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ABSTRACT. We use recent extensions of the Borsuk—Ulam theorem for Stiefel
manifolds to generalize the ham sandwich theorem to mass assignments. A
k-dimensional mass assignment continuously imposes a measure on each k-
dimensional affine subspace of R?. Given a finite collection of mass assignments
of different dimensions, one may ask if there is some sequence of affine subspaces
Sk—1 C S C...C Sq—1 C R? such that S; bisects all the mass assignments
on S;41 for every i. We show it is possible to do so whenever the number of
mass assignments of dimensions (k, ...,d) is a permutation of (k,...,d). We
extend previous work on mass assignments and the central transversal theorem.
We also study the problem of halving several families of (d — k)-dimensional
affine spaces of R? using a (k — 1)-dimensional affine subspace contained in
some translate of a fixed k-dimensional affine space. For k = d — 1, there results
can be interpreted as dynamic ham sandwich theorems for families of moving
points.

1. INTRODUCTION

Mass partition problems study how one can split finite sets of points or measures
in Euclidean spaces given some geometric constraints. The methods required to solve
such problems are often topological, as they involve the study of continuous equi-
variant maps between associated topological spaces. These problems have motivated
significant research in algebraic topology, discrete geometry, and computational
geometry [Mat03, Ziv17, RPS21]. The classic example of a mass partition result is
the ham sandwich theorem, conjectured by Steinhaus and proved by Banach [Ste38].

Theorem 1.1 (Ham sandwich theorem). Let d be a positive integer and py,. .., jq
be finite measures of R so that every hyperplane has measure zero for each yi;.
Then, there exists a hyperplane Sy_1 of R so that its two closed half-spaces Sc'ltl
and S, satisfy

wi(S5 ) =pi(S; ) foralli=1,...,d.

The proof of the ham sandwich theorem uses the Borsuk—Ulam theorem since the
space of partitions can be parametrized with a d-dimensional sphere. As we modify
the mass partition problems, we may need to study maps between more elaborate
topological spaces, such as direct products of spheres [MLVZOG, BFHZ18, HK20],
hyperplane arrangements [BBKK18,BPSZ19], and configuration spaces of k points
in R? [Sob12, KHA14, BZ14, AAK18] among others. The topological techniques
needed to solve such problems range from simple Borsuk—Ulam type theorems to
obstruction theory, explicit computation of characteristic classes in cohomology,
or the use of topological invariants such as the Fadell-Husseini index [FH88]. The
results in this manuscript use affine Grassmanians and Stiefel manifolds, yet the
proof methods rely on simple topological tools.

This project was done as part of the 2021 New York Discrete Mathematics REU, funded by
NSF grant DMS 2051026. Soberén’s research is supported by NSF grant DMS 2054419 and a
PSC-CUNY TRADB52 award.
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FIGURE 1. An example of three mass assighments on planes in R3,
given by intersections of planes with different objects. The assign-
ment induced by two lines fails the absolute continuity requirement,
but provides good intuition. We are interested in finding a plane
where the three induced measures may be simultaneously halved
by a line.

Several results have been proven recently regarding mass assignments. Intu-
itively, a mass assignment on the k-dimensional affine subspaces of R? is a way to
continuously assign a measure on each k-dimensional affine subspaces of RY.

Definition 1. Let k < d be positive integers and Ap(R?) be the set of k-dimensional
affine subspaces of R?. For V € Ay(RY), let My(V') be the space of finite measures
on V' absolutely continuous with respect to the Lebesque measure in V, equipped with
the weak topology. Let E = {(V,uV) : V € Ax(R?), uV € My(V)}. Consider fibre
bundle induced by the function g : E — Ap(R?) such that g(V,uV) = V.

A k-dimensional mass assignment i is a section of this fibre bundle. Note that a d-
dimensional mass assignment in R? is simply a finite measure absolutely continuous
with respect to the Lebesgue measure. Given a k-dimensional mass assignment p
and a k-dimensional affine subspace V' of R%, we denote by 1" the measure that p
induces on V.

Simple examples of mass assignments include the projection of a fixed measure
onto k-dimensional affine subspaces or the k-dimensional volume of the intersection
of k-dimensional spaces with a fixed object in R%. The use of mass assignments
in mass partition problems was started by Schnider, motivated by a problem of
splitting families of lines in R3 [Sch20,PS21].

In this paper, we are concerned with splitting mass assignments of several
dimensions simultaneously, which we do with full flags of affine subspaces. A full
flag of affine subspaces of R? is a sequence Sy_1 C S C ... C Sq_1 C Sq = R¢
where S; is an i-dimensional affine subspace of R of each ¢ for each k — 1 < i <
d — 1. Given several families of mass assignments of different dimensions, we are
interested in finding a full flag where S; halves each mass assignment on S; 41, for
i=k—1,...,d—1.

Suppose that for i = k,k+1,...,d we have i mass assignments defined on the
i-dimensional affine subspaces of R¢. In particular, we have d measures in R?. We
can apply the ham sandwich theorem to find a hyperplane S;_; splitting the d
measures. Each (d — 1)-dimensional mass assignment gives us a measure in Sg_1.
We can apply the ham sandwich theorem again to find S4_o, a hyperplane of S;_1
which halves each of those d — 1 measures. Repeated applications of the ham
sandwich theorem in this fashion allow us to find a full flag of affine subspaces that
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simultaneously bisect all the mass assignments. Our main theorem shows that we
can permute the number of mass assignments of different dimensions and guarantee
the existence of a partition as above.

