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Abstract. Many results about mass partitions are proved by lifting Rd to

a higher-dimensional space and dividing the higher-dimensional space into

pieces. We extend such methods to use lifting arguments to polyhedral surfaces.
Among other results, we prove the existence of equipartitions of d+ 1 measures

in Rd by parallel hyperplanes and of d+2 measures in Rd by concentric spheres.
For measures whose supports are sufficiently well separated, we prove results

where one can cut a fixed (possibly different) fraction of each measure either

by parallel hyperplanes, concentric spheres, convex polyhedral surfaces of few
facets, or convex polytopes with few vertices.

1. Introduction

In a standard mass partition problem, we are given measures or finite families of
points in a Euclidean space, and we seek to partition the ambient space into regions
that meet certain conditions. Some conditions determine how we split the measures
and the sets of points. For instance, in an equipartition, we ask that each part has
the same size in each measure or contains the same number of points of each set.
Some conditions restrict the types of partitions allowed, such as partition by a single
hyperplane. Determining whether such partitions always exist leads to a rich family
of problems. Solutions to these problems often require topological methods and can
have computational applications [Mat03, Živ17,RPS22]. The quintessential mass
partition result is the ham sandwich theorem, conjectured by Steinhaus and proved
by Banach [Ste38].

Theorem 1.1 (Ham sandwich theorem). Let d be a positive integer and µ1, . . . , µd

be finite Borel measures of Rd. Then, there exists a hyperplane H of Rd so that its
two closed half-spaces H+ and H− satisfy

µi(H
+) ≥ 1

2
µi(R

d),

µi(H
−) ≥ 1

2
µi(R

d) for i = 1, . . . , d.

If we further ask that µi(H
′) = 0 for each hyperplane H ′ and every i = 1, . . . , d,

the inequalities above are equalities. Stone and Tukey proved the ham sandwich
theorem for general Borel measures [ST42]. They also proved the polynomial ham

sandwich theorem which states that any
(
d+k
k

)
− 1 Borel measures in Rd can be

halved with a polynomial in d variables of degree at most k. Even though this is a
far-reaching generalization of the ham sandwich theorem, its proof relies on a simple

trick. We lift Rd to R(d+k
k )−1 by the Veronese map and apply the ham sandwich

theorem in the higher-dimensional space.
In this paper, we prove several mass partition results by lifting Rd to higher-

dimensional spaces, particularly Rd+1, in new ways. In Section 2, we revisit a
known result about equipartitions of measures with spheres and prove a new result
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about equipartitions of three measures in R2 using a sinusoidal curve of fixed period.
Then, instead of lifting to higher-dimensional spaces via smooth maps, such as the
Veronese maps, we lift to polyhedral surfaces in Rd+1. This forces us to use the
ham sandwich theorem for general measures, which is interesting on its own.

One of the advantages of using a lifting argument using polyhedral surfaces is
that the boundary of the parts in the result partition is contained in the union of
hyperplanes. Many mass partition results use regions with this property, such as
partitions with wedges or partitions of Rd into convex pieces. We exhibit this in
the following result, which is a ham sandwich theorem for parallel hyperplanes.

Theorem 1.2. Let d be a positive integer and µ1, . . . , µd+1 be d + 1 finite Borel
measures in Rd, each absolutely continuous with respect to the Lebesgue measure.
Then, there exist two parallel hyperplanes H1, H2 so that the region between them
contains exactly half of each measure.

If there is a hyperplane H1 that halves all measures, we can consider H2 to be at
infinity. If H1 and H2 are not required to be parallel, we present with Theorem 3.2
a simple proof that for any d+ 1 finite Borel measures in Rd, there exist two closed
half-spaces whose intersection contains exactly half of each measure. The intersection
of two half-spaces is called a wedge. The fact that d + 1 measures in Rd can be
halved by a wedge was first proved by Bárány and Matoušek in dimension two
[BM01] and later generalized to Rd by Schnider [Sch19]. For R2, Bereg presented
algorithmic approaches for the discrete version which show that more conditions
can be imposed on the wedge [Ber05]. Before proving Theorem 1.2, we show how
our methods simplify the proof of Schnider’s extension of Bárány and Matoušek’s
result.

The proof requires a new Borsuk–Ulam type theorem about direct products of
spheres and Stiefel manifolds, Theorem 3.4, which we describe in Section 3. As a
corollary, we combine Theorem 1.2 with known lifting techniques. We nickname the
following result the “bagel ham sandwich theorem”, due to how it looks in R2.

Corollary 1.3 (Bagel ham sandwich theorem). Let d be a positive integer and
µ1, . . . , µd+2 be d+ 2 finite Borel measures in Rd, each absolutely continuous with
respect to the Lebesgue measure. Then, we can find two concentric spheres or two
parallel hyperplanes in Rd so that the closed region between them has exactly half of
each measure.

The case of parallel hyperplanes can be considered as a degenerate case of the
concentric spheres, as spheres centered at infinity. Theorem 1.2 is optimal, as the
region between the two hyperplanes is convex. One can simply take d+ 1 measures
concentrated each around a vertex of a simplex and a final measure concentrated
around the barycenter of the simplex to show that the result is impossible with
d+ 2 measures. The problem of cutting the same fraction for a family of measures
with a single convex set has been studied before [AK13,BB07], which we revisit in
Section 6. Theorem 1.2 is also related to the problem of halving measures in Rd

using hyperplane arrangements. Langerman conjectured that any dn measures in
Rd can be simultaneously halved by a chessboard coloring induced by n hyperplanes
[BPS19,HK20]. For n = 2, this has been confirmed for 2d − O(log d) measures
[BBKK18]. If the hyperplanes are required to be parallel, this reduces the dimension
of the space of possible partitions from 2d to d+1, matching the number of measures
in Theorem 1.2.

Theorem 1.2 also provides a new direction to extend “necklace splitting results”
to high dimensions. The necklace splitting theorem, due originally to Hobby and
Rice [HR65,GW85,AW86] is a classic one-dimensional mass partition result. There
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exist several variations in high dimensions [LŽ08,KRPS16,BS18]. We establish the
connection with this family of problems in section 6.

General mass partition results like the ham sandwich theorem can halve many
measures simultaneously. If we want to cut a fixed (but possibly different) fraction
of each measure, conditions need to be imposed. For example, if two measures
coincide, it is impossible to find a half-space that contains exactly half of one and
one third of the other.

The first result with arbitrary sizes for each measure was proved by Hugo Steinhaus
in dimensions two and three [Ste45]. He required the support of the measures to be
well separated, meaning that the supports of any set of measures could be separated
from the supports of the rest by a hyperplane. This condition was sufficient to
guarantee the existence of a half-space cutting a fixed fraction of several measures.
This result was rediscovered and extended to high dimensions independently by
Bárány, Hubard, and Jerónimo and by Breuer [BHJ08,Bre10].

