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Abstract

Student during-learning data such as think-alouds or writing are often coded for use of strategies
or moves, but less often for what knowledge the student is using. However, analyzing the content
of such products could yield much valuable information. A promising technique for analyzing
the content of student products is semantic network analysis, more widely used in political
science, communication, information science, and some other social science disciplines. We
reviewed the small literature on semantic network analysis (SemNA) of individuals with relevant
outcomes to identify which network analysis metrics might be suitable. The Knowledge
Integration (KI) framework from science education is discussed as focusing on amount and
structure of student knowledge, and therefore especially relevant for testing with SemNA
metrics. We then re-analyze three published think-aloud data sets from undergraduate students
learning introductory biology with the metrics found in the literature review. Significant relations
with posttest comprehension score are found for number of nodes and edges; degree and
betweenness centrality; diameter, and mean distance. Inconsistent results possibly due to text-
specific features were found for number of clusters, LCC, and density, and null results were
found for PageRank centrality and centralization degree. Basic principles from the KI framework
are supported—amount of information (nodes), connections (edges, average degree), key ideas
(degree and betweenness centrality) and length of causal chains (mean distance and diameter) are
related to posttest comprehension, but not density or LCC. Possible explanations for slight
variations across data sets are discussed, and alternative theories and metrics are offered.
Keywords: causal chains; during-learning data; educationally-relevant outcomes; propositional

analysis



Three Applications of Semantic Network Analysis to Individual Student Think-Aloud Data
1. Introduction

Education researchers quite often collect verbal data to try to measure student knowledge
during learning, such as think-alouds or discourse, student writing, or brief responses in online
learning environments, which we will refer to as student products. Student products are often
coded for use of strategies or moves, but less often analyzed to measure what knowledge the
student is using. That is, student products are typically coded for strategic operations such as
summarizing or making inferences, activating background knowledge, and so on. A few
techniques are known for quantitatively measuring knowledge structures (e.g., card sorts used
with multidimensional scaling [Irby et al., 2016], laboratory categorical priming studies), but not
for during-learning data collected in real time.! A promising technique for measuring
characteristics of the content of student products is semantic network analysis (SemNA), more
widely used in political science, communication, information science, and some other social
science disciplines (Scott, 2017).

What characteristics of the content of student products might be informative in

educational psychology? At the simplest level, we can count how many facts students know

! Note that we are excluding 4 types of semantic network analysis that could be familiar to some
readers:

1) associative networks such as single vocabulary words, where reaction time is used to map how
closely the meaning of one word is associated with the meaning of another word (e.g., Siew,
2022).

2) epistemic network analysis which uses automated analyses of co-occurrence of words to
create a visual network representation and one metric called the centroid (e.g., Wooldridge et al.,
2018).

3) pathfinder networks which are a psychometric technique usually applied to similarity ratings
(e.g., Clariana & Koul, 2008)

4) questionnaire-based semantic networks which use Likert-type responses to questionnaire
items to infer a structure of beliefs (e.g., Fishman & Davis, 2022)



(called nodes in SemNA) and how many other facts each of those facts are connected to (called
edges in SemNA), which as a set comprise that person’s knowledge network. These concepts are
borrowed from social network analysis, where we can quantify each person’s (node)
relationships (edges) in some community of practice such as a classroom, learning environment,
workplace, neighborhood, and so on. At a more complex level, we can quantify the inter-
connectedness of information in a whole knowledge network in at least a couple of ways—how
many connected nodes each node is connected to (distance) and how many connections are
present out of the total possible (density).

Why might measuring these aspects of a knowledge network be useful? We begin by
summarizing a popular science education framework that describes changes in the characteristics
of knowledge networks with development—the Knowledge Integration (KI) framework (Linn,
2006). We then review which network metrics (network analysis measures) have been used for
SemNA related to learning-relevant outcomes such as grades or expertise. We then present three
re-analyses of our own think-aloud data to show the value of SemNA metrics as measures that
can then explain variance in post-reading comprehension.

1.1. The Knowledge Integration (KI) Framework

The Knowledge Integration (KI) framework of Linn (2006) and colleagues is rooted in
decades of research showing that students often pick up isolated facts in science classes, from
experiences in daily life, and in many informal learning contexts. With development and/or
specific KI instruction, students both gain more factual knowledge, and that knowledge becomes
more richly interconnected. One component of KI instruction is presenting canonical scientific
ideas, to which students can—and do—Iink some previously-isolated facts. KI is a specific
expertise theory (cf., Ericsson et al., 2018) in that the size and structure (specifically, the

interconnectedness) of the knowledge base grows with development. In the KI framework,



students can have varied approaches to holding contradictory ideas, but with development,
students on average not only come to know more about scientific topics, but their knowledge
becomes more densely linked. With instruction that encourages students to gather evidence and
reason with it, students can retain accurate information and form highly-interconnected,
consistent knowledge structures to replace the sparse and disconnected knowledge they began
with. KI instruction can include different components, but there is an emphasis on gathering
data, making predictions, comparing alternative explanations, reflecting on results, and working
collaboratively. These elements of KI instruction result in students not only knowing more
concepts, but also connecting those concepts to a greater degree and in scientifically accurate
ways, and thereby being better able to solve novel problems.

Both conventional classroom science instruction and conventional science assessment
items tend to focus on factual learning, with few interconnections among facts (Clark & Linn,
2003). KI instruction, by contrast, focuses on making such connections. Conventional science
lessons tend to focus on structures such as the different parts of a flower, with much less focus
on how the parts function together or as part of a system (e.g., insects transferring pollen from
the anther of one plant to the stigma of another plant in the same species in order to fertilize an
ovary in the second plant; Hmelo-Silver & Pfeffer, 2004). In biology learning, this especially
undermines the development of a core concept in biology that function (e.g., pollen being easily
moved from one plant to another) depends on structure (e.g., pollen being a loose dust; Kohn et
al., 2018). When teachers are overly focused on teaching structure for the sake of knowing
structure—that is, a focus on facts—students are especially likely to a) miss the structure-
function connections and b) memorize elements but not relations.

Overall, the KI framework has 5 specific implications for the network properties of

student knowledge in such fact-heavy classrooms, in that students are likely to have 1) many



nodes but few edges connecting nodes and consequently 2) more isolates and 3) lower network
density, 4) edges that are more likely to be definitions or ‘part-of” rather than ‘acts-on’ edges,
and as a consequence, 5) there may be shorter causal chains in these networks (see Figure 1 for

two contrasting examples from one of our data sets).
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Fig. 1. Two contrasting knowledge structures—graphs from think-aloud-data

With development or targeted KI instruction, by contrast, students with a better
understanding of science are likely to focus on structure-function connections and learn elements
and relations together. This has the opposite implications for the network properties of student
knowledge according to the KI framework, in that expert students are likely to have 1) many
nodes and many edges connecting nodes and consequently 2) fewer isolates (which implies
fewer clusters), 3) higher network density, 4) edges that are more likely to be causal action verbs,
and as a consequence, 5) there may be longer causal chains in these networks. Furthermore, 6)
when KI instruction introduces important scientific ideas (such as a substance boiling when heat
adds sufficient energy to separate molecules, rather than isolated facts such as water boils at 100
C), then those important ideas should be central in student networks. Indeed, KI researchers
(Schwendimann, 2014; Schwendimann & Linn, 2016) found that after KI instruction there were
more nodes and links, higher degree centrality for important scientific ideas, and higher network

density in students’ concept maps than before KI instruction, as well use of a higher conceptual



level for edge (verb) types assigned weights using a KI rubric, all using a KI-specific weighting

scheme that weighted edges less when subject-verb-object phrases captured relations of low
importance (e.g., the example of water=> 100 C above) vs correct causal relations.

In summary, the KI framework predicts that for students with a better understanding of
science, their networks should have more nodes and more edges (which implies higher density,
many triads, and less variability in edges/node), the nodes should be connected in long causal
chains (implying higher mean distance [which represents cumulated node-level closeness
centrality], and diameter, smaller number of clusters/fewer isolates, and therefore a large cluster
that includes most of the nodes); and key scientific ideas should have high centrality, both highly
connected (degree centrality) and including causes-of and effects-of (betweenness centrality).
1.2. Literature Review of SemNA Methods Applied to Individual Student During-Learning Data
and Related to a Learning Outcome

Network analysis broadly defined looks at people/ideas, how they are connected to each
other in a network, and how properties of the network can affect various human activities. Social
network analysis focuses on how people are connected (e.g., by collaborating, conversing,
helping, and so on), the properties of those social networks, and how network properties affect
the people in the network. Another network analysis method, semantic network analysis
(SemNA), focuses on verbal data, how ideas are connected to each other (e.g., by co-occurrences
of terms, by verbs, by repetitions), and what the structure of the knowledge can reveal about the
people who produced the verbal data. In this literature review, we focus on a subset of SemNA
approaches that would be applicable to relating the measured characteristics of student products
to what the student learned (see Figure 2). Therefore, we sought SemNA studies reporting on
analyses of metrics applied to individual people’s products (not only the products of a whole

class), where the focus was on the content of the student product rather than the social spread of



ideas, where content knowledge was measured rather than smaller units such as oral vocabulary
words, and where network properties were related to a learning outcome such as a test score,
grade, level of expertise, questionnaire score, and so on. Note that in all cases, scientifically
accurate information (nouns) was included in the semantic networks to which SemNA metrics

were applied.
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Fig. 2 Schematic of verbal during-learning data at individual level related to learning
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outcomes. Note: The references are examples of excluded studies

The purpose of this literature review is twofold: first, our purpose is to share a technique
that others have applied so that we can document the work of scholars who have discovered how
to do SemNA with individual student products. Our second purpose is to document which of
dozens of existing network metrics have been shown in at least 2 studies to relate to learning
when individuals’ knowledge networks are analyzed. Note that different SemNA metrics can
capture quite similar phenomena, so results from different SemNA metrics might be quite similar
(Morrison et al., 2022). A metric used in only one SemNA study was judged to be too
idiosyncratic to warrant applying it to our think-aloud data. Our review seeks to characterize a

very disconnected literature, one where few of the studies we identified cited more than 2 other



studies we identified, and where very different terminology was used to describe similar SemNA
techniques.

The starting point of our search was Siew’s (2022) review, in which she advocated for
more SemNA in education research. From the candidate articles she cited, we searched by
keywords (e.g., “Network Analysis™ as a subject term in the ERIC and Academic Search
Ultimate databases), author names, and cited article searches for published papers and
conference proceedings that fit the criteria above and identified 32 empirical studies applying
SemNA to individual data with learning outcomes (see Supplementary Table 1 for the complete
list of studies, details of samples, tasks, and research design, and which metrics were used in
them). Learning outcomes included researcher-scored posttests, participants’ categorization as
novices vs. experts, changes in the semantic network before vs. after instruction, scores on
standardized questionnaires, assignment or course grades, or performance on a real-life task.

These 32 studies spanned driving safety (Salmon et al., 2013), health and mental health
learning (e.g., causes of obesity, Frerichs et al., 2018); mindfulness meditation (Pokorny et al
2018), learning to become an entrepreneur (Laukkanen, 2023), introductory psychology (Siew,
2019), as well as mathematics (e.g., concepts of triangles; Haiyue & Yoong, 2010), science (e.g.,
chemistry, Podschuweit & Bernholt, 2020; physics, Bodin, 2012), and other typical school
subjects. In addition to introducing each metric in the following review, we reiterate how each
metric would be expected to relate to scientific understanding for students with a better
understanding of science in the KI framework.

Note that metrics are not statistics, they are more like a measure or a way of
quantitatively measuring characteristics of a node or network; they are not tested against any

underlying distribution so they are not ‘significant’ or ‘non-significant’ in and of themselves.



