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Abstract 

Student during-learning data such as think-alouds or writing are often coded for use of strategies 

or moves, but less often for what knowledge the student is using. However, analyzing the content 

of such products could yield much valuable information. A promising technique for analyzing 

the content of student products is semantic network analysis, more widely used in political 

science, communication, information science, and some other social science disciplines. We 

reviewed the small literature on semantic network analysis (SemNA) of individuals with relevant 

outcomes to identify which network analysis metrics might be suitable. The Knowledge 

Integration (KI) framework from science education is discussed as focusing on amount and 

structure of student knowledge, and therefore especially relevant for testing with SemNA 

metrics. We then re-analyze three published think-aloud data sets from undergraduate students 

learning introductory biology with the metrics found in the literature review. Significant relations 

with posttest comprehension score are found for number of nodes and edges; degree and 

betweenness centrality; diameter, and mean distance. Inconsistent results possibly due to text-

specific features were found for number of clusters, LCC, and density, and null results were 

found for PageRank centrality and centralization degree. Basic principles from the KI framework 

are supported—amount of information (nodes), connections (edges, average degree), key ideas 

(degree and betweenness centrality) and length of causal chains (mean distance and diameter) are 

related to posttest comprehension, but not density or LCC. Possible explanations for slight 

variations across data sets are discussed, and alternative theories and metrics are offered. 

Keywords: causal chains; during-learning data; educationally-relevant outcomes; propositional 

analysis 
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Three Applications of Semantic Network Analysis to Individual Student Think-Aloud Data 

1. Introduction 

Education researchers quite often collect verbal data to try to measure student knowledge 

during learning, such as think-alouds or discourse, student writing, or brief responses in online 

learning environments, which we will refer to as student products. Student products are often 

coded for use of strategies or moves, but less often analyzed to measure what knowledge the 

student is using. That is, student products are typically coded for strategic operations such as 

summarizing or making inferences, activating background knowledge, and so on. A few 

techniques are known for quantitatively measuring knowledge structures (e.g., card sorts used 

with multidimensional scaling [Irby et al., 2016], laboratory categorical priming studies), but not 

for during-learning data collected in real time.1 A promising technique for measuring 

characteristics of the content of student products is semantic network analysis (SemNA), more 

widely used in political science, communication, information science, and some other social 

science disciplines (Scott, 2017).  

What characteristics of the content of student products might be informative in 

educational psychology? At the simplest level, we can count how many facts students know 

 
1 Note that we are excluding 4 types of semantic network analysis that could be familiar to some 
readers: 
1) associative networks such as single vocabulary words, where reaction time is used to map how 
closely the meaning of one word is associated with the meaning of another word (e.g., Siew, 
2022). 
2) epistemic network analysis which uses automated analyses of co-occurrence of words to 
create a visual network representation and one metric called the centroid (e.g., Wooldridge et al., 
2018). 
3) pathfinder networks which are a psychometric technique usually applied to similarity ratings 
(e.g., Clariana & Koul, 2008) 
4) questionnaire-based semantic networks which use Likert-type responses to questionnaire 
items to infer a structure of beliefs (e.g., Fishman & Davis, 2022) 
 



 
4 

 

(called nodes in SemNA) and how many other facts each of those facts are connected to (called 

edges in SemNA), which as a set comprise that person’s knowledge network. These concepts are 

borrowed from social network analysis, where we can quantify each person’s (node) 

relationships (edges) in some community of practice such as a classroom, learning environment, 

workplace, neighborhood, and so on. At a more complex level, we can quantify the inter-

connectedness of information in a whole knowledge network in at least a couple of ways—how 

many connected nodes each node is connected to (distance) and how many connections are 

present out of the total possible (density). 

Why might measuring these aspects of a knowledge network be useful? We begin by 

summarizing a popular science education framework that describes changes in the characteristics 

of knowledge networks with development—the Knowledge Integration (KI) framework (Linn, 

2006). We then review which network metrics (network analysis measures) have been used for 

SemNA related to learning-relevant outcomes such as grades or expertise. We then present three 

re-analyses of our own think-aloud data to show the value of SemNA metrics as measures that 

can then explain variance in post-reading comprehension. 

