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Abstract. We use recent extensions of the Borsuk–Ulam theorem for Stiefel
manifolds to generalize the ham sandwich theorem to mass assignments. A

k-dimensional mass assignment continuously imposes a measure on each k-

dimensional affine subspace of Rd. Given a finite collection of mass assignments
of different dimensions, one may ask if there is some sequence of affine subspaces

Sk−1 ⊂ Sk ⊂ . . . ⊂ Sd−1 ⊂ Rd such that Si bisects all the mass assignments

on Si+1 for every i. We show it is possible to do so whenever the number of
mass assignments of dimensions (k, . . . , d) is a permutation of (k, . . . , d). We

extend previous work on mass assignments and the central transversal theorem.

We also study the problem of halving several families of (d− k)-dimensional
affine spaces of Rd using a (k − 1)-dimensional affine subspace contained in
some translate of a fixed k-dimensional affine space. For k = d−1, there results

can be interpreted as dynamic ham sandwich theorems for families of moving
points.

1. Introduction

Mass partition problems study how one can split finite sets of points or measures
in Euclidean spaces given some geometric constraints. The methods required to solve
such problems are often topological, as they involve the study of continuous equi-
variant maps between associated topological spaces. These problems have motivated
significant research in algebraic topology, discrete geometry, and computational
geometry [Mat03, Živ17,RPS21]. The classic example of a mass partition result is
the ham sandwich theorem, conjectured by Steinhaus and proved by Banach [Ste38].

Theorem 1.1 (Ham sandwich theorem). Let d be a positive integer and µ1, . . . , µd

be finite measures of Rd so that every hyperplane has measure zero for each µi.
Then, there exists a hyperplane Sd−1 of Rd so that its two closed half-spaces S+

d−1

and S−
d−1 satisfy

µi(S
+
d−1) = µi(S

−
d−1) for all i = 1, . . . , d.

The proof of the ham sandwich theorem uses the Borsuk–Ulam theorem since the
space of partitions can be parametrized with a d-dimensional sphere. As we modify
the mass partition problems, we may need to study maps between more elaborate
topological spaces, such as direct products of spheres [MLVŽ06,BFHZ18,HK20],
hyperplane arrangements [BBKK18,BPSZ19], and configuration spaces of k points
in Rd [Sob12,KHA14,BZ14,AAK18] among others. The topological techniques
needed to solve such problems range from simple Borsuk–Ulam type theorems to
obstruction theory, explicit computation of characteristic classes in cohomology,
or the use of topological invariants such as the Fadell-Husseini index [FH88]. The
results in this manuscript use affine Grassmanians and Stiefel manifolds, yet the
proof methods rely on simple topological tools.
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NSF grant DMS 2051026. Soberón’s research is supported by NSF grant DMS 2054419 and a
PSC-CUNY TRADB52 award.
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Figure 1. An example of three mass assignments on planes in R3,
given by intersections of planes with different objects. The assign-
ment induced by two lines fails the absolute continuity requirement,
but provides good intuition. We are interested in finding a plane
where the three induced measures may be simultaneously halved
by a line.

Several results have been proven recently regarding mass assignments. Intu-
itively, a mass assignment on the k-dimensional affine subspaces of Rd is a way to
continuously assign a measure on each k-dimensional affine subspaces of Rd.

Definition 1. Let k ≤ d be positive integers and Ak(R
d) be the set of k-dimensional

affine subspaces of Rd. For V ∈ Ak(R
d), let Mk(V ) be the space of finite measures

on V absolutely continuous with respect to the Lebesgue measure in V , equipped with
the weak topology. Let E = {(V, µV ) : V ∈ Ak(R

d), µV ∈ Mk(V )}. Consider fibre
bundle induced by the function g : E → Ak(R

d) such that g(V, µV ) = V .
A k-dimensional mass assignment µ is a section of this fibre bundle. Note that a d-

dimensional mass assignment in Rd is simply a finite measure absolutely continuous
with respect to the Lebesgue measure. Given a k-dimensional mass assignment µ
and a k-dimensional affine subspace V of Rd, we denote by µV the measure that µ
induces on V .

Simple examples of mass assignments include the projection of a fixed measure
onto k-dimensional affine subspaces or the k-dimensional volume of the intersection
of k-dimensional spaces with a fixed object in Rd. The use of mass assignments
in mass partition problems was started by Schnider, motivated by a problem of
splitting families of lines in R3 [Sch20,PS21].

In this paper, we are concerned with splitting mass assignments of several
dimensions simultaneously, which we do with full flags of affine subspaces. A full
flag of affine subspaces of Rd is a sequence Sk−1 ⊂ Sk ⊂ . . . ⊂ Sd−1 ⊂ Sd = Rd

where Si is an i-dimensional affine subspace of Rd of each i for each k − 1 ≤ i ≤
d− 1. Given several families of mass assignments of different dimensions, we are
interested in finding a full flag where Si halves each mass assignment on Si+1, for
i = k − 1, . . . , d− 1.

Suppose that for i = k, k + 1, . . . , d we have i mass assignments defined on the
i-dimensional affine subspaces of Rd. In particular, we have d measures in Rd. We
can apply the ham sandwich theorem to find a hyperplane Sd−1 splitting the d
measures. Each (d− 1)-dimensional mass assignment gives us a measure in Sd−1.
We can apply the ham sandwich theorem again to find Sd−2, a hyperplane of Sd−1

which halves each of those d − 1 measures. Repeated applications of the ham
sandwich theorem in this fashion allow us to find a full flag of affine subspaces that
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simultaneously bisect all the mass assignments. Our main theorem shows that we
can permute the number of mass assignments of different dimensions and guarantee
the existence of a partition as above.

We state our result on a slightly more general framework where we use arbitrary
continuous functions evaluated on half-spaces instead of measures. Such extensions of
mass partition problems have been used recently for the Nandakumar–Ramana-Rao
problem [KHA14,BZ14,AAK18].