1.2.1. Nodes

Each idea in a network is called a node (these are represented as circles in an example
plot shown in Figure 3). In the literature, number of nodes correlated positively with
achievement (Freedman et al., 2024, Study 1; Hoppe et al., 2012; Kim, 2024; Wei & Yue, 2016).
Experts included more nodes in their concept maps than did novices (Gogus et al., 2009; Kapuza
et al., 2020; Smith & Parrott, 2013; Wagner, et al., 2020; Wagner & Priemer, 2023). Number of
nodes significantly increased over time (Ifenthaler et al., 2011; Laukkanen, 2023) and after
instruction (Bodin, 2012; Dauer et al., 2019; Frerichs et al., 2018; Giabbanelli & Tawfik, 2021;
Kapuza et al., 2020; Kim & McCarthy, 2021a). However, null results were found for number of
nodes by Gobbo and Chi (1986), Kim and McCarthy (2021b), Podschuweit and Bernholt (2020),
Siew (2019), and Zhou et al. (2015).
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Fig. 3 Sample plot of a network with its accompanying metrics
In 15 of 21 studies we identified that used the number of nodes metric, that metric was
positively related to a learning outcome. Note that non-significant results could be due to a true
absence of a relation in the population, using an overly-small sample size, or other characteristics

of the research (e.g., learner-task match, poor fidelity of intervention). Therefore any single
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instance of non-significance summarized here needs to be considered in context. In the KI
framework, one would expect that more nodes may be found among students with a better
understanding of science, provided those nodes are also densely connected.
1.2.2. Edges

The raw count of connections between nodes is referred to as the number of edges (these
are represented as arrows in an example plot in Figure 3). In the literature, number of edges was
positively correlated with achievement (Freedman et al., 2024, Study 1), Guerra et al., 2015;
Hoppe et al., 2012; Wei & Yue, 2016; Yang et al., 2018; Zhou et al., 2015). Experts included
more edges than did novices (Gogus et al., 2009), and more knowledgeable participants included
more edges (Gobbo & Chi, 1986). Number of edges significantly increased over time
(Laukkanen, 2023) and after instruction (Bodin, 2012; Dauer et al., 2019; Frerichs et al., 2018;
Giabbanelli & Tawfik, 2021; Kim & McCarthy, 2021a). Null results were reported in Freedman
et al. (2024, Study 2) and Kim and McCarthy (2021b). In 14 of 16 studies we identified that used
the number of edges metric, that metric was positively related to a learning outcome. In the KI
framework, where interconnectedness linking information is key, one would expect the number
of edges to be positively associated with learning outcome.
1.2.3. Edges/Nodes Ratio, Average Degree

Raw count of edges is by definition always related to number of nodes, so an edge/nodes
ratio (called average degree) can correct for this inflation when there are more nodes. Average
degree is positively correlated with achievement (Freedman et al., 2024, Study 1; Hihnlein &
Pirnay-Dummer, 2024; Hoppe et al., 2012; Ifenthaler et al., 2011; Kapuza et al., 2020; Kim,
2024; Wei & Yue, 2016; Yang et al., 2017, 2018). Experts have higher average degree than
novices (Kapuza et al., 2020). Average degree is higher with intervention (Giabbanelli &

Tawfik, 2021; Kim & McCarthy, 2021a; Lehmann et al., 2020). Null results were reported by
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Freedman et al. (2024, Study 2), Guerra et al. (2015), Kim and McCarthy (2021b), and in some
samples by Wei and Yue (2016). In 11 of 14 studies we identified that used average degree, that
metric was positively related to a learning outcome. Similarly, in the KI framework, networks
are expected to be both include more nodes and densely-connected nodes (i.e., more edges) for
students with a better understanding of science.

1.2.4. Node-Level Metrics: Node Degree Centrality.

At the level of a single node, some nodes might be more connected than other nodes in a
network, so certain conceptually ‘key’ nodes might have higher degree centrality (a count of all
edges for each node). Certain key nodes had higher degree centrality for higher-scoring or
higher-achieving students (Freedman et al., 2024, Study 1 and Study 2), Haiyue & Yoong, 2010;
Hecking et al., 2017; Kubsch et al., 2019; Schwendimann, 2014; Wei & Yue, 2016; Yang et al.,
2018). Degree centrality was higher for experts than novices (Gogus et al., 2009; Salmon et al.,
2013) and was higher for high-knowledge participants (Gobbo & Chi, 1986; Smith & Parrott,
2013). Degree centrality increased over time (Laukkanen, 2023) and was highest for instructed
vs. uninstructed concepts in intervention (Daems et al., 2014). However, degree centrality
sometimes showed no relation with achievement (Wei & Yue, 2016) and showed both increases
and decreases after intervention (Dauer et al., 2019). In 12 of 15 studies we identified that used
average degree, that metric was positively related to a learning outcome. The KI framework
anticipates students with a better understanding of science to have fewer isolated concepts,
highly densely linked knowledge, and to include key concepts in the network, thus associating
learning outcomes with higher degree centrality from during-learning networks.

1.2.5. Betweenness centrality

Certain nodes may sit between specific other pairs of nodes, just as a person in a social

network could serve as a marriage broker or a conduit for news. Betweenness centrality captures
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the extent that a node links a pair of other nodes, whether the edges are one-way (directed) or are
undirected connections such as co-occurrence of words. Betweenness is positively correlated
with concept map scores (Freedman et al., 2024, Study 2, but not Study 1), and experts show
higher betweenness for key concepts compared to novices (Wagner et al., 2020; Wagner &
Priemer, 2023). Betweenness centrality was highest for terms that cut across 3 instructed
concepts in an intervention (Daems, 2014). In 4 of 5 studies we identified that used betweenness
centrality, that metric was positively related to a learning outcome. Causal relationships linking
concepts are an important aspect of the KI framework, and causal chains in network graphs
would increase betweenness centrality. The KI framework also suggests densely connected
networks, which tend to have higher betweenness centrality.
1.2.6. PageRank Centrality

This metric has been key for the dominance of Google as a search engine and quantifies
how much neighboring ‘pages’ are linked to other ‘pages’. In a social network, two of one’s own
friends may be friends with each other, forming triads in the network. PageRank centrality will
be high when there are many triads, but can be zero if there are no triads in the network.
PageRank centrality increases for key nodes after instruction (Bodin, 2012). Pokorny et al.
(2018), by contrast, found higher PageRank centrality for nodes related to a well-being
questionnaire corresponded to lower questionnaire scores. In both of the studies we identified
that used betweenness centrality, that metric was significantly related to a learning outcome but
it was positive in once case and negative in another. Densely connected networks anticipated in
the KI framework are more likely to include more triads of connected ideas; thus, PageRank
centrality should be higher for students with a better understanding of science.

In summary, in 58 of 72 tests (81%), the node-level metrics (number of nodes, number of

edges, edge/node ratio, and two centrality scores for key nodes [degree and betweenness]) show
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a pattern of positive relations to desirable educational outcomes. This is largely consistent with
patterns in social network analysis though in semantic networks high-centrality nodes might not
represent key people or ideas, but rather ideas that connect different topics that were instructed.
1.2.7. Network-Level Metrics: Diameter

Network diameter represents the longest path required to traverse the entire network. A
shorter diameter is better in a social network and a longer diameter should be better in a
knowledge network. Longer network diameter is associated with better achievement (Wei &
Yue, 2016). Network diameter increases over time (Ifenthaler et al., 2011). Experts have
sometimes been found to have a larger network diameter (Wagner et al., 2020), no difference
(Wagner & Priemer, 2023), or a smaller network diameter (Salmon et al., 2013) than novices.
Diameter increases with instruction (Giabbanelli & Tawfik, 2021). Null results were reported by
Guerra et al. (2015) and by Kim and McCarthy (2021a, 2021b). In 6 of 9 studies we identified
that used diameter, that metric was significantly related to a learning outcome, but in one case
(expert and novice drivers) that relation was negative. Possibly this shows that novice drivers
over-complicate the factors involved in the task—driving safely at grade-level railroad
crossings—and hence produce longer causal chains when shorter once would be better. In the KI
framework, graphs are expected to be highly dense for students with a better understanding of
science, and densely connected networks should have higher diameters as there are fewer
isolated, unconnected ideas.

1.2.8. Network density

Network density captures how interconnected all nodes are in a network, compared to a
network with all possible interconnections. In some social networks every person could be
connected to all other people, but in knowledge networks information might be locally

interconnected or there can be long linear causal chains with (appropriately) few
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interconnections with nodes off that chain. Density is mostly positively related to achievement
(Kubsch et al., 2019; Schwendimann, 2014; Yang et al., 2017), but a negative correlation was
found by Freedman et al. (2024, Study 1). Experts have more dense networks than novices
(Salmon et al., 2013). Density increases with instruction (Frerichs et al., 2018; Kim & McCarthy,
2021a, 2021b; Schwendimann, 2014). Null results were reported by Freedman et al. (2024, Study
2), Guerra et al. (2015) and Jamieson (2012). In 8 of 13 studies we identified that used density,
that metric was positively related to a learning outcome. As previously mentioned, high density
is expected for students with a good understanding of science based on the KI framework.
1.2.9. Mean distance

Mean distance captures the average number of nodes that can be traversed out from each
node in the network. Longer mean distance is associated with higher quiz scores (Siew, 2019)
and course grade (Guerra et al., 2015), but shorter mean distance is associated with higher
concept map scores (Freedman et al., 2024, Study 1). Mean distance increases with instruction
(Giabbanelli & Tawfik, 2021). Null results were found by Freedman et al. (2024, Study 2) and
Kim and McCarthy (2021a, 2021b). In 3 of 6 studies we identified that used mean distance, that
metric was positively related to a learning outcome. In a social network, a short mean distance is
ideal, but in a knowledge network, a longer mean distance should result if there are long causal
chains. In the KI framework, few isolates and well-connected networks are expected, and thus
mean distance should be higher in general. However, one could expect that the domain being
studied may determine the importance of mean distance (for example, biology learners read and
hear about long causal chains when learning about biochemical processes; language learners may
read about and hear smaller chains linking vocabulary words to definitions).

1.2.10. Network centralization

15



Network centralization is related to the standard deviation of the number of edges per
node, across the whole network. High centrality means there is a single center of the whole
network. Kim (2024) found that higher-comprehending participants had higher centralization on
their concept maps. Kim and McCarthy (2021b) found that experts had lower centralization than
novices, and also that in a writing course, centralization decreased over the semester. Wei et al.
(2024) found higher delayed-posttest scores for a high-centralization concept map condition
compared to a lower-centralization summary writing condition. However, Clariana et al. (2013)
found no significant difference in network centralization between two different concept map
conditions. In 3 of 4 studies we identified that used centralization, that metric was significantly
related to a learning outcome, but with contradictory results (i.e., whether lower or higher
centralization was found to be better). As previously stated, based on the KI framework we
expect students with a better understanding of science to capture key ideas, thus we expect
higher centralization would lead to better outcomes.

1.2.11. Number of clusters/components

The number of clusters (a.k.a. components), where each cluster is an interconnected
network completely separate from all other clusters, should be an index of fragmentation or
isolation, either of subgroups of people or of ideas. Yang et al. (2017; 2018) found that higher-
achieving students had fewer clusters. Wagner and Priemer (2023) found that experts had fewer
clusters in their concept maps than novices. However, Ifenthaler et al. (2011) found an increase
in the number of clusters over a semester. In 3 of 4 studies we identified that used number of
components, that metric was negatively related to a learning outcome (i.e., fewer clusters is
better). One possible explanation for the number of clusters increasing in Ifenthaler et al. is that

students first add disconnected knowledge when they learn new facts, and it tends to become
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interconnected only later. Based on the KI framework we expect a negative relation for this
metric with science understanding, as high cluster count indicates more isolated information.
1.2.12. Largest Connected Component (LCC)

In many networks that have multiple components, there is one component that is much
larger than the others. The LCC metrics concern the number of nodes in such a component; the
LCC proportion captures the number of nodes in the LCC as a percent of all nodes in the
network. Yang et al. (2017), and Yang et al. (2018) both found that larger LCC% was associated
with achievement. However, Siew (2019) found no relation between LCC proportion in students’
networks and their subsequent quiz scores. In 2 of 3 studies we identified that used LCC
proportion, that metric was positively related to a learning outcome. Similarly, based on the KI
framework, it is expected that most nodes for students with a better understanding of science
would be part of a single, well-connected component, yielding a high LCC%.

