LIFTING METHODS IN MASS PARTITION PROBLEMS
PABLO SOBERON AND YUKI TAKAHASHI

ABSTRACT. Many results about mass partitions are proved by lifting R¢ to
a higher-dimensional space and dividing the higher-dimensional space into
pieces. We extend such methods to use lifting arguments to polyhedral surfaces.
Among other results, we prove the existence of equipartitions of d + 1 measures
in R? by parallel hyperplanes and of d+ 2 measures in R?® by concentric spheres.

For measures whose supports are sufficiently well separated, we prove results
where one can cut a fixed (possibly different) fraction of each measure either
by parallel hyperplanes, concentric spheres, convex polyhedral surfaces of few
facets, or convex polytopes with few vertices.

1. INTRODUCTION

In a standard mass partition problem, we are given measures or finite families of
points in a Euclidean space, and we seek to partition the ambient space into regions
that meet certain conditions. Some conditions determine how we split the measures
and the sets of points. For instance, in an equipartition, we ask that each part has
the same size in each measure or contains the same number of points of each set.
Some conditions restrict the types of partitions allowed, such as partition by a single
hyperplane. Determining whether such partitions always exist leads to a rich family
of problems. Solutions to these problems often require topological methods and can
have computational applications [Mat03, Ziv17, RPS22]. The quintessential mass
partition result is the ham sandwich theorem, conjectured by Steinhaus and proved
by Banach [Ste38].

Theorem 1.1 (Ham sandwich theorem). Let d be a positive integer and jiq, ..., g
be finite Borel measures of R®. Then, there exists a hyperplane H of R? so that its
two closed half-spaces HT and H™ satisfy

1
pi(HT) > iﬂi(Rd)v

1
wi(H™) > 5M(]Rd) fori=1,...,d.

If we further ask that p;(H') = 0 for each hyperplane H' and every i =1,...,d,
the inequalities above are equalities. Stone and Tukey proved the ham sandwich
theorem for general Borel measures [ST42]. They also proved the polynomial ham
sandwich theorem which states that any (dzk) — 1 Borel measures in R% can be
halved with a polynomial in d variables of degree at most k. Even though this is a

far-reaching generalization of the ham sandwich theorem, its proof relies on a simple
trick. We lift R? to R(“+")~1 by the Veronese map and apply the ham sandwich
theorem in the higher-dimensional space.

In this paper, we prove several mass partition results by lifting R? to higher-
dimensional spaces, particularly R?*!, in new ways. In Section 2, we revisit a
known result about equipartitions of measures with spheres and prove a new result
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about equipartitions of three measures in R? using a sinusoidal curve of fixed period.
Then, instead of lifting to higher-dimensional spaces via smooth maps, such as the
Veronese maps, we lift to polyhedral surfaces in R4*+!. This forces us to use the
ham sandwich theorem for general measures, which is interesting on its own.

One of the advantages of using a lifting argument using polyhedral surfaces is
that the boundary of the parts in the result partition is contained in the union of
hyperplanes. Many mass partition results use regions with this property, such as
partitions with wedges or partitions of R¢ into convex pieces. We exhibit this in
the following result, which is a ham sandwich theorem for parallel hyperplanes.

Theorem 1.2. Let d be a positive integer and 1, ..., pqr1 be d+ 1 finite Borel
measures in R?, each absolutely continuous with respect to the Lebesque measure.
Then, there exist two parallel hyperplanes Hy, Hy so that the region between them
contains exactly half of each measure.

If there is a hyperplane H; that halves all measures, we can consider Hs to be at
infinity. If H; and H> are not required to be parallel, we present with Theorem 3.2
a simple proof that for any d + 1 finite Borel measures in R?, there exist two closed
half-spaces whose intersection contains exactly half of each measure. The intersection
of two half-spaces is called a wedge. The fact that d + 1 measures in R? can be
halved by a wedge was first proved by Barany and Matousek in dimension two
[BMO1] and later generalized to R? by Schnider [Sch19]. For R2, Bereg presented
algorithmic approaches for the discrete version which show that more conditions
can be imposed on the wedge [Ber05]. Before proving Theorem 1.2, we show how
our methods simplify the proof of Schnider’s extension of Barany and Matousek’s
result.

The proof requires a new Borsuk—Ulam type theorem about direct products of
spheres and Stiefel manifolds, Theorem 3.4, which we describe in Section 3. As a
corollary, we combine Theorem 1.2 with known lifting techniques. We nickname the
following result the “bagel ham sandwich theorem”, due to how it looks in R2.

Corollary 1.3 (Bagel ham sandwich theorem). Let d be a positive integer and
Ui, ., ftagr2 be d+ 2 finite Borel measures in RY, each absolutely continuous with
respect to the Lebesque measure. Then, we can find two concentric spheres or two
parallel hyperplanes in R® so that the closed region between them has exactly half of
each measure.

The case of parallel hyperplanes can be considered as a degenerate case of the
concentric spheres, as spheres centered at infinity. Theorem 1.2 is optimal, as the
region between the two hyperplanes is convex. One can simply take d + 1 measures
concentrated each around a vertex of a simplex and a final measure concentrated
around the barycenter of the simplex to show that the result is impossible with
d + 2 measures. The problem of cutting the same fraction for a family of measures
with a single convex set has been studied before [AK13,BB07], which we revisit in
Section 6. Theorem 1.2 is also related to the problem of halving measures in R?
using hyperplane arrangements. Langerman conjectured that any dn measures in
RY can be simultaneously halved by a chessboard coloring induced by n hyperplanes
[BPS19,HK20]. For n = 2, this has been confirmed for 2d — O(log d) measures
[BBKK18]. If the hyperplanes are required to be parallel, this reduces the dimension
of the space of possible partitions from 2d to d+ 1, matching the number of measures
in Theorem 1.2.

Theorem 1.2 also provides a new direction to extend “necklace splitting results
to high dimensions. The necklace splitting theorem, due originally to Hobby and
Rice [HR65, GW85, AWS6] is a classic one-dimensional mass partition result. There
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exist several variations in high dimensions [LZ08, KRPS16,BS18]. We establish the
connection with this family of problems in section 6.

General mass partition results like the ham sandwich theorem can halve many
measures simultaneously. If we want to cut a fixed (but possibly different) fraction
of each measure, conditions need to be imposed. For example, if two measures
coincide, it is impossible to find a half-space that contains exactly half of one and
one third of the other.