We state our result on a slightly more general framework where we use arbitrary
continuous functions evaluated on half-spaces instead of measures. Such extensions of
mass partition problems have been used recently for the Nandakumar—Ramana-Rao
problem [KHA14,BZ14, AAK18S|.

Definition 2. Let k < d be non-negative integers and HS(R?) be the space of closed
half-spaces of k-dimensional affine subspaces of R%. An assignment of continuous
functions to k-dimensional half-spaces is a continuous function f : HS,(R?) — R.

Let S,_1 C S, be affine subspaces of R¢ of dimensions (k — 1) and k, respectively,
and f be an assignment of continuous functions to k-dimensional half-spaces. We
say that Sp_; bisects f on Sy if, for the two separate closed half-spaces S;'_l
and S, of Sj on either side of S;_;, we have that f(S,j_l) = f(S,_,)- Every
k-dimensional mass assignment g is a particular assignment of continuous functions
to k-dimensional half-spaces in R9.

The following is our main theorem. We nickname it the Fairy Bread Sandwich
theorem because one interpretation is splitting a sandwich with multiple base
ingredients and multiple colors of sprinkles. Once we make a cut that halves all the
base ingredients, we care about the location of the sprinkles in the planar cut.

Theorem 1.2 (Fairy Bread Sandwich Theorem). Let k,d be non-negative integers
such that k < d and m = (m4-1,...,7k—1) be a permutation of (d —1,...,k —1).
Fori=k—1,...,d—1, let u; be an (i + 1)-dimensional mass assignment in R
and F; be a set of m; assignments of continuous functions on (i + 1)-dimensional
half-spaces. There exist affine subspaces Sp_1 C ... C Sq—1 C Sq = R? such that S;
is an i-dimensional affine space of S; 11 that bisects p; and all the functions in F;.

The case k = d is the ham sandwich theorem. The proof of Theorem 1.2 uses
a Borsuk-Ulam type theorem for Stiefel manifolds, fully described in Section 2.
We use Theorem 1.2 to strengthen results about mass assignments and to confirm
conjectures on the subject. Our proof method significantly reduces the need for
topological machinery to tackle these problems.

Theorem 1.2 is optimal for the trivial permutation 7 = (d — 1,...,k — 1), as
the inductive argument shows. We can choose the mass assignments such that, at
each step, the ham sandwich cut is unique, so no more than ¢ mass assignments of
dimension i can be cut at any step. In general, the total number of functions we
are halving matches the dimension of the space of full flags we use. We conjecture
Theorem 1.2 is optimal for all permutations.

If we consider m = (d —2,d —3,...,k — 1,d — 1) and only use mass assignments,
we are halving d mass assignments on the k-dimensional space Sy, significantly
exceeding what a direct application of the ham sandwich theorem gives. We show
that we can impose additional geometric conditions on Sy, related to the directions
it contains.

Definition 3. Let k < d be positive integers and eq,...,eq be the canonical basis
of R%. Given an affine subspace S of RY, we say that S is k-vertical if it contains
rays in the directions €q_g41,...,€d—1,€d-

The following theorem confirms a conjecture by Schnider [Sch20, Conj.2.4], which
was previously known for d — k + 2 mass assignments instead of d.

Theorem 1.3. Let k < d be positive integers. Given a k-dimensional mass assign-
ment p and d — 1 assignments of continuous functions on k-dimensional half-spaces
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fis-ov, fa—1, there exists a (k — 1)-vertical k-dimensional linear subspace Sy and a
(k — 1)-dimensional affine subspace Sx_1 C Sy such that Sy_1 bisects p°% and all
the functions fi,..., fa—1 on Sk.

Another application of Theorem 1.2 is the existence of central transversals for
mass assignments. The central transversal theorem is a gem of discrete geometry. It
guarantees the existence of affine subspaces which are “very deep” within a family
of measures, due to Dol'nikov and to Zivaljevié and Vreéica [Dol92, ZV90]. For a
finite measure p in RY, we say that an affine subspace L is a A-transversal if the
dimension of L is A and every closed half-space that contains L has measure greater

than or equal to (ﬁ) w(RA).

Theorem 1.4 (Central transversal theorem). Let A < d be non-negative integers.
Let pi1,. .., pixy1 be finite measures in RY. Then, there exists an affine subspace L
of R? that is a \-transversal for each of pi1,. .., fixs1-

The case A = 0 is Rado’s centerpoint theorem [Rad46], and the case A =d — 1
is the ham sandwich theorem. A simple proof of the central transversal theorem
was recently found by Manta and Soberén [MS21]. We strengthen the results of
Schnider for central transversals for mass assignments [Sch20, Thm 4.3] in a similar
way as Theorem 1.3.

Theorem 1.5. Let 0 < X < k < d be non-negative integers. Let pi1,. .., hd—k+r+1 be
k-dimensional mass assignments in R?. Then there exists a M-vertical, k-dimensional
linear subspace Sy, of R% and an affine subspace L C Sy, of dimension X\ such that L
18 a A-transversal to each of uf"", e 7u§§k+)\+1.

In the theorem above, note that since L is a A-transversal in a k-dimensional space,
we require that each closed half-space of Sy, that contains L has a (1/(k — XA+ 1))-
fraction of each z*. The case k = d is the central transversal theorem. The case
A=k —1is Theorem 1.3 when all functions are induced by mass assignments.