Theorem 1.4 (Bárány, Hubard, Jerónimo 2008; Breuer 2010). Let d be a positive
integer and µ1, . . . , µd be d finite Borel measures in Rd, each absolutely continuous
with respect to the Lebesgue measure so that their supports K1, . . . ,Kd are well
separated. Let α1, . . . , αd be real numbers in (0, 1). Then, there exists a half-space
H so that

µi(H) = αi · µi(R
d) for i = 1, . . . , d.

The proof of Bárány, Hubard, and Jerónimo uses Brouwer’s fixed point theorem.
Breuer’s proof uses the Poincaré–Miranda theorem. The Poincare-Miranda theorem
and Brouwer’s fixed point theorem can easily be derived from one another. Steinhaus’
proof is quite different and uses the Jordan curve theorem. In Section 4 we present
a new proof of Theorem 1.4 that uses a degree argument. The method for this proof
uses tools frequently used in extensions of the Knaster–Kuratowski–Mazurkiewicz
theorem and its applications to “cake cutting”. [KKM29,Su99,Gal84], as opposed to
the equivariant topology tools commonly associated with high-dimensional mass par-
titions, combined with a parametrization argument of hyperplanes due to Hadwiger
[Had57]. We extend Theorem 1.2 in a similar way for well separated measures.

Theorem 1.5. Let d be a positive integer and µ1, . . . , µd+1 be d + 1 finite Borel
measures in Rd, each absolutely continuous with respect to the Lebesgue measure.
Suppose that the supports K1, . . . ,Kd+1 of µ1, . . . , µd+1 are well separated. Let
α1, . . . , αd+1 be real numbers in (0, 1). Then, there exist two parallel hyperplanes
H1, H2 in Rd so that the region A between them satisfies

µi(A) = αi · µi(R
d) for all i = 1, . . . , d+ 1.

We also combine the results with partitions with few hyperplanes and those of
partitions using a single convex set. We exhibit conditions for measures in Rd that
guarantee the existence of a (possibly unbounded) convex polyhedron of few facets
which contains a fixed fraction of each measure or the existence of a convex polytope
with few vertices that contains a fixed fraction of each measure. This is done in
Section 5. These results work with an arbitrary number of measures in Rd.

Finally, we revisit a mass partition result by Akopyan and Karasev that uses a
lifting argument in its proof. Akopyan and Karasev proved that for any positive
integer n and any d+ 1 Borel measures in Rd, there exists a convex set K whose
measure is exactly 1/n of each measure. We extend the methods from Section 3 to
bound the complexity of K by writing it as the intersection of few half-spaces.

Theorem 1.6. Let n, d be positive integers and µ1, . . . , µd+1 be d+ 1 finite Borel
measures in Rd, each absolutely continuous with respect to the Lebesgue measure.
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There exists a convex set K, such that K is the intersection of
∑r

j=1 kj(pj − 1)pj
half-spaces and

µi(K) =
1

n
µi(R

d) for all i = 1, . . . , d+ 1,

where n = pk1
1 . . . pkr

r is the prime factorization of n.

We conclude in Section 6 with remarks and open problems.

2. Equipartition with spheres and sine curves

While the traditional ham sandwich theorem simultaneously halves d measures
in Rd by a hyperplane, we can simultaneously halve d+ 1 or more measures in Rd

if we increase the complexity of the cut. The following theorem is a consequence of
Stone and Tukey’s polynomial ham sandwich theorem [ST42] and was one of Stone
and Tukey’s first examples of their main results. It was also proved in dimension
two by Hugo Steinhaus in 1945 [Ste45] using a particular parametrizations of the
space of circles in R2. We present a new proof with a stereographic projection.

Theorem 2.1. Let d be a positive integer and let µ1, . . . , µd+1 be d+ 1 finite Borel
measures in Rd, each absolutely continuous with respect to the Lebesgue measure.
Then, there exists either a sphere or a hyperplane that simultaneously splits each
measure in half.

Proof. We first embed Rd to Rd+1 by appending a coordinate 1 to each point, so
x 7→ (x, 1) ∈ Rd+1. Then, we apply r : Rd+1 \ {0} → Rd+1 \ {0} the inversion
centered at 0 with radius 1. This is a transformation that sends spheres containing the
origin to hyperplanes and hyperplanes to spheres containing the origin. Hyperplanes
containing the origin are fixed set-wise by the inversion. We consider them as
degenerate spheres as well. Restricted to the embedding of Rd, the inversion is a
stereographic projection to the sphere S of radius 1/2 centered at (0, . . . , 0, 1/2) by
rays through the origin. We also know that r ◦ r is the identity.

When we lift the measures µ1, . . . , µd+1 to Rd+1 and apply r, we get measures
σ1, . . . , σd+1 on S. By the ham sandwich theorem in Rd+1, there exists a hyperplane
H halving each of σ1, . . . , σd+1. Since r(H) is a sphere in Rd+1, it intersects the
embedding of Rd in a (d− 1)-dimensional sphere halving each of µ1, . . . , µd+1, as
we wanted. The only exceptional case is if H contains the origin, in which case
r(H) = H, which gives us an equipartition by a hyperplane in Rd. □

Similarly, the idea of lifting allows for visual and intuitive proofs of the existence
of equipartitions of three sets in R2 by a sine wave. By a sine wave of period α we
mean the graph of a function of the form y = r+A sin(2πx/α+ s), for real numbers
A, r, s.

Theorem 2.2. Let α > 0 be a real number. Given three finite Borel measures
µ1, µ2, µ3 in R2, each absolutely continuous with respect to the Lebesgue measure,
there exists a sine wave of period α halving each measure.

We allow “degenerate” sine waves of period α. A degenerate sine wave of period
α is formed by taking two vertical lines intersecting the x-axis in the interval [0, α)
and making a translated copy in each interval of the form nα + [0, α). This set
induces a chessboard coloring of the plane into two regions. We can think of this as
the limit of a sequence of sine waves of period α of increasing amplitude.

Proof. We prove the result for α = 2π, as the two cases are equivalent after a scaling
argument. We wrap R2 around the cylinder C in R3 with equation x2 + z2 = 1
with the function
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f : R2 → C

(x, y) 7→ (cos (x) , y, sin (x)) .

Let σ1, σ2, σ3 be the measures that µ1, µ2, µ3 induce on C by this lifting, re-
spectively. We apply the ham sandwich theorem to these three measures in R3.
Therefore, we can find a plane H = {(x, y, z) : ax+ by + cz = d} that halves each
of σ1, σ2, σ3. When we pull H ∩ C back to R2, we get the set of points (x, y) that
satisfy a cos(x)+ by+ c sin(x) = d. Since a linear combination of the sine and cosine
functions is a sinusoid with the same period but possibly different amplitude and
phase shift, we have a sin(x) + c cos(x) = A sin(x+ s) for some A and s.

Figure 1. An example of a cylinder C with period α = 2π. The
lift R2 → C is not an injective function, but this does not cause a
problem.

□

The degenerate cases appear when b, the coefficient of y, is zero. One can prove
a high-dimensional version of Theorem 2.2 by wrapping Rd around Sd−1 × R to
find “sinusoidal surfaces of fixed period” that halve d+ 1 measures in Rd.