Overall, the majority of tests of network metrics in the studies reviewed (25 of 39 tests;
64%) were significantly related to learning outcomes. Greater longest or mean distance, graph
density, and LCC proportion are related to better learning, but graph centralization and number
of components show mixed effects. In sum, the majority of studies reviewed suggest that larger
and more strongly interconnected semantic knowledge networks having longer causal chains
relate positively to better learning outcomes.

One consideration in choosing metrics is the co-occurrence of these metrics across this
small literature. Across 36 studies we identified, number of nodes was used together with
number of edges 13 times, with average degree 8 times, and with degree centrality and diameter
7 times each. Number of edges was used together with average degree 8 times and degree
centrality 6 times. Diameter was used together with average degree 6 times. Other than these,

there were no pairs of metrics used in common across studies in more than 5 out of 36 studies.
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Node-level count metrics (number of nodes or edges and their ratio) tended to be used together
with each other, and also together with degree centrality or diameter.

In sum, this literature review suggests that analyzing the content, and not just the
‘moves,’ revealed in verbal during-learning data such as think-alouds should have some
explanatory power for posttest scores. We therefore applied SemNA metrics to three think-aloud
data sets and tested the relation of these metrics to post-reading comprehension.

2. The current studies—overview, data processing, and data analysis

The main research question for the current studies was: How strong are the associations
between during-reading knowledge structure characteristics measured in think-aloud data and
post-reading comprehension? To answer this question, we applied network analysis (NA) metrics
from literature to think-aloud data by re-analyzing three extant data sets. Study 1 reports on
analyses of NA metrics applied to think-aloud data on a long textbook excerpt published in
Cromley et al. (2020); study 2 reports on analyses of NA metrics applied to think-aloud data on
two complementary 4-text sets using a within-subjects design published in Cromley et al. (2021).
In all studies, participants provided informed consent and agreed to be audio recorded while
thinking aloud (see below for details). Think-aloud directions neither listed nor modeled any
reading strategies, and prompts comprised only “Say what you’re thinking” or “Say what you’re
doing.”

For all three data sets, audio recordings were transcribed verbatim, and after reading
through the transcripts a master list of directed propositions (labeled Subject = Source, Verb, and
Object = Target) was created using a common set of terms (see Supplementary Table 2 and a

publicly-available how-to guide at https://hdl.handle.net/2142/121704). We then tallied

propositions that students picked up on, defined as propositions that were included in any

verbalization of passage content that was not reading or re-reading.
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We then applied the 12 NA metrics identified from the literature review above to each
participant’s propositional network (see Supplementary Table 3 for R code using the igraph
package). We then used Pearson correlations on rankit transformed data (Bishara & Hittner,
2012) to analyze the relation between each of these metrics and participant posttest
comprehension score.

3. Study 1
3.1. Method

Study 1 is a re-analysis of think-aloud data from Cromley et al. (2020); please see that
publication for more detail about the study.
3.1.1 Participants

Participants were 77 of the original 86 undergraduate biology course participants reported
in Cromley et al. (2020); we selected participants who read three sequential pages from the
original reading packet on the immune system. These participants did not differ from the sample
in Cromley et al. by race, sex, or first-generation college status, but they had more recently
completed the course we recruited from and had lower ACT reading and mathematics scores.
They had a mean age of 20.1 (SD = 1.2), were 30% sophomores, 64% juniors, 5% seniors, and
1% post-baccalaureate. On average they had taken the introductory biology course 2.7 semesters
(8D = 1.3) before participating. Seventy percent self-identified as female, 51% self-identified as
White, 36% Asian, 4% Latine, and 9% of mixed or other race. Twenty-two percent had neither
parent with a Bachelor’s degree. Mean ACT reading scores were 30.1 (SD = 3.6) and mean ACT
math scores were 30.9 (SD = 3.4).

3.1.2. Materials and procedure
In an individual session in our laboratory in Fall, 2016, participants gave informed

consent including consent to be audiotaped and were asked to learn as much as they could from a
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set of provided textbook passages in pdf format in 40 minutes. The three consecutive textbook
passages concerned mast cell immune response, the steps from antigen recognition to cytokine
production inside cells, and antibody structure and function, and were taken in sequence from an
introductory undergraduate biology textbook (Sadava et al., 2012).

Participants were given task instructions to think aloud while learning and were given
paper and pen to take notes with the instruction: “if that is what you usually do when you are
studying by yourself from your textbooks.” After they were done reading, any notes were
collected, and the audio recording was stopped, they were taken to another room and asked to
type in a Word document everything they remembered from the text. Demographics were
collected, and the process for payment of $35 compensation was explained.

3.1.4. Tallying propositions

Before tallying propositions from each set of think-aloud protocols, we read through all
transcripts for participant content-related utterances that were not re-reading. The original
transcripts had been formatted using italics for segments read (or re-read) from the text, and our
focus was on other participant verbalizations related to the text set, either from text or diagram.
Content-related verbalizations that we tallied were mostly in subject-verb-object form
(noun/noun phrase followed by verb/verb phrase, followed by another noun/noun phrase), but
lists of nouns—called isolates in SemNA—were also tallied to be consistent with KI theory.
Only factually accurate verbalized propositions related to the text sets were tallied, but all
legitimate synonyms were considered factually accurate (e.g., ‘phagocytes gobble up the germs’
for ‘phagocytes engulf pathogens’). If a participant first verbalized an isolated fact but later
connected the fact in a proposition within the same page (of the 4 pages in each text set), we
tallied the proposition rather than the isolate. Non-content verbalizations that were not tallied

included, for example, metacognitive monitoring, evaluating quality of text or figure, or noticing
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that there is more text or that there is a figure. Figure 4 shows a sample portion of one transcript

with the tallied propositions. As can be seen in this figure, tallying was overall a low-inference

process.

The allergen binds to IgE on a mast cell. Mast
cells quickly release histamine, resulting in
an allergic reaction.

Ok.

[Figure 2. An Allergic Reaction.] An allergen
is an antigen that stimulates B cells to make
large amounts of IgE antibodies, which bind
to mast cells and basophils. When the body
encounters the allergen grain, these cells
produce large amounts of histamine, which
have harmful physiological effects.

[5:08] Alright. So this is about how allergens
bind to B cells, then B cells clone of, this
causes a clone of the plasma cells to form. So
B cells get formed because there are multiple
IgE antibodies and those antibodies are then
connecting to the mast cell onto its receptors.
And once the receptors connect to the
antibodies, then the mast cell releases a lot of
histamine

Antigen binds Bcell

Ab binds MastCell

MastCell releases histamine

Fig. 4 Sample portion of one transcript (left) with the tallied propositions (rvight)

Note: reading/rereading is shown in /talics and participant verbalizations are shown in plain text.

We used an iterative process to make the master list of propositions to tally from

participant verbalizations by first making a list without tallying for any participant. We then

began tallying propositions for participants, adding any new propositions to the master list. We

continued this process, adding any new propositions, until we had created the master lists shown

in Supplementary Table 2. The mean number of propositions tallied per participant was 28.7 (SD

=9.8).

3.1.5. Posttest scoring

In addition to detailed scoring of posttests explained in Cromley et al. (2020), the typed

post-reading recalls were scored using researcher-developed concept maps that gave central




concepts more credit (2 points) than supporting facts (1 point). All posttests were scored
independently by two researchers.
3.1.6. Data analysis—choice of nodes for node-specific metrics

Inspection of the graphs and comparisons among a few each of high-scoring, medium-
scoring, and low-scoring participants suggested we should systematically calculate node-level
metrics for 3 terms: bacterium, cytokine, and phagocytes (note that these are the exact spellings
we used). Not only did the node-level metrics suggest these 3 terms might be associated with
learning, but they are conceptually important in the biology content covered in the text (bacteria
trigger immune system cells to make cytokines which signal phagocytes [also immune system
cells] which destroy bacteria) and they serve as the concepts which link the three passages.
3.2. Results

The main results of interest for Study 1 (as well as results for both Study 2 data sets) are
shown in Table 2. The complete table of correlations, median and interquartile range across all
metrics is found in Supplementary Table 4. Results of exploratory regressions are found in
Supplementary Table 5.

Table 2

Pearson correlations with posttest comprehension by NA metric across all 3 data sets

Data set Study 1 Study 2 Study 2
NA Metric AH TC

Number of nodes S1* 30% 43%*
Number of edges A45% S50%* AT*

Edge/node ratio A41* 43* 23
Indegree Bacterium: .25%* Antibody: .72* Antigen: .44*
Cytokine: .38%* Histamine: .26 MHCs: .n.c.

Phagocytes: .33* Mast cells: .39* TCR: .31
Outdegree Bacterium: .20 Antibody: .41* Antigen: .47*
Cytokine: .29* Histamine: .23 MHCs: 47*

Phagocytes: .26* Mast cells: .33* TCR: .32
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Data set Study 1 Study 2 Study 2

NA Metric AH C
Betweenness Bacterium: .28* Antibody: .49* Antigen: .49*
Cytokine: .33* Histamine: .34* MHCs: . n.c.
Phagocytes: .27* Mast cells: .49* TCR: .52*
PageRank Bacterium: .03 Antibody: .56* Antigen: .29
Cytokine: .07 Histamine: .08 MHCs: -.23
Phagocytes: .17 Mast cells: -.22 TCR: .03
Density -.34% 10 -.16
Number of clusters -.02 -.34 .04
LCC as % 15 37* 27
Centralization degree -.10 .05 .05
Mean distance A% 42% S53%*
Diameter 39% 39% ST*

Note: All reported correlations used the RANKIT percentile transformation (Bishara & Hittner,
2012), * indicates statistically significant at p < .05, LCC as % indicates number nodes in
Largest Connected Component as percent of all nodes, n.c. indicates not calculable because
specific edges were not present in the data set.
3.3. Brief discussion

Results for the NA metrics with comprehension of these 3-passage think-alouds were
very consistent with significant findings in prior SemNA research on verbal data and were
consistent with the KI framework for number of nodes, number of edges, and the edge/node
ratio. Picking up more facts during learning and making more connections among them—even
when controlling for the number of facts picked up via the average degree metric—yields
significantly better post-reading comprehension scores.

Centrality results for comprehension on these think-alouds for the 3 key nodes—
bacterium, cytokine, and phagocytes—were also quite consistent with prior SemNA research and
were consistent with the KI framework for in-degree (causes of), outdegree (effects of; except

for bacterium) and betweenness. However, results for PageRank centrality were non-significant;

one possible explanation is the lack of triples (A>B, A>C, B>C [or C->B]) seen in the plots
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from this data set. Also, results for PageRank centrality were inconsistent in the two published
studies we found (positive in Bodin, 2012 and negative in Pokorny et al., 2018). Picking up on
more causes of and effects of key ideas in the text during learning is associated with better
posttest comprehension. During-learning linking from and to (i.e., betweenness) key terms that
connect the sequential passages is associated with better posttest comprehension.

Network-level results for comprehension on these think-alouds were very consistent for
diameter and mean distance (correlated » ~ .9 with each other) with significant findings in prior
SemNA research and were consistent with the KI framework. Verbalizing longer causal chains
during learning—weather measured as the single longest chain in the entire network or the
average chain length in the network—is associated with better posttest comprehension.