1.1. The Knowledge Integration (KI) Framework 

The Knowledge Integration (KI) framework of Linn (2006) and colleagues is rooted in 

decades of research showing that students often pick up isolated facts in science classes, from 

experiences in daily life, and in many informal learning contexts. With development and/or 

specific KI instruction, students both gain more factual knowledge, and that knowledge becomes 

more richly interconnected. One component of KI instruction is presenting canonical scientific 

ideas, to which students can—and do—link some previously-isolated facts. KI is a specific 

expertise theory (cf., Ericsson et al., 2018) in that the size and structure (specifically, the 

interconnectedness) of the knowledge base grows with development. In the KI framework, 
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students can have varied approaches to holding contradictory ideas, but with development, 

students on average not only come to know more about scientific topics, but their knowledge 

becomes more densely linked. With instruction that encourages students to gather evidence and 

reason with it, students can retain accurate information and form highly-interconnected, 

consistent knowledge structures to replace the sparse and disconnected knowledge they began 

with. KI instruction can include different components, but there is an emphasis on gathering 

data, making predictions, comparing alternative explanations, reflecting on results, and working 

collaboratively. These elements of KI instruction result in students not only knowing more 

concepts, but also connecting those concepts to a greater degree and in scientifically accurate 

ways, and thereby being better able to solve novel problems. 

Both conventional classroom science instruction and conventional science assessment 

items tend to focus on factual learning, with few interconnections among facts (Clark & Linn, 

2003). KI instruction, by contrast, focuses on making such connections. Conventional science 

lessons tend to focus on structures such as the different parts of a flower, with much less focus 

on how the parts function together or as part of a system (e.g., insects transferring pollen from 

the anther of one plant to the stigma of another plant in the same species in order to fertilize an 

ovary in the second plant; Hmelo-Silver & Pfeffer, 2004). In biology learning, this especially 

undermines the development of a core concept in biology that function (e.g., pollen being easily 

moved from one plant to another) depends on structure (e.g., pollen being a loose dust; Kohn et 

al., 2018). When teachers are overly focused on teaching structure for the sake of knowing 

structure—that is, a focus on facts—students are especially likely to a) miss the structure-

function connections and b) memorize elements but not relations.  

Overall, the KI framework has 5 specific implications for the network properties of 

student knowledge in such fact-heavy classrooms, in that students are likely to have 1) many 
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nodes but few edges connecting nodes and consequently 2) more isolates and 3) lower network 

density, 4) edges that are more likely to be definitions or ‘part-of’ rather than ‘acts-on’ edges, 

and as a consequence, 5) there may be shorter causal chains in these networks (see Figure 1 for 

two contrasting examples from one of our data sets). 

 

Fig. 1. Two contrasting knowledge structures—graphs from think-aloud-data 

With development or targeted KI instruction, by contrast, students with a better 

understanding of science are likely to focus on structure-function connections and learn elements 

and relations together. This has the opposite implications for the network properties of student 

knowledge according to the KI framework, in that expert students are likely to have 1) many 

nodes and many edges connecting nodes and consequently 2) fewer isolates (which implies 

fewer clusters), 3) higher network density, 4) edges that are more likely to be causal action verbs, 

and as a consequence, 5) there may be longer causal chains in these networks. Furthermore, 6) 

when KI instruction introduces important scientific ideas (such as a substance boiling when heat 

adds sufficient energy to separate molecules, rather than isolated facts such as water boils at 100 ֯ 

C), then those important ideas should be central in student networks. Indeed, KI researchers 

(Schwendimann, 2014; Schwendimann & Linn, 2016) found that after KI instruction there were 

more nodes and links, higher degree centrality for important scientific ideas, and higher network 

density in students’ concept maps than before KI instruction, as well use of a higher conceptual 
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level for edge (verb) types assigned weights using a KI rubric, all using a KI-specific weighting 

scheme that weighted edges less when subject-verb-object phrases captured relations of low 

importance (e.g., the example of water100 ֯ C above) vs correct causal relations. 

