can help and generalize to other nontraining

clients C′, which may have minimal training resources. After

receiving the global model, the nontraining clients C′ can

obtain a highly accurate and reliable local model with mini-

mal training. The system diagram of the proposed FedTOP is

shown in Fig. 3.

For the proposed FedTOP framework, the client communi-

cates with the server T rounds, and all clients C train E epochs

in parallel between each communication. For our preliminary

experiments, we set T = 10 and E = 5. For transfer-extension,

the local model is the transfer learning model of ResNet34

pretrained on ImageNet. Only the last residual block and fully

connected layer are set as trainable parameters. In addition, we

add an additional fully connected layer to match the number of

our classification categories. Based on FedProx, the activation

function of the last layer is LogSoftmax, and the setting of

the loss function Ll is a negative log-likelihood loss. ω1 is the
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Fig. 4. Exampled activities of four drivers in each of SFDDD and DriveAct data sets. (a) SFDDD texting—right 1. (b) SFDDD texting—right 2. (c) SFDDD
texting—right 3. (d) SFDDD texting—right 4. (e) DriveAct magazine 1. (f) DriveAct magazine 2. (g) DriveAct magazine 3. (h) DriveAct magazine 4.

Algorithm 1 FedTOP

Input: Communication rounds (T), training client set (C), training

epoch (E), initial global model (ω1), loss function (Ll), deviation
coefficient (µ), number of ordered clients (q)

Output: Trained global model (ωT )

for t = 1 to T − 1 do
for c ∈ C in parallel do

for e = 1 to E − 1 do
Backpropagate the loss function and update the local

model ωte+1

c ← arg minωte
c
Ll(ω

te
c ) +

µ
2
‖ωte

c − ωt‖2.

end for
Update the local model ωt

c ← ωtE
c .

Client sends ωt
c to the server.

end for
Find a set Ct

q of top-q clients in Ct in term of loss values:

Ct ∈ q − arg minc∈Ct L(ωt
c).

Server aggregates the ω as ωt+1 ← 1
q

∑
q∈Ct

q
ωt

q.

end for
Send ωT to clients c ∈ {C, C′} do personalization.

Algorithm 2 Personalized-Extension

Input: Training client set (C), testing client set (C′), personaliza-
tion epoch (E), Trained global model (ωT ), loss function (Ll)

Output: Personalized local model (ωc)

for c ∈ {C, C′} do
for e = 1 to E − 1 do

Backpropagate the loss function and update the local model

ωTe+1

c ← arg minωTe
c

Ll(ω
Te

c ).

end for
Update the personalized local model ωc ← ωTE

c .
end for

initial model parameter. The proposed FedTOP is described in

Algorithm 1, and the personalization process is described in

Algorithm 2.

III. EXPERIMENT AND RESULTS

Considering the data and system heterogeneity, experi-

ments are conducted on two open real-world driver monitoring

Fig. 5. Sampled client image histograms of (a) SFDDD and (b) DriveAct
data sets.

data sets, including State Farm Distracted Driver Detection

(SFDDD) [41] and DriveAct [42]. In addition to compar-

ing with FedProx as a baseline, this article also compares

the performance of the transfer, ordered, and personalized

extensions through an ablation study.

A. Experiment Setup

To compare the impact of system heterogeneity on FL

frameworks, the proposed FedTOP is tested on driver mon-

itoring data sets with and without system heterogeneity. The

SFDDD data set includes 26 drivers and 10 activities, and

the DriveAct data set includes 15 drivers and 12 activities.

The SFDDD data set considers system heterogeneity, that is,

different drivers have different vehicles, different seat posi-

tions, different camera angles, etc., as shown in Fig. 4(a)–(d).

The DriveAct data set does not take into account system het-

erogeneity, i.e., all subjects had their data collected in the

same system. Recorded from the same camera angle, different

drivers read the same magazine in the same vehicle, as shown

in Fig. 4(e)–(h).