Theorem 1.3 guarantees that, given d mass assignment on subspaces of dimension
k, we can find a k-dimensional subspace Sy for which k& — 1 directions are fixed in
which a hyperplane halves all measures. We can think of the last direction of Sy to
be allowed to rotate in S%~*, a (d — k)-dimensional sphere. If, instead of rotations,
we look for translations, we obtain exciting problems. In this scenario, we fix all
directions of S}, but allow it to be translated, so we now have R?* choices for Sj.
We need to impose additional conditions for the mass assignments since, otherwise,
it’s easy to construct mass assignments that are constant in all translated copies of
a particular Sy.

We are particularly interested in the case of mass assignments induced by families
of subspaces. A set of (d — k)-dimensional affine subspaces in R¢ induces a discrete
measure on any k-dimensional affine subspace Si. We simply look for all (d — k)-
dimensional subspaces L for which L NSk is a point, and consider the resulting
subset of S; as a discrete measure. In sections 4 and 5 we define continuous versions
of these assignments which do induce mass assignments.

We show that these mass assignments are restrictive enough to obtain positive
ham sandwich results for the translation case. The original motivation to work on
mass assignments was a conjecture of Barba about bisections of three families of
lines in R? with one more line [Sch20]. We show in Theorem 4.1 that for k = d—1 we
can halve d mass assignments of dimension d — 1 and require that Sy_; is 1-vertical
and Sy_o is perpendicular to e4. In terms of Barba’s conjecture, it shows that we
can halve three families of lines in R? using a horizontal line.

If we fix a line £ in R¢ and translate a hyperplane Sy_1, the intersection point
£ N Sy_1 moves at a constant velocity. Therefore, the problem of halving mass
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assignments induced by lines in some translate of a hyperplane is equivalent to
halving families of points in R?~! that move at constant velocities. The goal is
to show that at some point in time we can simultaneously halve more families of
points than the dimension. We call such results “dynamic ham sandwich theorems”.
Interestingly, whether this is possible depends on the parity of d, as we show
in Theorem 5.1. The dynamic ham sandwich results are therefore not a direct
consequence of Theorem 1.2. For the case k = 1, halving families of hyperplanes in
the translate of some fixed line, there is no dependence on the parity of d, as we
show in Theorem 5.2.

We can compare our results from Section 5 with earlier results for splitting
families of hyperplanes with lines. The dual theorem to recent developments
regarding bisection with hyperplane arrangements [BBKK18] (see [RPS21, Thm
3.4.7)) shows that Given 2d — O(logd) families of hyperplanes in R?, each with an
even cardinality, there exists a segment or an infinite ray that intersect exactly half
the hyperplanes in each family. Our results show that we can do something similar
for d families of hyperplanes if we further fix the direction of the intersecting line
and only consider infinite rays instead of segments.

In Section 2 we prove Theorem 1.2 and show how it implies Theorem 1.3. Then,
we prove Theorem 1.5 in Section 3. We show in Section 4 that results similar to
Theorem 1.3 can be proved if we replace the condition of Sy going through the origin
by conditions on Sk_1, when k = d — 1. Finally, we present our results on dynamic
ham sandwich theorems in Section 5. We include open questions and conjectures
throughout the paper.

2. TOPOLOGICAL TOOLS AND PROOF OF THEOREM 1.2

We use a recent generalization of the Borsuk—Ulam theorem for Stiefel manifolds.
Borsuk-Ulam type results for Stiefel manifolds have been studied extensively [FH8S8,
DIT99, CCFH20]. For k < d, the Stiefel manifold V(R¢) is the set of orthonormal
k-frames in R?. Formally,

Ve(RY) = {(v1,...,v) € RY* :vy,..., v are orthogonal unit vectors}.

The Stiefel manifold Vi (R?) has a natural free action of (Z2)*. We consider Zy =
{—1,1} with multiplication. Then, for (v1,...,vx) € Va(R9), (A1,..., ) € (Za)*,
and (z1,...,7;) € R x R972 x ... x R we define

()\1;~-~7)\k) . (vl,...,vk) = ()\11)1,...,)\]@1)]@)
()\17"-7>\k) . (.Z‘l,...,.’L'k) = ()\11’17...,/\k$k)

Our main topological tool is the following theorem.

Theorem 2.1 (Chan, Chen, Frick, Hull 2020 [CCFH20]). Let k < d be non-negative
integers. Every continuous (Zz)*-equivariant map f : Vi,(R?) — R4~ x ... x R4~k
has a zero.