In summary, the KI framework predicts that for students with a better understanding of 

science, their networks should have more nodes and more edges (which implies higher density, 

many triads, and less variability in edges/node), the nodes should be connected in long causal 

chains (implying higher mean distance [which represents cumulated node-level closeness 

centrality], and diameter, smaller number of clusters/fewer isolates, and therefore a large cluster 

that includes most of the nodes); and key scientific ideas should have high centrality, both highly 

connected (degree centrality) and including causes-of and effects-of (betweenness centrality). 

1.2. Literature Review of SemNA Methods Applied to Individual Student During-Learning Data 

and Related to a Learning Outcome 

Network analysis broadly defined looks at people/ideas, how they are connected to each 

other in a network, and how properties of the network can affect various human activities. Social 

network analysis focuses on how people are connected (e.g., by collaborating, conversing, 

helping, and so on), the properties of those social networks, and how network properties affect 

the people in the network. Another network analysis method, semantic network analysis 

(SemNA), focuses on verbal data, how ideas are connected to each other (e.g., by co-occurrences 

of terms, by verbs, by repetitions), and what the structure of the knowledge can reveal about the 

people who produced the verbal data. In this literature review, we focus on a subset of SemNA 

approaches that would be applicable to relating the measured characteristics of student products 

to what the student learned (see Figure 2). Therefore, we sought SemNA studies reporting on 

analyses of metrics applied to individual people’s products (not only the products of a whole 

class), where the focus was on the content of the student product rather than the social spread of 
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ideas, where content knowledge was measured rather than smaller units such as oral vocabulary 

words, and where network properties were related to a learning outcome such as a test score, 

grade, level of expertise, questionnaire score, and so on. Note that in all cases, scientifically 

accurate information (nouns) was included in the semantic networks to which SemNA metrics 

were applied.  

 

Fig. 2   Schematic of verbal during-learning data at individual level related to learning 

outcomes. Note: The references are examples of excluded studies 

The purpose of this literature review is twofold: first, our purpose is to share a technique 

that others have applied so that we can document the work of scholars who have discovered how 

to do SemNA with individual student products. Our second purpose is to document which of 

dozens of existing network metrics have been shown in at least 2 studies to relate to learning 

when individuals’ knowledge networks are analyzed. Note that different SemNA metrics can 

capture quite similar phenomena, so results from different SemNA metrics might be quite similar 

(Morrison et al., 2022). A metric used in only one SemNA study was judged to be too 

idiosyncratic to warrant applying it to our think-aloud data. Our review seeks to characterize a 

very disconnected literature, one where few of the studies we identified cited more than 2 other 
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studies we identified, and where very different terminology was used to describe similar SemNA 

techniques.  

The starting point of our search was Siew’s (2022) review, in which she advocated for 

more SemNA in education research. From the candidate articles she cited, we searched by 

keywords (e.g., “Network Analysis” as a subject term in the ERIC and Academic Search 

Ultimate databases), author names, and cited article searches for published papers and 

conference proceedings that fit the criteria above and identified 32 empirical studies applying 

SemNA to individual data with learning outcomes (see Supplementary Table 1 for the complete 

list of studies, details of samples, tasks, and research design, and which metrics were used in 

them). Learning outcomes included researcher-scored posttests, participants’ categorization as 

novices vs. experts, changes in the semantic network before vs. after instruction, scores on 

standardized questionnaires, assignment or course grades, or performance on a real-life task. 

These 32 studies spanned driving safety (Salmon et al., 2013), health and mental health 

learning (e.g., causes of obesity, Frerichs et al., 2018); mindfulness meditation (Pokorny et al 

2018), learning to become an entrepreneur (Laukkanen, 2023), introductory psychology (Siew, 

2019), as well as mathematics (e.g., concepts of triangles; Haiyue & Yoong, 2010), science (e.g., 

chemistry, Podschuweit & Bernholt, 2020; physics, Bodin, 2012), and other typical school 

subjects. In addition to introducing each metric in the following review, we reiterate how each 

metric would be expected to relate to scientific understanding for students with a better 

understanding of science in the KI framework. 