To show more clearly and visually the heterogeneity

between different clients in the two data sets, Fig. 5 shows

histograms of the sample images of the two data sets. It can be

seen that the SFDDD data set with system heterogeneity has a
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TABLE I
PERFORMANCE OF FEDTOP AND ABLATION STUDY ON SFDDD AND DRIVEACT DATA SETS

Fig. 6. Accuracy and loss curves of the FL framework and its extensions on the SFDDD and DriveAct data sets, which is the training process of Algorithm 1.
Note that personalization does not affect the convergence of the global model in FL frameworks, i.e., FedTO converges the same as FedTOP. FedO and FedT
refer to ablating the transfer and ordered extensions of the FedTOP framework, respectively. (a) and (e) FedProx. (b) and (f) FedO. (c) and (g) FedT. (d) and
(h) FedTO.

more considerable difference in the distribution of histograms

than the DriveAct data set without system heterogeneity, and

the mean value of the SFDDD images is larger. The possible

reason is that the vehicle interiors of the DriveAct data set

view are darker, resulting in most of the pixel values being

lower. Therefore, FL frameworks may be more challenged by

the scene information when training on the SFDDD data set,

such as different vehicle interiors.

Clients are naturally divided based on the drivers. In order to

better demonstrate the role of personalized-extension, the data

sets are first divided into training clients and testing clients at

a ratio of about 0.8, 0.2, with |CSFDDD| = 20, |C′
SFDDD| = 6,

|CDriveAct| = 12, and |C′
DriveAct| = 3. And then, the data sets

for each client are divided into a training set, verification set,

and testing set at a ratio of 0.7, 0.15, and 0.15, respectively.

After the global model is trained by the training data set of

training clients, the final trained global model is shared with all

clients for personalization. The personalization of the global

model will only be processed on the training sets, while the

personalized local model will be tested on the unseen testing

sets. FL architectures are established on Pytorch and trained

on an Intel Core i9-10850K CPU @ 3.60 GHz, and a Nvidia

GeForce RTX 3080 GPU.

B. Ablation Study and Results

We explore the role of each FedTOP extension on two real-

world data sets through an ablation study. FedProx is used as a

baseline for comparison. According to the experimental setup

described in the previous section, the experimental results are

shown in Table I.

The results and comparisons for two data sets and three

extensions are shown in Fig. 6, which is equivalent to demon-

strating Algorithm 1. By observing the accuracy and loss

curves on the two data sets, it can be concluded that the

SFDDD data set with system heterogeneity is fundamentally

different from the DriveAct data set without system hetero-

geneity. It can be clearly seen that the SFDDD data set
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with system heterogeneity requires more communication to

converge, while the DriveAct data set without system hetero-

geneity has a fast convergence speed, especially at the first

communication. Therefore, for real-world data sets, system

heterogeneity can be mitigated by more communication times.

By observing Fig. 6(b), (d), (f), and (h), it can be found that

the ordered-extension diminishes the stability of the system.

Although the anomalous large-loss local model is discarded

to reduce the bias of the global model, it also increases the

variance of the global model resulting in reduced generalizabil-

ity. By observing Fig. 6(c), (d), (g), and (h), we can see that

the effect of transfer-extension is different for data sets with

and without system heterogeneity. On the one hand, transfer-

extension increases the variance of the model on the SFDDD

data set and leads to a reduced and unstable model conver-

gence. On the other hand, transfer-extension improves the

speed of model convergence on DriveAct, and the convergence

effect is more stable. The possible reason is that the transfer-

extension retains only a small number of trainable parameters,

resulting in the neural network model not being able to learn

human behavioral features effectively in the SFDDD data set

with system heterogeneity. However, for the DriveAct data set

without system heterogeneity, the factors are constant except

for the driver, and the local model does not need to focus

on these exact same pixels, but only on the changing pixels,

including objects, such as drivers, computers, and magazines.