For the case k = d, we consider R = {0}. The proof of Theorem 2.1 uses a
topological invariant composed of a sum of degrees of associated maps on spheres.
It is also a consequence of the computations of Fadell and Husseini on T'(k)-spaces
[FH88] and can be proved by elementary homotopy arguments [Mus12, MS21].
Theorem 2.1 has applications to other mass partition problems [MS21,ST21]. We
are now ready to prove Theorem 1.2

Proof of Theorem 1.2. First, let us give an overview of the proof. We will pa-
rametrize the set of possible choices for Sp_1,...,S54_1 using the Stiefel mani-
fold Vy_p41(R?) . Then we construct a continuous ((Zsz)?~*+1)-equivariant map
Fr: Va1 (R?) — R4 x ... x R¥~! determined by the measures jig_1, .- -, fr_1,
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T 71 T
T=(1,2,0)

_([fia(S) = fra(Sy) + -
Fr(vz,v1,00) = (l:fl,Q(S]Jr) - f1,2(51)} 1F21(87) = faa (5 )]70) '
FiGURE 2. Example of how Ss, S1, Sy and value of F; are obtained
from the element (vo,v1,v9) € V3(R?) and the permutation 7 =
(1,2,0). The permutation tells us which element of (va,v1,vg) gives
us which subspace in the full flag. In this case S halves one measure
and one function in R%, S; halves one measure and two functions
in Ss, and Sy only halves one measure in S7.

the families F4_1,...,Fr_1 and the permutation m. The zeroes of this map corre-
spond to choices for Si_1,...,S54_1 that split all of the measures and the functions
in each family exactly in half, finishing the proof.
Given a permutation 7 = (74—1,...,mx—1) of (d—1,...,k —1) and an element
v =(Vg_1,...,Vk_1) € Vi_rr1(R%). We obtain the corresponding Sj_1,...,Sq_1
as follows:
e First, we define Sy = R
e Forie{d—1,...,k— 1}, assume S;;+1 has been constructed. We pick S;,
the hyperplane of S; 11 perpendicular to v,, that splits the measure uf”l
in half. If there are multiple options for the location of S; under these rules,
we pick S; to be the midpoint of all possibilities.
Let Sj‘ ={s;+avy, 15 €S5;,a>0} C S;y1 and S; = {s; —avy, : 5, € S;,a >
0} C Si4+1 be the complimentary half-spaces of S;;1 bounded by S;.
We define the map

Fr:Vig1(RY) = R x .. x RFE
(Va—1,---,Vk—1) = (Tg—1, ..., Tk—1)

by setting ., j, the j-th coordinate of z, as

rg = Fig(S5) = fii (S7). (1)

We note that F is continuous. The flag (Sk—1,...,S4—1) does not change if we

change the sign of any v;. If we change the sign of v.,, all the half-spaces defined

remain the same except for S;r and S; , which are flipped. This causes only x,, to
change signs, so Fy is ((Z2)? **1)-equivariant.

By Theorem 2.1, the map F; has a zero. This zero corresponds to a choice of

Skg—1 C ... C S4_1 that also splits all functions in each family in half simultaneously.
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Note that ., has m; coordinates, which corresponds to S; bisecting the 7; functions
in fz in Si+1~ U

Conjecture 2.2. Let k < d be non-negative integers. For any permutation w of
(d—1,...,k=1), Theorem 1.2 is optimal.

In the specific case where some affine subspace is required to bisect more than d—1
assignments of continuous functions, this is quickly apparent. We show examples
where all functions are induced by mass assignments.

Lemma 2.3. Let k,d be non-negative integers such that k < d. There exist d + 1
k-dimensional mass assignment iy, . .., ptgr1 i R such that there does not exist any
k-dimensional affine subspace Sy, of R% in which ,u‘lgk, e ,udsil can be simultaneously
bisected.

Proof. Let p1,...,p4+1 be points in general position in R?, so that no hyperplane
contains all of them. For each p; let u; be the mass assignment induced by the
projection of a uniform measure in the unit ball centered at p; onto a subspace.
Given affine subspaces Si_1 C Sk of dimensions k — 1 and k, respectively, we know
that Si_; halves ,uf ¥ if and only if it contains the projection of p; onto Sj.

The points p1, ..., par1 affinely span R?. Thus, for any affine subspace Sy of R¢,
the projections of py, ..., pa+1 onto Si affinely span Sj,. There is then no hyperplane
Si—1 of Sy containing the projections of all the centers, so uf’“, e ,ugjl cannot all
be simultaneously bisected. O

As a quick application of Theorem 1.2, we prove Theorem 1.3. Recall that
an affine subspace of R? is called k-vertical if it contains rays in the directions

€d, €d—1y---,€d—k+1-

Proof of Theorem 1.3. To apply Theorem 1.2, we construct some (¢4 1)-dimensional
mass assignments for ¢ = k,...,d — 1. For k < i < d, we construct k of these
assignments, denoted p; ; of 0 < j < k. Let g be the origin and for 0 < j < k let
xj = eqy1—;, the (d+ 1 — j)-th element of the canonical base of R%. Let D, be the
unit d-dimensional ball centered at z;.

We define p; ; by setting uf}“(A) = voli11(A N D,;) for all measurable sets
A C Siy1. We now induct on d — ¢ to show that each successive S; for k <1i < d
must be (k — 1)-vertical. See Fig. 3.

In the case where ¢ = d — 1, a hyperplane Sq_; bisects the measures pq—1 ; if
and only if it contains x;. This implies that Sq—; goes through the origin and is
(k — 1)-vertical. Now, assuming S;;1 is a (k — 1)-vertical subspace of dimension

¢+ 1, the intersection D, N Si+1 is a unit ball of dimension ¢ + 1 centered at the
1

point ;. Thus a hyperplane S; of S;;1 halves Mff if and only if z; € S;. Again,
this implies that S; goes through the origin and is (k — 1)-vertical.