Note that metrics are not statistics, they are more like a measure or a way of 

quantitatively measuring characteristics of a node or network; they are not tested against any 

underlying distribution so they are not ‘significant’ or ‘non-significant’ in and of themselves. 
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1.2.1. Nodes 

Each idea in a network is called a node (these are represented as circles in an example 

plot shown in Figure 3). In the literature, number of nodes correlated positively with 

achievement (Freedman et al., 2024, Study 1; Hoppe et al., 2012; Kim, 2024; Wei & Yue, 2016). 

Experts included more nodes in their concept maps than did novices (Gogus et al., 2009; Kapuza 

et al., 2020; Smith & Parrott, 2013; Wagner, et al., 2020; Wagner & Priemer, 2023). Number of 

nodes significantly increased over time (Ifenthaler et al., 2011; Laukkanen, 2023) and after 

instruction (Bodin, 2012; Dauer et al., 2019; Frerichs et al., 2018; Giabbanelli & Tawfik, 2021; 

Kapuza et al., 2020; Kim & McCarthy, 2021a). However, null results were found for number of 

nodes by Gobbo and Chi (1986), Kim and McCarthy (2021b), Podschuweit and Bernholt (2020), 

Siew (2019), and Zhou et al. (2015). 

 
# of Nodes = 14 
# of Edges = 23 
In-Degree for Antibody = 5 
Out-Degree for Antibody = 3  
In-Degree for Histamine = 1 
Out-Degree for Histamine = 0 
In-Degree for Phagocytes = 2 
Out-Degree for Phagocytes = 1 
Diameter. = 5 
Mean distance. = 2.17 
Components = 2 
Density = .13 
Centralization degree = .23 
LCC Percent = .86 
 

Fig. 3  Sample plot of a network with its accompanying metrics  

In 15 of 21 studies we identified that used the number of nodes metric, that metric was 

positively related to a learning outcome. Note that non-significant results could be due to a true 

absence of a relation in the population, using an overly-small sample size, or other characteristics 

of the research (e.g., learner-task match, poor fidelity of intervention). Therefore any single 
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instance of non-significance summarized here needs to be considered in context. In the KI 

framework, one would expect that more nodes may be found among students with a better 

understanding of science, provided those nodes are also densely connected.  

1.2.2. Edges 

The raw count of connections between nodes is referred to as the number of edges (these 

are represented as arrows in an example plot in Figure 3). In the literature, number of edges was 

positively correlated with achievement (Freedman et al., 2024, Study 1), Guerra et al., 2015; 

Hoppe et al., 2012; Wei & Yue, 2016; Yang et al., 2018; Zhou et al., 2015). Experts included 

more edges than did novices (Gogus et al., 2009), and more knowledgeable participants included 

more edges (Gobbo & Chi, 1986). Number of edges significantly increased over time 

(Laukkanen, 2023) and after instruction (Bodin, 2012; Dauer et al., 2019; Frerichs et al., 2018; 

Giabbanelli & Tawfik, 2021; Kim & McCarthy, 2021a). Null results were reported in Freedman 

et al. (2024, Study 2) and Kim and McCarthy (2021b). In 14 of 16 studies we identified that used 

the number of edges metric, that metric was positively related to a learning outcome. In the KI 

framework, where interconnectedness linking information is key, one would expect the number 

of edges to be positively associated with learning outcome. 