The first result with arbitrary sizes for each measure was proved by Hugo Steinhaus
in dimensions two and three [Ste45]. He required the support of the measures to be
well separated, meaning that the supports of any set of measures could be separated
from the supports of the rest by a hyperplane. This condition was sufficient to
guarantee the existence of a half-space cutting a fixed fraction of several measures.
This result was rediscovered and extended to high dimensions independently by
Bérdny, Hubard, and Jerénimo and by Breuer [BHJ08, Brel0).

Theorem 1.4 (Barany, Hubard, Jerénimo 2008; Breuer 2010). Let d be a positive

integer and i1, . .., pq be d finite Borel measures in RY, each absolutely continuous
with respect to the Lebesque measure so that their supports Ki,...,Kq are well
separated. Let o, ..., a4 be real numbers in (0,1). Then, there exists a half-space
H so that

wi(H) = a; - pi(RY) fori=1,...,d.

The proof of Barany, Hubard, and Jerénimo uses Brouwer’s fixed point theorem.
Breuer’s proof uses the Poincaré—Miranda theorem. The Poincare-Miranda theorem
and Brouwer’s fixed point theorem can easily be derived from one another. Steinhaus’
proof is quite different and uses the Jordan curve theorem. In Section 4 we present
a new proof of Theorem 1.4 that uses a degree argument. The method for this proof
uses tools frequently used in extensions of the Knaster—-Kuratowski-Mazurkiewicz
theorem and its applications to “cake cutting”. [KKM29,Su99, Gal84], as opposed to
the equivariant topology tools commonly associated with high-dimensional mass par-
titions, combined with a parametrization argument of hyperplanes due to Hadwiger
[Had57]. We extend Theorem 1.2 in a similar way for well separated measures.

Theorem 1.5. Let d be a positive integer and 1, ..., uqr1 be d+ 1 finite Borel
measures in RY, each absolutely continuous with respect to the Lebesgue measure.
Suppose that the supports Ki,...,Kqy1 of p1,..., uar1 are well separated. Let
aq,...,aqy1 be real numbers in (0,1). Then, there exist two parallel hyperplanes
H,,Hy in R so that the region A between them satisfies

wi(A) = ;- pi(RY) foralli=1,...,d+1.

We also combine the results with partitions with few hyperplanes and those of
partitions using a single convex set. We exhibit conditions for measures in R? that
guarantee the existence of a (possibly unbounded) convex polyhedron of few facets
which contains a fixed fraction of each measure or the existence of a convex polytope
with few vertices that contains a fixed fraction of each measure. This is done in
Section 5. These results work with an arbitrary number of measures in R<.

Finally, we revisit a mass partition result by Akopyan and Karasev that uses a
lifting argument in its proof. Akopyan and Karasev proved that for any positive
integer n and any d + 1 Borel measures in RY, there exists a convex set K whose
measure is exactly 1/n of each measure. We extend the methods from Section 3 to
bound the complexity of K by writing it as the intersection of few half-spaces.

Theorem 1.6. Let n,d be positive integers and 1, ..., pqr1 be d+ 1 finite Borel
measures in R?, each absolutely continuous with respect to the Lebesque measure.
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There exists a convex set K, such that K is the intersection of Z;:1 k;(p; — 1)p;
half-spaces and

1
wi(K) = —p;(RY) foralli=1,...,d+1,
n

where n = plfl ...pFr is the prime factorization of n.

We conclude in Section 6 with remarks and open problems.

2. EQUIPARTITION WITH SPHERES AND SINE CURVES

While the traditional ham sandwich theorem simultaneously halves d measures
in R¢ by a hyperplane, we can simultaneously halve d + 1 or more measures in R?
if we increase the complexity of the cut. The following theorem is a consequence of
Stone and Tukey’s polynomial ham sandwich theorem [ST42] and was one of Stone
and Tukey’s first examples of their main results. It was also proved in dimension
two by Hugo Steinhaus in 1945 [Ste45] using a particular parametrizations of the
space of circles in R?. We present a new proof with a stereographic projection.

Theorem 2.1. Let d be a positive integer and let p1,. .., ta+1 be d+ 1 finite Borel
measures in R?, each absolutely continuous with respect to the Lebesque measure.
Then, there exists either a sphere or a hyperplane that simultaneously splits each
measure in half.

Proof. We first embed R to R4+ by appending a coordinate 1 to each point, so
r + (z,1) € R¥*L. Then, we apply r : R4\ {0} — R\ {0} the inversion
centered at 0 with radius 1. This is a transformation that sends spheres containing the
origin to hyperplanes and hyperplanes to spheres containing the origin. Hyperplanes
containing the origin are fixed set-wise by the inversion. We consider them as
degenerate spheres as well. Restricted to the embedding of R?, the inversion is a
stereographic projection to the sphere S of radius 1/2 centered at (0,...,0,1/2) by
rays through the origin. We also know that r o r is the identity.

When we lift the measures p1, ..., ftig41 to R4 and apply r, we get measures
01,...,044+1 on S. By the ham sandwich theorem in R4*!, there exists a hyperplane
H halving each of o1,...,0441. Since r(H) is a sphere in R4+, it intersects the
embedding of R? in a (d — 1)-dimensional sphere halving each of p1, ..., tq;1, as
we wanted. The only exceptional case is if H contains the origin, in which case
r(H) = H, which gives us an equipartition by a hyperplane in R. ]

Similarly, the idea of lifting allows for visual and intuitive proofs of the existence
of equipartitions of three sets in R? by a sine wave. By a sine wave of period a we
mean the graph of a function of the form y = r + Asin(27x/a + s), for real numbers
A,r,s.

Theorem 2.2. Let a > 0 be a real number. Given three finite Borel measures
11, po, s in R?, each absolutely continuous with respect to the Lebesque measure,
there ezists a sine wave of period a halving each measure.

We allow “degenerate” sine waves of period a. A degenerate sine wave of period
« is formed by taking two vertical lines intersecting the z-axis in the interval [0, «)
and making a translated copy in each interval of the form na + [0,«). This set
induces a chessboard coloring of the plane into two regions. We can think of this as
the limit of a sequence of sine waves of period « of increasing amplitude.

Proof. We prove the result for o = 27, as the two cases are equivalent after a scaling
argument. We wrap R? around the cylinder C in R? with equation 2% + 22 =1
with the function
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f:R*=C
(z,y) = (cos (z), y,sin (z)).