3. Equipartitions with wedges and parallel hyperplanes

In this section, we prove results regarding equipartitions of d+1 mass distributions
in Rd by a wedge. A wedge in Rd is the intersection of two closed half-spaces. Note
that a single closed half-space is also considered a wedge.

We say that a measure µ with support K in Rd is absolutely continuous if it is
absolutely continuous with respect to the Lebesgue measure and K is connected
and not empty. Note that by the definition of support, for every open set U ⊂ K we
have µ(U) > 0. This guarantees that there is a unique halving hyperplane in each
direction for µ and that the halving hyperplane varies continuously as we change
the direction of the cut. We first establish a lemma about halving hyperplanes. We
only use the lemma below with n = d+ 1, but it works in general.

Lemma 3.1. Let n be a positive integer, µ1, . . . , µn be finite absolutely continuous
Borel measures in Rd, and v be a unit vector in Rd. There either exists a hyperplane
H orthogonal to v that halves each of the n measures or there exists a hyperplane
H such that its two closed half-spaces satisfy

µi(H
+) <

1

2
µi(R

d) for some i ∈ [n] and

µi′(H
−) <

1

2
µi′(R

d) for some i′ ∈ [n].
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Moreover, the hyperplane H can be chosen continuously as a function of v so
that the same choice is made for v and −v.

Proof. For each i, let Hi be the halving hyperplane for µi orthogonal to v. If
all these hyperplanes coincide, we are done. Otherwise, we can order this set of
hyperplanes by the direction v, and any hyperplane H strictly between the first Hi

and the last Hi′ satisfies the conditions we want.
To show the continuity with respect to v, first note that each Hi can be chosen

uniquely and continuously. Each µi has a closed interval of possibilities for Hi and
we can choose the midpoint of such an interval. If we denote by ℓ the line through
the origin with direction v, this makes Hi ∩ ℓ a continuous function. We can then
choose H so that H ∩ ℓ is the midpoint of the set {Hi ∩ ℓ : i ∈ [n]}, so the continuity
on v follows. The choice also makes it so that the same hyperplane is selected for
−v. □

Through the rest of the manuscript, we denote the canonical basis of Rd by
e1, . . . , ed.

Theorem 3.2. Let d be a positive integer and µ1, . . . , µd+1 be d+1 finite absolutely
continuous Borel measures in Rd. Then, there exists a wedge that contains exactly
half of each measure.

Recall that the region between two parallel hyperplanes satisfies our definition
of a wedge. This can be considered as a wedge where the intersection is a (d− 2)-
dimensional space at infinity.

Proof. Let v be a unit vector in Rd. If there is a hyperplane H orthogonal to
v halving each measure we are done. Otherwise, by Lemma 3.1, we can find a
hyperplane H such that each side contains less than half of some measure.

Consider the lifting of Rd to Rd+1 where we append an additional coordinate to
every point x ∈ Rd. Formally, we lift via the map x 7→ (x, dist(x,H)).

We denote by S(H) the image of Rd in this embedding. Note that the function
x 7→ dist(x,H) is affine on each side of H , so S(H) is contained in the union of two
hyperplanes that contain {(x, 0) : x ∈ H}. See Fig. 2 for an illustration of the case
d = 2.

We lift each measure µi in Rd to a measure σi in Rd+1. The measures σ1, . . . , σd+1

are no longer absolutely continuous. We now apply the ham sandwich theorem
for general measures in Rd+1. Therefore, we can find a hyperplane H ′ in Rd+1 so
that its two closed half-spaces (H ′)+, (H ′)− satisfy σi((H

′)+) ≥ 1
2σi(R

d+1) and

σi((H
′)−) ≥ 1

2σi(R
d+1) for all i = 1, . . . , d+ 1.

By construction, each side of H has strictly less than half of one of the measures µi.
If the hyperplane H ′ coincides with one of the two hyperplanes whose union contains
S(H), the half-space bounded by H ′ that contains infinite rays in the direction
−ed+1 would have less than half of the corresponding measure σi. Therefore H ′ is
not one of the two hyperplanes forming S(H).

As the two components of S(H) were the only hyperplanes with non-zero measure
for each σi, we conclude that H ′ halves each of the measures in Rd+1. As a final
observation, H ′ ∩ S(H) projects back to Rd as the boundary of a wedge that halves
all measures. □

In the proof of Theorem 3.2 we could choose the direction v arbitrarily. We
now use this degree of freedom to strengthen the result. Even though Theorem 1.2
implies Theorem 3.2, we state it separately as the proof requires more technical
tools. In particular, a simple application of the ham sandwich theorem is insufficient.
We require some additional topological tools in lieu of the Borsuk–Ulam theorem.
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x

y

z

S(H)

IRd ↪→ IRd+1

Figure 2. An example of lifting when given three measures in R2.
Measures on the xy-plane are sent to measures on this surface. The
hyperplane H in this case is the x-axis.

Let Vk(R
d) be the Stiefel manifold of orthonormal k-frames in Rd. Formally,

Vk(R
d) = {(v1, . . . , vk) : v1, . . . , vk ∈ Rd are orthonormal}.

The space Vk(R
d) has a free action of the group (Z2)

k, where we consider Z2 =
{+1,−1} with multiplication. Given (v1, . . . , vk) ∈ Vk(R

d) and (λ1, . . . , λk) ∈ (Z2)
k,

we define

(λ1, . . . , λk) · (v1, . . . , vk) = (λ1v1, . . . , λkvk) ∈ Vk(R
d).

A similar action of (Z2)
k can be defined in Rd−1 × . . . × Rd−k, as the direct

product of the actions of Z2 on each Rd−i. A recent result of Chan, Chen, Frick,
and Hull describes properties of (Z2)

k-equivariant maps between these two spaces.

Theorem 3.3 (Chan, Chen, Frick, Hull 2020 [CCFH20]). Let k, d be positive
integers. Every continuous (Z2)

k-equivariant map f : Vk(R
d) → Rd−1 × . . .×Rd−k

has a zero.

Manta and Soberón recently found an elementary proof of Theorem 3.3 [MS21].
We use the result above in Section 4. For this section, we need a slight modification.
We use the product of the actions of Z2 on the d-dimensional sphere Sd and of
(Z2)

k on Vk(R
d) to define a free action of (Z2)

k+1 on Sd × Vk(R
d).

Theorem 3.4. Let k, d be positive integers. Every continuous (Z2)
k+1-equivariant

map f : Sd × Vk(R
d) → Rd ×Rd−1 × . . .×Rd−k has a zero.

There are several ways to prove the result above. The dimension of the image
and the domain are the same, and the action of (Z2)

k+1 is free on Sd × Vk(R
d).

Therefore, Theorem 3.4 is a consequence of the general Borsuk–Ulam type results
of Musin [Mus12]. We present this as our second proof. Alternatively, one can use
the methods of Chan et al. [CCFH20] to prove Theorem 3.4. It suffices to note
that Sd × Vk(R

d) is a space in which their topological invariants can be applied
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and the particular function g in our second proof is all that’s needed to replace
[CCFH20, second proof of Lemma 3.2]. We only use Theorem 3.4 for k = d− 1.