1.2.3. Edges/Nodes Ratio, Average Degree 

Raw count of edges is by definition always related to number of nodes, so an edge/nodes 

ratio (called average degree) can correct for this inflation when there are more nodes. Average 

degree is positively correlated with achievement (Freedman et al., 2024, Study 1; Hähnlein & 

Pirnay‑Dummer, 2024; Hoppe et al., 2012; Ifenthaler et al., 2011; Kapuza et al., 2020; Kim, 

2024; Wei & Yue, 2016; Yang et al., 2017, 2018). Experts have higher average degree than 

novices (Kapuza et al., 2020). Average degree is higher with intervention (Giabbanelli & 

Tawfik, 2021; Kim & McCarthy, 2021a; Lehmann et al., 2020). Null results were reported by 
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Freedman et al. (2024, Study 2), Guerra et al. (2015), Kim and McCarthy (2021b), and in some 

samples by Wei and Yue (2016). In 11 of 14 studies we identified that used average degree, that 

metric was positively related to a learning outcome. Similarly, in the KI framework, networks 

are expected to be both include more nodes and densely-connected nodes (i.e., more edges) for 

students with a better understanding of science. 

1.2.4. Node-Level Metrics: Node Degree Centrality. 

At the level of a single node, some nodes might be more connected than other nodes in a 

network, so certain conceptually ‘key’ nodes might have higher degree centrality (a count of all 

edges for each node). Certain key nodes had higher degree centrality for higher-scoring or 

higher-achieving students (Freedman et al., 2024, Study 1 and Study 2), Haiyue & Yoong, 2010; 

Hecking et al., 2017; Kubsch et al., 2019; Schwendimann, 2014; Wei & Yue, 2016; Yang et al., 

2018). Degree centrality was higher for experts than novices (Gogus et al., 2009; Salmon et al., 

2013) and was higher for high-knowledge participants (Gobbo & Chi, 1986; Smith & Parrott, 

2013). Degree centrality increased over time (Laukkanen, 2023) and was highest for instructed 

vs. uninstructed concepts in intervention (Daems et al., 2014). However, degree centrality 

sometimes showed no relation with achievement (Wei & Yue, 2016) and showed both increases 

and decreases after intervention (Dauer et al., 2019). In 12 of 15 studies we identified that used 

average degree, that metric was positively related to a learning outcome. The KI framework 

anticipates students with a better understanding of science to have fewer isolated concepts, 

highly densely linked knowledge, and to include key concepts in the network, thus associating 

learning outcomes with higher degree centrality from during-learning networks. 

1.2.5. Betweenness centrality 

Certain nodes may sit between specific other pairs of nodes, just as a person in a social 

network could serve as a marriage broker or a conduit for news. Betweenness centrality captures 
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the extent that a node links a pair of other nodes, whether the edges are one-way (directed) or are 

undirected connections such as co-occurrence of words. Betweenness is positively correlated 

with concept map scores (Freedman et al., 2024, Study 2, but not Study 1), and experts show 

higher betweenness for key concepts compared to novices (Wagner et al., 2020; Wagner & 

Priemer, 2023). Betweenness centrality was highest for terms that cut across 3 instructed 

concepts in an intervention (Daems, 2014). In 4 of 5 studies we identified that used betweenness 

centrality, that metric was positively related to a learning outcome. Causal relationships linking 

concepts are an important aspect of the KI framework, and causal chains in network graphs 

would increase betweenness centrality. The KI framework also suggests densely connected 

networks, which tend to have higher betweenness centrality.  

1.2.6. PageRank Centrality 

This metric has been key for the dominance of Google as a search engine and quantifies 

how much neighboring ‘pages’ are linked to other ‘pages’. In a social network, two of one’s own 

friends may be friends with each other, forming triads in the network. PageRank centrality will 

be high when there are many triads, but can be zero if there are no triads in the network. 

PageRank centrality increases for key nodes after instruction (Bodin, 2012). Pokorny et al. 

(2018), by contrast, found higher PageRank centrality for nodes related to a well-being 

questionnaire corresponded to lower questionnaire scores. In both of the studies we identified 

that used betweenness centrality, that metric was significantly related to a learning outcome but 

it was positive in once case and negative in another. Densely connected networks anticipated in 

the KI framework are more likely to include more triads of connected ideas; thus, PageRank 

centrality should be higher for students with a better understanding of science. 