We apply Theorem 1.2 with the permutation (d —2,d —3,...,k—1,d— 1) of
(d—1,d—2,...,k — 1), using only mass assignments. Since we have fewer mass
assignments than required, there exists a full flag Sy_1 C ... C Sy_1 where S;
bisects all measures or functions of S;4; for i =k —1,...,d — 1. Since S must be
a (k — 1)-vertical subspace of dimension k, we obtain the desired conclusion. O

Here we used measures and assignments of continuous functions induced by
intersections of spheres with k-dimensional subspaces to impose conditions on
Sk, .--,S¢—1. It seems that different geometric constraints could be obtained by
modifying the mass assignments.

Problem 2.4. Determine what geometric conditions on Sk, ..., Sq_1 we can impose
by choosing other measures and assignment of functions in the proof of Theorem 1.3.
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AD,,

Sy

0

Ficure 3. Ilustration of the proof of Theorem 1.3 for d = 3: Any
affine subspace So C R? that simultaneously bisect the balls D,,
and D,, must contain their centers xy and z; and therefore the
whole z axis.

3. CENTRAL TRANSVERSALS TO MASS ASSIGNMENTS

Schnider proved that if we are given d + A — k 4+ 1 mass assignments on the
k-dimensional linear subspaces of R?, we can find one k-dimensional subspace where
all the mass assignments have a common central A-transversal [Sch20, Thm. 4.3].
His results focus on k-dimensional linear subspaces of R¢, so we also impose that
condition in this section to make our results directly comparable. We extend his
result and show that we can also require that the k-dimensional linear subspace we
find is A-vertical.

Recall that given a finite measure p in a k-dimensional space Sk, a central \-
transversal is an affine A-dimensional subspace such that every half-space of Sy that
contains the A-transversal has measure at least u(Sg)/(k+1— ).

Proof of Theorem 1.5. Let V4_x(R?) be the Stiefel manifold of orthonormal (d — \)-
frames in R?. We denote (v1,...,v4_») an element of V;_5(R9).
We denote a few key spaces. For i =1,...,d — k, let

1
Sq—i = (span{vp_xq1,- -, Vp—ryi})
Notice that Sk C Sk41 C ... C Sg—1, each goes through the origin, and that the di-
mension of S; isé fori =k, ..., d—1. We also consider My_» = span{vy,...,vp_x} C
Sp.

The subspace Sy is our candidate for the k-dimensional linear space we look
for, and Mj_ is our candidate for the orthogonal complement to L in Sg. The
subspaces Sk41,--.,94—1 will be used to guarantee that Sy, is A-vertical. To do this,
we construct an appropriate (Zg)d_k—equivariant function

fiVaaRY) 5 R RET2x ... x RN
(’Ul,...,’Ud,)\) — (.’El,ajg,...,xd,)\).

Notice that z; € R for each 7. First, we define the vectors 1, ..., zx_. For
j=1,...,d=k+X+1,let o; be the orthogonal projection of ,uf’“ onto My _r. We
know that the set of centerpoints of ¢; is a convex compact subset of My_y, so we
can denote by p; its barycenter. The affine subspace

p;j + (span{vy,... ,vd,A})L C Sk
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is a A-transversal to ufk, see Fig. 4.

H2

FIGURE 4. An illustration of the case (d, k, ) = (3,2,1). The mass
assignments 1, o are induced by the intersection of each plane in
R? with the two shapes in the figure.

We need p1,...,Pd—k+r+1 to coincide to guarantee a common A-transversal in
Sy, for all our mass assignments. Fori=1,...;k—Aand j=1,....d—k+ A, we
define the j-th coordinate of z; to be the dot product

<Uz‘, pb; — pd—k+)\+1>-

The rest of the coordinates of each x; are zero. If z1,...,xr_y are all zero vectors
this would imply that for every j =1,...,d — k+ A we have

E—X E—X

P = Z@i,pﬁ%’ = Z<Uiapd—k+)\+1>vi = Pd—k+X+1;

i=1 i=1
as we wanted. Changing the sign of any of v; for i = 1,...,k — A does not change
Sk, My_x, nor any of the points p;, and simply flips the sign of x;.

Now let us define xg_x4+1,...,24—x. We denote

Sy =1{y € Sazit1: (Vkorgisy) =0},
i =1y € Sa—iy1 : (Vp—xyi,y) <0}

For i = 1 we consider Sq = R?. We also consider, as in the proof of Theorem 1.3,
the A mass assignments 74— 1,...,7q—;,» Where 74_; ; is a (d — i)-dimensional mass
assignment such that for any measurable set C' C Sy_; we have

7347(C) = volg—i(C' N D

8d+1—j)'

Fori = 1,...,d — k, we define z;_x4; as a vector in R"*+*~% whose first A

coordinates are
TﬁJlr:?j (St—iti) - Tﬁ{i;?j (Sq-4)
for 7 =1,...,A. The rest of the coordinates of each x; are defined to be zero.

The same inductive argument as in the proof of Theorem 1.3 shows that if each
of Tx—xt+1,...,Z4—x are zero, then each of S4_1,..., Sk are A-vertical. We do not
need to use masses centered at the origin since we are only working with linear
subspaces in this section. Finally, changing the sign of vy_ 4, fori=1,...,d—k
does not change any of the space S, ...,S4—1 and only flips the name of Sc‘lti and
S;_;- Therefore, it only changes the sign of xj_ ;.