We present first a short proof using the existing computations of the Fadell–
Husseini index of these spaces on Z2 cohomology [FH88]. Given spaces X and Y

with actions of (Z2)
k+1, their indices Ind(Z2)

k+1

(X), Ind(Z2)
k+1

(Y ) are ideals in the
polynomial ring Z2[t0, t1, . . . , tk]. Moreover, if there exists a continuous (Z2)

k+1-

equivariant map f : X → Y , we must have Ind(Z2)
k+1

(Y ) ⊂ Ind(Z2)
k+1

(X). More
details on this index and its computation for spaces and group actions common
in discrete geometry can be found in recent work of Blagojević, Lück, and Ziegler
[BLZ15].

First proof of Theorem 3.4. The result is equivalent to showing that there exists no
continuous (Z2)

k+1-equivariant map f : Sd×Vk(R
d) → (Rd×Rd−1×. . .×Rd−k)\{0}.

The space (Rd × . . . × Rd−k) \ {0} is homotopy equivalent to the join of spheres

Sd−1 ∗ . . . ∗ Sd−k−1. We know Ind(Z2)
k+1

(Sd−1 ∗ . . . ∗ Sd−k−1) ⊂ Z2[t0, t1, . . . , tk] is

the ideal generated by the single monomial td0t
d−1
1 . . . td−k

k .

On the other hand, Ind(Z2)
k+1

(Sd × Vk(R
d)) ⊂ Z2[t0, . . . , tk] is the ideal gener-

ated by the polynomials td+1
0 , f1, . . . , fk where f1, . . . , fk ⊂ Z2[t1, . . . , tk] generate

Ind(Z2)
k

(Vk(R
d)). These polynomials were described completely by Fadell and

Husseini [FH88, Thm. 3.16]. Notably

fi = tn−i+1
i + wi,n−it

n−i
i + . . .+ wi,0,

where wi,j ∈ Z2[t1, . . . , ti−1] and the degree of wi,jt
j
i is n− i+ 1. In particular,

td0t
d−1
1 . . . td−k

k ̸∈ Ind(Z2)
k+1

(Sd × Vk(R
d)),

which shows that no continuous (Z2)
k+1-equivariant map f : Sd × Vk(R

d) →
(Rd ×Rd−1 × . . .×Rd−k) \ {0} exists. □

Second proof of Theorem 3.4. We construct a second map g : Sd × Vk(R
d) → Rd ×

. . . × Rd−k. For (u, v) ∈ Sd × Vk, we denote g(u, v) = (x0, x1, . . . , xk) where
xi ∈ Rd−i for 0 ≤ i ≤ k. We take x0 formed by the last d entries of u ∈ Sd ⊂ Rd+1,
and for 1 ≤ i ≤ k we take xi to be formed by the last d− i entries of the i-the vector
in v ∈ Vk(R

d). This map is (Z2)
k+1-equivariant, continuous, and there is a single

orbit of zeroes.
Now consider a new map

F : Sd × Vk(R
d)× [0, 1] → Rd × . . .×Rd−k

(u, v, t) 7→ tg(u, v) + (1− t)f(u, v)

This is a continuous (Z2)
k+1-equivariant map. For any ε, Thom’s transversality

theorem [Tho54; GP10, pp 68-69] implies that there exist a map Fε : Sd ×Vk(R
d)×

[0, 1] such that the two following conditions hold: for each (u, v) ∈ Sd × Vk(R
d), we

have Fε(u, v, 1) = F (u, v, 1) = g(u, v), 0 is a regular value of Fε, and ∥Fε−F∥∞ < ε.
Note that, since the domain is compact, the infinity norm is well defined for any
continuous map from Sd × Vk(R

d) to Rd × . . .×Rd−k.
The set F−1

ε (0) ∈ Sd×Vk(R
d)×[0, 1] is therefore a one-dimensional manifold with

a free action of (Z2)
k+1. Its connected components are diffeomorphic to circles or

intervals. The interval components must have their endpoints in Sd×Vk(R
d)×{0, 1}.

Any continuous function from an interval to itself must have a fixed point, so the
group (Z2)

k+1 acts freely on the set of intervals in F−1
ε (0).

Therefore, the parity of (Z2)k+1 orbits on F−1
ε (0) with t = 0 and the parity of

(Z2)k+1 orbits on F−1
ε (0) with t = 1 must be the same. Since for t = 1 there is

a single orbit of zeros, there must be at least one orbit of zeroes for t = 0. The
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function Fε restricted to t = 1 is very similar to f . As we let ε tend to zero, the
compactness of Sd × Vk(R

d) implies that f−1(0) is not empty. □

The second tool we require is a minor modification of the lift from Rd to Rd+1. In
the previous proof, given a hyperplane H ⊂ Rd we lifted Rd directly to S(H) ⊂ Rd+1.
This has the inconvenience that the lift of an absolutely continuous measure is no
longer absolutely continuous in Rd+1. We do not require such a strong condition, but
we do require the lifted measures to assign mass zero to any hyperplane. To avoid
this problem, we lift each measure µi to S(H)ε, the region between S(H)− ε · ed+1

and S(H) + ε · ed+1, which we formalize below.
We say that a measure µ in Rd is smooth if it is the integral of a continuous

positive function f : Rd → R (i.e., f(A) =
∫
A
f for any measurable set A). We “lift”

f to a function

f̃ : Rd ×R → R

(x, t) 7→

{(
1
2ε

)
f(x) if | dist(x,H)− t| ≤ ε

0 otherwise.

We say that the measure σε defined as the integral of f̃ in Rd is the lift of µ to
S(H)ε. Notice that as ε → 0, the measure σε converges weakly to the lift of µ to
S(H). For ε > 0, the measure σε is not absolutely continuous, but it has value 0
on each hyperplane. Note that the same lifting process can be done for absolutely
continuous measures having densities, which may generalize the proof below for a
wider family of problems.

Proof of Theorem 1.2. We first assume that no hyperplane simultaneously halves
all measures, or we are done. Since the set of smooth measures is dense in the set
of absolutely continuous measures, we may assume without loss of generality that
the measures µ1, . . . , µd+1 are smooth. Let ε > 0. For v ∈ Sd and (v1, . . . , vd−1) ∈
Vd−1(R

d), consider the element (v, v1, . . . , vd−1) ∈ Sd × Vd−1(R
d).

Let H be the translate of the hyperplane T = span{v1, . . . , vd−1} chosen from
Lemma 3.1. Let σε

1, . . . , σ
ε
d+1 be the lifts of µ1, . . . , µd+1 to S(H)ε, respectively.