In summary, in 58 of 72 tests (81%), the node-level metrics (number of nodes, number of 

edges, edge/node ratio, and two centrality scores for key nodes [degree and betweenness]) show 
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a pattern of positive relations to desirable educational outcomes. This is largely consistent with 

patterns in social network analysis though in semantic networks high-centrality nodes might not 

represent key people or ideas, but rather ideas that connect different topics that were instructed.  

1.2.7. Network-Level Metrics: Diameter 

Network diameter represents the longest path required to traverse the entire network. A 

shorter diameter is better in a social network and a longer diameter should be better in a 

knowledge network. Longer network diameter is associated with better achievement (Wei & 

Yue, 2016). Network diameter increases over time (Ifenthaler et al., 2011). Experts have 

sometimes been found to have a larger network diameter (Wagner et al., 2020), no difference 

(Wagner & Priemer, 2023), or a smaller network diameter (Salmon et al., 2013) than novices. 

Diameter increases with instruction (Giabbanelli & Tawfik, 2021). Null results were reported by 

Guerra et al. (2015) and by Kim and McCarthy (2021a, 2021b). In 6 of 9 studies we identified 

that used diameter, that metric was significantly related to a learning outcome, but in one case 

(expert and novice drivers) that relation was negative. Possibly this shows that novice drivers 

over-complicate the factors involved in the task—driving safely at grade-level railroad 

crossings—and hence produce longer causal chains when shorter once would be better. In the KI 

framework, graphs are expected to be highly dense for students with a better understanding of 

science, and densely connected networks should have higher diameters as there are fewer 

isolated, unconnected ideas.  

1.2.8. Network density 

Network density captures how interconnected all nodes are in a network, compared to a 

network with all possible interconnections. In some social networks every person could be 

connected to all other people, but in knowledge networks information might be locally 

interconnected or there can be long linear causal chains with (appropriately) few 
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interconnections with nodes off that chain. Density is mostly positively related to achievement 

(Kubsch et al., 2019; Schwendimann, 2014; Yang et al., 2017), but a negative correlation was 

found by Freedman et al. (2024, Study 1). Experts have more dense networks than novices 

(Salmon et al., 2013). Density increases with instruction (Frerichs et al., 2018; Kim & McCarthy, 

2021a, 2021b; Schwendimann, 2014). Null results were reported by Freedman et al. (2024, Study 

2), Guerra et al. (2015) and Jamieson (2012). In 8 of 13 studies we identified that used density, 

that metric was positively related to a learning outcome. As previously mentioned, high density 

is expected for students with a good understanding of science based on the KI framework. 

1.2.9. Mean distance 

Mean distance captures the average number of nodes that can be traversed out from each 

node in the network. Longer mean distance is associated with higher quiz scores (Siew, 2019) 

and course grade (Guerra et al., 2015), but shorter mean distance is associated with higher 

concept map scores (Freedman et al., 2024, Study 1). Mean distance increases with instruction 

(Giabbanelli & Tawfik, 2021). Null results were found by Freedman et al. (2024, Study 2) and 

Kim and McCarthy (2021a, 2021b). In 3 of 6 studies we identified that used mean distance, that 

metric was positively related to a learning outcome. In a social network, a short mean distance is 

ideal, but in a knowledge network, a longer mean distance should result if there are long causal 

chains. In the KI framework, few isolates and well-connected networks are expected, and thus 

mean distance should be higher in general. However, one could expect that the domain being 

studied may determine the importance of mean distance (for example, biology learners read and 

hear about long causal chains when learning about biochemical processes; language learners may 

read about and hear smaller chains linking vocabulary words to definitions).  

1.2.10. Network centralization 
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Network centralization is related to the standard deviation of the number of edges per 

node, across the whole network. High centrality means there is a single center of the whole 

network. Kim (2024) found that higher-comprehending participants had higher centralization on 

their concept maps. Kim and McCarthy (2021b) found that experts had lower centralization than 

novices, and also that in a writing course, centralization decreased over the semester. Wei et al. 