For this data set, network-level results for comprehension on these think-alouds were
somewhat inconsistent for density, number of clusters, LCC as a percent of nodes, and
centralization degree with findings in prior SemNA research and were somewhat inconsistent
with the KI framework. We found density negatively related to posttest comprehension, whereas
prior research had found positive relations, and KI research had found increases from pre- to
posttest. We believe this is due to density being highly negatively correlated with number of
nodes. This is negatively correlated because very small networks do tend to be more
interconnected relative to the possible number of interconnections. We found no significant
relation to posttest score for number of clusters, LCC as percent of nodes or for centralization
degree. When there are many clusters, when the largest component captures a higher percent of
all nodes, and when there is a larger SD for the number of edges per node, these are unrelated to
posttest scores.

4. Study 2

4.1. Method
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Study 2 is a re-analysis of think-aloud data from Cromley et al. (2021); please see that
publication for more detail about the study.
4.1.1 Participants

Thirty undergraduate participants were recruited in fall 2018 after completing one of two
introductory biology courses at a single US university. The majority were in their sophomore
year (77%) and identified as female (80%). They were recruited via email and were compensated
with a $35 gift card for participation.
4.1.2. Materials and procedure

The illustrated reading materials consisted of two 4-page text sets on the immune system,
one of which described allergic hypersensitivity (AH) and the other the structure and function of
t cell receptors (TC). The 4 pages within each set each came from a separate, reputable web or
textbook source, and included overlapping, complementary information. None of the texts were
the same as in Study 1, though there was substantial overlapping content between Study 1 and
Study 2 texts. Each page had text on the left and one figure on the top right of the pdf page
presented on a computer. Order of administration of the two text sets was counterbalanced across
participants, but no differences were found for order of reading.

After consenting, participants were given think-aloud directions and were asked to read
for the purpose of explaining the topic of the 4-page text set “as if you were explaining it to a
peer.” They were told they could read and think aloud about the 4 pages in any order and switch
among pages as much as they wished. They were told that after the text was removed they would
provide an oral explanation and a drawn explanation, which could be done simultaneously. No
during-reading note-taking materials were provided. Participants read the first text set, provided

their oral and drawn explanation of it, read the second text set, provided their oral and drawn
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explanation of it, and finally completed a demographics form. The entire session took about 1
hour.
4.1.4. Tallying propositions

Using the same procedures described for Study 1, we tallied from the think-aloud
transcript each proposition the participant picked up on. The mean number of propositions per
participant for AH was 10.0 (SD = 2.9) and for TC was 16.4 (SD = 6.3).
4.1.5. Posttest scoring

We typed up oral explanations for AH and TC to score these post-reading explanations.
As explained in Cromley et al. (2021), we created a list of elements and relations for AH, then
tallied the number of drawn AH elements, drawn AH relations, oral explanation AH elements
and oral explanation AH relations. These 4 counts for AH were then z scored and combined into
a single Principal Components score. We similarly created a list of elements and relations for
TC, then tallied the number of drawn and oral explanation elements and relations. These 4 counts
for TC were then z scored and combined in the same way using PCA. All posttest data were
scored independently by two researchers.

4.1.6. Data analysis—choice of nodes for node-specific metrics

AH: Inspection of the graphs and comparisons among a subset of participants suggested
we should calculate node-level metrics for 3 AH-specific terms: antibody, histamine, and Mast
cell (note that these are the exact spellings we used). Not only did the node-level metrics suggest
these 3 terms might be associated with learning, but they are conceptually important in the text
set (mast cells are first responders to allergens, mast cells release histamine and also signal B
cells to create antibodies specific to allergen proteins).

TC: Inspection of the graphs and comparisons among a subset of participants suggested

we should calculate node-level metrics for 3 TC-specific terms: antigen, MHCs, and TCR (note
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that these are the exact spellings we used). Not only did the node-level metrics suggest these 3
terms might be associated with learning, but they are conceptually important in the text set (TCR
[T cell receptors] recognize pathogenic or allergy-related antigen that is pushed to cell surfaces
by the MHC molecule [Multiple Histocompatibility Complex]).

4.2. Results

The main results of interest for both Study 2 data sets are shown in Table 2. The complete
tables of correlations, median and interquartile range across all metrics are found in
Supplementary Table 4. Results of exploratory regressions are found in Supplementary Table 5.
4.3. Brief discussion
4.3.1. Text set AH

Results for the NA metrics with comprehension of these 4-page AH think-alouds were
very consistent with significant findings in prior SemNA research on verbal data and were
consistent with the KI framework for number of nodes, number of edges, and the edge/node
ratio. As in Study 1, picking up more facts during learning and making more connections among
them—even when controlling for the number of facts picked up via the average degree metric—
yields better post-reading comprehension scores.

Centrality results for comprehension on these think-alouds for the 3 key AH nodes—
antibody, histamine, and mast cells—were also quite consistent with prior SemNA research and
were consistent with the KI framework for in-degree (causes of), outdegree (effects of; except
for histamine) and betweenness. As in Study 1, results for PageRank centrality were mostly non-
significant for comprehension (PageRank for Antibody showed quite a large relation at » = .56*);
we believe that the lack of triples—except for Antibody—explains this result. Picking up on
more causes of and effects of key ideas in the text during learning is associated with better

posttest comprehension. During-learning linking from and to (i.e., betweenness) key terms that
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connect the information—and are repeated across the complementary text sets—is associated
with better posttest comprehension.

Network-level results for comprehension from these think-alouds in multiple
complementary AH texts were very consistent for diameter and mean distance (correlated » ~ .9
with each other as in Study 1) with significant findings in prior SemNA research and were
consistent with the KI framework. Making longer causal chains during learning—weather
measured as the single longest chain in the entire network or the average chain length in the
network—is associated with better posttest comprehension.

As in Study 1, network-level results for comprehension on these think-alouds from
complementary AH texts were somewhat inconsistent for density, number of clusters, LCC as a
percent of nodes, and centralization degree with findings in prior SemNA research and were
somewhat inconsistent with the KI framework. We found density non-significantly related to
posttest comprehension, whereas prior research had found positive relations, and KI research had
found increases from pre- to posttest. Density in this data set is still negatively correlated with
number of nodes but at » = .6. Again, this is negatively correlated because very small networks
do tend to be more interconnected relative to the possible number of interconnections. We did
not find a significant relation to posttest comprehension for number of clusters, but we did find a
significant relation for LCC as percent of nodes. When reading the AH text set, having more
nodes in the single largest connected cluster—but not having fewer clusters—is related to
integrative comprehension. Centralization degree—a larger SD for the number of edges per
node—is unrelated to integrative comprehension.

4.3.2. Text set TC

Results for the NA metrics with comprehension of these 4-page TC think-alouds were

very consistent with significant findings in prior SemNA research on verbal data and quite
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consistent with the KI framework for number of nodes, number of edges, but not for the
edge/node ratio. As in Study 1 and Study 2 AH, picking up more facts during learning and
making more connections among them—even when controlling for the number of facts picked
up via the average degree metric—yields better post-reading comprehension scores.

Centrality results for comprehension on these think-alouds for the 3 key TC nodes—
antigen, MHCs, and TCR—were somewhat consistent with prior SemNA research and were
somewhat consistent with the KI framework for in-degree (causes of; Antigen only), outdegree
(effects of; Antigen and MHCs) and betweenness (Antigen and TCR only). As found in Study 1
and mostly in Study 2 AH, results for PageRank centrality were non-significant for
comprehension; again, we believe that the lack of triples explains this result. Picking up on more
causes of antigen and effects of antigen and MHCs—Xkey ideas in the text—during learning is
associated with better posttest comprehension. During-learning linking from and to (i.e.,
betweenness of) antigens and TCR, which are key terms that connect the information and are
repeated across the complementary text sets is associated with better posttest comprehension. A
possible explanation for finding fewer relations of centrality to comprehension in the TC set is
the seeming structure focus of the text, which began with the first heading “Structure of the T
cell receptor.”

Network-level results for comprehension from these think-alouds in multiple
complementary TC texts were very consistent for diameter and mean distance (weighted or
unweighted; correlated » ~ .9 with each other as in Study 1 and Study 2 AH) with significant
findings in prior SemNA research and were consistent with the KI framework. Making longer
causal chains during learning—weather measured as the single longest chain in the entire
network or the average chain length in the network—is associated with better posttest

comprehension.

29



As in Study 1 and for the AH data set, network-level results for comprehension on these
TC think-alouds were quite inconsistent for density, LCC as a percent of nodes, and
centralization degree with findings in prior SemNA research and were somewhat inconsistent
with the KI framework. We found density non-significantly related to posttest comprehension,
whereas prior research had found positive relations, and KI research had found increases from
pre- to posttest. Density in this data set is still negatively correlated with number of nodes but at

= -.8. Again, this is negatively correlated because very small networks do tend to be more

interconnected relative to the possible number of interconnections. We did not find a significant
relation to posttest score for number of clusters, LCC as percent of nodes, or for centralization
degree. When reading the TC text set, having more clusters, having more nodes in the single
largest connected cluster, or a larger SD for the number of edges per node is unrelated to posttest
comprehension.
5. Extended discussion

How strong are the associations between during-reading knowledge structure
characteristics measured in think-aloud data and post-reading comprehension? The answer
depends on which knowledge structure characteristics as measured, as captured by different
metrics. On the most-frequently used SemNA metrics from the literature and key elements of the
KI framework—number of nodes, edges, and average degree—knowledge structure
characteristics of our think-aloud data were significantly correlated with comprehension across 8
of 9 tests—picking up on more nodes and more edges during reading was significantly related to
comprehension in our larger data set from 3 sequential texts with a typed posttest and in both
analyses of the smaller data sets (AH and TC) from 4-page complementary multiple texts with a
drawn-and-oral-explanation integrative posttest. Results for the edge-node ratio were significant

across the first two data sets. Consistent with a strong positive trend in the literature, it appears
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that picking up more facts and connections during reading is associated with better post-reading
comprehension, and researchers using think-alouds should consider this a useful metric. Based
on two of three positive results for the edges/nodes metric, we also recommend its use for
quantifying knowledge structures from think-aloud data.

On the degree centrality metrics from the literature and key elements of the KI
framework—in-degree, out-degree, betweenness, and PageRank centrality—we found largely
consistent results in analyses of our think-aloud data. It should be kept in mind that the chosen
nodes in our three data sets—and indeed across the literature we reviewed—are specific to a text.
For in-degree, we found 6 significant correlations out of 8 that could be calculated for in-degree;
picking up on the cause(s) of key ideas in the text is associated with better post-reading
comprehension, again across the different samples, sample sizes, texts, and posttest measures we
used. For out-degree, we found 6 significant correlations out of 9 that were calculated for in-
degree; picking up on the effect(s) of key ideas in the text is associated with better post-reading
comprehension, again across the specific samples, sample sizes, texts, and posttest measures we
used. For betweenness, we found 8 significant correlations out of 8 that could be calculated for
betweenness; picking up on both cause(s) and effect(s) of key ideas in the text is associated with
better post-reading comprehension, again across the specific samples, sample sizes, texts, and
posttest measures we used. By contrast, PageRank centrality was only significant for 1 of 9
correlations we tested. One basis of these patterns of findings, we recommend that researchers
who want to quantify knowledge structures from think-alouds should consider in-degree, out-
degree, and betweenness to be useful metrics. PageRank might be a useful metric for analyzing
semantic networks that have high inter-connectedness, such as might be found with end-of-year

data tapping small numbers of nodes.