This means that the function f : Vg_x(R%) — R xR4™2 x ... x RN is (Zo)? -
equivariant and continuous. By Theorem 2.1, it must have a zero. By construction,
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V1 ... Ug—X...Ug—)\

basis of Mj,_

Pd—k+Xx — Pd—k+X+1

P1 — Pd—k+2+1

€ coo LE—X ---Tg_)

FIGURE 5. A visual representation of the map f from the proof
of Theorem 1.5. The first block, of width k£ — A\, guarantees that
the points p1, ..., pg—krr+1 coincide. The second block, of height
A, guarantees that Sy is A-vertical.

a zero of this function corresponds to a A-vertical k-dimensional subspace S where
we can find a common A-transversal to each mass assignment. O

4. HORIZONTAL SEPARATING SPACES

A significant motivation for the study of mass partitions for mass assignments
comes from the problem of splitting families of lines in R3. In this section, we
bisect families of lines in R?® with additional conditions. Let e; € R¢ be the vertical
direction. We say that a hyperplane is vertical if it contains the direction e4, and we
say that an affine (d — 2)-dimensional subspace is horizontal if it is orthogonal to e .

A family of lines in R¢ induces a mass assignment on hyperplanes in R?, as a
generic hyperplane intersects each line in a point, and this family of points can be
considered as a measure. We show that for any d families of lines in R?, there exists
a vertical hyperplane S;_; and a horizontal (d — 2)-dimensional affine subspace
Sg_o C S4_1 that splits each of the induced measures in S;_1. In the case d = 3,
this recovers the splitting result of Schnider. However, instead of having a splitting
line that intersects the z-axis, we get a splitting line that is perpendicular to it.

To avoid delicate issues with the continuity of the maps we define and the mass
assignments, we work with measures on A;(R?), the space of 1-dimensional affine
spaces of R%. We can consider the natural embedding A; (R?) < Go(R%*1) into the
Grassmannian of 2-dimensional linear subspaces of R%*!. The manifold Go(R¥+1),
as a quotient space of the orthogonal group O(d + 1) = Vyyq(R9H!), inherits a
canonical measure from the Haar measure of O(d + 1), which in turn induces a
canonical measure in A;(R?). For simplicity, we call this the Haar measure of
A;(R%). We say that a measure in A; (R?) is absolutely continuous if it is absolutely
continuous with respect to the Haar measure we just described. Among other
properties, this measure p* satisfies that for any nonzero vector v € R? we have

pr({fe Ay(RY) : ¢ Lv})=0.

Given an absolutely continuous measure p in A; (R?), this induces a mass assign-
ment on the hyperplanes of R?. Given a hyperplane H C R¢ and a measurable set
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C C H, we can define
p(C) = p{l € A{(R?Y) : £N H is a single point, {NH € C}.

In our proofs, we only evaluate these measures in closed half-spaces instead of
general measurable sets C. We introduce some notation to analyze the behavior of
the mass assignments as our vertical hyperplanes move away from the origin.

Given a unit vector v € R? orthogonal to e and a constant )\, consider the
vertical hyperplane

Hyx={p:(p,v) =A}

Let ¢ be a line in R%, not orthogonal to v. If we fix v and move X at a constant
speed, the point H, » N ¢ is moving at a constant speed in H, . Formally, if n(¢) is
a unit vector in the direction of ¢, then H, ) is moving with the direction vector

—i@ymmwmw»

(v,n
The expression above does not depend on the choice for n(f). Let z(v,f) be
the eg-component of this direction vector, which we call the vertical speed of ¢ in
direction v. For an absolutely continuous measure in A;(RR?) and a direction v L e4,
the set of lines with some fixed vertical speed in direction v has measure zero. Given
an finite absolutely continuous measure p in A;(R?), we say that its median vertical
speed for v L ey is the value m = m(u,v) for which

u({f € AL(RY) : 2(0,6) > m}) = u({£ € AL(RY) : 2(v,€) < m}).

If there is a range of values that satisfy this property, we select the midpoint of
this interval. Intuitively speaking, for a finite set of lines in R?, this parameter lets
us know which line will eventually become the vertical median in H, \ as A — oo.
The advantage of working with absolutely continuous measures in A;(R?) is that
this parameter depends continuously on v. We say that two absolutely continuous
measure /i1, 1o in A;(R?) share a median speed in direction v if m(u1,v) = m(uz,v).
Also, we have m(v, u1) = —m(—wv, u1). Now we are ready to state our main theorem
for this section.

Theorem 4.1. Let d be a positive integer and p1,...,uq be d finite absolutely
continuous measures in A;(R?). Then, there either exists a direction v 1 eq in
which all d measures share a median speed, or there exists a vertical hyperplane
Sq—1 and horizontal affine subspace Sq_o C Sq_1 such that Sq_o bisects each of
Sa-1 Sa—1

MKy e Bgo -

The first case, in which all measures share their median vertical speed in some
direction v can be interpreted as a bisection in the limit of all measures as Sy_1 =
H, » and A = oo.

Proof. Consider the space S?~2 x [0,1). We identify the (d — 2)-dimensional sphere
S?=2 with the set of unit vectors in R¢ orthogonal to eq. For (v,7) € S92 x [0, 1)
define A = 7/(1 — 7) and the vertical hyperplane S;_1 = H, x. Let Sq_o be the
horizontal affine subspace of S;_1 that halves ugd’l. If there is an interval of
eg-coordinates to choose Sy_o from, we select the median. The S;'_Q be the set of
points in Sg_; above or on Sy_p and S;_, be the set of points in Sg_; below or on
Sdfg.
We now construct the function

f:87%2%0,1) — RI!