Let 01,092,035 be the measures that pq, pe, 3 induce on C' by this lifting, re-
spectively. We apply the ham sandwich theorem to these three measures in R?.
Therefore, we can find a plane H = {(x,y, 2) : ax 4+ by + cz = d} that halves each
of 01,09,03. When we pull H N C back to R?, we get the set of points (z,y) that
satisfy a cos(z) + by + ¢sin(x) = d. Since a linear combination of the sine and cosine
functions is a sinusoid with the same period but possibly different amplitude and
phase shift, we have asin(z) + ccos(z) = Asin(z + s) for some A and s.

FIGURE 1. An example of a cylinder C' with period oo = 2w. The
lift R? — C is not an injective function, but this does not cause a
problem.

O

The degenerate cases appear when b, the coefficient of y, is zero. One can prove
a high-dimensional version of Theorem 2.2 by wrapping R? around S¢~! x R to
find “sinusoidal surfaces of fixed period” that halve d + 1 measures in R%,

3. EQUIPARTITIONS WITH WEDGES AND PARALLEL HYPERPLANES

In this section, we prove results regarding equipartitions of d+1 mass distributions
in R? by a wedge. A wedge in R? is the intersection of two closed half-spaces. Note
that a single closed half-space is also considered a wedge.

We say that a measure p with support K in R? is absolutely continuous if it is
absolutely continuous with respect to the Lebesgue measure and K is connected
and not empty. Note that by the definition of support, for every open set U C K we
have p(U) > 0. This guarantees that there is a unique halving hyperplane in each
direction for p and that the halving hyperplane varies continuously as we change
the direction of the cut. We first establish a lemma about halving hyperplanes. We
only use the lemma below with n = d + 1, but it works in general.

Lemma 3.1. Let n be a positive integer, u1, ..., 1y, be finite absolutely continuous
Borel measures in R, and v be a unit vector in R?. There either exists a hyperplane
H orthogonal to v that halves each of the n measures or there exists a hyperplane
H such that its two closed half-spaces satisfy

1
wi(HY) < i,ui(]Rd) for some i € [n] and

1
pi(H™) < 5,ui/(IE{d) for some i’ € [n].
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Moreover, the hyperplane H can be chosen continuously as a function of v so
that the same choice is made for v and —v.

Proof. For each i, let H; be the halving hyperplane for u; orthogonal to v. If
all these hyperplanes coincide, we are done. Otherwise, we can order this set of
hyperplanes by the direction v, and any hyperplane H strictly between the first H;
and the last H; satisfies the conditions we want.

To show the continuity with respect to v, first note that each H; can be chosen
uniquely and continuously. Each p; has a closed interval of possibilities for H; and
we can choose the midpoint of such an interval. If we denote by ¢ the line through
the origin with direction v, this makes H; N ¢ a continuous function. We can then
choose H so that H N¢{ is the midpoint of the set {H; N¢ : i € [n]}, so the continuity
on v follows. The choice also makes it so that the same hyperplane is selected for
—v. (]

Through the rest of the manuscript, we denote the canonical basis of R? by
€1y,...,€4.

Theorem 3.2. Let d be a positive integer and pi1, ..., pa+1 be d+1 finite absolutely
continuous Borel measures in R%. Then, there exists a wedge that contains exactly
half of each measure.

Recall that the region between two parallel hyperplanes satisfies our definition
of a wedge. This can be considered as a wedge where the intersection is a (d — 2)-
dimensional space at infinity.

Proof. Let v be a unit vector in R?. If there is a hyperplane H orthogonal to
v halving each measure we are done. Otherwise, by Lemma 3.1, we can find a
hyperplane H such that each side contains less than half of some measure.

Consider the lifting of R? to R4 where we append an additional coordinate to
every point 2 € R?. Formally, we lift via the map z + (x, dist(z, H)).

We denote by S(H) the image of R? in this embedding. Note that the function
x +— dist(x, H) is affine on each side of H, so S(H) is contained in the union of two
hyperplanes that contain {(z,0) : z € H}. See Fig. 2 for an illustration of the case
d=2.

We lift each measure p; in R to a measure ¢; in R**!. The measures o1, ..., Od+1
are no longer absolutely continuous. We now apply the ham sandwich theorem
for general measures in R4t!. Therefore, we can find a hyperplane H’ in R**! so
that its two closed half-spaces (H')T, (H')~ satisfy o;((H')") > 30;(R%™) and
oi(H)™) > $0;(R¥™ ) foralli =1,...,d+ 1.

By construction, each side of H has strictly less than half of one of the measures p;.
If the hyperplane H' coincides with one of the two hyperplanes whose union contains
S(H), the half-space bounded by H’ that contains infinite rays in the direction
—egq+1 would have less than half of the corresponding measure o;. Therefore H' is
not one of the two hyperplanes forming S(H).

As the two components of S(H) were the only hyperplanes with non-zero measure
for each o;, we conclude that H’ halves each of the measures in R4, As a final
observation, H' N S(H) projects back to R? as the boundary of a wedge that halves
all measures. U

In the proof of Theorem 3.2 we could choose the direction v arbitrarily. We
now use this degree of freedom to strengthen the result. Even though Theorem 1.2
implies Theorem 3.2, we state it separately as the proof requires more technical
tools. In particular, a simple application of the ham sandwich theorem is insufficient.
We require some additional topological tools in lieu of the Borsuk—Ulam theorem.
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Rd SN IRd+1

FIGURE 2. An example of lifting when given three measures in R2.
Measures on the zy-plane are sent to measures on this surface. The
hyperplane H in this case is the z-axis.

Let Vi.(R?) be the Stiefel manifold of orthonormal k-frames in R?. Formally,
Vi(RY) = {(v1,...,0) s v1,...,0: € R? are orthonormal}.

The space Vi (IR?) has a free action of the group (Zz)¥, where we consider Zy =
{+1, —1} with multiplication. Given (v1,...,v%) € Vi(R%) and (A1, ..., \x) € (Za2)*,
we define

()\1, ey )\k) . (111, e ,Uk) = (/\1111, ey /\k'Uk) € Vk(Rd).

A similar action of (Z3)* can be defined in R%~! x ... x R%*  as the direct
product of the actions of Zsy on each R?~*. A recent result of Chan, Chen, Frick,
and Hull describes properties of (Zs)*-equivariant maps between these two spaces.

Theorem 3.3 (Chan, Chen, Frick, Hull 2020 [CCFH20]). Let k,d be positive
integers. Every continuous (Zs)*-equivariant map f : Vi,(RY) — R4~ x ... x R4~*
has a zero.