31



On the mean distance and diameter metrics from the literature and key elements of the KI
framework we found completely consistent results in analyses of our think-aloud data. We also
found the expected high correlation between mean distance and diameter (» ~ .9) in all data sets.
We found 12 of 12 correlations for mean distance and diameter with comprehension were
statistically significant, and these ranged from .39 to .67, which would be considered medium-
large to large for education research (Cohen, 1988). Beyond linking pairs of nodes, making long
chains of nodes is associated with better posttest comprehension. Interestingly, this is the
opposite pattern from a ‘good’ social network, in which short mean distance and short diameter
are associated with effective social networks (Watts & Strogatz, 1998).

On the other network-level metrics from the literature, one of which has been tested in
the KI framework, we found almost no significant results in analyses of our think-aloud data.
Density was negatively significantly correlated with comprehension in Study 1, and non-
significant for both Study 2 data sets. Number of clusters was not significantly correlated with
comprehension in any of our 3 data sets. Largest connected component nodes as a percent of all
nodes was positively significantly correlated with comprehension in Study 2 for the AH text set
only, and non-significant for the other two data sets. Centralization degree—a measure of the SD
of node degree—was non-significant for all three data sets. On this basis, we cannot strongly
recommend these metrics for quantifying knowledge structures from think-aloud data, although
the prevalence of edge density in the literature (9 articles in our review) might support its use by
researchers applying NA to think-aloud data.

Several aspects of the findings appear to be driven by the specific texts that we gave these
specific students. First, the importance of betweenness centrality for specific nodes appears to be
driven simultaneously by the conceptual importance of these concepts in all three data sets, but

also in Study 1 because these specific terms links the 3 textbook subsections. For example, in the
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first passage a splinter is shown bringing bacteria into the body and via a sequence of signals the
phagocytes produce cytokines, in the second passage bacteria active the CD14 receptor ona T
cell and through a long chain of reactions cytokines are produced, and in the third passage
bacteria attach to the variable segments on the short arms of an antibody molecule(s). Likewise,
the Antibody node in our master list of propositions from Study 2 AH had the highest PageRank
score of all 9 focal nodes across the 3 data sets when we analyzed the master list; this suggests
that nodes in the original text that are connected in more triads could possibly be associated with
participant PageRank scores being related to comprehension, compared to nodes in the original
text that are involved in few triads. Density also may depend on the nature of the content being
learned and how it is represented in the texts/stimuli, since long causal chains with few inter-
connections yield lower density networks.

Second, compared to an immunologist, we knew these undergraduate students were
relative novices. Therefore, we would expect a much less interconnected network (a sparser
network) than we would expect from an expert, e.g., the Study 1 text uses macrophages and
monocytes as examples of white blood cells, but an expert would know that these two are further
connected with each other because monocytes are found in the bloodstream and later mature into
macrophages in tissue. Thus, sparse networks are to be expected with novices upon one reading
of a textbook excerpt and this leads to certain features of our results (e.g., low density metrics).
Third, because the texts are aimed at undergraduates taking an introductory biology course, they
present a level of detail that the authors believe is appropriate for novices. One could argue that
the texts were impoverished (e.g., density = .054, .090, and .044 across the three master lists) and
hence student knowledge networks were impoverished, but we reason that a novice would be
overwhelmed by introductory text that has the level of detail that an expert would develop over

decades of scientific practice. Among these participants, variability in student networks was
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significantly related to posttest comprehension for the majority of correlations, showing that
even in this introductory text, some biology students extracted richer knowledge networks and
scored better on posttest comprehension whereas others extracted very sparse networks and
scored worse.

Thus, researchers applying SemNA to think-aloud data should expect the results to be
somewhat specific to the learning materials, the task (after reading a passage, after a 5-week
intervention unit, after a whole year of instruction?), and the expertise level of the participants.
5.1. Limitations

Our three data sets all came from undergraduate students, reading biology text about the
immune system. Future work should consider whether think-aloud protocols can be fruitfully
analyzed with SemNA metrics across a much wider range of topics and participants. In addition,
posttests for all 3 data sets were collected immediately after completing the think-aloud on the
text; in future studies the posttest should be collected after a longer delay to determine how long
memory for picked-up information might last.

We used only one theory to drive our use of SemNA metrics, but other researchers
analyzing during-learning data could, for example, use Expertise theory (e.g., Ericsson et al.,
2018) for analyzing verbal data or eye tracking data or could use the Information Foraging model
(e.g., Pirolli & Card, 1999) for analyzing eye tracking or other transition data (e.g., moving
through a game or museum exhibit or a sequence of tool use in a virtual or physical
environment).

For the purpose of SemNA, Expertise theory focuses on amount of knowledge (nodes)
and interconnectedness of knowledge (edges), and also how knowledge is structured around key
principles of a domain, such as Newton’s laws for knowledge about kinematics (Chi et al.,

1981). This would have implications for centrality of those conceptually key principles in expert
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versus novice networks. The Information Foraging (IF) model (Pirolli & Card, 1999) makes an
analogy between a creature foraging for food in a natural environment and a person foraging for
information in a human environment (e.g., in illustrated text, on a website, etc.). In the IF model,
a person who knows what sources to forage in, who knows what cues in that source signal rich
information, and who knows how to proceed through the information sources can very efficiently
find information in the sense of spending less time/energy and frustration to locate needed
information. For the purpose of SemNA, very efficient search (e.g., eye gaze) patterns should be
associated with experienced searchers locating learning-goal relevant information, whereas less-
experienced searchers may show lengthy but systematic search patterns. In sum, different
theories might lead to identifying different network analysis metrics for different types of during-
learning data.
5.2. Potential future applications

Here, we provided 3 examples of applying Network Analysis to think-aloud data, but our
literature review includes examples of brief interview, concept map, dyadic discourse, and open-
ended written response data. The studies we reviewed reported on data collected on varied
learning materials, over varying time spans (from 1 hour to 1 year), with participants at differing
levels of expertise. In addition to these 4 types of data, other researchers might want to use
content of longer interviews, one person’s social media contributions, or LMS chat over a time
period to analyze that person’s knowledge structures or possibly to analyze beliefs or
perceptions, to analyze self-explanations, or use other kinds of knowledge data in formal or
informal learning contexts. On the one hand, we believe that our literature review supports the
set of metrics for this kind of individual SemNA data and that important existing metrics are not
highly likely to be missing. On the other hand, we do not have the basis for saying that the

metrics that were significant or non-significant for our three data sets will be significant or non-
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significant across all types of individual knowledge network data. This is especially true because
our data in all three data sets were missing triads to a great extent, and possibly as a consequence
this made the PageRank statistic non-significant. Note that we attribute this to the stimulus-task-
participant constellations in our three data sets. Therefore, we recommend that analysts apply all
of the metrics frequent in the literature to build a more robust knowledge base about what
metrics yield valuable information for understanding learning with which types of stimuli, tasks,
and participants.

Furthermore, metrics that might be useful for other kinds of during-learning data such as
eye gazes, web search/navigation, movement through virtual spaces, and so on, require a
different literature review to identify the frequently used metrics for those types of during-
learning data. We have already found such differences in our own work in progress (Cromley &
Kunze, 2024).

Future work could also apply automated text extraction techniques (NLP, machine
learning) to during-learning data to try to reduce the work of hand extracting lists of
propositions. One such automated system is T-MOTICAR which yields only average degree
from among the metrics applied here (Pirnay-Dummer, 2020). An alternative would be to use
web-based learning environments where logfiles would capture note-taking or ‘type-alouds’
while learning as a representation of what is ‘picked up’. These approaches could make SemNA
a much easier technique to use on individual verbal data with learning outcomes. We look
forward to learning how researchers apply these techniques to and learn from additional
information available from the multitude of during-learning data that educational researchers
collect.

5.5 Conclusion
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Ample previous research supports the idea that readers actively transforming what they
read—yvia self-explanation, using specific strategies, answering embedded questions—is
associated with better comprehension (McNamara, 2004). Our re-analyses of the content picked
up during reading further supports this idea, and potentially explains why strategies are effective;
those who picked up more content formed more complex during-reading knowledge structures
and characteristics of knowledge structures were significantly correlated with posttest

comprehension.
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Supplementary Table 1

Studies located in the literature review of semantic network analysis applied to learning-relevant outcomes

topic of triangles

Cite Notes Number of nodes | Number of Average degree = Degree centrality Betweenness PageRank Diameter Edge Mean LCC Graph Number of
edges Edges/Nodes centrality Centrality density distance proportion centralization | clusters
Aka (proportion
Network of nodes in
density, largest
Density connected
component)
1. Salmon et al., TA 15 experienced Key concepts (a la smaller is better larger is
2013 and 9 novice sociometric status) * better *
drivers differ between
Co-occurrence experts and novices
2. Kubschetal., Interviews 30 Total degree for one larger is
2019 middle school node considered to better *
science students be critical for
Co-occurring ideas understanding,
within one higher is better *
explanation
3. Podschuweit & | Dyad discourse 28 Ns
Bernholt, 2020 | high school
students taking
chemistry
4. Bodin, 2012 Interviews before More is better* More is For specific
after for 6 physics better* sets of nodes,
students higher is
better*
5. Siew, 2019 Concept maps of Ns Largeris | Ns
101 Psych better*®
undergrads
Drew immediately
after learning in
class
6. Clariana et al., Concept maps of 40 Ns
2013 undergraduates
Drew after one of
two collaborative
learning conditions
7. Kapuzaetal, Concept maps of More is better * Average degree higher is | Hubs — outdegree
2020 experts (gathered better * higher is better *
Presents 3 once) and of Authority —
novel network students gathered indegree lower is
metrics early in a year long better *
course and 6 Authorities/Hubs,
months later lower is better™
8. Schwendimann | Concept maps of Outdegree higher is Higher is
2014 students over the better * better
course of a school Indegree higher is
year, weighted by better *
KI level of concepts
9. Haiyue & Concept maps of Group_Outdegree
Yoong, 2010 students on the higher is better *




Cite Notes Number of nodes | Number of Average degree = Degree centrality Betweenness PageRank Diameter Edge Mean LCC Graph Number of
edges Edges/Nodes centrality Centrality density distance proportion centralization | clusters
Aka (proportion
Network of nodes in
density, largest
Density connected
component)
Group_Indegree
higher is better *
10. Hoppe et al Concept maps on More is better * More is higher is better*
2012 climate change, better *
scored relative to an
expert map
11. Wei and Yue, Concept maps More is better*® More is Edges/nodes ratio mixed | Mixed Longer is better *
2016 made in 5 better* results
Information
Systems courses
12. Wagner and Concept maps of More is better* Higher is better, Ns Fewer is
Priemer, 2023 physics content for critical Diameter/size better*
made by 9 experts concepts™® ratio, smaller is
and by 56 students better™
13. Pokorny et al Interviews with Higher is
2018 meditation retreat worse *
participant, Purpose (recalculated
in Life from their
questionnaire data by
ranking)
14. Daems et al., Student-given Three main topics Terms that link the
2014 verbal explanations of workshop* 3 topics*
as part of
workshops, Expert
ontologies
15. Hecking et al., | Student annotations Which words have
2017 on STEM videos, 3 highest centrality
clusters sorted by differs between
posttest ‘soft skills’ groups*
knowledge
16. Smith & Open-ended student | Vaccinated Normalized in- and
Parrott, 2013 knowledge about women > Men > out-degree
Human Papilloma Unvaccinated centrality for cancer
Virus women Vaccinated women
> Men >
Unvaccinated
women
17. Gobbo & Chi 5 more- Ns Exp>Nov Exp>Nov
1986 knowledgeable and
5 less-
knowledgeable 7

year old boys (sy
what you know
about dinosaurs)
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component)
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2020 2 x 2 experimental
design
20. Guerra et al., 8913 When Ns Ns Ns Higher is
2005 question/problem weighted by better*®
attempts by 83 success at
students over 3 question *
semesters of Java
programming.
21. Jamieson, 2012 | Mind maps (nodes Ns
and unlabeled
edges) of
22. Kim & Change over time Increases* Increases* Increases* Ns Increases* | ns
McCarthy, in (revised) essays
2021 of graduate
(Improving instructional design
summary students
writing)
23. Ifenthaler et al, | 25 graduate Ns with grade Higher is better* Ns with grade Ns with Ns with
2011 students taking a Increases™ over No change over semester Increases * over | grade grade
research methods semester semester Increases™
course, concept over
maps 5 times over semester
semester
24. Dauer et al., 289 life science Increases after Increases For key nodes,
2019 majors making instruction* after increases and
conceptual models instruction* decreases after