Definition 2. Let k ≤ d be non-negative integers and HSk(R
d) be the space of closed

half-spaces of k-dimensional affine subspaces of Rd. An assignment of continuous
functions to k-dimensional half-spaces is a continuous function f : HSk(R

d) → R.

Let Sk−1 ⊂ Sk be affine subspaces of Rd of dimensions (k−1) and k, respectively,
and f be an assignment of continuous functions to k-dimensional half-spaces. We
say that Sk−1 bisects f on Sk if, for the two separate closed half-spaces S+

k−1

and S−
k−1 of Sk on either side of Sk−1, we have that f(S+

k−1) = f(S−
k−1). Every

k-dimensional mass assignment µ is a particular assignment of continuous functions
to k-dimensional half-spaces in Rd.

The following is our main theorem. We nickname it the Fairy Bread Sandwich
theorem because one interpretation is splitting a sandwich with multiple base
ingredients and multiple colors of sprinkles. Once we make a cut that halves all the
base ingredients, we care about the location of the sprinkles in the planar cut.

Theorem 1.2 (Fairy Bread Sandwich Theorem). Let k, d be non-negative integers
such that k ≤ d and π = (πd−1, . . . , πk−1) be a permutation of (d − 1, . . . , k − 1).
For i = k − 1, . . . , d − 1, let µi be an (i+ 1)-dimensional mass assignment in Rd

and Fi be a set of πi assignments of continuous functions on (i+ 1)-dimensional
half-spaces. There exist affine subspaces Sk−1 ⊂ . . . ⊂ Sd−1 ⊂ Sd = Rd such that Si

is an i-dimensional affine space of Si+1 that bisects µi and all the functions in Fi.

The case k = d is the ham sandwich theorem. The proof of Theorem 1.2 uses
a Borsuk–Ulam type theorem for Stiefel manifolds, fully described in Section 2.
We use Theorem 1.2 to strengthen results about mass assignments and to confirm
conjectures on the subject. Our proof method significantly reduces the need for
topological machinery to tackle these problems.

Theorem 1.2 is optimal for the trivial permutation π = (d − 1, . . . , k − 1), as
the inductive argument shows. We can choose the mass assignments such that, at
each step, the ham sandwich cut is unique, so no more than i mass assignments of
dimension i can be cut at any step. In general, the total number of functions we
are halving matches the dimension of the space of full flags we use. We conjecture
Theorem 1.2 is optimal for all permutations.

If we consider π = (d− 2, d− 3, . . . , k − 1, d− 1) and only use mass assignments,
we are halving d mass assignments on the k-dimensional space Sk, significantly
exceeding what a direct application of the ham sandwich theorem gives. We show
that we can impose additional geometric conditions on Sk, related to the directions
it contains.

Definition 3. Let k ≤ d be positive integers and e1, . . . , ed be the canonical basis
of Rd. Given an affine subspace S of Rd, we say that S is k-vertical if it contains
rays in the directions ed−k+1, . . . , ed−1, ed.

The following theorem confirms a conjecture by Schnider [Sch20, Conj.2.4], which
was previously known for d− k + 2 mass assignments instead of d.

Theorem 1.3. Let k ≤ d be positive integers. Given a k-dimensional mass assign-
ment µ and d− 1 assignments of continuous functions on k-dimensional half-spaces
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f1, . . . , fd−1, there exists a (k − 1)-vertical k-dimensional linear subspace Sk and a
(k − 1)-dimensional affine subspace Sk−1 ⊂ Sk such that Sk−1 bisects µSk and all
the functions f1, . . . , fd−1 on Sk.

Another application of Theorem 1.2 is the existence of central transversals for
mass assignments. The central transversal theorem is a gem of discrete geometry. It
guarantees the existence of affine subspaces which are “very deep” within a family
of measures, due to Dol’nikov and to Živaljević and Vrećica [Dol92, ŽV90]. For a
finite measure µ in Rd, we say that an affine subspace L is a λ-transversal if the
dimension of L is λ and every closed half-space that contains L has measure greater

than or equal to
(

1
d+1−λ

)
µ(Rd).

Theorem 1.4 (Central transversal theorem). Let λ < d be non-negative integers.
Let µ1, . . . , µλ+1 be finite measures in Rd. Then, there exists an affine subspace L
of Rd that is a λ-transversal for each of µ1, . . . , µλ+1.

The case λ = 0 is Rado’s centerpoint theorem [Rad46], and the case λ = d− 1
is the ham sandwich theorem. A simple proof of the central transversal theorem
was recently found by Manta and Soberón [MS21]. We strengthen the results of
Schnider for central transversals for mass assignments [Sch20, Thm 4.3] in a similar
way as Theorem 1.3.

Theorem 1.5. Let 0 ≤ λ < k ≤ d be non-negative integers. Let µ1, . . . , µd−k+λ+1 be
k-dimensional mass assignments in Rd. Then there exists a λ-vertical, k-dimensional
linear subspace Sk of Rd and an affine subspace L ⊂ Sk of dimension λ such that L
is a λ-transversal to each of µSk

1 , . . . , µSk

d−k+λ+1.

In the theorem above, note that since L is a λ-transversal in a k-dimensional space,
we require that each closed half-space of Sk that contains L has a (1/(k − λ+ 1))-

fraction of each µSk
i . The case k = d is the central transversal theorem. The case

λ = k − 1 is Theorem 1.3 when all functions are induced by mass assignments.
Theorem 1.3 guarantees that, given d mass assignment on subspaces of dimension

k, we can find a k-dimensional subspace Sk for which k − 1 directions are fixed in
which a hyperplane halves all measures. We can think of the last direction of Sk to
be allowed to rotate in Sd−k, a (d− k)-dimensional sphere. If, instead of rotations,
we look for translations, we obtain exciting problems. In this scenario, we fix all
directions of Sk but allow it to be translated, so we now have Rd−k choices for Sk.
We need to impose additional conditions for the mass assignments since, otherwise,
it’s easy to construct mass assignments that are constant in all translated copies of
a particular Sk.