Let λ be the value so that the half-spaces

A = {x ∈ Rd+1 : ⟨x, v⟩ ≥ λ} and

B = {x ∈ Rd+1 : ⟨x, v⟩ ≤ λ}

have the same σε
d+1-measure. Now we are ready to define a map

f : Sd × Vd−1(R
d) → Rd ×Rd−1 × . . .×R1

(v, v1, . . . , vd−1) 7→ (xd, . . . , x1)

where xi ∈ Ri for i = 1, . . . , d. First, we consider

xd =

σ
ε
1(A)− σε

1(B)
...

σε
d(A)− σε

d(B)

 .

For i = 1, . . . , d− 1, the first coordinate of xi is ⟨v, ed+1⟩⟨v, (vd−i, 0)⟩ and the rest
are zero.

This function is continuous by the construction of the lift of the measures. It is
also (Z2)

k+1-equivariant: if we flip the sign of v, only xd changes sign and if we flip
the sign of vi only xd−i changes sign for i = 1, . . . , d− 1.

By Theorem 3.4 the function f has a zero. The condition xd = 0 tells us that A
and B each have exactly half of each σε

i for i = 1, . . . , d+ 1. The conditions of the
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rest of the xi being zero vectors means that either v is orthogonal to ed+1 or v is
orthogonal to each (vi, 0) for i = 1, . . . , d− 1.

If the first condition happens, then when we project Rd+1 to the hyperplane
ed+1 = 0, each σε

i projects to µi and A, B project onto two half-spaces of Rd.
This would mean we have a hyperplane halving each of the original measures,
contradicting our initial assumption. Therefore v is orthogonal to (vi, 0) for all i.

We take a sequence of positive real numbers εk → 0. For each of them, we find
a zero of the function induced above. As Sd × Vd−1(R

d) is compact, the zeros
must have a converging subsequence. In the limit, we obtain two complementary
half-spaces A,B so that each contains at least half of σi for i = 1, . . . , d+1 on S(H)
(where the direction of H is determined by the limit of (v1, . . . , vd−1)). Let H

′ be
the hyperplane at the boundary of A and B.

In the limit, the vector v normal to H ′ is orthogonal to the subspace T0 =
span{(v1, 0), . . . , (vd−1, 0)}. Note that T0 is a copy of H with a coordinate zero
appended to each point. By the construction of H , the hyperplane H ′ cannot be one
of the two hyperplane components of S(H). The orthogonality mentioned before
implies that H ′ contains a translate of T0 through each of its points, and so does
each of the two hyperplane components of S(H). Therefore, H ′ ∩S(H) must be two
(d− 1)-dimensional affine spaces parallel to T0. When we project back to Rd, these
parallel intersections form H1 and H2 and the region between them has exactly half
of each µi. □

The configuration space used in this proof, Sd×Vd−1(R
d) is larger than needed for

our purposes. Indeed, many elements of Vd−1(R
d) lead us to the same construction

for the affine space H. The benefit of this space is that it might be possible to
extend such results to spaces of partitions that are more sensitive to the orthonormal
set given by Vd−1(R

d) than simply its span. A clear example are Yao–Yao partitions
of Rd into 2d convex sets, which depend on a choice of an orthonormal basis [YY85].
It would be interesting to know which results of that kind are amenable with lifting
arguments as presented.

Proof of Corollary 1.3. We lift Rd to the paraboloid

P =

{(
x1, . . . , xd,

d∑
i=1

x2
i

)
∈ Rd+1

}
.

We now have d+ 2 measures in Rd+1, and every hyperplane has measure zero in
each of them. We can apply Theorem 1.2 and find two parallel hyperplanes H1, H2

so that the region between them contains exactly half of each measure. Notice that
H1 ∩ P and H2 ∩ P project onto concentric spheres in Rd. They can also project
to two parallel hyperplanes, which we consider as a valid degenerate case of our
result. □

Of course, similar results can be obtained by applying general Veronese maps as
Stone and Tukey did to prove the polynomial ham sandwich theorem [ST42].

Corollary 3.5. Let d, k be positive integers. For any set of
(
d+k
k

)
finite absolutely

continuous Borel measures in Rd, there exists a polynomial P on d variables and
constants λ1, λ2 so that {x ∈ Rd : λ1 ≤ P (x) ≤ λ2} has exactly half of each measure.

The polynomial ham sandwich usually splits
(
d+k
k

)
−1 measures using a polynomial

of degree at most k. If we want to restrict which monomials are used in the splitting
polynomial, we just have to reduce the number of measures accordingly.
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4. Fixed size partitions for well separated measures

As noted by Bárány et al. [BHJ08], it is known that for well separated convex
subsets K1, . . . ,Kd in Rd, there are 2d hyperplanes tangent to all of them. If none
of the hyperplanes are vertical (i.e., perpendicular to ed), the tangent hyperplanes
are in one-to-one correspondence with the sets of Ki below the hyperplane. This is
was also proved by Klee, Lewis, and Hohenbalken [KLVH97]. We use this fact in
our proof of Theorem 1.4.

For the sake of completeness, we prove a technical lemma. This argument is often
used to prove envy-free results in dimension 1, so-called “cake partitions”. See, e.g.,
[Wel85,BT96,Su99,Bar05,Pro16] and the references therein for more applications
of this method. It is interesting to see this argument used in mass partition results
where the usual methods come from equivariant topology.

Lemma 4.1. Let P be a convex polytope and f : ∂P → ∂P be a continuous function
on its boundary. If f(σ) ⊂ σ for each proper face σ of P , then f is of degree one.

Proof. It suffices to exhibit a homotopy between f and the identity map on the
boundary of P . For λ ∈ [0, 1] we define

fλ : ∂P → P

x 7→ λx+ (1− λ)f(x).

We have f0 = f and f1 equal to the identity. Moreover, for x ∈ ∂P , there exists
a proper face σ containing it. The convexity of σ implies that fλ(x) ∈ σ ⊂ ∂P .
Therefore, this provides the homotopy we wanted. □

Proof of Theorem 1.4. We assume without loss of generality that µ1, . . . , µd are
probability measures. Consider the hypercube Q = [0, 1]d. Each vertex of Q can be
assigned to a subset of I ⊂ [d] uniquely. We denote

vI = (p1, . . . , pd) where pi =

{
1 if i ∈ I

0 if i ̸∈ I.

For a point q = (q1, . . . , qd) ∈ Q and I ⊂ [d] we consider the coefficients

λI(q) =
∏
i∈I

qi
∏
i̸∈I

(1− qi).

Expanding the product
∏

i∈[d](qi + (1− qi)) shows that the sum of the λI(q) is

1. Therefore, the coefficients λI(q) are the coefficients of a convex combination, as
they are also non-negative. Suppose we have a function f : {0, 1}d → Rd. We can

extend it to a function f̃ : Q → Rd by mapping

q 7→
∑
I⊂[d]

λI(q)f(vI).

Notice that if σ is a face of Q, then f̃(σ) ⊂ conv({f(vI) : vI ∈ σ}). In particular,

f̃(vI) = f(vI).
Now, suppose we are given d well separated convex sets K1, . . . ,Kd in Rd and

measures µ1, . . . , µd so that the support of µi is Ki. We may assume without loss
of generality that there is no vertical hyperplane tangent to each of K1, . . . ,Kd.