Manta and Soberén recently found an elementary proof of Theorem 3.3 [MS21].
We use the result above in Section 4. For this section, we need a slight modification.
We use the product of the actions of Zs on the d-dimensional sphere S¢ and of
(Z2)* on Vi.(R?) to define a free action of (Zg)**1 on S¢ x Vi (R?).

Theorem 3.4. Let k,d be positive integers. Every continuous (Zso)**+!-equivariant
map f: 8% x Vi(RY) — RE x R¥! x ... x R¥™* has a zero.

There are several ways to prove the result above. The dimension of the image
and the domain are the same, and the action of (Z)**! is free on S x Vi (R?).
Therefore, Theorem 3.4 is a consequence of the general Borsuk—Ulam type results
of Musin [Mus12]. We present this as our second proof. Alternatively, one can use
the methods of Chan et al. [CCFH20] to prove Theorem 3.4. It suffices to note
that S? x V3, (R?) is a space in which their topological invariants can be applied
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and the particular function g in our second proof is all that’s needed to replace
[CCFH20, second proof of Lemma 3.2]. We only use Theorem 3.4 for k = d — 1.
We present first a short proof using the existing computations of the Fadell-
Husseini index of these spaces on Zy cohomology [FHS88|. Given spaces X and Y
with actions of (Zso)¥*+1, their indices md@)"" (X), md@)"" (Y) are ideals in the
polynomial ring Zs|tg,t1,. .., tx]. Moreover, if there exists a continuous (Zg)*+!-

equivariant map f: X — Y, we must have Ind(Z"’)kH(Y) C Ind(Z"’)kH(X). More
details on this index and its computation for spaces and group actions common
in discrete geometry can be found in recent work of Blagojevié¢, Liick, and Ziegler
[BLZ15].

First proof of Theorem 3.4. The result is equivalent to showing that there exists no
continuous (Zz )**1-equivariant map f : S¥x Vi (RY) — (RExR4~1 x.. . xRI¥=*)\{0}.
The space (R x ... x R47%)\ {0} is homotopy equivalent to the join of spheres
S . % §9F=1 We know Ind@)"" (S 1w x SITRTY) C Zglto, ta, ... 1) s
the ideal generated by the single monomial tgt?l . .tiik.

On the other hand, Ind(ZQ)kH(Sd x Vi(R?)) C Zsto, ..., tx] is the ideal gener-
ated by the polynomials t2™%, f1,..., fx where fi,..., fr C Zalt1,...,tx] generate

Ind(Zz)k(Vk(]Rd)). These polynomials were described completely by Fadell and
Husseini [FH88, Thm. 3.16]. Notably

fi= t?ﬂ'H + wi,nfit?ii + ...+ wip,
where w; j € Zalt1,...,t;_1] and the degree of w; jt7 is n — i + 1. In particular,
tded=1 | pdk o [nd )" (99 % Vi (RY)),

which shows that no continuous (Zs)**!-equivariant map f : S x Vi(R%) —
(R4 x R41 x ... x R47K) \ {0} exists. O

Second proof of Theorem 8.4. We construct a second map g : S¢ x Vi, (R%) — R? x
. x R¥*_ For (u,v) € S¢ x Vi, we denote g(u,v) = (xo,21,...,Tr) Where
x; € R for 0 < i < k. We take ¢ formed by the last d entries of © € S c R4+,
and for 1 < ¢ < k we take z; to be formed by the last d — ¢ entries of the i-the vector
in v € Vi (R?). This map is (Z2)**!-equivariant, continuous, and there is a single
orbit of zeroes.
Now consider a new map

F: S x Vi (R?) x [0,1] = R% x ... x R™*
(u,v,t) = tg(u,v) + (1 —t) f(u,v)

This is a continuous (Zz)**!-equivariant map. For any e, Thom’s transversality
theorem [Tho54; GP10, pp 68-69] implies that there exist a map F. : S% x Vj(R?) x
[0, 1] such that the two following conditions hold: for each (u,v) € S% x Vi (RY), we
have F.(u,v,1) = F(u,v,1) = g(u,v), 0 is a regular value of F_, and ||F. — F||« < €.
Note that, since the domain is compact, the infinity norm is well defined for any
continuous map from S x Vj(R%) to R x ... x R4k,

The set F1(0) € S%x Vi (R?) x [0, 1] is therefore a one-dimensional manifold with
a free action of (Zy)**!. Its connected components are diffeomorphic to circles or
intervals. The interval components must have their endpoints in S x V (R9) x {0, 1}.
Any continuous function from an interval to itself must have a fixed point, so the
group (Zs)**1 acts freely on the set of intervals in F_1(0).

Therefore, the parity of (Z2)*+! orbits on F=1(0) with ¢ = 0 and the parity of
(Z2)*+1 orbits on F!(0) with ¢ = 1 must be the same. Since for ¢t = 1 there is
a single orbit of zeros, there must be at least one orbit of zeroes for ¢ = 0. The
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function F. restricted to ¢t = 1 is very similar to f. As we let ¢ tend to zero, the
compactness of S¢ x V;(R%) implies that f~!(0) is not empty. O

The second tool we require is a minor modification of the lift from R? to R4*!. In
the previous proof, given a hyperplane H C R? we lifted R¢ directly to S(H) C R+
This has the inconvenience that the lift of an absolutely continuous measure is no
longer absolutely continuous in R4+, We do not require such a strong condition, but
we do require the lifted measures to assign mass zero to any hyperplane. To avoid
this problem, we lift each measure p; to S(H)®, the region between S(H) — ¢ - eg41
and S(H) + ¢ - eqy1, which we formalize below.

We say that a measure p in R? is smooth if it is the integral of a continuous
positive function f : R — R (i.e., f(A) = [, f for any measurable set A). We “lift”
f to a function

f:RYxR—R
ooty { () S) i |dist (o, 1) — 1] < e
7 0 otherwise.

We say that the measure o° defined as the integral of f in R? is the lift of p to
S(H)¢. Notice that as e — 0, the measure o° converges weakly to the lift of u to
S(H). For € > 0, the measure ¢¢ is not absolutely continuous, but it has value 0
on each hyperplane. Note that the same lifting process can be done for absolutely
continuous measures having densities, which may generalize the proof below for a
wider family of problems.

Proof of Theorem 1.2. We first assume that no hyperplane simultaneously halves
all measures, or we are done. Since the set of smooth measures is dense in the set
of absolutely continuous measures, we may assume without loss of generality that
the measures pq, ..., tg+1 are smooth. Let € > 0. For v € 5S¢ and (v1,...,04-1) €
Vi_1(R9), consider the element (v,v1,...,v4_1) € S% x Vz_1(R?).