We are particularly interested in the case of mass assignments induced by families
of subspaces. A set of (d− k)-dimensional affine subspaces in Rd induces a discrete
measure on any k-dimensional affine subspace Sk. We simply look for all (d− k)-
dimensional subspaces L for which L ∩ Sk is a point, and consider the resulting
subset of Sk as a discrete measure. In sections 4 and 5 we define continuous versions
of these assignments which do induce mass assignments.

We show that these mass assignments are restrictive enough to obtain positive
ham sandwich results for the translation case. The original motivation to work on
mass assignments was a conjecture of Barba about bisections of three families of
lines in R3 with one more line [Sch20]. We show in Theorem 4.1 that for k = d−1 we
can halve d mass assignments of dimension d− 1 and require that Sd−1 is 1-vertical
and Sd−2 is perpendicular to ed. In terms of Barba’s conjecture, it shows that we
can halve three families of lines in R3 using a horizontal line.

If we fix a line ℓ in Rd and translate a hyperplane Sd−1, the intersection point
ℓ ∩ Sd−1 moves at a constant velocity. Therefore, the problem of halving mass
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assignments induced by lines in some translate of a hyperplane is equivalent to
halving families of points in Rd−1 that move at constant velocities. The goal is
to show that at some point in time we can simultaneously halve more families of
points than the dimension. We call such results “dynamic ham sandwich theorems”.
Interestingly, whether this is possible depends on the parity of d, as we show
in Theorem 5.1. The dynamic ham sandwich results are therefore not a direct
consequence of Theorem 1.2. For the case k = 1, halving families of hyperplanes in
the translate of some fixed line, there is no dependence on the parity of d, as we
show in Theorem 5.2.

We can compare our results from Section 5 with earlier results for splitting
families of hyperplanes with lines. The dual theorem to recent developments
regarding bisection with hyperplane arrangements [BBKK18] (see [RPS21, Thm
3.4.7]) shows that Given 2d−O(log d) families of hyperplanes in Rd, each with an
even cardinality, there exists a segment or an infinite ray that intersect exactly half
the hyperplanes in each family. Our results show that we can do something similar
for d families of hyperplanes if we further fix the direction of the intersecting line
and only consider infinite rays instead of segments.

In Section 2 we prove Theorem 1.2 and show how it implies Theorem 1.3. Then,
we prove Theorem 1.5 in Section 3. We show in Section 4 that results similar to
Theorem 1.3 can be proved if we replace the condition of Sk going through the origin
by conditions on Sk−1, when k = d− 1. Finally, we present our results on dynamic
ham sandwich theorems in Section 5. We include open questions and conjectures
throughout the paper.

2. Topological tools and proof of Theorem 1.2

We use a recent generalization of the Borsuk–Ulam theorem for Stiefel manifolds.
Borsuk–Ulam type results for Stiefel manifolds have been studied extensively [FH88,
DII99,CCFH20]. For k ≤ d, the Stiefel manifold Vk(R

d) is the set of orthonormal
k-frames in Rd. Formally,

Vk(R
d) = {(v1, . . . , vk) ∈ (Rd)k : v1, . . . , vk are orthogonal unit vectors}.

The Stiefel manifold Vk(R
d) has a natural free action of (Z2)

k. We consider Z2 =
{−1, 1} with multiplication. Then, for (v1, . . . , vk) ∈ Vk(R

d), (λ1, . . . , λk) ∈ (Z2)
k,

and (x1, . . . , xk) ∈ Rd−1 ×Rd−2 × . . .×Rd−k we define

(λ1, . . . , λk) · (v1, . . . , vk) = (λ1v1, . . . , λkvk)

(λ1, . . . , λk) · (x1, . . . , xk) = (λ1x1, . . . , λkxk)

Our main topological tool is the following theorem.

Theorem 2.1 (Chan, Chen, Frick, Hull 2020 [CCFH20]). Let k ≤ d be non-negative
integers. Every continuous (Z2)

k-equivariant map f : Vk(R
d) → Rd−1 × . . .×Rd−k

has a zero.

For the case k = d, we consider R0 = {0}. The proof of Theorem 2.1 uses a
topological invariant composed of a sum of degrees of associated maps on spheres.
It is also a consequence of the computations of Fadell and Husseini on T (k)-spaces
[FH88] and can be proved by elementary homotopy arguments [Mus12, MS21].
Theorem 2.1 has applications to other mass partition problems [MS21,ST21]. We
are now ready to prove Theorem 1.2

Proof of Theorem 1.2. First, let us give an overview of the proof. We will pa-
rametrize the set of possible choices for Sk−1, . . . , Sd−1 using the Stiefel mani-
fold Vd−k+1(R

d) . Then we construct a continuous ((Z2)
d−k+1)-equivariant map

Fπ : Vd−k+1(R
d) → Rd−1 × . . .×Rk−1 determined by the measures µd−1, . . . , µk−1,
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π2 π1 π0
π = ( 1 , 2 , 0 )

v1 = vπ2

v2 = vπ1

v0 = vπ0

S2

S1

S0

S+
2

S+
1

S−
1

S−
2

Fπ(v2, v1, v0) =

([
f1,1(S

+
1 )− f1,1(S

−
1 )

f1,2(S
+
1 )− f1,2(S

−
1 )

]
, [f2,1(S

+
2 )− f2,1(S

−
2 )], 0

)
.

Figure 2. Example of how S2, S1, S0 and value of Fπ are obtained
from the element (v2, v1, v0) ∈ V3(R

3) and the permutation π =
(1, 2, 0). The permutation tells us which element of (v2, v1, v0) gives
us which subspace in the full flag. In this case S2 halves one measure
and one function in Rd, S1 halves one measure and two functions
in S2, and S0 only halves one measure in S1.

the families Fd−1, . . . ,Fk−1 and the permutation π. The zeroes of this map corre-
spond to choices for Sk−1, . . . , Sd−1 that split all of the measures and the functions
in each family exactly in half, finishing the proof.