(concept maps with
causal arrows)
before and after an
instructional video
on content

instruction (no stat
test)
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edges Edges/Nodes centrality Centrality density distance proportion centralization | clusters
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25. Yang, Zhang et | 403 undergraduate | Not reported— Best- Best-achieving students > | For 4 high- number of Best-
al., 2018 calculus students from among 82 achieving Middle students > Worst | centrality nodes nodes /LCC achieving
given a list of fixed/provided students > students (no stat test) noted by all groups, Best- students <
concepts, connect nodes Middle Best-achieving achieving Middle
and weight the students = students > Middle students > students <
strength of Worst students > Worst Middle Worst
connections among students students (no stat students > students
the 82 *(stat test) test) Worst (no stat
students (no test)
stat test)
26. Frerichs et al., 21 AfAm Increases after Increases Increases
2018 Adolescents instruction (p = after after
making concept .08) instruction* instruction
maps 3 times (ns from
during a workshop .36 to .44)
on causes of
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by number of
repeated edges
27. Zhou et al., 30 HS (age 15) Ns More is
2015 students better™
interviewed after a
chemistry lesson,
followed by exam
28. Giabbanelli & 28 CS students Increased (no stat | Increased Mostly increased (no stat Increased (no stat Mostly
Tawfik, 2021 presented with a test) (no stat test) | test), but mixed test) increased
positive or negative (no stat
case in PBL test), but
mixed
29. Yang, Zhu et 206 high school (16 Best-achieving students > Best- number of Best-
al., 2018 YO) trigonometry Middle students = Worst achieving nodes /LCC achieving
students given a list students* (stat test) students > Best- students <
of concepts, Middle achieving Middle
connect and weight students > students > students <
the strength of Worst Middle Worst
connections among students students > students
the 44 (no stat Worst (no stat
test) students (no test)
stat test)
30. Wagner, Kok, (possibly a subset Experts>Novices Experts>Novices Experts>Novices
& Priemer, of Wagner & (experts have a Ratio
2020 Priemer, 2023) few high- D/numNodes
3 experts and 19 betweenness also

students providing

nodes, novices

Experts>Novices




Cite Notes Number of nodes | Number of Average degree = Degree centrality Betweenness PageRank Diameter Edge Mean LCC Graph Number of
edges Edges/Nodes centrality Centrality density distance proportion centralization | clusters
Aka (proportion
Network of nodes in
density, largest
Density connected
component)

written have no nodes high

explanations of on betweenness)

refraction in water

31. Laukkanen, 7 new Increases Increases Increases

2023 entrepreneurs
interviewed before
and after launching
a startup (learning
about running a
new business)

32. Kim & 32 graduate No change No change No change No change Increases No Experts <
McCarthy, students in an over time change Novices,
2021 (Using online course who decrease over
graph revised their time
centrality... writing




S Supplementary Table 2

Lists of propositions for all three data sets

Study 1 proposition list

Source Target verb
1. Ab Antigen neutralize
2. Ab Antigen binds
3. Ab Antigen binds
4. Ab HeavyChains Have
5. Ab Immunoglobulins Are
6. Ab LargeComplexes Form
7. Ab LightChains Have
8. Ab PolypeptideChains Have
9. Ab TwoAntigenMolecules Binds
10. AntBindSites Antigen match shape
11. AntBindSites Ab are on outer end of
12. AntBindSites AntBindSites Are
13. Antigen Bacterium is part of
14. Antigen Pollen is part of
15. Antigen Virus is part of
16. Bacterium CD14 binds to
17. Beell Ab Makes
18. BloodVessel Complement Release
19. BloodVessel Heat Cause
20. BloodVessel Phagocytes Admits
21. BloodVessel Redness Cause
22. Body DefenseProteins Makes
23. Brain Fever Produce
24. CD14 CellMembrane sits outside
25. CD14 TollLikeReceptor Activates
26. CD14 TollLikeReceptor Binds
27. CD14 WBCs is found on
28. Complement Phagocytes Attracts
29. Complement Tissue Enters
30. ConstantRegion DestinationAndFunction Determine
31. ConstantRegion SameAASequence Has
32. Cytokine Brain Signals
33. Cytokine Fever Produce
34. Cytokine ImmmunSys Activates
35. Cytokine InfectedCell Kills
36. CytoTcell Antigen Engulfs
37. DamagedTissue MastCells Attracts




Source Target verb
38. DefenseProteins Complement Includes
39. DefenseProteins Cytokine Includes
40. DefenseProteins Interferon Includes
41. DefenseProteins Phagocytosis Regulate
42. Epitope Epitope Is
43. Epitope ForeignProtein Is
44. Epitope VariableRegion Binds
45. Fever ImmunSys Increases
46. Fever Lymphocytes Increases
47. Fever Pathogens Inhibits
48. FungalCellWall CD14 binds to
49. GrowthFactor Tissue Signals
50. HeavyChains Ab is most of
51. HeavyChains DisulfideBond connected by
52. HeavyChains Identical Are
53. HeavyChains Inside Located
54. HelperT Antigen Signals
55. HelperT Beell Signals
56. HelperT CytoTcell Signals
57. Histamine AllergicRx Causes
58. Histamine BloodVessel Dilates
59. Histamine BloodVessel Enters
60. Histamine BloodVessel Leakifies
61. Histamine Inflammation Causes
62. HIV HelperT Damages
63. ImmuneResponse Non-specific Has
64. ImmuneResponse Specific Has
65. ImmunSys Ab is part of
66. ImmunSys Beell is part of
67. ImmunSys CellSignaling Signals
68. ImmunSys CytoTcell is part of
69. ImmunSys HelperT is part of
70. Infection Inflammation Causes
71. Inflammation Damage Isolates
72. Inflammation MastCells Attracts
73. Inflammation Molecules Recruits
74. Inflammation Pain Cause
75. Inflammation Phagocytes Recruits
76. Inflammation Spread Stops
77. Injury Inflammation Causes
78. LargeComplexes EasyTargets Are
79. LightChains Identical Are




Source Target verb
80. LightChains Outside Located
81. Lymphocyte ImmunSys part of
82. MastCells Cytokine Release
83. MastCells Damage g0 to
84. MastCells Early Respond
85. MastCells Histamine Release
86. MastCells Histamine stop release
87. MastCells Phagocytes Signals
88. MastCells Skin adhere to
89. MoreTissue Scab Forms
90. NfkB NuclearFactorKappaBCells | Is
91. NfkB Nucleus Enters
92. NfkB Nucleus straightened enters
93. NfkB Promoters binds to
94. Pathogen Body Invades
95. Pathogen ImmunSys Signals
96. Pathogen MolecularChange binding causes
97. Phagocytes Cytokine Produce
98. Phagocytes Damage go to
99. Phagocytes DeadCells Engulf
100.  Phagocytes Healing do most
101.  Phagocytes ImmunSys part of
102.  Phagocytes LargeComplexes Destroy
103.  Phagocytes LargeComplexes Ingest
104.  Phagocytes Pathogens Engulf
105.  Phagocytes Tissue Enters
106.  Plasma Swelling Causes
107.  Plasma Tissue Enters
108.  PolypeptideChains ConstantRegion Have
109.  PolypeptideChains VariableRegion Have
110.  Promoters DefenseProteins Makes
111.  Promoters Transcription Start
112.  Prostoglandins BloodVessel Dilate
increase sensitivity
113.  Prostoglandins Nerves of
114.  ProteinKinaseCascade | CellMembrane happens inside
115.  ProteinKinaseCascade | FortyGenesTranscribed Causes
116.  ProteinKinaseCascade | NfkB Straightens
117.  Splinter BloodVessel Injures
118.  Splinter DamagedCells Has
119.  Splinter Pathogens Has
120.  Tcell Pathogen Binds




Source Target verb
121.  Tissue MoreTissue Divides
122.  TNF Cytokine is a
123.  TNF ImmmunSys Activates
124.  TNF InfectedCell Kills
125.  TollLikeReceptor CellMembrane passes through
126.  TollLikeReceptor Development involved in
127.  TollLikeReceptor ImmuneResponse involved in
128.  TollLikeReceptor ProteinKinaseCascade Starts
129.  Transcription DefenseProteins Makes
130.  VariableRegion OnOuterEndOfAb Are
131.  VariableRegion Specificity responsible for
132. WBCs Macrophages Includes
133. WBCGs Monocytes Includes
Study 2 AH text set proposition list

Source Target Verb Passage

1. Ab Ab is Pl

2. Ab Ab links Pl

3. Ab IgE include P1

4. Ab MastCell binds P1

5. Ab Receptors binds P1

6. Allergens Ab causes P1

7. Allergens Allergens is Pl

8. AllergicRx AllergicRx is P1

9. Antigen Ab binds P1

10. Antigen Antigen is P1

11. Antihistamines | Histamine block P1

12. Beell BCell is P1

13. Histamine AllergicRx causes Pl

14. Histamine Histamine is P1

15. IgE IgE is Pl

16. IgE Immunoglobulin istype P1

17. MastCell Histamine makes Pl

18. MastCell Histamine release P1

19. MastCell MastCell is Pl

20. MastCell Receptors has P1

21. MastCell Vesicles has Pl

22. PlasmaCells Ab make P1

23. Pollen AllergicRx causes P1

24. Vesicles Histamine release P1




Source Target Verb Passage
25. Ab Ab links P2
26. Ab Antigens attackspecific P2
27. Ab Basophils binds P2
28. Ab BCell binds P2
29. Ab ConstantEnd has P2
30. Ab MastCell binds P2
31. AllergicRx Death cancause P2
32. AllergicRx genetic canbe P2
33. Antigen Ab binds P2
34. Antigen Antigen is P2
35. Basophils Basophils are P2
36. Beell Ab make P2
37. Beell Beell is P2
38. Beell PlasmaCells makes P2
39. Genetics AllergicRx causes P2
40. Histamine DifficultyBreathing | causes P2
41. Histamine Histamine is P2
42. IgE IgE is P2
43. MastCell Histamine makes P2
44. MastCell Histamine releases P2
45. MastCell MastCell is P2
46. PlasmaCells Ab make P2
47. Ab Ab is P3
48. Ab Ab links P3
49. Ab MastCell binds P3
50. Ab Signal Transduction | initiates P3
51. Antigen Antigen is P3
52. Antigen Beell binds P3
53. Antigen ThCell attaches P3
54. APC Antigen presents P3
55. APC APC is P3
56. Beell Ab makes P3
57. Beell BCell is P3
58. Beell PlasmacCell becomes P3
59. Cytokine BCell signals P3
60. Cytokine Cytokine is P3
61. Histamine AllergicRx causes P3
62. Histamine Histamine is P3
63. Histamine Signal isa P3
64. 1L4 Beell activates P3
65. 1L-4 Cytokine isa P3
66. 1L-4 1L-4 is P3