Sa—1 Sa—1 — Sa—1 Sa-1 —
(v,7) = (Mld (Sc}tz) o i (- ) RO T (ijﬁ — g (Sd72))
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Let us analyze this function as 7 — 1, which is equivalent to A — 4o0. If we
consider A to be increasing at a constant rate, then Sy_o is moving vertically at a
velocity of m(v, ug). Therefore, the i-th component of f converges to

({0 € AL(RY) : 2(0,0) > m(v, pa)} — ({0 € AR : 2(0,0) < m(v, pa)}-

This quantity is zero if and only if p; and pg share a median speed in direction v
and it depends continuously on v. Therefore, we can extend this f to a continuous
function f: 5972 x [0,1] — R4L. If f(v,7) = 0 for some (v,7) € S92 x [0,1], we
have two cases. If 7 < 1, then the corresponding S;_o halves each of the measures
ufd’l, e ,uj and we are done. If 7 = 1, then all of ug,..., g share a median
speed in direction v, and we are done.

Assume for the sake of a contradiction that f has no zero. We can reduce the
dimension of the image by considering

g:8%972x[0,1] - §42
1 -

R T e T KA

d—1

which is a continuous function.

For each 7 € [0,1] we define the map g, : S92 — S92 where g, (v) = g(v,7).
By construction H, o = H_, 0, 50 go(v) = go(—v). In the other extreme, we have
the function g; : S92 — S92, As z(v,£) = —z(—v, ) and m(pa,v) = —m(pq, —v)
for all v € 472 ¢ € A1(R?), we have g;(v) = —g1(—v) (intuitively, as we change
from v to —v everything but the vertical direction flips, so the sign of g; changes).
Therefore, g would be a homotopy between an even map of S~2 and an odd map
of S92, which is impossible.

O

S{lfl

Sq—2
Yo
\ (\ U, )\
\\_/\
7 =0 _even

ve Si2

T=1 odd

FIGURE 6. Once we choose (v, \) the hyperplane S;_; is deter-
mined. We then choose Sy_2 C S4—1 at the appropriate height so
it halves ujd’l.

5. DYNAMIC HAM SANDWICH THEOREMS

In this section, we are concerned by mass assignments induced by families of affine
(d — k)-spaces in RY, as we seek a translate Sy of a particular space of dimension k
in which we can split the measures induced on Si. We aim to bisect simultaneously
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d mass assignments. Let us start with k = d — 1. As described in the introduction,
this problem can be considered as a dynamic ham sandwich problem in R<.

We first describe a continuous version of this theorem. We increase the dimension
by one for convenience. Consider R? embedded in R4*! as the set of points z for
which the last coordinate is zero, so (z,e441) = 0. Given an absolutely continuous
measure y; on A;(R41) we denote by i+ the measure it induces on the hyperplane
defined by (z,eq41) = t. We refer to this as a moving measure in R?, where we think
of the variable t as the time. Each £ € Al(]Rd"'l) not parallel to e441 corresponds to
a pair (p,w) € R% x R¥. At time ¢ it is represented by the point p + tw. Therefore,
a moving measure can be thought of as a measure on R% x R¢. The extension to
absolutely continuous moving measures is to make the topological maps we construct
continuous. If v is a unit vector in R?, we say that the speed of (p, w) in the direction
of v is (v, w).

Given a moving measure g in R? and a unit vector v € R%, we call the median
speed of p in the direction v as the value m for which

p{(p,w) € REx R : (w,v) <m} = p{(p,w) € R x R?: (w,v) =m}

Theorem 5.1. Let d be a positive odd integer. Let pg, i1, ..., pq be d+ 1 finite
absolutely continuous moving measures on R. Then, there either exists a direction v
in which all measures have the same median speed or there exists a time t € (—o0, 00)
and a hyperplane Sq_1 C R? so that its closed half-spaces Sj_l, S,_, satisfy

ui,t(S;ltl) = pit(S;_1) for each i =0,1,...,d.

Proof. We parametrize our partitions with pairs (v,7) € S9! x (=1,1). Let Sq_1
be the hyperplane orthogonal to v that halves ug for t = 7/(1 — |7|). As usual,
if there is a range of possibilities for S;_; we choose the median. We denote by
Sj_l the closed half-space in the direction of v and S;_; the closed half-space in
the direction of —wv.

Now we can construct a function

8% x (~=1,1) » R?
(Uy 7') — (Ul,t(S;ltJ - .Ul,t(Sd_71)a s mUJd,t(S;ltJ - Md,t(SULJ)

This function is continuous. If v is fixed and 7 — 1, then f(v,7) converges.
For example, the first coordinate converges to pi(A) — p1(B), where A is the set
of moving points whose speed in the direction v is larger than or equal to the
median speed in the direction v for pg, and B is the complement of A. The same
convergence holds when 7 — —1. Therefore, we can extend f to a continuous
function f: S9! x [-1,1] — R4,

If we show that f has a zero, we have our desired conclusion. Since the values at
of f(v,1) and f(v,—1) only depend on the median speeds described above, for all
v € S9! we have f(v,—1) = —f(v,1). Also, by the definition of f we know that if
we fix 7 and flip v to —v, the hyperplane Sy does not change but S} | and S; ',
swap. Therefore, for every 7 we have f(v, T) = ff’(ffu, 7).