Let H be the translate of the hyperplane T = span{vy,...,v4—1} chosen from
Lemma 3.1. Let of,...,05,; be the lifts of u1,..., uay1 to S(H)?, respectively.

Let A be the value so that the half-spaces

A={zr e R™: (z,0) >} and
B={zxec R (z,0) <A}
have the same o, ;-measure. Now we are ready to define a map
f:i8x Vi (R - RIEx R x ... x R!
(v,v1,..,V4—1) = (Tgy...,x1)
where z; € R for i = 1,...,d. First, we consider
0§(A) —o5(B)
Tqg =
og(A) —o3(B)
For i =1,...,d — 1, the first coordinate of x; is (v, e441){v, (v4—i,0)) and the rest
are zero.
This function is continuous by the construction of the lift of the measures. It is
also (Zg)**1-equivariant: if we flip the sign of v, only 24 changes sign and if we flip
the sign of v; only x4_; changes sign for i =1,...,d — 1.

By Theorem 3.4 the function f has a zero. The condition z4 = 0 tells us that A
and B each have exactly half of each of for ¢ =1,...,d + 1. The conditions of the
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rest of the x; being zero vectors means that either v is orthogonal to e4y1 or v is
orthogonal to each (v;,0) for i =1,...,d — 1.

If the first condition happens, then when we project R%*! to the hyperplane
ea+1 = 0, each of projects to p; and A, B project onto two half-spaces of R<.
This would mean we have a hyperplane halving each of the original measures,
contradicting our initial assumption. Therefore v is orthogonal to (v;,0) for all i.

We take a sequence of positive real numbers ¢, — 0. For each of them, we find
a zero of the function induced above. As S? x V;_1(R9) is compact, the zeros
must have a converging subsequence. In the limit, we obtain two complementary
half-spaces A, B so that each contains at least half of o; fori =1,...,d+1 on S(H)
(where the direction of H is determined by the limit of (vy,...,v4-1)). Let H' be
the hyperplane at the boundary of A and B.

In the limit, the vector v normal to H' is orthogonal to the subspace Ty =
span{(v1,0),...,(v4—1,0)}. Note that Ty is a copy of H with a coordinate zero
appended to each point. By the construction of H, the hyperplane H' cannot be one
of the two hyperplane components of S(H). The orthogonality mentioned before
implies that H' contains a translate of Ty through each of its points, and so does
each of the two hyperplane components of S(H). Therefore, H' NS(H) must be two
(d — 1)-dimensional affine spaces parallel to Ty. When we project back to R?, these
parallel intersections form H; and Hs and the region between them has exactly half
of each p;. O

The configuration space used in this proof, S x V;_1 (R?) is larger than needed for
our purposes. Indeed, many elements of V;_1(R9) lead us to the same construction
for the affine space H. The benefit of this space is that it might be possible to
extend such results to spaces of partitions that are more sensitive to the orthonormal
set given by V;_1(R?%) than simply its span. A clear example are Yao—Yao partitions
of R? into 2¢ convex sets, which depend on a choice of an orthonormal basis [YY85].
It would be interesting to know which results of that kind are amenable with lifting
arguments as presented.

Proof of Corollary 1.3. We lift R? to the paraboloid

d
P = {(ml,...,xd,Zx?> GRd+1}.
=1

We now have d + 2 measures in R%*!, and every hyperplane has measure zero in
each of them. We can apply Theorem 1.2 and find two parallel hyperplanes Hy, Ho
so that the region between them contains exactly half of each measure. Notice that
H; NP and H, NP project onto concentric spheres in R?. They can also project
to two parallel hyperplanes, which we consider as a valid degenerate case of our
result. O

Of course, similar results can be obtained by applying general Veronese maps as
Stone and Tukey did to prove the polynomial ham sandwich theorem [ST42].

Corollary 3.5. Let d, k be positive integers. For any set of (dzk) finite absolutely
continuous Borel measures in R?, there exists a polynomial P on d variables and
constants A\, Ay so that {x € R%: \; < P(z) < \o} has exactly half of each measure.
The polynomial ham sandwich usually splits (d‘};k) —1 measures using a polynomial
of degree at most k. If we want to restrict which monomials are used in the splitting
polynomial, we just have to reduce the number of measures accordingly.



LIFTING METHODS IN MASS PARTITION PROBLEMS 11

4. FIXED SIZE PARTITIONS FOR WELL SEPARATED MEASURES

As noted by Bérdny et al. [BHJ08], it is known that for well separated convex
subsets K1, ..., Ky in R?, there are 2¢ hyperplanes tangent to all of them. If none
of the hyperplanes are vertical (i.e., perpendicular to e4), the tangent hyperplanes
are in one-to-one correspondence with the sets of K; below the hyperplane. This is
was also proved by Klee, Lewis, and Hohenbalken [KLVH97]. We use this fact in
our proof of Theorem 1.4.

For the sake of completeness, we prove a technical lemma. This argument is often
used to prove envy-free results in dimension 1, so-called “cake partitions”. See, e.g.,
[Wel85, BT96, Su99, Bar05, Pro16] and the references therein for more applications
of this method. It is interesting to see this argument used in mass partition results
where the usual methods come from equivariant topology.

Lemma 4.1. Let P be a convez polytope and f : OP — OP be a continuous function
on its boundary. If f(o) C o for each proper face o of P, then f is of degree one.

Proof. 1t suffices to exhibit a homotopy between f and the identity map on the
boundary of P. For A € [0, 1] we define

szaP—>P
= Ax+ (11— X)) f(x).

We have fo = f and f; equal to the identity. Moreover, for x € 0P, there exists
a proper face o containing it. The convexity of o implies that f\(z) € o C OP.
Therefore, this provides the homotopy we wanted. O

Proof of Theorem 1.4. We assume without loss of generality that uq,...,puq are
probability measures. Consider the hypercube @ = [0, 1]¢. Each vertex of @ can be
assigned to a subset of I C [d] uniquely. We denote

1 ifiel

=,..., h =
vr={p1,--o;pa) - where p {o ifigl.

For a point ¢ = (q1,...,q4) € @ and I C [d] we consider the coefficients

M) =[] []0 - a)-
iel  igl
Expanding the product J[,c(q (¢ + (1 — ¢;)) shows that the sum of the A;(g) is
1. Therefore, the coefficients A;(q) are the coefficients of a convex combination, as
they are also non-negative. Suppose we have a function f : {0,1}¢ — R?%. We can
extend it to a function f: Q — R? by mapping

g > Mi(a)f(vr).