Given a permutation π = (πd−1, . . . , πk−1) of (d− 1, . . . , k − 1) and an element
v = (vd−1, . . . , vk−1) ∈ Vd−k+1(R

d). We obtain the corresponding Sk−1, . . . , Sd−1

as follows:

• First, we define Sd = Rd.
• For i ∈ {d− 1, . . . , k − 1}, assume Si+1 has been constructed. We pick Si,

the hyperplane of Si+1 perpendicular to vπi that splits the measure µ
Si+1

i

in half. If there are multiple options for the location of Si under these rules,
we pick Si to be the midpoint of all possibilities.

Let S+
i = {si + avπi

: si ∈ Si, a ≥ 0} ⊂ Si+1 and S−
i = {si − avπi

: si ∈ Si, a ≥
0} ⊂ Si+1 be the complimentary half-spaces of Si+1 bounded by Si.

We define the map

Fπ : Vd−k+1(R
d) → Rd−1 × . . .×Rk−1

(vd−1, . . . , vk−1) 7→ (xd−1, . . . , xk−1)

by setting xπi,j , the j-th coordinate of xπi
as

xπi,j = fi,j(S
+
i )− fi,j(S

−
i ). (1)

We note that Fπ is continuous. The flag (Sk−1, . . . , Sd−1) does not change if we
change the sign of any vi. If we change the sign of vπi , all the half-spaces defined
remain the same except for S+

i and S−
i , which are flipped. This causes only xπi to

change signs, so Fπ is ((Z2)
d−k+1)-equivariant.

By Theorem 2.1, the map Fπ has a zero. This zero corresponds to a choice of
Sk−1 ⊂ . . . ⊂ Sd−1 that also splits all functions in each family in half simultaneously.
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Note that xπi
has πi coordinates, which corresponds to Si bisecting the πi functions

in Fi in Si+1. □

Conjecture 2.2. Let k ≤ d be non-negative integers. For any permutation π of
(d− 1, . . . , k − 1), Theorem 1.2 is optimal.

In the specific case where some affine subspace is required to bisect more than d−1
assignments of continuous functions, this is quickly apparent. We show examples
where all functions are induced by mass assignments.

Lemma 2.3. Let k, d be non-negative integers such that k ≤ d. There exist d+ 1
k-dimensional mass assignment µ1, . . . , µd+1 in Rd such that there does not exist any

k-dimensional affine subspace Sk of Rd in which µSk
1 , . . . , µSk

d+1 can be simultaneously
bisected.

Proof. Let p1, . . . , pd+1 be points in general position in Rd, so that no hyperplane
contains all of them. For each pi let µi be the mass assignment induced by the
projection of a uniform measure in the unit ball centered at pi onto a subspace.
Given affine subspaces Sk−1 ⊂ Sk of dimensions k − 1 and k, respectively, we know

that Sk−1 halves µSk
i if and only if it contains the projection of pi onto Sk.

The points p1, . . . , pd+1 affinely span Rd. Thus, for any affine subspace Sk of Rd,
the projections of p1, . . . , pd+1 onto Sk affinely span Sk. There is then no hyperplane

Sk−1 of Sk containing the projections of all the centers, so µSk
1 , . . . , µSk

d+1 cannot all
be simultaneously bisected. □

As a quick application of Theorem 1.2, we prove Theorem 1.3. Recall that
an affine subspace of Rd is called k-vertical if it contains rays in the directions
ed, ed−1, . . . , ed−k+1.

Proof of Theorem 1.3. To apply Theorem 1.2, we construct some (i+1)-dimensional
mass assignments for i = k, . . . , d − 1. For k ≤ i < d, we construct k of these
assignments, denoted µi,j of 0 ≤ j < k. Let x0 be the origin and for 0 < j < k let
xj = ed+1−j , the (d+1− j)-th element of the canonical base of Rd. Let Dxj

be the
unit d-dimensional ball centered at xj .

We define µi,j by setting µ
Si+1

i,j (A) = voli+1(A ∩ Dxj ) for all measurable sets
A ⊂ Si+1. We now induct on d − i to show that each successive Si for k ≤ i < d
must be (k − 1)-vertical. See Fig. 3.

In the case where i = d − 1, a hyperplane Sd−1 bisects the measures µd−1,j if
and only if it contains xj . This implies that Sd−1 goes through the origin and is
(k − 1)-vertical. Now, assuming Si+1 is a (k − 1)-vertical subspace of dimension
i+ 1, the intersection Dxj

∩ Si+1 is a unit ball of dimension i+ 1 centered at the

point xj . Thus a hyperplane Si of Si+1 halves µ
Si+1

i,j if and only if xj ∈ Si. Again,

this implies that Si goes through the origin and is (k − 1)-vertical.
We apply Theorem 1.2 with the permutation (d − 2, d − 3, . . . , k − 1, d − 1) of

(d − 1, d − 2, . . . , k − 1), using only mass assignments. Since we have fewer mass
assignments than required, there exists a full flag Sk−1 ⊂ . . . ⊂ Sd−1 where Si

bisects all measures or functions of Si+1 for i = k − 1, . . . , d− 1. Since Sk must be
a (k − 1)-vertical subspace of dimension k, we obtain the desired conclusion. □

Here we used measures and assignments of continuous functions induced by
intersections of spheres with k-dimensional subspaces to impose conditions on
Sk, . . . , Sd−1. It seems that different geometric constraints could be obtained by
modifying the mass assignments.

Problem 2.4. Determine what geometric conditions on Sk, . . . , Sd−1 we can impose
by choosing other measures and assignment of functions in the proof of Theorem 1.3.
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Dx0

Dx1

S2

Figure 3. Illustration of the proof of Theorem 1.3 for d = 3: Any
affine subspace S2 ⊂ R3 that simultaneously bisect the balls Dx0

and Dx1 must contain their centers x0 and x1 and therefore the
whole z axis.