Source Target Verb Passage
67. 1IL-5 IL-5 is P3
68. MastCell Histamine releases P3
69. MastCell MastCell is P3
70. PlasmaCell Ab makes P3
71. ThCell Cytokine releases P3
72. ThCell 1L-4 releases P3
73. ThCell IL-5 releases P3
74. ThCell ThCell is P3
75. Ab Ab binds P4
76. Ab Basophils binds P4
77. Ab MastCell binds P4
78. Allergen APC binds P4
79. Antigen Ab binds P4
80. APC Antigen neutralizes P4
81. APC APC is P4
82. APC ThCell signals P4
83. Bcell Ab make P4
84. Bcell Bcell is P4
85. Bcell PlasmaCells makes P4
86. Histamine Rash causes P4
87. MastCell Histamine releases P4
88. PlasmaCells Ab make P4
89. ThCell Beell signals P4
90. ThCell ThCell is P4
Study 2 TC text set proposition list
Source Target Verb Passage
1. Ab 2Polypeptides Madeof Pl
2. Ab Ab Is Pl
3. Ab Antigens bind to Pl
4. Ab Antigens recognizesOne P1
5. alphaChain alphaChain Is Pl
6. alphaChain betaChain Attachedto P1
7. alphaChain ConstantRegion has both Pl
8. alphaChain exterior is_on P1
9. alphaChain variableRegion has both Pl
10. Antigens Proteins Are P1
11. Antigens variableRegion Bind P1
12. Beell Blood respondsTo Pl
13. betaChain betaChain Is P1




Source Target Verb Passage
14. ConstantRegion ConstantRegion Is P1
15. ConstantRegion Immunoglobulin Variesbetween P1
16. ConstantRegion TCR Anchors P1
17. Glycoproteins protein and sugar Are P1
18. hydrophobicRegion stopWater Means P1
19. Immunoglobulin Immunoglobulin Is Pl
20. MHCs Antigens Display P1
21. MHCs Antigens Display Pl
22. plasmaMembrane hydrophobicRegion Has P1
23. Tcell Antigens Recognizes P1
24. Tcell Cell respondsTolnfected | P1
25. Tcell self Recognizes Pl
26. Tcell TCR Has P1
27. TCR 2Polypeptides Madeof Pl
28. TCR alphaChain Has P1
29. TCR Antigens Bind P1
30. TCR Antigens Recognizes P1
31. TCR BCellReceptor Smallerthan Pl
32. TCR betaChain Has P1
33. TCR ConstantRegion Has P1
34. TCR plasmaMembrane sits_in P1
35. TCR Tcell sits_outside Pl
36. TCR TCR Is Pl
37. TCR variableRegion Has Pl
38. variableRegion Antigens Binds P1
39. variableRegion TCR Variesbetween P1
40. variableRegion variableRegion Is P1
41. AntigenBindingSite AntigenBindingSite Is P2
42. AntigenBindingSite variableRegion Madeof P2
43. Antigens AntigenBindingSite bind at P2
44. Antigens Antigens Are P2
45. Antigens Cell are onlnfected P2
46. Antigens Pathogens part_of P2
47. APCs APCs Are P2
48. Beell Beell Is P2
49. Beell Humoral involved in P2
50. Beell lymphNodes found in P2
51. Beell spleen found in P2
52. ConstantRegion ConstantRegion Is P2
53. ConstantRegion TCR sits_at bottom P2
54. DisulfideBridge ConstantRegion Connects P2
55. DisulfideBridge DisulfideBridge Is P2




Source Target Verb Passage
56. immatureBcell self Attacks P2
57. immatureBcell self binds strongly P2
58. immatureBcell self binds_weakly P2
59. ImmuneSystem Diseases trains_on P2
60. IntracellularDomain IntracellularDomain Is P2
61. MHCs Antigens Display P2
62. MHCs Cell are _inside P2
63. MHCs MajorHistcompatibilityComplex | Are P2
64. MHCs MHCs Is P2
65. Pathogens Antigens Madeof P2
66. Pathogens Cell Infect P2
67. Tcell Antigens Recognizes P2
68. Tcell Cell-mediated involved in P2
69. Tcell immuneResponse Initiates P2
70. Tcell MHCs Has P2
71. Tcell Pathogens Recognizes P2
72. Tcell Tcell Is P2
73. TCR alphaChain Has P2
74. TCR betaChain Has P2
75. TCR Tcell sits_outside P2
76. TCR ConstantRegion Has P2
77. TCR plasmaMembrane sits_in P2
78. TCR variableRegion Has P2
79. transmembraneRegion transmembraneRegion Is P2
80. variableRegion TCR sits_at_top P2
81. variableRegion variableRegion Is P2
82. Alphabeta TCR form of P3
83. alphaChain alphaChain Is P3
84. AntigenBindingSite variableRegion Madeof P3
85. Antigens epitope Is P3
86. Antigens MHCs binds to P3
87. betaChain betaChain Is P3
88. C terminus TCR sits_at bottom P3
89. Calpha Calpha Is P3
90. carbohydrateGroup carbohydrateGroup Is P3
91. carbohydrateGroup variability Has P3
92. Cbeta Cbeta Is P3
93. ConstantRegion constantRegion Is P3
94. DisulfideBridge ConstantRegion Connects P3
95. DisulfideBridge DisulfideBridge Is P3
96. Epitope epitope Is P3
97. Gammadelta mucosal found on P3




Source Target Verb Passage
98. Heterodimer heterodimer Is P3
99. MHCs MHCs Is P3
100. N _terminus TCR sits_at top P3
101. TCR alphaChain Has P3
102. TCR AntigenBindingSite Has P3
103. TCR Antigens binds to P3
104. TCR Antigens Recognizes P3
105. TCR betaChain Has P3
106. TCR C terminus Has P3
107. TCR Cell sits_outside P3
108. TCR ConstantRegion Has P3
109. TCR N_terminus Has P3
110. TCR variableRegion Has P3
111. TCR variableRegion has at top P3
112.  transmembraneRegion | transmembraneRegion Is P3
113. Valpha Valpha Is P3
114.  Vbeta Vbeta Is P3
115. variableRegion Antigens Determines P3
116. alphaChain betaChain Attachedto P4
117. AntigenBindingSite loops formed of P4
118.  AntigenBindingSite TCR at_tip_of P4
119. AntigenBindingSite variablility Has P4
120.  Diseases Cell causelnfected P4
121.  DisulfideBridge ConstantRegion Connects P4
122.  hydrophobicRegion hydrophobicRegion Is P4
123.  ImmuneSystem Cell killsInfected P4
124.  ImmuneSystem Diseases Finds P4
125. ImmuneSystem self doesn't attack P4
126. Lymphocytes lymphocytes Are P4
127. MHCs Antigens Display P4
128. MHCs MHCs Is P4
129. Tcell Antigens recognizesMultiple | P4
130. TCR Ab half size of P4
131. TCR alphaChain Has P4
132. TCR Antigens binds_to P4
133. TCR betaChain Has P4
134. TCR ConstantRegion Has P4
135. TCR plasmaMembrane sits_in P4
136. TCR variableRegion Has P4
137. variableRegion Pathogens protects against P4
138.  variableRegion variableRegion Are P4







Supplementary Table 3

Network analysis metrics applied to verbal data, definitions, and igraph code

Metric definition in Semantic Network Analysis code in igraph

Node level

nodes number of facts, nouns, noun phrases  gorder(g)
that exist in a person’s knowledge

network

Edges connections between nodes in whole  gsize(g)
knowledge network, which could be
verbs in phrases, links in concept

maps

average degree number of edges/number of nodes in  Calculate gsize(g)/gorder(g)

whole knowledge network

degree centrality a count of all edges for focal node ina degree(g, v=V(g)["Antigens"],
knowledge network; in-degree if mode = "in", loops=FALSE)

pointing into that node and outdegree  degree(g, v=V(g)["Antigens"],

if pointing out from that node mode = "out", loops=FALSE)
betweenness a count of the number of paths betweenness(g,
centrality between other nodes where that path ~ v=V(g)["Antigens"])

passes through a focal node in a

knowledge network



Metric definition in Semantic Network Analysis code in igraph

PageRank centrality a measure of how influential the nodes page rank(g,

are that are connected to a focal node  v=V(g)["Antigens"],

in a knowledge network weights=NA)$vector
Network level
Diameter the longest path required to traverse Unweighted: diameter(g,
the entire knowledge network weights=NA)
Weighted:
diameter(g)
Density how interconnected all nodes are ina  edge density(g)

knowledge network, compared to a

network with all possible

interconnections
mean distance the average number of steps out per Unweighted:
node, across all nodes in the mean_distance(g)
knowledge network Weighted:
mean_distance(g, weights=NA)
network standard deviation of the number of ~ centralization.degree(g,
centralization edges per node, across the whole loops=FALSE)$centralization

knowledge network



Metric definition in Semantic Network Analysis code in igraph
number of the number of internally- components(g)$csize
components interconnected but externally not/little

largest connected
component as

percent of nodes

connected groupings in a knowledge

network

the number of nodes in the largest
component, divided by the total
number of nodes in the knowledge

network

Calculate max of

components(g)$csize, divide by

gorder(g)




Supplementary Table 4

Descriptive statistics on all metrics across 3 data sets

Study 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 16 18 19 20 21 22 23 24 25 26
1. Mweight -
2. NumNodes 4207 -
3. NumEdges 409 .966" -
4. AvgDegree -233" 27017 -533" -
5. DegreeInBacterium .146 378" 348" 307 -
6. DegreeInCytokine 290" .580™ 544 432" -.036 -
7. DegreeInPhagocyte 394 483" 4127 493" .185 267" -
8. DegreeOutBacterium 358" A5T™ 438" -344™ .126 255" 327" -
9. DegreeOutCytokine 402" 5027 446™ -.409™ .081 .589™ 346™ 416™ -
1. DegreeOutPhagocyte 434" .533" 488" -469™ 383" 263" 269" 213 278" -
11. BetweennessBacterium 264" 498 429™ -.448™ 373" .184 A7 .699™ 358™ .349™ -
12. BetweennessCytokine 393 .559™ 488™ -.495™ -.064 .700™ 443 394 .826™ 354™ 364™ -
13. BetweennessPhagocyte 4247 466™ 4027 -.466™ .162 239" .865™ .355™ 328 423 498 498 -
14. PageRankBacterium .064 -.142 -.153 .145 6657 -234" -.018 -.013 -.045 .069 .043 -.206 -.006 -
15. PageRankCytokine .168 205 176 -.154 -.112 747 .082 207 499™ .054 .071 448 .081 =177 -
16. PageRankPhagocyte 330" .073 .003 =177 208 .019 509" .099 112 409" 275" 128 448" 187 .015 -
17. GraphDensity -376™ -.808™ -921™ 232" -328™ -.405™ -253" -434™ -316™ -364™ -381™ -329™ -262" .100 -.107 .065 -
18. NumberOfClusters 305" 343 5157 257" 127 .079 -.067 265" .055 117 .053 -.017 -.076 -.013 .025 -.114 -736™ -
19. LCCSize 256" .800™ 718" -753" AT 402" 474 379" 339" 582" 539 436" S -.029 135 161 -.545™ .017 -
2. LCCPct -.194 .027 -.099 -484™ 187 -.008 220 .059 .008 227" 275" .096 2717 .019 -.060 .106 272" -.645™ 544 -
21. GraphCentralization -518" -412™ -.496™ -.035 -.070 -226" -.178 -266" -316™ -.183 -.195 -255" -.183 .022 -.172 -.022 5727 -.568" =111 523 -
22. MDistWeight 652" 731 680" -575" 301 395" 514" 434 425™ 441 491™ 566" 583" .008 133 177 -.556™ 154 628" .050 -495™ -
23. MDistUnweight 284" 704 637 -.699™ 279" 396" 463 442" 388" 354 602" 533" 546" =117 .149 .074 -485™ -.013 726" 340 -269" .844™ -
24. DiameterWeight 483" .740™ 694 -.578™ 333" 3517 438™ 4157 .349™ 4207 4747 499™ .503™ -.020 .098 .083 -.580™ 176 6617 .067 -456™ .949™ 8627 -
25. DiameterUnweight 355" 700" 653" -.618™ 260" 375" 463 433 341 368" 572 493" 567 -.103 148 .083 -.535™ .071 701 242" -352" 872 964" 902" -
26. PosttestComprehension 209 S 459" -4217 252" 385" 326 208 294" 256" 260" 329" 270" .031 .074 165 =342 .031 492" 150 -.103 412 412 404 387" -
Mean .001 .000 -.000 -.000 .014 .043 .069 .054 .060 .023 .074 .072 .077 .020 .050 .027 -.000 -.005 .003 -.001 .000 .000 .006 -.003 .010 -.000
Median .016 -.065 -.016 .016 -.197 297 -.349 -.528 -.566 213 -.455 -.491 =314 .000 .000 .000 .000 -.230 -.033 .000 .000 .000 .000 .065 -.147 .049
Standard Deviation .996 .996 997 998 .885 .826 723 769 .804 904 788 799 727 952 881 937 998 963 987 994 998 998 984 968 9450 995
25™ Percentile -.696 -.675 -.664 -.695 -.197 =727 -.349 -.528 -.566 -1.127 -.455 -.491 -314 -.685 -.814 -.685 -.685 =770 -.566 -.685 -.685 -.685 -.685 -.585 -.579 -.644
75% Percentile .685 .664 .644 .685 .770 297 959 727 454 769 .705 718 .196 .685 .685 .685 .685 .705 .675 .685 .685 .685 .685 727 .547 .685