ICld]

Notice that if o is a face of Q, then f(o) C conv({f(v;) : v; € o}). In particular,
f(vr) = f(vr).

Now, suppose we are given d well separated convex sets K1,..., K, in R? and
measures fig, ..., ftg SO that the support of p; is K;. We may assume without loss
of generality that there is no vertical hyperplane tangent to each of K1,..., Ky.

Each non-vertical hyperplane H can be written as

{(z1,...,xq) 1 xg =011 + ... + @g_124-1 + g}
for some constants aq,...,aq. We assign the vector r(H) = (aq,...,aq) to the
hyperplane H. We say that a point is above H if x4 > ajz1 + ...+ ag_124-1 + g

and below H if g < o121 + ...+ ag_1x4-1 + ag4. Notice that if a point x is below
a set of hyperplanes Hy, ..., Hy, then it is also below the hyperplane r~1(y) for any
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y € conv(r(Hy),...,r(Hy)), as a direct manipulation of the inequalities induced on
x4 shows. Similarly, if a point x is above a set of hyperplanes Hq, ..., Hy, then it is
also above the hyperplane r~1(y) for any y € conv(r(H,),...,r(Hy)).

We know that for each subset I C [d], there is a unique hyperplane H; that is
tangent to each K; and so that K; is below H if and only if ¢ € I. This defines
a function f : {0,1}? — R? by simply taking f(v;) = r(H). We extend f to a
function f: Q — R< as described above. For ¢ € Q, let H(q) be the set of points

below 7~ 1(f(q)).
We define a final function

g:Q—Q
q— (1 (H(q)),- .-, pna(H(q)))

The function g is continuous. Notice, for example, that g(v;) = vy for each
I C [d]. Let us show that for every face o C @, we have g(o) C o.

It is sufficient to prove this when o is a facet, as every face is an intersection
of facets. Take i € [d] and consider the facet ¢ formed by all the vertices V;
for which the i-th coordinate is 1. Let ¢ € o. Since K; is below each vertex
v € o, we know that K; is below H(q). Therefore, the i-coordinate of g(q) satisfies
1> pi(H(q)) > pi(K;) = 1. Therefore, g(q) € o. For facets defined by a coordinate
equal to zero, the same argument holds, now with K; above each hyperplanes
involved.

This means that g is of degree one on the boundary, so it is surjective. In
particular, there is a point gg € @ such that g(qo) = (a1,...,aq). Therefore, the
hyperplane H(qp) is the hyperplane we were looking for. O

Bérany, Hubard, and Karasev also showed that, under simple conditions, the
half-space H from Theorem 1.4 is unique. It suffices that

e each measure p; assigns a positive value to each open set in its support K;,
e FEach K is connected and not empty,

e no vertical hyperplane is tangent to Ki,..., Ky, and

e the half-space H contains infinite rays in direction —ey.

Proof of Theorem 1.5. We follow a process similar to the proof of Theorem 1.2.
First we need an additional observation about our construction of S(H). In R¢,
there is no hyperplane H intersecting each of K1, ..., Kgy1. Otherwise, we can take
a point p; € K; N H. This gives us d + 1 points in a (d — 1)-dimensional space.
By Radon’s lemma, we can find a partition of them into two subsets A, B whose
convex hulls intersect. This implies that {K; : p; € A} cannot be separated from
{K; : p; € B}, contradicting the hypothesis.

Therefore, when we are given a vector v € R? and we construct S(H) for H 1 v,
each side of H must have measure zero for some ;. This is much stronger than
simply having less than half of some measure.

The main idea will be to lift each measure to a surface S(H) for an appropriate
H and use Theorem 1.4. We show that by choosing H carefully, we can deduce the
existence of the two parallel hyperplanes we seek.

Consider the Stiefel manifold V;_1(R%). Given (v, ...,v4-1) € Vy_1(R?), we
lift R? to S(H) C R**! as in Lemma 3.1 where H is parallel to span{vy, ..., v4_1}.
This lifts each measure u; in R? to a measure o; in S(H). Every hyperplane in
R separating the support vectors of two sets of the measures y; can be extended
vertically in R%*! to separate the corresponding measures o;. A small tilting can
ensure that the separating hyperplane is not vertical. Therefore, the measures o;
are well separated.
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The measures o; do not satisfy the requirements of Theorem 1.4, so an additional
step is necessary. For an £ > 0, we lift the measures to S(H)¢ as in the proof of
Theorem 1.2, apply Theorem 1.4, and then take ¢ — 0.

This ensures that we get a half-space H' that has infinite rays in the direction
—eqy1 and such that o;(H') > a; - 0;(RY) and o;(H™) > (1 — ;) - 0;(R?), where
H~ is the complementary closed half-space of H*. Since o;(H™) > 0 for all i, we
know that the boundary of H* cannot be one of the two hyperplane components
of S(H). Therefore the measure o; of the boundary of H* is zero for all i and
oi(H") = a; - u;(HT). The same arguments that Bardny, Hubard, and Jer6nimo
used to show the uniqueness in their theorem can be applied to show that H™ is
uniquely defined. The uniqueness also implies that H* changes continuously as we
modify (v1,...,v4-1)-

Let n € 8% € R be the normal vector to the boundary of HT that points in
the direction of H*. We can use this to construct a function

g:Vy1(RY) - R x .. xR
(V1. y04-1) = (T1, ..., x4).

For each i = 1,...,d — 1, the first coordinate of z; € R4~ is (n, (v;,0)) and the rest
are zero. This function is well defined and continuous. If we flip the sign of v;, the
surface S(H) does not change. The vector n € S¢ is not affected by this change, so
only the sign of x; changes. Therefore, the function g is (Zy)?'-equivariant. By
Theorem 3.3, the function g must have a zero. This implies that the projection of
H* N S(H) onto R? is the region between two hyperplanes parallel to H. O

The construction of the function g only uses d—1 out of the d(d—1)/2 coordinates
that Theorem 3.3 makes available. It would be interesting to know if much stronger
conditions can be imposed on H.

We also have consequences similar to Corollary 1.3. We say that a family of sets
Ki,...,Kqo in R is well separated by spheres if for any subset way to split them
into two families I, J, there is a sphere that separates I and J, i.e., it contains the
union of one of the sets and leaves out the union of the other set.