Therefore, for the DriveAct data set, transfer-extension can

effectively increase convergence and stability. The proposed

FedTOP framework is able to obtain 92.32% and 95.96% accu-

racy on the SFDDD and DriveAct data sets, respectively, when

considering five times of personalization training. Compared

to FedProx as a baseline, FedTOP can effectively improve the

accuracy by 462% in addition to considering a 37.46% reduc-

tion in communication resources. The results demonstrate the

feasibility of the proposed FedTOP in terms of communica-

tion resource-saving, accuracy improvement, robustness, and

cybersecurity.

C. Performance of Personalized-Extension

Personalized-extension needs to be further discussed and

analyzed as the most effective approach to improve accu-

racy. Based on the division of training and testing clients

in Section III-A, in this section, we further discuss how the

trained and aggregated global model is adapted to both training

and testing clients. The results of the personalized-extension

on the two data sets are shown in Fig. 7 with different per-

sonalization epochs, which is equivalent to demonstrating

Algorithm 2. It can be seen that the personalization process

differs significantly on the data sets with and without system

heterogeneity, which is similar to the results in Fig. 6. The

clients in the DriveAct data set have faster convergence, minor

accuracy variance, and higher final accuracy. On the contrary,

the clients in the SFDDD data set not only converge slower

but also have an anomalous client with relatively low accuracy.

The possible reason is that the anomalous client has a huge

data and system heterogeneity, causing the optimal model to

deviate significantly far from the aggregated global model.

Fig. 7. Error bars and accuracy distributions for training and testing clients
on (a) SFDDD and (b) DriveAct data sets. Each scatter represents a client.
Testing accuracy of the training and testing clients varies with personalized
epoch, which is the result of Algorithm 2. (a) SFDDD, FedTOP. (b) DriveAct,
FedTOP.

Fig. 8 further demonstrates that the trained global model

repositions the ROI during the personalized training process

via class activation map (CAM) [43]. The test client of the

SFDDD data set can be seen struggling with the personaliza-

tion process. The trained global model focuses the ROI on

the seat backrest, driver’s chest, hand, and knee, and vehicle

door. Due to the system heterogeneity present in the SFDDD

data set, the positions of the driver, seat, and steering wheel,

as shown in Fig. 8(a), are different from other clients, as

shown in Fig. 4(b)–(d). Therefore, the initial ROI is likely

to be a driver’s position among other clients. During the five

personalization training processes, the local model is able to

effectively reposition the ROI to the driver, which is what

the personalized-extension is intended to show. Moreover, the

personalization process also reduces the number of ROI while

targeting more attention to a specific area.

On the contrary, for the test clients in the DriveAct data

set, the adjustment of the ROI is negligible. Note that the

ROI does not necessarily have to cover the driver’s body or

an object such as the magazine. The ROI should cover those

pixels that can distinguish between different activities, such

as static activities like reading the magazine, and dynamic

activities like wearing a seatbelt in the DriveAct data set activ-

ity setting. The ROI focuses on areas where large differences

are likely to occur. The fact that the ROI in the DriveAct

data set covers almost the same pixels during the personal-

ization process can also prove the negative impact of system

heterogeneity on the FL framework.

IV. DISCUSSION

The proposed FedTOP is tested on two data sets: 1) SFDDD

and 2) DriveAct. Although both data sets involve driver activ-

ity classification tasks, they have different objectives. The

SFDDD data set aims to detect driver distraction under nor-

mal driving conditions, while the DriveAct data set is focused

on activity recognition in autonomous driving scenarios. The

DMA highlighted in this article is interested in monitor-

ing driver distractions or other risky behaviors, as different

activities carry different risk factors. For instance, reach-

ing behind is more hazardous than talking to a passenger.

Therefore, in situations where there is a high risk of dis-

tracted state or dangerous behavior, the autopilot system can
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Fig. 8. CAMs of the test clients in SFDDD and DriveAct data sets during the personalization process. (a)–(d) are test clients in the SFDDD data set,
which is the same as Fig. 4(a). (e)–(h) are test clients in the DriveAct data set, which is the same as Fig. 4(e). (a) and (e) Trained global model ωT . (b) and

(f) Personalization Epoch 1 ωT1
. (c) and (g) Personalization Epoch 3 ωT3

. (d) and (h) Personalization Epoch 5 ωT5
.

be employed to take control of the vehicle and prevent traffic

accidents.