3. Central transversals to mass assignments

Schnider proved that if we are given d + λ − k + 1 mass assignments on the
k-dimensional linear subspaces of Rd, we can find one k-dimensional subspace where
all the mass assignments have a common central λ-transversal [Sch20, Thm. 4.3].
His results focus on k-dimensional linear subspaces of Rd, so we also impose that
condition in this section to make our results directly comparable. We extend his
result and show that we can also require that the k-dimensional linear subspace we
find is λ-vertical.

Recall that given a finite measure µ in a k-dimensional space Sk, a central λ-
transversal is an affine λ-dimensional subspace such that every half-space of Sk that
contains the λ-transversal has measure at least µ(Sk)/(k + 1− λ).

Proof of Theorem 1.5. Let Vd−λ(R
d) be the Stiefel manifold of orthonormal (d−λ)-

frames in Rd. We denote (v1, . . . , vd−λ) an element of Vd−λ(R
d).

We denote a few key spaces. For i = 1, . . . , d− k, let

Sd−i = (span{vk−λ+1, . . . , vk−λ+i})⊥ .

Notice that Sk ⊂ Sk+1 ⊂ . . . ⊂ Sd−1, each goes through the origin, and that the di-
mension of Si is i for i = k, . . . , d−1. We also considerMk−λ = span{v1, . . . , vk−λ} ⊂
Sk.

The subspace Sk is our candidate for the k-dimensional linear space we look
for, and Mk−λ is our candidate for the orthogonal complement to L in Sk. The
subspaces Sk+1, . . . , Sd−1 will be used to guarantee that Sk is λ-vertical. To do this,
we construct an appropriate (Z2)

d−λ-equivariant function

f : Vd−λ(R
d) → Rd−1 ×Rd−2 × . . .×Rλ.

(v1, . . . , vd−λ) 7→ (x1, x2, . . . , xd−λ).

Notice that xi ∈ Rd−i for each i. First, we define the vectors x1, . . . , xk−λ. For

j = 1, . . . , d− k + λ+ 1, let σj be the orthogonal projection of µSk
j onto Mλ−k. We

know that the set of centerpoints of σj is a convex compact subset of Mλ−k, so we
can denote by pj its barycenter. The affine subspace

pj + (span{v1, . . . , vd−λ})⊥ ⊂ Sk



BISECTIONS OF MASS ASSIGNMENTS USING FLAGS OF AFFINE SPACES 9

is a λ-transversal to µSk
j , see Fig. 4.

µ1

µS21

p1

µ2

µS22p2S2

M1 S2

M1

Figure 4. An illustration of the case (d, k, λ) = (3, 2, 1). The mass
assignments µ1, µ2 are induced by the intersection of each plane in
R3 with the two shapes in the figure.

We need p1, . . . , pd−k+λ+1 to coincide to guarantee a common λ-transversal in
Sk for all our mass assignments. For i = 1, . . . , k − λ and j = 1, . . . , d− k + λ, we
define the j-th coordinate of xi to be the dot product

⟨vi, pj − pd−k+λ+1⟩.
The rest of the coordinates of each xi are zero. If x1, . . . , xk−λ are all zero vectors
this would imply that for every j = 1, . . . , d− k + λ we have

pj =
k−λ∑
i=1

⟨vi, pj⟩vi =
k−λ∑
i=1

⟨vi, pd−k+λ+1⟩vi = pd−k+λ+1,

as we wanted. Changing the sign of any of vi for i = 1, . . . , k − λ does not change
Sk, Mk−λ, nor any of the points pj , and simply flips the sign of xi.

Now let us define xk−λ+1, . . . , xd−λ. We denote

S+
d−i = {y ∈ Sd−i+1 : ⟨vk−λ+i, y⟩ ≥ 0},

S−
d−i = {y ∈ Sd−i+1 : ⟨vk−λ+i, y⟩ ≤ 0}.

For i = 1 we consider Sd = Rd. We also consider, as in the proof of Theorem 1.3,
the λ mass assignments τd−i,1, . . . , τd−i,λ where τd−i,j is a (d− i)-dimensional mass
assignment such that for any measurable set C ⊂ Sd−i we have

τ
Sd−i

d−i,j(C) = vold−i(C ∩Ded+1−j
).

For i = 1, . . . , d − k, we define xk−λ+i as a vector in Rd−k+λ−i whose first λ
coordinates are

τ
Vd+1−i

d+1−i,j(S
+
d−i)− τ

Vd+1−i

d+1−i,j(S
−
d−i)

for j = 1, . . . , λ. The rest of the coordinates of each xi are defined to be zero.
The same inductive argument as in the proof of Theorem 1.3 shows that if each

of xk−λ+1, . . . , xd−λ are zero, then each of Sd−1, . . . , Sk are λ-vertical. We do not
need to use masses centered at the origin since we are only working with linear
subspaces in this section. Finally, changing the sign of vk−λ+i for i = 1, . . . , d− k
does not change any of the space Sk, . . . , Sd−1 and only flips the name of S+

d−i and

S−
d−i. Therefore, it only changes the sign of xk−λ+i.

This means that the function f : Vd−λ(R
d) → Rd−1×Rd−2× . . .×Rλ is (Z2)

d−λ-
equivariant and continuous. By Theorem 2.1, it must have a zero. By construction,
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vd−λv1 . . . vk−λ

basis of Mk−λ

pd−k+λ − pd−k+λ+1

p1 − pd−k+λ+1

...

xk−λ xd−λ. . .x1 . . .

}
λ

︸ ︷︷ ︸. . .

Figure 5. A visual representation of the map f from the proof
of Theorem 1.5. The first block, of width k − λ, guarantees that
the points p1, . . . , pd−k+λ+1 coincide. The second block, of height
λ, guarantees that Sk is λ-vertical.

a zero of this function corresponds to a λ-vertical k-dimensional subspace Sk where
we can find a common λ-transversal to each mass assignment. □

4. Horizontal separating spaces

A significant motivation for the study of mass partitions for mass assignments
comes from the problem of splitting families of lines in R3. In this section, we
bisect families of lines in Rd with additional conditions. Let ed ∈ Rd be the vertical
direction. We say that a hyperplane is vertical if it contains the direction ed, and we
say that an affine (d− 2)-dimensional subspace is horizontal if it is orthogonal to ed.