Each non-vertical hyperplane H can be written as

{(x1, . . . , xd) : xd = α1x1 + . . .+ αd−1xd−1 + αd}
for some constants α1, . . . , αd. We assign the vector r(H) = (α1, . . . , αd) to the
hyperplane H. We say that a point is above H if xd ≥ α1x1 + . . .+ αd−1xd−1 + αd

and below H if xd ≤ α1x1 + . . .+ αd−1xd−1 + αd. Notice that if a point x is below
a set of hyperplanes H1, . . . ,Hk, then it is also below the hyperplane r−1(y) for any
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y ∈ conv(r(H1), . . . , r(Hk)), as a direct manipulation of the inequalities induced on
xd shows. Similarly, if a point x is above a set of hyperplanes H1, . . . ,Hk, then it is
also above the hyperplane r−1(y) for any y ∈ conv(r(H1), . . . , r(Hk)).

We know that for each subset I ⊂ [d], there is a unique hyperplane HI that is
tangent to each Ki and so that Ki is below H if and only if i ∈ I. This defines
a function f : {0, 1}d → Rd by simply taking f(vI) = r(HI). We extend f to a

function f̃ : Q → Rd as described above. For q ∈ Q, let H(q) be the set of points

below r−1(f̃(q)).
We define a final function

g : Q → Q

q 7→ (µ1(H(q)), . . . , µd(H(q)))

The function g is continuous. Notice, for example, that g(vI) = vI for each
I ⊂ [d]. Let us show that for every face σ ⊂ Q, we have g(σ) ⊂ σ.

It is sufficient to prove this when σ is a facet, as every face is an intersection
of facets. Take i ∈ [d] and consider the facet σ formed by all the vertices VI

for which the i-th coordinate is 1. Let q ∈ σ. Since Ki is below each vertex
v ∈ σ, we know that Ki is below H(q). Therefore, the i-coordinate of g(q) satisfies
1 ≥ µi(H(q)) ≥ µi(Ki) = 1. Therefore, g(q) ∈ σ. For facets defined by a coordinate
equal to zero, the same argument holds, now with Ki above each hyperplanes
involved.

This means that g is of degree one on the boundary, so it is surjective. In
particular, there is a point q0 ∈ Q such that g(q0) = (α1, . . . , αd). Therefore, the
hyperplane H(q0) is the hyperplane we were looking for. □

Bárány, Hubard, and Karasev also showed that, under simple conditions, the
half-space H from Theorem 1.4 is unique. It suffices that

• each measure µi assigns a positive value to each open set in its support Ki,
• Each Ki is connected and not empty,
• no vertical hyperplane is tangent to K1, . . . ,Kd, and
• the half-space H contains infinite rays in direction −ed.

Proof of Theorem 1.5. We follow a process similar to the proof of Theorem 1.2.
First we need an additional observation about our construction of S(H). In Rd,
there is no hyperplane H intersecting each of K1, . . . ,Kd+1. Otherwise, we can take
a point pi ∈ Ki ∩ H. This gives us d + 1 points in a (d − 1)-dimensional space.
By Radon’s lemma, we can find a partition of them into two subsets A,B whose
convex hulls intersect. This implies that {Ki : pi ∈ A} cannot be separated from
{Ki : pi ∈ B}, contradicting the hypothesis.

Therefore, when we are given a vector v ∈ Rd and we construct S(H) for H ⊥ v,
each side of H must have measure zero for some µi. This is much stronger than
simply having less than half of some measure.

The main idea will be to lift each measure to a surface S(H) for an appropriate
H and use Theorem 1.4. We show that by choosing H carefully, we can deduce the
existence of the two parallel hyperplanes we seek.

Consider the Stiefel manifold Vd−1(R
d). Given (v1, . . . , vd−1) ∈ Vd−1(R

d), we
lift Rd to S(H) ⊂ Rd+1 as in Lemma 3.1 where H is parallel to span{v1, . . . , vd−1}.
This lifts each measure µi in Rd to a measure σi in S(H). Every hyperplane in
Rd separating the support vectors of two sets of the measures µi can be extended
vertically in Rd+1 to separate the corresponding measures σi. A small tilting can
ensure that the separating hyperplane is not vertical. Therefore, the measures σi

are well separated.
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The measures σi do not satisfy the requirements of Theorem 1.4, so an additional
step is necessary. For an ε > 0, we lift the measures to S(H)ε as in the proof of
Theorem 1.2, apply Theorem 1.4, and then take ε → 0.

This ensures that we get a half-space H+ that has infinite rays in the direction
−ed+1 and such that σi(H

+) ≥ αi · σi(R
d) and σi(H

−) ≥ (1− αi) · σi(R
d), where

H− is the complementary closed half-space of H+. Since σi(H
+) > 0 for all i, we

know that the boundary of H+ cannot be one of the two hyperplane components
of S(H). Therefore the measure σi of the boundary of H+ is zero for all i and
σi(H

+) = αi · µi(H
+). The same arguments that Bárány, Hubard, and Jerónimo

used to show the uniqueness in their theorem can be applied to show that H+ is
uniquely defined. The uniqueness also implies that H+ changes continuously as we
modify (v1, . . . , vd−1).

Let n ∈ Sd ⊂ Rd+1 be the normal vector to the boundary of H+ that points in
the direction of H+. We can use this to construct a function

g : Vd−1(R
d) → Rd−1 × . . .×R1

(v1, . . . , vd−1) 7→ (x1, . . . , xd).

For each i = 1, . . . , d− 1, the first coordinate of xi ∈ Rd−i is ⟨n, (vi, 0)⟩ and the rest
are zero. This function is well defined and continuous. If we flip the sign of vi, the
surface S(H) does not change. The vector n ∈ Sd is not affected by this change, so
only the sign of xi changes. Therefore, the function g is (Z2)

d−1-equivariant. By
Theorem 3.3, the function g must have a zero. This implies that the projection of
H+ ∩ S(H) onto Rd is the region between two hyperplanes parallel to H. □

The construction of the function g only uses d−1 out of the d(d−1)/2 coordinates
that Theorem 3.3 makes available. It would be interesting to know if much stronger
conditions can be imposed on H.

We also have consequences similar to Corollary 1.3. We say that a family of sets
K1, . . . ,Kd+2 in Rd is well separated by spheres if for any subset way to split them
into two families I, J , there is a sphere that separates I and J , i.e., it contains the
union of one of the sets and leaves out the union of the other set.

Corollary 4.2. Let d be a positive integer and µ1, . . . , µd+2 be finite Borel mea-
sures in Rd absolutely continuous with respect to the Lebesgue measure. Suppose
that the supports K1, . . . ,Kd+2 of µ1, . . . , µd+2 are well separated by spheres. Let
α1, . . . , αd+2 be real numbers in (0, 1). Then, there exist two concentric spheres
S1, S2 or two parallel hyperplanes in Rd so that the region A between them satisfies

µi(A) = αi · µi(R
d) for all i = 1, . . . , d+ 2.