Assume f does not have a zero, and we look for a contradiction. We can reduce
the dimension of the image by considering

g: 8T x[-1,1] - 841

(U,T) = #f(v,’l')

1F (o, )l
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FIGURE 7. Three moving points in the plane such that at no point
in time there is a line that simultaneously goes through all three.

As before, g(v,—1) = —g(v,1) for every v € S?~! and g(v,7) = —g(—v,7) for
every (v,7) € S9! x [~1,1]. Additionally, g is continuous. If we fix 7, we get
continuous functions on the sphere.

gr: gd—1 _y gd-1

v g(v,T).

Let us analyze the degree g_1 and g1. As g, (v) = —g-(—v), both maps are of odd
degree. As g_1(v) = —g1(v), we have deg(g_1) = (—1)?deg(g1) # deg(g1), since d
is odd and deg(g1) # 0. Therefore, it is impossible to have a homotopy between
these two maps, which is the contradiction we wanted. O

The condition on the parity of d may seem like an artifact of the proof, but we
can see in Fig. 7 that three moving measures in R? concentrated around the moving
points depicted will not have a common halving line at any point in time.

The example can be extended to high dimensions. We embed R¢ into R4+! as
as the set of points whose coordinates add to 1. We can consider d + 1 moving
measures in RY by taking the moving pairs (e;, e;11 — e;) € R¥! x R4 where we
consider egyo = e;. Note that these points always lie on the embedding of R? in
R, To show that there is never a hyperplane of R¢ going through all the points,
we have to check that, for even d, the (d + 1) x (d + 1) matrix

[1—¢t 0 0 0 t
t 1—-t 0 0
0 t 1—t 0 0
A=
0 0 0 1—-t 0
|0 0 0 t 11—t

is non-singular for all values of t. A simple pattern chasing or row expansion shows
that det(A) = (1 — )@+ 4+ (=1)%4+L. For t € [0,1] and even d, det(A) > 0. For
t € 10,1], we have |1 — t| # |t], so det(A) # 0.
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Now we work with the case k = 1 for the problem stated at the start of this
section. Given d families of hyperplanes in R¢, we look for a translate of a particular
line in which we can find a point that halves all of them. For this problem, the
parity of d is not important.

We assume without loss of generality that the line ¢ we will translate is span(eq).
Assume H is a hyperplane with a normal vector n so that (n,eq) # 0. This
guarantees that H intersects every translation of ¢ at a single point p. If v is a unit
vector orthogonal to eg4, as we translate ¢ in the direction v, the point £ N H moves
vertically at a speed m(H,v) = —(n,v)/{n,eq). As expected, the vertical speeds in
direction v and in direction —v are negative of each other.

As in Section 4, we can define an absolutely continuous measure on A4 1(R%)
using the Haar measure on Gd(Rd+1). This case is perhaps more intuitive, as
G4(R™1) is a d-dimensional projective space. The canonical measure on this
projective space comes from the Haar measure on its double cover, S¢. If y is an
absolutely continuous measure on Agq_;(RY), the set of hyperplanes whose normal
vectors are orthogonal to ey has measure zero.

Given an absolutely continuous measure z in Ag_;(R?) and a line £ in R?, we
can define a measure p on ¢ by considering

pi(C) = p{H € Ag_1(RY) : HN ( is a point and H N ¢ € C}.
We define the median speed of p in the direction v as the number m such that
p{H € Ag_1(RY) : m(H,v) <m} = p{H € Ag_1(R?) : m(H,v) > m}.

Theorem 5.2. Let d be a positive integer. Let p1,...,puq be finite absolutely
continuous measures on Aq_1(R?). Then, there erists a either exists a direction
v L eq in which all measures have the same median vertical speed or there exist
a translate £ of span(eq) and a point that splits £ into two complementary closed
half-lines A, B such that

pé(A) = uf(B) for each i =0,1,...,d.

Proof. Our configuration space this time is S%=2 x [0,1). We consider S9~2 the
set of unit vectors in R orthogonal to e4. For (v,7) € S972 x [0,1), let £ be the
translate of span(eq) by the vector (7/(1 — 7))v. We consider h to be the height of
the median of ufl and A the set of points on £ at height h or more, and B the set of
points of ¢ at height h or less.

Now we define

f:8972 % [0,1) —» RI1

(v,7) = (i (A) = pi(B),-.. g_1(A) — pg_1(B))

For a fixed v, the point f(v,7) converges as 7 — 1. This is precisely because
ui(A) converges to the measure u; of the subset of hyperplanes in A4_1(R%) whose
speed in the direction v is at least the median vertical speed of ug in the direction
v. Therefore, we can extend f to a continuous function f : 42 x [0,1] — RI-L.
If f has a zero, we obtain the desired conclusion. Otherwise, we can reduce the
dimension of the image and construct our final continuous map

g:87%2x[0,1] —» 892
1
(0,7) = ———f(v,7)
1f (0, 7
The map g; : S92 — $972 defined by g, (v) = g(v, 1), is odd. This is because

the speed of a hyperplane in direction v is the negative of its speed in direction
—v. Therefore, the degree of g; is odd. On the other hand, gy : S¥2 — §472,
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defined by go(v) = g(v,0), is a constant map, so its degree is zero. There cannot be
a homotopy between g; and gp. O
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