A family of lines in Rd induces a mass assignment on hyperplanes in Rd, as a
generic hyperplane intersects each line in a point, and this family of points can be
considered as a measure. We show that for any d families of lines in Rd, there exists
a vertical hyperplane Sd−1 and a horizontal (d − 2)-dimensional affine subspace
Sd−2 ⊂ Sd−1 that splits each of the induced measures in Sd−1. In the case d = 3,
this recovers the splitting result of Schnider. However, instead of having a splitting
line that intersects the z-axis, we get a splitting line that is perpendicular to it.

To avoid delicate issues with the continuity of the maps we define and the mass
assignments, we work with measures on A1(R

d), the space of 1-dimensional affine
spaces of Rd. We can consider the natural embedding A1(R

d) ↪→ G2(R
d+1) into the

Grassmannian of 2-dimensional linear subspaces of Rd+1. The manifold G2(R
d+1),

as a quotient space of the orthogonal group O(d + 1) ∼= Vd+1(R
d+1), inherits a

canonical measure from the Haar measure of O(d + 1), which in turn induces a
canonical measure in A1(R

d). For simplicity, we call this the Haar measure of
A1(R

d). We say that a measure in A1(R
d) is absolutely continuous if it is absolutely

continuous with respect to the Haar measure we just described. Among other
properties, this measure µ∗ satisfies that for any nonzero vector v ∈ Rd we have

µ∗({ℓ ∈ A1(R
d) : ℓ ⊥ v}) = 0.

Given an absolutely continuous measure µ in A1(R
d), this induces a mass assign-

ment on the hyperplanes of Rd. Given a hyperplane H ⊂ Rd and a measurable set
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C ⊂ H, we can define

µH(C) = µ{ℓ ∈ A1(R
d) : ℓ ∩H is a single point, ℓ ∩H ∈ C}.

In our proofs, we only evaluate these measures in closed half-spaces instead of
general measurable sets C. We introduce some notation to analyze the behavior of
the mass assignments as our vertical hyperplanes move away from the origin.

Given a unit vector v ∈ Rd orthogonal to ed and a constant λ, consider the
vertical hyperplane

Hv,λ = {p : ⟨p, v⟩ = λ}.
Let ℓ be a line in Rd, not orthogonal to v. If we fix v and move λ at a constant
speed, the point Hv,λ ∩ ℓ is moving at a constant speed in Hv,λ. Formally, if n(ℓ) is
a unit vector in the direction of ℓ, then Hv,λ is moving with the direction vector

1

⟨v, n(ℓ)⟩
projHv,0

(n(ℓ)).

The expression above does not depend on the choice for n(ℓ). Let z(v, ℓ) be
the ed-component of this direction vector, which we call the vertical speed of ℓ in
direction v. For an absolutely continuous measure in A1(R

d) and a direction v ⊥ ed,
the set of lines with some fixed vertical speed in direction v has measure zero. Given
an finite absolutely continuous measure µ in A1(R

d), we say that its median vertical
speed for v ⊥ ed is the value m = m(µ, v) for which

µ({ℓ ∈ A1(R
d) : z(v, ℓ) ≥ m}) = µ({ℓ ∈ A1(R

d) : z(v, ℓ) ≤ m}).

If there is a range of values that satisfy this property, we select the midpoint of
this interval. Intuitively speaking, for a finite set of lines in Rd, this parameter lets
us know which line will eventually become the vertical median in Hv,λ as λ → ∞.
The advantage of working with absolutely continuous measures in A1(R

d) is that
this parameter depends continuously on v. We say that two absolutely continuous
measure µ1, µ2 in A1(R

d) share a median speed in direction v if m(µ1, v) = m(µ2, v).
Also, we have m(v, µ1) = −m(−v, µ1). Now we are ready to state our main theorem
for this section.

Theorem 4.1. Let d be a positive integer and µ1, . . . , µd be d finite absolutely
continuous measures in A1(R

d). Then, there either exists a direction v ⊥ ed in
which all d measures share a median speed, or there exists a vertical hyperplane
Sd−1 and horizontal affine subspace Sd−2 ⊂ Sd−1 such that Sd−2 bisects each of

µ
Sd−1

1 , . . . , µ
Sd−1

d−2 .

The first case, in which all measures share their median vertical speed in some
direction v can be interpreted as a bisection in the limit of all measures as Sd−1 =
Hv,λ and λ → ∞.

Proof. Consider the space Sd−2 × [0, 1). We identify the (d− 2)-dimensional sphere
Sd−2 with the set of unit vectors in Rd orthogonal to ed. For (v, τ) ∈ Sd−2 × [0, 1)
define λ = τ/(1 − τ) and the vertical hyperplane Sd−1 = Hv,λ. Let Sd−2 be the

horizontal affine subspace of Sd−1 that halves µ
Sd−1

d . If there is an interval of

ed-coordinates to choose Sd−2 from, we select the median. The S+
d−2 be the set of

points in Sd−1 above or on Sd−2 and S−
d−2 be the set of points in Sd−1 below or on

Sd−2.
We now construct the function

f : Sd−2 × [0, 1) → Rd−1

(v, τ) 7→
(
µ
Sd−1

1 (S+
d−2)− µ

Sd−1

1 (S−
d−2), . . . , µ

Sd−1

d−1 (S+
d−2)− µ

Sd−1

d−1 (S−
d−2)

)
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Let us analyze this function as τ → 1, which is equivalent to λ → +∞. If we
consider λ to be increasing at a constant rate, then Sd−2 is moving vertically at a
velocity of m(v, µ2). Therefore, the i-th component of f converges to

µi({ℓ ∈ A1(R
d) : z(v, ℓ) ≥ m(v, µd)} − µi({ℓ ∈ A1(R

d) : z(v, ℓ) ≤ m(v, µd)}.
This quantity is zero if and only if µi and µd share a median speed in direction v
and it depends continuously on v. Therefore, we can extend this f to a continuous
function f̃ : Sd−2 × [0, 1] → Rd−1. If f̃(v, τ) = 0 for some (v, τ) ∈ Sd−2 × [0, 1], we
have two cases. If τ < 1, then the corresponding Sd−2 halves each of the measures

µ
Sd−1

1 , . . . , µ
Sd−1

d and we are done. If τ = 1, then all of µ1, . . . , µd share a median
speed in direction v, and we are done.