Proof. We lift Rd to the paraboloid

P =

{(
x1, . . . , xd,

d∑
i=1

x2
i

)
∈ Rd+1

}
.

A sphere in Rd separating two families I, J of measure supports translates to a
hyperplane in Rd+1 separating the lift of those supports. We apply Theorem 1.5 to
the family of measures induced on P and we are done.

Even though the set of lifted measures do not satisfy the conditions of Theorem 1.5,
a standard approximation argument fixes this problem. □

5. Equipartition with Polytopes and polyhedral surfaces of bounded
complexity

In previous sections, the number of measures to be partitioned was constrained
by the dimension of the ambient space, while the boundaries of the partition were
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relatively simple. In this section, we consider mass partitions of a family of n
measures in Rd, where n can be much larger than d. We do so by increasing the
complexity of the boundary of the partition. We focus on partitions by polyhedral
surfaces.

Definition 5.1. Let F = {µ1, . . . , µn} be a family of finite absolutely continuous
Borel measures in Rd with support Ki for each 1 ≤ i ≤ n. The supports are called
convexly separated if for each 1 ≤ i ≤ n, there exists a hyperplane Hi such that
Ki ∩H+

i = ∅ and Kj ∩H−
i = ∅ for all j ̸= i.

The maximum number of well separated measures is d + 1, due to Radon’s
theorem. For convexly separated measures we only want to be able to separate any
measure from the union of the other n− 1, and not any two subsets. An example of
convexly separated measures are n measures such that each is concentrated near a
vertex of a convex polytope.

p

p1

p2

p3

p4

p5

q1

q2

q3

q4

q5

K0

K1

K2

K3

K4

K5

K1

K2K3

K4

(a) (b)

Figure 3. (a) An example of four convexly separated measures in
R2. (b) An example of five convexly separated and concentrated
measures in R2. Notice that if we take q1 instead of p1 to form the
convex hull, the resulting polygon contains all of K1.

We define a polyhedron in Rd to be a finite intersection of closed half-spaces. A
facet of a polyhedron is a (d− 1)-dimensional face, and a vertex of a polyhedron is
a zero-dimensional face.

Theorem 5.2. Let F = {µ1, . . . , µn} be a family of finite absolutely continuous
Borel measures in Rd with convexly separated supports Ki for all 1 ≤ i ≤ n, and let
α1, . . . , αn be real numbers in (0, 1). Then, there exists a polyhedron P with at most
n facets such that µi(P ) = αi · µi(R

d) for every 1 ≤ i ≤ n.

Proof. Because the supports are convexly separated, for each 1 ≤ i ≤ n, we can fix
a hyperplane Hi with Ki ∩H+

i = ∅ and Kj ∩H−
i = ∅ for all j ̸= i. Notice that a

polyhedron P =
⋂n

i=1 H
+
i has the property µi(P ) = 0 for every 1 ≤ i ≤ n.

Now, consider µ1. Let v be the normal vector to the hyperplane H1 pointing
in the direction of H−. We can move H1 in the direction of v until we have
the desired portion of the measure µ1, so we can fix H ′

1 ∥ H1 with µ1(H
′+
1 ) =

α ·µ1(R
d). By letting P ′ =

(⋂n
i=2 H

+
i

)
∩H ′+

1 , we have µ1(P
′) = α1 ·µ1(R

d) because
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µ1

(⋂n
i=2 H

+
i

)
= µ1(R

d). Moreover, because Kj ∩H−
1 = ∅ for each j ̸= 1, moving

H1 to the direction of H−
1 does not interfere with the rest of the measures µ2, . . . , µn.

We can repeat the same process for µ2, . . . , µn to find a convex polyhedron of at
most n facets with the desired property. □

While Theorem 5.2 allows for a mass partition with a polyhedron of n facets, we
can quantify the complexity of a compact polyhedron by the number of vertices as
well. Theorem 5.3 proves a mass partition with a polyhedron of n vertices, but this
time for n measures with a slightly stronger separation condition. We will use a
similar idea to the proof of Theorem 1.4.

Let µ1, . . . , µn be a family of convexly separated measures in Rd. Let Hi be the
hyperplane separating Ki from the rest of the supports, as in Definition 5.1. Let
H+

i be the closed side of Hi that does not contain Ki. For n ≥ d + 2, any d + 1
or fewer sets H+

i have non-empty intersection, so Helly’s theorem we know that
P =

⋂n
i=1 H

+
i ̸= ∅. We say that the measures are concentrated if the following

happens. There exists a point p ∈ P and points pi, qi for i = 1, . . . , n so that the
following holds.

• For each i = 1, . . . , n, pi ∈ Hi ∩ P . We denote K0 = conv{p1, . . . , pn}.
• We have p ∈ K0.
• For each i = 1, . . . , n, qi is in the ray ppi and in

⋂
i′ ̸=i H

+
i′ .

• For each i = 1, . . . , n, we have Ki ⊂ conv({qi} ∪K0).

An example is illustrated in Fig. 3(b).

Theorem 5.3. Let n, d be positive integers. Let F = {µ1, . . . , µn} be a family of
convexly separated and concentrated Borel measures in Rd, each absolutely continuous.
Let α1, . . . , αn be real numbers in (0, 1). Then, there exists a polytope K with n
vertices such that µi(K) = αi · µi(R

d) for every 1 ≤ i ≤ n.

Note that the intuitive idea we used to prove Theorem 5.2 would indicate that
we should slide each pi towards qi until we have the desired measure. The issue
with this is that the values of other measures are no longer fixed.

Proof. Consider the hypercube Q = [0, 1]n. For x = (x1, . . . , xn) ∈ Q, and i =
1, . . . , n, let yi = (1− xi)qi + xipi. We define

K(x) = conv{y1, . . . , yn}.

This convex set allows us to construct a function

f : Q → Q

x 7→
(
µ1(K(x))

µ1(Rd)
, . . . ,

µn(K(x))

µn(Rd)

)
.

The function is continuous. From the conditions of the measures, we can see that
for every vertex v of Q, we have f(v) = v. However, we have a stronger condition.
For every face σ ⊂ Q, we have f(σ) ⊂ σ. This is because if a coordinate xi of x equals
zero, the K(x) ⊂ H+

i , so µi(K(x)) = 0. If xi = 1, then K(x) ⊃ conv{{qi} ∪K0},
so µi(K(x)) = µi(R

d). Therefore f is of degree one on the boundary and must be
surjective. There is a point x ∈ Q such that f(x) = (α1, . . . , αn), which implies that
K(x) is the polytope we were looking for. □

6. remarks and open problems

To prove Theorem 1.6, we need to strengthen Lemma 3.1.
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Lemma 6.1. Let m,n be positive integers, µ1, . . . , µn be n finite absolutely contin-
uous Borel measures in Rd, and v be a unit vector in Rd. Then there either exists
m−1 hyperplanes orthogonal to v that divide Rd into m regions R1, . . . , Rm of equal
measure for each µi simultaneously or there exist m− 1 hyperplanes orthogonal to v
such that they divide Rd into m regions R1, . . . , Rm such that for every j = 1, . . . ,m
there exists an i such that

µi(Rj) <
1

m
µi(R

d).