Corollary 4.2. Let d be a positive integer and i1, ..., a1 be finite Borel mea-
sures in R? absolutely continuous with respect to the Lebesque measure. Suppose
that the supports Ki,...,Kqyo of pt1,..., ltay2 are well separated by spheres. Let
Q1,...,Qq+2 be real numbers in (0,1). Then, there exist two concentric spheres
S1,Sa or two parallel hyperplanes in R® so that the region A between them satisfies

wi(A) = ;- pi(RY) foralli=1,...,d+2.
Proof. We lift R? to the paraboloid

d
P = {(ml,...,xd,Zm?> ERd'H}.
i=1

A sphere in R? separating two families I,.J of measure supports translates to a
hyperplane in R%*+! separating the lift of those supports. We apply Theorem 1.5 to
the family of measures induced on P and we are done.

Even though the set of lifted measures do not satisfy the conditions of Theorem 1.5,
a standard approximation argument fixes this problem. O

5. EQUIPARTITION WITH POLYTOPES AND POLYHEDRAL SURFACES OF BOUNDED
COMPLEXITY

In previous sections, the number of measures to be partitioned was constrained
by the dimension of the ambient space, while the boundaries of the partition were



14 PABLO SOBERON AND YUKI TAKAHASHI

relatively simple. In this section, we consider mass partitions of a family of n
measures in R?, where n can be much larger than d. We do so by increasing the
complexity of the boundary of the partition. We focus on partitions by polyhedral
surfaces.

Definition 5.1. Let F = {u1,..., un} be a family of finite absolutely continuous
Borel measures in R? with support K; for each 1 < i < n. The supports are called
convezly separated if for each 1 < ¢ < n, there exists a hyperplane H; such that
KiNH}=0and K; N H; =0 for all j # i.

The maximum number of well separated measures is d + 1, due to Radon’s
theorem. For convexly separated measures we only want to be able to separate any
measure from the union of the other n — 1, and not any two subsets. An example of
convexly separated measures are n measures such that each is concentrated near a
vertex of a convex polytope.

(a) (b)

FIGURE 3. (a) An example of four convexly separated measures in
R2. (b) An example of five convexly separated and concentrated
measures in R2. Notice that if we take ¢; instead of p; to form the
convex hull, the resulting polygon contains all of K;.

We define a polyhedron in R¢ to be a finite intersection of closed half-spaces. A
facet of a polyhedron is a (d — 1)-dimensional face, and a vertex of a polyhedron is
a zero-dimensional face.

Theorem 5.2. Let F = {u1,...,un} be a family of finite absolutely continuous
Borel measures in R with convezly separated supports K; for all 1 < i < n, and let
a1, ..., an be real numbers in (0,1). Then, there exists a polyhedron P with at most
n facets such that ju;(P) = a; - u;(R?) for every 1 <i < n.

Proof. Because the supports are convexly separated, for each 1 < i < n, we can fix
a hyperplane H; with K; N H;' = () and K; N H; = () for all j # i. Notice that a
polyhedron P =, H;" has the property ju;(P) = 0 for every 1 <i < n.

Now, consider p;. Let v be the normal vector to the hyperplane H; pointing
in the direction of H~. We can move H; in the direction of v until we have
the desired portion of the measure p1, so we can fix Hj || Hy with p(H{") =
a-p1(RY). By letting P’ = (N, H;") NH{", we have 1 (P') = o - i1 (R?) because
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p1(Niy H;") = p1(R?). Moreover, because K; N Hy = 0 for each j # 1, moving

Hj to the direction of H; does not interfere with the rest of the measures po, .. ., fin.
We can repeat the same process for us, ..., p, to find a convex polyhedron of at
most n facets with the desired property. U

While Theorem 5.2 allows for a mass partition with a polyhedron of n facets, we
can quantify the complexity of a compact polyhedron by the number of vertices as
well. Theorem 5.3 proves a mass partition with a polyhedron of n vertices, but this
time for n measures with a slightly stronger separation condition. We will use a
similar idea to the proof of Theorem 1.4.

Let g1, ..., ptn be a family of convexly separated measures in R%. Let H; be the
hyperplane separating K; from the rest of the supports, as in Definition 5.1. Let
Hf be the closed side of H; that does not contain K;. For n > d+ 2, any d + 1
or fewer sets H j have non-empty intersection, so Helly’s theorem we know that
P=NL, H;" # (. We say that the measures are concentrated if the following
happens. There exists a point p € P and points p;,q; for i = 1,...,n so that the
following holds.

For each i =1,...,n, p; € H; N P. We denote Ky = conv{pi,...,pn}.
We have p € K.

For each i = 1,...,n, g; is in the ray pp; and in ﬂi,# Hj

For each i =1,...,n, we have K; C conv({q;} U Kj).

An example is illustrated in Fig. 3(b).

Theorem 5.3. Let n,d be positive integers. Let F = {u1,...,un} be a family of
convexly separated and concentrated Borel measures in R, each absolutely continuous.
Let a1, ..., ay be real numbers in (0,1). Then, there exists a polytope K with n
vertices such that p;(K) = a; - pi(RY) for every 1 <i < n.

Note that the intuitive idea we used to prove Theorem 5.2 would indicate that
we should slide each p; towards ¢; until we have the desired measure. The issue
with this is that the values of other measures are no longer fixed.

Proof. Consider the hypercube Q = [0,1]". For « = (z1,...,2,) € Q, and i =
1,...,n, let y; = (1 — ;)q; + 2;p;. We define

K(z) =conv{yi,...,yn}-

This convex set allows us to construct a function

[:Q—-Q

(K@) (K ()
“"'“( n(RY) T, (RY) )

The function is continuous. From the conditions of the measures, we can see that
for every vertex v of @), we have f(v) = v. However, we have a stronger condition.
For every face o C @, we have f(o) C o. This is because if a coordinate x; of x equals
zero, the K (x) C H;", so p;(K(z)) = 0. If 2; = 1, then K(z) D conv{{g} U Ko},
so 11;(K(z)) = p;(R?). Therefore f is of degree one on the boundary and must be
surjective. There is a point « € @ such that f(z) = (aq,..., a,), which implies that
K(x) is the polytope we were looking for. O

6. REMARKS AND OPEN PROBLEMS

To prove Theorem 1.6, we need to strengthen Lemma 3.1.
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Lemma 6.1. Let m,n be positive integers, ui, ..., i, be n finite absolutely contin-
wous Borel measures in R%, and v be a unit vector in R¢. Then there either exists
m — 1 hyperplanes orthogonal to v that divide R?® into m regions Ry, ..., R, of equal
measure for each p; simultaneously or there exist m — 1 hyperplanes orthogonal to v
such that they divide R? into m regions Ry, ..., Ry, such that for every j =1,...,m
there exists an i such that

pilRs) < (R,

Proof. Given parallel hyperplanes Hy, ..., H,,_1 in this order, we denote by Ry, ..., Ry,
the regions they divide R into such that R; is bounded by H;_; and H;. The
unbounded regions Ry, R,, are bounded only by H; and H,, respectively.