Note: Correlations above |.221]| are statistically significant at p <.05. * indicates significance at p <.05; ** indicates significance at p < .01



Study 2 AH

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 16 18 19 20 21 22 23 24 25 26
1. Mweight -
2. NumNodes 207 --
3. NumEdges 173 .850™ -
4. AvgDegree 072 .350 752" -
5. DegreeInBacterium 488™ 6717 780" .594™ -
6. DegreeInCytokine 369" 527 .625™ S127 510" -
7. DegreeInPhagocyte 357 408" .645™ .660™ .655™ 436" -
8. DegreeOutBacterium 401" 4757 707 7357 .684™ 5757 .892™ -
9. DegreeOutCytokine 334 4947 424" 220 4827 .600™ 335 364" -
1. DegreeOutPhagocyte 372" 478" 641" .629™ 543" .959™ S 642" S -
11. BetweennessBacterium 450" 6257 7757 705 .900™ 5617 703" 764" 438" .640™ -
12. BetweennessCytokine 317 .666" .655™ .398" .664™ 716" .533" 547" .864™ .693" 681" -
13. BetweennessPhagocyte 418" 707" 757" 554" 813" .689™ .633" 647" .658" 733" .891™ .885™ -
14. PageRankBacterium 752 .083 273 416" 576™ 132 4647 456" 131 239 .594™ 149 .390" -
15. PageRankCytokine .530™ 145 103 .076 283 451" 136 153 239 4687 335 319 439" 263 -
16. PageRankPhagocyte -.075 -.492™ -410° -.197 -.101 -.509™ -210 -.279 -.230 -476™ -.129 -.282 -.276 180 -.150 -
17. GraphDensity -.060 -.582™ -.116 448" -.021 -.112 217 .193 -.344 .007 .076 -.235 -.143 324 -.060 425" -
18. NumberOfClusters 654" .026 -.203 -.442" 505" -.383" -391° -432° -.248 -.443" 6337 -.341 -514™" -1 -.549™ -.153 -.463™ -
19. LCCSize .500™ 7917 8547 5847 .856™ .565™ .660™ 696" 466™ 5747 .8817" 7147 8547 485 362" -.283 -112 -512 -
2. LCCPct .540™ 119 408" .609™ 5747 339 6527 .634™ .195 404" 6927 388" .545™ .666" A7 .022 491 -.861" 669" -
21. GraphCentralization 281 .012 .024 .050 110 153 175 .088 413" 101 136 354 181 234 .048 363" 104 =321 202 320 -
22. MDistWeight 447" 548" .649™ 582" 758" 5617 5757 5787 5147 .650™ 877 7357 .888™" 480™ 507 -.087 .056 -.649™ 778" 6117 178 -
23. MDistUnweight 446" 558 .700™ 647 767 5457 .689™ .659™ 467 .633™ .894™ 726™ 873" 496™ 489" -.139 120 -.646™ .851™ 732" 220 .959™ -
24. DiameterWeight 460" .600™ 652" 5247 7517 493" .550™ 5737 334 .560™ .835™ 5947 789 436" 5137 -.147 -.001 -578" 7847 5617 107 9117 887" -
25. DiameterUnweight A7 5747 693" 6417 707 4847 6457 .649™ 262 564 .879™ .549™ 778 493 437" -.169 094 -.603™ .820™ 678" 115 .890™ 9317 9217 -
26. PosttestComprehension 407" 392" 495™ 432" .686™ 233 413" 407" 173 320 .556™ 284 451" 5737 228 -.079 102 -.343 .540™ 371" .054 403" 418" 488" .393" --
Mean -.033 .004 .004 .000 .005 .022 -.007 .005 .018 .018 .012 .045 .032 .000 .011 .000 .000 .028 .001 -.042 .000 -.000 -.000 -.012 -.004 .000
Median 0.00 -0.17 0.00 0.00 0.08 0.04 -0.25 0.00 -0.13 0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.04 0.00 0.00 0.00 0.00 0.00 -0.21 -0.21 0.00
Standard Deviation 0.92 0.98 0.97 0.99 0.94 0.90 0.91 0.95 0.87 0.89 0.97 0.89 0.92 1.00 0.97 1.00 0.99 0.88 0.99 0.90 0.99 1.00 1.00 0.93 0.96 1.00
25™ Percentile -0.70 -0.67 -0.67 -0.73 -0.78 -1.11 -1.04 -1.04 -1.04 -1.11 -0.73 -0.84 -1.04 -0.70 -0.70 -0.70 -0.78 -0.97 -0.73 -0.66 -0.70 -0.70 -0.70 -0.67 -0.73 -0.70
75" Percentile 1.04 0.68 0.67 0.66 0.69 0.73 0.48 0.73 0.67 0.46 0.73 0.62 0.78 0.70 0.70 0.70 0.73 0.97 0.62 0.90 0.72 0.72 0.72 0.57 0.52 0.70




Study 2 TC

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1. Mweight -
2. NumNodes 4127 -
3. NumEdges 318 .879" -
4. AvgDegree .057 178 .560™ -
5. DegreelnAntigen .765™ 7447 .686™ 162 -
6. DegreeInTCR 268 445" 537" 404 468" -
7. DegreeOutAntigen 241 .549™ 470" .073 473" 110 -
8. DegreeOutMCH .766™ 455" 370" .005 743 .203 358 -
9. DegreeOutTCR -.063 335 641" 742" 187 4517 .015 -.098 -
11. BetweennessBacterium 191 447" 414" 122 394" .103 .946™ 261 .083 --
11. BetweennessPhagocyte 107 415" .590™ .520™ 402" 7527 368" .070 6137 4747 -
12. PageRankBacterium 756" 261 318 197 639" 516™ 126 .606™ 133 151 365" -
13. PageRankCytokine .096 -368" -.337 -.253 -.072 -370° -.176 .083 -.345 -.098 -.266 .084 -
14. PageRankPhagocyte .002 -454" -.281 205 -.180 455" -362" -.120 197 =217 361 .306 .024 -
15. GraphDensity -.307 -.823™ -.564™ 116 =521 -.184 -.405" =311 .071 -.287 -.126 -.036 156 616™ -
16. NumberOfClusters 114 734 571 -.022 376" .062 329 122 .066 216 .085 -.165 -.235 -.687 -.8317 -
17. LCCSize 243 785™ .858™ 421" 617 534™ 489™ 431" .566™ 468™ .589™ .349 -.298 -.234 -473™ 348 -
18. LCCPct -.255 -.296 -.030 354 -.151 158 -.005 -.075 364" .091 302 .104 .052 408" .545™ -.646™ 299 -
19. GraphCentralization -.257 -.228 11 .608™ -.188 231 =212 -.390" 700" =117 .360 -.043 -.241 464 602" -394" .063 534" -
20. MDistWeight 397" 490™ .588™ 488™ .540™ 483 6317 369" 388" 7157 759™ 4737 -.239 .107 =216 181 607 202 .149 -
21. MDistUnweight .084 395" 540" 508" 348 .606™ 529 101 535 652" 917" 312 -.261 276 -117 11 5747 301 300 877 -
22. DiameterWeight 369" 516™ 613" 530" 526 .539™ 573" 4127 419" 650" 782" 482" -.253 136 -.258 152 660" 224 127 962" 882" -
23. DiameterUnweight .168 4827 587 455" 398" 558 .608™ .266 424" 6937 837 339 =231 157 -.230 182 6317 226 .146 9017 .953™ 927 -
24. PosttestComprehension 324 434" 468" 225 438" 309 467 478" 317 488" 517 291 =225 .026 -.157 .040 591 .266 .046 601" 5317 671 570" -
Mean -.000 .001 -.003 .004 .013 .022 .063 .023 .004 .074 .033 .016 .020 .000 -.001 .003 -.001 .002 .000 .007 .033 .007 .029 .000
Median .000 .000 .000 .000 -.126 .000 -.385 =210 .000 -.385 -.084 .000 .000 .000 .000 .042 -.021 .000 .000 .000 .000 .000 =210 .000
Standard Deviation 995 992 984 987 948 873 729 .886 979 761 918 959 949 996 994 979 982 987 995 978 920 969 902 996
25 Percentile -.702 =702 =716 -.626 -.784 -1.036 -.385 -1.036 -.635 -.385 -1.036 =702 =702 -.702 -.702 -.728 -.903 -.903 -.702 -.702 -1.036 -.674 -1.036 -.702
75" Percentile 702 .663 728 .702 .842 .903 .903 432 .623 728 .678 .702 .702 .702 .702 .784 .842 .702 .702 .702 .702 573 431 .702

¢indicates could not be calculated



Supplementary Table 5

Results of exploratory regressions predicting posttest comprehension across 3 data sets

Study 1

Model 1 Model 2 Model 3
Predictors entered in (b) (b) (b)
stepwise regression
Number of nodes 42% -.62 -.65
Number of edges — 1.13* L.11*
PageRank Phagocytes — — 13.49%*
R? .20 .30 34
F of change in R* 19.13* 9.70* 4.40*

Note: Metrics were entered in 6 blocks: 1) number of nodes, 2) number of edges, 3) number of clusters, 4)
diameter and mean distance, 5) all centrality metrics, 6) all other metrics. * indicates statistically significant at p
<.05.

Study 2 AH Dataset
Model 1 Model 2 Model 3

Predictors entered in (b) (b) (b)
stepwise regression
Number of nodes 4% -.06 -.06
Number of edges — 10* <.01
Indegree Antibodies — — 46*
R? 16 28 .53
F of change in R? 5.47* 4.56* 13.45%

Note: Metrics were entered in 6 blocks: 1) number of nodes, 2) number of edges, 3) number of clusters, 4)
diameter and mean distance, 5) all centrality metrics, 6) all other metrics. * indicates statistically significant at p
<.05.

Study 2 TC Dataset

Model 1 Model 2 Model 3
Predictors entered in (b) (b) (b)
stepwise regression
Number of nodes .04%* .01 <.01
Diameter — 38%* 37*
Outdegree MHCs — — 29%
R? 17 34 47
F of change in R* 5.67* 7.17* 6.03*

Note: Metrics were entered in 6 blocks: 1) number of nodes, 2) number of edges, 3) number of clusters, 4)
diameter and mean distance, 5) all centrality metrics, 6) all other metrics. * indicates statistically significant at p
<.05.



	Manuscript CEP accepted version Oct 6 2024.pdf
	Manuscript CEP accepted version Oct 6 2024 supplementary.pdf