Assume for the sake of a contradiction that f̃ has no zero. We can reduce the
dimension of the image by considering

g : Sd−2 × [0, 1] → Sd−2

(v, τ) 7→ 1

∥f̃(v, τ)∥
f̃(v, τ),

which is a continuous function.
For each τ ∈ [0, 1] we define the map gτ : Sd−2 → Sd−2 where gτ (v) = g(v, τ).

By construction Hv,0 = H−v,0, so g0(v) = g0(−v). In the other extreme, we have
the function g1 : Sd−2 → Sd−2. As z(v, ℓ) = −z(−v, ℓ) and m(µd, v) = −m(µd,−v)
for all v ∈ Sd−2, ℓ ∈ A1(R

d), we have g1(v) = −g1(−v) (intuitively, as we change
from v to −v everything but the vertical direction flips, so the sign of g1 changes).
Therefore, g would be a homotopy between an even map of Sd−2 and an odd map
of Sd−2, which is impossible.

□

Sd−1

(v, λ)

Sd−2

v ∈ Sd−2

τ = 0 even

τ = 1 odd

λ = τ
1−τ

Figure 6. Once we choose (v, λ) the hyperplane Sd−1 is deter-
mined. We then choose Sd−2 ⊂ Sd−1 at the appropriate height so

it halves µ
Sd−1

d .

5. Dynamic ham sandwich theorems

In this section, we are concerned by mass assignments induced by families of affine
(d− k)-spaces in Rd, as we seek a translate Sk of a particular space of dimension k
in which we can split the measures induced on Sk. We aim to bisect simultaneously
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d mass assignments. Let us start with k = d− 1. As described in the introduction,
this problem can be considered as a dynamic ham sandwich problem in Rd.

We first describe a continuous version of this theorem. We increase the dimension
by one for convenience. Consider Rd embedded in Rd+1 as the set of points x for
which the last coordinate is zero, so ⟨x, ed+1⟩ = 0. Given an absolutely continuous
measure µi on A1(R

d+1) we denote by µi,t the measure it induces on the hyperplane
defined by ⟨x, ed+1⟩ = t. We refer to this as a moving measure in Rd, where we think
of the variable t as the time. Each ℓ ∈ A1(R

d+1) not parallel to ed+1 corresponds to
a pair (p, w) ∈ Rd ×Rd. At time t it is represented by the point p+ tw. Therefore,
a moving measure can be thought of as a measure on Rd ×Rd. The extension to
absolutely continuous moving measures is to make the topological maps we construct
continuous. If v is a unit vector in Rd, we say that the speed of (p, w) in the direction
of v is ⟨v, w⟩.

Given a moving measure µ in Rd and a unit vector v ∈ Rd, we call the median
speed of µ in the direction v as the value m for which

µ{(p, w) ∈ Rd ×Rd : ⟨w, v⟩ ≤ m} = µ{(p, w) ∈ Rd ×Rd : ⟨w, v⟩ = m}

Theorem 5.1. Let d be a positive odd integer. Let µ0, µ1, . . . , µd be d + 1 finite
absolutely continuous moving measures on Rd. Then, there either exists a direction v
in which all measures have the same median speed or there exists a time t ∈ (−∞,∞)
and a hyperplane Sd−1 ⊂ Rd so that its closed half-spaces S+

d−1, S
−
d−1 satisfy

µi,t(S
+
d−1) = µi,t(S

−
d−1) for each i = 0, 1, . . . , d.

Proof. We parametrize our partitions with pairs (v, τ) ∈ Sd−1 × (−1, 1). Let Sd−1

be the hyperplane orthogonal to v that halves µ0,t for t = τ/(1 − |τ |). As usual,
if there is a range of possibilities for Sd−1 we choose the median. We denote by
S+
d−1 the closed half-space in the direction of v and S−

d−1 the closed half-space in
the direction of −v.

Now we can construct a function

f : Sd−1 × (−1, 1) → Rd

(v, τ) 7→
(
µ1,t(S

+
d−1)− µ1,t(S

−
d−1), . . . , µd,t(S

+
d−1)− µd,t(S

−
d−1)

)
This function is continuous. If v is fixed and τ → 1, then f(v, τ) converges.

For example, the first coordinate converges to µ1(A)− µ1(B), where A is the set
of moving points whose speed in the direction v is larger than or equal to the
median speed in the direction v for µ0, and B is the complement of A. The same
convergence holds when τ → −1. Therefore, we can extend f to a continuous
function f̃ : Sd−1 × [−1, 1] → Rd.

If we show that f̃ has a zero, we have our desired conclusion. Since the values at
of f̃(v, 1) and f̃(v,−1) only depend on the median speeds described above, for all
v ∈ Sd−1 we have f(v,−1) = −f(v, 1). Also, by the definition of f we know that if
we fix τ and flip v to −v, the hyperplane Sd−1 does not change but S+

d−1 and S−1
d−1

swap. Therefore, for every τ we have f̃(v, τ) = −f̃(−v, τ).

Assume f̃ does not have a zero, and we look for a contradiction. We can reduce
the dimension of the image by considering

g : Sd−1 × [−1, 1] → Sd−1

(v, τ) 7→ 1

∥f̃(v, τ)∥
f̃(v, τ)
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Figure 7. Three moving points in the plane such that at no point
in time there is a line that simultaneously goes through all three.