The two data sets used, SFDDD and DriveAct, still have

some flaws. First, although the SFDDD data set takes system

heterogeneity into account, quite a few drivers collect data in

the same vehicle. Therefore, there are still some differences

between the data set and the real-world data, which leads to

the fact that the proposed FedTOP may need more commu-

nication rounds to achieve similar accuracy on a real-world

data set. Second, there is currently no driver monitoring data

set with real poisoning data currently existing, resulting in

the effect of ordered-extension not being reflected. The dif-

ferent modalities, positions, and angles of the camera or the

method of generating fake data may be a hypothesis for poi-

soned data, but it cannot be highlighted as real. Moreover,

due to road safety guidelines, the current data set is only driv-

ing on safe roads or simulated driving. Therefore, the driver’s

posture, demeanor, facial concentration, etc., are far from the

real driving behavior. Therefore, there is an urgent need for a

more realistic data set that can include camera images of dif-

ferent positions and angles, different vehicle scenes, and more

drivers driving on real roads.

For an FL framework in IoT, in addition to accuracy

being the evaluation criterion, factors, such as communica-

tion requirements, robustness, fairness, cybersecurity, etc., also

need to be considered. Although it seems that transfer and

ordered extensions may not improve accuracy but rather reduce

it in the current experimental results, it can potentially improve

the performance of the FL framework. Therefore, we keep

two extensions as one of our future directions. Personalized-

extension is an approach similar to transfer learning and incre-

mental learning. On the one hand, the local client is incremen-

tally learned based on the trained global model, but it does not

intentionally retain the previously learned knowledge. On the

other hand, the global model is transferred to the client data set

as in transfer-extension, but the low-level nontrainable weights

are still pretrained on ImageNet. Therefore, the proposed

personalized-extension actually uses the trained global model

weights to fit different client data, such as the reposition

of ROI. Although the personalized-extension requires addi-

tional training locally for each client, there are many benefits,

including high accuracy, applicability to nontraining clients,

customization, etc. Conceivably, personalized-extension can

effectively address the problem of system heterogeneity, e.g.,

it can be applied to different cameras, camera angles, vehicle

interiors, etc.

V. CONCLUSION

In this article, we propose an FL framework FedTOP for

DMA to address the issues of privacy preservation, efficient

training, communication resource-saving, poisoned data, and

diversified scenarios. Through the ablation study, the impact,

role, and performance of three extensions, including trans-

fer, ordered, and personalized on the model, are disclosed.

Moreover, the experiments demonstrate dramatic differences

between data sets with and without system heterogeneity. In

addition to the proposed FedTOP being able to exhibit 92.32%

and 95.96% accuracy in two data sets for testing clients, it

is also appreciated that FedTOP reduces communication con-

sumption by 37.46% and potentially improves cybersecurity.

The experimental results show that the proposed FedTOP is a

highly accurate, lightweight, privacy-preserving, robust, cyber-

secure, and universally applicable FL framework for potential

DMAs.

Future work lies in the continued research of extensions.

For the ordered-extension, a possible plan is to introduce

some malicious local clients to attack and poison with the

global model. For example, subjects may not place the cam-

era on the side as instructed but place it on the front or

behind instead. Such outliers may cause the global model

to deviate significantly from the optimal solution, so in this
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case, ordered-expansion can prevent the deviation of the

global model by discarding the larger value of the losses.

For the transfer-extension, there is currently a lack of a

general driver monitoring model, so we used a model pre-

trained on ImageNet. Future work can pretrain a driver

model ourselves as a base model, which will get better

performance in DMA. Fig. 1 shows the FL framework for

foresight in IoV, but the data set used does not contain sce-

nario information, such as road, weather, vehicle models,

etc. Therefore, we expect a well-developed real-world data

set to include such scenario information, data and system

heterogeneity, etc.
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