We can find m — 1 hyperplanes such that p1(R;) = (1/m)pu1(R%) for every j. If
these regions also form an equipartition for every other u;, we are done. Otherwise,
there is an 4 and a j such that u;(R;) < (1/m)p;(R%). We can widen R; by moving
R;_1 and R; slightly apart so that we still have u;(R;) < (1/m)u;(R?).

Then, p1(Rj—1) < (1/m)u1(RY) and p1(Rj41) < (1/m)p1(R%). We can translate
H;_5 and Hj;q away from H;_; and H; respectively so that these inequalities are
preserved. This makes p1(R;_2) and p1(R;12) to be strictly reduced. We continue
this way until we are done. U

Now, given fi1, ..., jtq+1 finite absolutely continuous measures in R¢, we construct
a surface in RT!. We take v = e4 and find the m — 1 hyperplanes Hy, ..., H,, such
that

Hj = {(z1,...,24) € R : 34 = \;}.
For some A\ < ... < Ap—1. We define \j = —oo and \,,, = 00. Let h: IR — R be a
convex function that is linear between A; and A1 for each 7 =0,...,m — 1, but
not between A; and Ajyo for each j =0,...,m — 2.

Let V be the surface in R4*! defined by the equation 411 = h(zg). The set
of points on or above V is the intersection of m closed half-spaces. To prove
Theorem 1.6 we repeat the proof of Akopyan and Karasev but we lift R? to V/
instead of a paraboloid.

Proof of Theorem 1.6. By a subdivision argument, it suffices to prove the result
when n = p a prime number. We apply Lemma 6.1 with m = p. If there are
p — 1 parallel hyperplanes that form an equipartition of the measures, we are done.
Otherwise, we lift R? to R4t by lifting it to the surface V defined above. Let
01,...,04+1 be the measures induced by p1, ..., tq+1 on V. It’s known that we can
split R4+ into p convex sets C1, ..., C) that form an equipartition of 1, ..., fa41
[Sob12, KHA14,BZ14]. Since each of the regions Ry, ..., R, we constructed in R?
have less than a (1/p)-fraction of some p; and V' is the boundary of a convex set,
none of the boundaries between the sets C; can coincide with the hyperplanes
defining V.

Moreover, for a prime number of parts the sets are C,...,C), are induced by
a generalized Voronoi diagram [KHA14,BZ14]. In other words, there are points
(called sites) s1,...,s, in R¥! and real number fi,..., 3, such that the p convex
regions

Cj={x e R™" ||z — ;]| = B; < ||z — s;||> = By for j' =1,....p}

form an equipartition of 1, ..., pugr1. Since the set of points above V' is convex, if
we take the region C; whose site s; has minimal (d + 1)-th coordinate, when we
project C; NV back to R? we get a convex set. This is the set K we are looking for.
The boundary of the corresponding Cj is the union of at most p—1 hyperplanes (the
ones dividing it from each other C}/). Each of those p — 1 hyperplanes can intersect
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each of the p hyperplanes defining V', forming at most p(p — 1) linear components
of the boundary of C; N V. This gives us the bound on the number of half-spaces
whose intersection is K. (|

When n is a prime power, the number of half-spaces we used grows logarithmically
with n. We wonder if this holds in general.

Question 6.2. Let d be a fixed integer. Determine if for every positive integer n
and any d+ 1 finite absolutely continuous measures i1, ..., jtq+1 in R? there exists a
convex set K C R? formed by the intersection of O(logn) half-spaces that contains
exactly a (1/n)-fraction of each p;.

We nicknamed Corollary 1.3 the bagel ham sandwich theorem due to its drawing
in R2. However, since the set used is the region between two concentric spheres, it
certainly does not look like a Bagel in R?. We define a regular torus in R? to be
the any set of the form {z € R? : dist(x,S) < a} where S is a flat circle in R? and
« is a positive real number.

Question 6.3 (Three-dimensional bagels). Is it true that for any five absolutely
continuous finite measures in R3 there exists a regular torus containing exactly half
of each measure?

With four measures the result holds, since when S degenerates to a point the
regular torus is a sphere.

One of the questions that motivated the work on this manuscript was inspired by
a conjecture by Mikio Kano. Kano conjectured that for any n smooth measures in
R? there exists a path formed only by horizontal and vertical segments that takes at
most n — 1 turns, that simultaneously halves each measure. The conjecture is only
known for k = 1,2 or if the path is allowed to go through infinity [UKK09, KRPS16].
We wonder if the following way to mix Kano’s conjecture with Theorem 2.1 holds.

Question 6.4 (Existence of square sandwiches). Is is true that for any three finite
absolutely continuous measures in R? there exists a square that contains exactly
half of each measure?

Theorem 1.2 shows that we have a positive answer for rectangles (if the support
of the measures are compact, we can cut the two lines given by Theorem 1.2
by perpendicular segments sufficiently far away, otherwise we have degenerate
rectangles). However, it is still possible that for squares the answer to Question 6.4
is affirmative.

One additional connection of Theorem 1.2 with earlier results is with the Hobby—
Rice theorem, also known as the necklace splitting problem due to interpretations
of its discrete versions [HR65, GW85, AW86]. Hobby and Rice proved that for any
k absolutely continuous measures in R' there exists a partition of R into k + 1
intervals so that they can be distributed among two sets, each receiving exactly half
of each measure. The intervals can be unbounded, so we are cutting R' using &
points. Combining Theorem 1.2 and the Hobby—Rice theorem leads to the following
natural conjecture.

Conjecture 6.5. Let k,d be positive integers. We are given d + k£ — 1 absolutely
continuous finite Borel measures in RY. There exist a set of k parallel hyperplanes
that divide R® into k + 1 regions which can be distributed among two sets so that
each set has exactly half of each measure.

Theorem 1.2 confirms the case kK = 2, the ham sandwich theorem is the case
k =1, and the Hobby—Rice theorem is the case d = 1. This would be a way to
extend the Hobby-Rice theorem in higher dimensions in new ways (compare with
[LZ08, KRPS16,BS18]).
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