As before, g(v,−1) = −g(v, 1) for every v ∈ Sd−1 and g(v, τ) = −g(−v, τ) for
every (v, τ) ∈ Sd−1 × [−1, 1]. Additionally, g is continuous. If we fix τ , we get
continuous functions on the sphere.

gτ : Sd−1 → Sd−1

v 7→ g(v, τ).

Let us analyze the degree g−1 and g1. As gτ (v) = −gτ (−v), both maps are of odd
degree. As g−1(v) = −g1(v), we have deg(g−1) = (−1)d deg(g1) ̸= deg(g1), since d
is odd and deg(g1) ̸= 0. Therefore, it is impossible to have a homotopy between
these two maps, which is the contradiction we wanted. □

The condition on the parity of d may seem like an artifact of the proof, but we
can see in Fig. 7 that three moving measures in R2 concentrated around the moving
points depicted will not have a common halving line at any point in time.

The example can be extended to high dimensions. We embed Rd into Rd+1 as
as the set of points whose coordinates add to 1. We can consider d + 1 moving
measures in Rd by taking the moving pairs (ei, ei+1 − ei) ∈ Rd+1 ×Rd+1, where we
consider ed+2 = e1. Note that these points always lie on the embedding of Rd in
Rd+1. To show that there is never a hyperplane of Rd going through all the points,
we have to check that, for even d, the (d+ 1)× (d+ 1) matrix

A =



1− t 0 0 . . . 0 t
t 1− t 0 . . . 0 0
0 t 1− t . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1− t 0
0 0 0 . . . t 1− t


.

is non-singular for all values of t. A simple pattern chasing or row expansion shows
that det(A) = (1 − t)d+1 + (−1)dtd+1. For t ∈ [0, 1] and even d, det(A) > 0. For
t ̸∈ [0, 1], we have |1− t| ̸= |t|, so det(A) ̸= 0.



BISECTIONS OF MASS ASSIGNMENTS USING FLAGS OF AFFINE SPACES 15

Now we work with the case k = 1 for the problem stated at the start of this
section. Given d families of hyperplanes in Rd, we look for a translate of a particular
line in which we can find a point that halves all of them. For this problem, the
parity of d is not important.

We assume without loss of generality that the line ℓ we will translate is span(ed).
Assume H is a hyperplane with a normal vector n so that ⟨n, ed⟩ ̸= 0. This
guarantees that H intersects every translation of ℓ at a single point p. If v is a unit
vector orthogonal to ed, as we translate ℓ in the direction v, the point ℓ ∩H moves
vertically at a speed m(H, v) = −⟨n, v⟩/⟨n, ed⟩. As expected, the vertical speeds in
direction v and in direction −v are negative of each other.

As in Section 4, we can define an absolutely continuous measure on Ad−1(R
d)

using the Haar measure on Gd(R
d+1). This case is perhaps more intuitive, as

Gd(R
d+1) is a d-dimensional projective space. The canonical measure on this

projective space comes from the Haar measure on its double cover, Sd. If µ is an
absolutely continuous measure on Ad−1(R

d), the set of hyperplanes whose normal
vectors are orthogonal to ed has measure zero.

Given an absolutely continuous measure µ in Ad−1(R
d) and a line ℓ in Rd, we

can define a measure µℓ on ℓ by considering

µℓ(C) = µ{H ∈ Ad−1(R
d) : H ∩ ℓ is a point and H ∩ ℓ ∈ C}.

We define the median speed of µ in the direction v as the number m such that

µ{H ∈ Ad−1(R
d) : m(H, v) ≤ m} = µ{H ∈ Ad−1(R

d) : m(H, v) ≥ m}.

Theorem 5.2. Let d be a positive integer. Let µ1, . . . , µd be finite absolutely
continuous measures on Ad−1(R

d). Then, there exists a either exists a direction
v ⊥ ed in which all measures have the same median vertical speed or there exist
a translate ℓ of span(ed) and a point that splits ℓ into two complementary closed
half-lines A, B such that

µℓ
i(A) = µℓ

i(B) for each i = 0, 1, . . . , d.

Proof. Our configuration space this time is Sd−2 × [0, 1). We consider Sd−2 the
set of unit vectors in Rd orthogonal to ed. For (v, τ) ∈ Sd−2 × [0, 1), let ℓ be the
translate of span(ed) by the vector (τ/(1− τ))v. We consider h to be the height of
the median of µℓ

d and A the set of points on ℓ at height h or more, and B the set of
points of ℓ at height h or less.

Now we define

f : Sd−2 × [0, 1) → Rd−1

(v, τ) 7→ (µℓ
1(A)− µℓ

1(B), . . . , µℓ
d−1(A)− µℓ

d−1(B))

For a fixed v, the point f(v, τ) converges as τ → 1. This is precisely because
µℓ
1(A) converges to the measure µ1 of the subset of hyperplanes in Ad−1(R

d) whose
speed in the direction v is at least the median vertical speed of µd in the direction
v. Therefore, we can extend f to a continuous function f̃ : Sd−2 × [0, 1] → Rd−1.

If f̃ has a zero, we obtain the desired conclusion. Otherwise, we can reduce the
dimension of the image and construct our final continuous map

g : Sd−2 × [0, 1] → Sd−2

(v, τ) 7→ 1

∥f̃(v, τ)∥
f(v, τ)

The map g1 : Sd−2 → Sd−2, defined by g1(v) = g(v, 1), is odd. This is because
the speed of a hyperplane in direction v is the negative of its speed in direction
−v. Therefore, the degree of g1 is odd. On the other hand, g0 : Sd−2 → Sd−2,
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defined by g0(v) = g(v, 0), is a constant map, so its degree is zero. There cannot be
a homotopy between g1 and g0. □

References

[AAK18] Arseniy Akopyan, Sergey Avvakumov, and Roman Karasev, Convex fair partitions into

an arbitrary number of pieces, arXiv preprint arXiv:1804.03057 math.MG (2018).
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