Proof. Given parallel hyperplanesH1, . . . ,Hm−1 in this order, we denote by R1, . . . , Rm

the regions they divide Rd into such that Rj is bounded by Hj−1 and Hj . The
unbounded regions R1, Rm are bounded only by H1 and Hm respectively.

We can find m− 1 hyperplanes such that µ1(Rj) = (1/m)µ1(R
d) for every j. If

these regions also form an equipartition for every other µi, we are done. Otherwise,
there is an i and a j such that µi(Rj) < (1/m)µi(R

d). We can widen Rj by moving
Rj−1 and Rj slightly apart so that we still have µi(Rj) < (1/m)µi(R

d).
Then, µ1(Rj−1) < (1/m)µ1(R

d) and µ1(Rj+1) < (1/m)µ1(R
d). We can translate

Hj−2 and Hj+1 away from Hj−1 and Hj respectively so that these inequalities are
preserved. This makes µ1(Rj−2) and µ1(Rj+2) to be strictly reduced. We continue
this way until we are done. □

Now, given µ1, . . . , µd+1 finite absolutely continuous measures in Rd, we construct
a surface in Rd+1. We take v = ed and find the m− 1 hyperplanes H1, . . . ,Hm such
that

Hj = {(x1, . . . , xd) ∈ Rd : xd = λj}.
For some λ1 < . . . < λm−1. We define λ0 = −∞ and λm = ∞. Let h : R → R be a
convex function that is linear between λj and λj+1 for each j = 0, . . . ,m− 1, but
not between λj and λj+2 for each j = 0, . . . ,m− 2.

Let V be the surface in Rd+1 defined by the equation xd+1 = h(xd). The set
of points on or above V is the intersection of m closed half-spaces. To prove
Theorem 1.6 we repeat the proof of Akopyan and Karasev but we lift Rd to V
instead of a paraboloid.

Proof of Theorem 1.6. By a subdivision argument, it suffices to prove the result
when n = p a prime number. We apply Lemma 6.1 with m = p. If there are
p− 1 parallel hyperplanes that form an equipartition of the measures, we are done.
Otherwise, we lift Rd to Rd+1 by lifting it to the surface V defined above. Let
σ1, . . . , σd+1 be the measures induced by µ1, . . . , µd+1 on V . It’s known that we can
split Rd+1 into p convex sets C1, . . . , Cp that form an equipartition of µ1, . . . , µd+1

[Sob12,KHA14,BZ14]. Since each of the regions R1, . . . , Rp we constructed in Rd

have less than a (1/p)-fraction of some µi and V is the boundary of a convex set,
none of the boundaries between the sets Cj can coincide with the hyperplanes
defining V .

Moreover, for a prime number of parts the sets are C1, . . . , Cp are induced by
a generalized Voronoi diagram [KHA14,BZ14]. In other words, there are points
(called sites) s1, . . . , sp in Rd+1 and real number β1, . . . , βp such that the p convex
regions

Cj = {x ∈ Rd+1 : ||x− sj ||2 − βj ≤ ||x− sj′ ||2 − βj′ for j
′ = 1, . . . , p}

form an equipartition of µ1, . . . , µd+1. Since the set of points above V is convex, if
we take the region Cj whose site sj has minimal (d + 1)-th coordinate, when we
project Cj ∩ V back to Rd we get a convex set. This is the set K we are looking for.
The boundary of the corresponding Cj is the union of at most p−1 hyperplanes (the
ones dividing it from each other Cj′). Each of those p− 1 hyperplanes can intersect
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each of the p hyperplanes defining V , forming at most p(p− 1) linear components
of the boundary of Cj ∩ V . This gives us the bound on the number of half-spaces
whose intersection is K. □

When n is a prime power, the number of half-spaces we used grows logarithmically
with n. We wonder if this holds in general.

Question 6.2. Let d be a fixed integer. Determine if for every positive integer n
and any d+1 finite absolutely continuous measures µ1, . . . , µd+1 in Rd there exists a
convex set K ⊂ Rd formed by the intersection of O(log n) half-spaces that contains
exactly a (1/n)-fraction of each µi.

We nicknamed Corollary 1.3 the bagel ham sandwich theorem due to its drawing
in R2. However, since the set used is the region between two concentric spheres, it
certainly does not look like a Bagel in R3. We define a regular torus in R3 to be
the any set of the form {x ∈ R3 : dist(x, S) ≤ α} where S is a flat circle in R3 and
α is a positive real number.

Question 6.3 (Three-dimensional bagels). Is it true that for any five absolutely
continuous finite measures in R3 there exists a regular torus containing exactly half
of each measure?

With four measures the result holds, since when S degenerates to a point the
regular torus is a sphere.

One of the questions that motivated the work on this manuscript was inspired by
a conjecture by Mikio Kano. Kano conjectured that for any n smooth measures in
R2 there exists a path formed only by horizontal and vertical segments that takes at
most n− 1 turns, that simultaneously halves each measure. The conjecture is only
known for k = 1, 2 or if the path is allowed to go through infinity [UKK09,KRPS16].
We wonder if the following way to mix Kano’s conjecture with Theorem 2.1 holds.

Question 6.4 (Existence of square sandwiches). Is is true that for any three finite
absolutely continuous measures in R2 there exists a square that contains exactly
half of each measure?

Theorem 1.2 shows that we have a positive answer for rectangles (if the support
of the measures are compact, we can cut the two lines given by Theorem 1.2
by perpendicular segments sufficiently far away, otherwise we have degenerate
rectangles). However, it is still possible that for squares the answer to Question 6.4
is affirmative.

One additional connection of Theorem 1.2 with earlier results is with the Hobby–
Rice theorem, also known as the necklace splitting problem due to interpretations
of its discrete versions [HR65,GW85,AW86]. Hobby and Rice proved that for any
k absolutely continuous measures in R1 there exists a partition of R1 into k + 1
intervals so that they can be distributed among two sets, each receiving exactly half
of each measure. The intervals can be unbounded, so we are cutting R1 using k
points. Combining Theorem 1.2 and the Hobby–Rice theorem leads to the following
natural conjecture.

Conjecture 6.5. Let k, d be positive integers. We are given d+ k − 1 absolutely
continuous finite Borel measures in Rd. There exist a set of k parallel hyperplanes
that divide Rd into k + 1 regions which can be distributed among two sets so that
each set has exactly half of each measure.

Theorem 1.2 confirms the case k = 2, the ham sandwich theorem is the case
k = 1, and the Hobby–Rice theorem is the case d = 1. This would be a way to
extend the Hobby–Rice theorem in higher dimensions in new ways (compare with
[LŽ08,KRPS16,BS18]).
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obstruction theory in combinatorial geometry, Topology and its Applications 154 (2007),

no. 14, 2635–2655.
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