(2024) found higher delayed-posttest scores for a high-centralization concept map condition 

compared to a lower-centralization summary writing condition. However, Clariana et al. (2013) 

found no significant difference in network centralization between two different concept map 

conditions. In 3 of 4 studies we identified that used centralization, that metric was significantly 

related to a learning outcome, but with contradictory results (i.e., whether lower or higher 

centralization was found to be better). As previously stated, based on the KI framework we 

expect students with a better understanding of science to capture key ideas, thus we expect 

higher centralization would lead to better outcomes. 

1.2.11. Number of clusters/components 

The number of clusters (a.k.a. components), where each cluster is an interconnected 

network completely separate from all other clusters, should be an index of fragmentation or 

isolation, either of subgroups of people or of ideas. Yang et al. (2017; 2018) found that higher-

achieving students had fewer clusters. Wagner and Priemer (2023) found that experts had fewer 

clusters in their concept maps than novices. However, Ifenthaler et al. (2011) found an increase 

in the number of clusters over a semester. In 3 of 4 studies we identified that used number of 

components, that metric was negatively related to a learning outcome (i.e., fewer clusters is 

better). One possible explanation for the number of clusters increasing in Ifenthaler et al. is that 

students first add disconnected knowledge when they learn new facts, and it tends to become 



 
17 

 

interconnected only later. Based on the KI framework we expect a negative relation for this 

metric with science understanding, as high cluster count indicates more isolated information. 

1.2.12. Largest Connected Component (LCC) 

In many networks that have multiple components, there is one component that is much 

larger than the others. The LCC metrics concern the number of nodes in such a component; the 

LCC proportion captures the number of nodes in the LCC as a percent of all nodes in the 

network. Yang et al. (2017), and Yang et al. (2018) both found that larger LCC% was associated 

with achievement. However, Siew (2019) found no relation between LCC proportion in students’ 

networks and their subsequent quiz scores. In 2 of 3 studies we identified that used LCC 

proportion, that metric was positively related to a learning outcome. Similarly, based on the KI 

framework, it is expected that most nodes for students with a better understanding of science 

would be part of a single, well-connected component, yielding a high LCC%. 

Overall, the majority of tests of network metrics in the studies reviewed (25 of 39 tests; 

64%) were significantly related to learning outcomes. Greater longest or mean distance, graph 

density, and LCC proportion are related to better learning, but graph centralization and number 

of components show mixed effects. In sum, the majority of studies reviewed suggest that larger 

and more strongly interconnected semantic knowledge networks having longer causal chains 

relate positively to better learning outcomes. 

One consideration in choosing metrics is the co-occurrence of these metrics across this 

small literature. Across 36 studies we identified, number of nodes was used together with 

number of edges 13 times, with average degree 8 times, and with degree centrality and diameter 

7 times each. Number of edges was used together with average degree 8 times and degree 

centrality 6 times. Diameter was used together with average degree 6 times. Other than these, 

there were no pairs of metrics used in common across studies in more than 5 out of 36 studies. 
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Node-level count metrics (number of nodes or edges and their ratio) tended to be used together 

with each other, and also together with degree centrality or diameter.   

In sum, this literature review suggests that analyzing the content, and not just the 

‘moves,’ revealed in verbal during-learning data such as think-alouds should have some 

explanatory power for posttest scores. We therefore applied SemNA metrics to three think-aloud 

data sets and tested the relation of these metrics to post-reading comprehension.  

2. The current studies—overview, data processing, and data analysis 

The main research question for the current studies was: How strong are the associations 

between during-reading knowledge structure characteristics measured in think-aloud data and 

post-reading comprehension? To answer this question, we applied network analysis (NA) metrics 

from literature to think-aloud data by re-analyzing three extant data sets. Study 1 reports on 

analyses of NA metrics applied to think-aloud data on a long textbook excerpt published in 

Cromley et al. (2020); study 2 reports on analyses of NA metrics applied to think-aloud data on 

two complementary 4-text sets using a within-subjects design published in Cromley et al. (2021). 

In all studies, participants provided informed consent and agreed to be audio recorded while 

thinking aloud (see below for details). Think-aloud directions neither listed nor modeled any 

reading strategies, and prompts comprised only “Say what you’re thinking” or “Say what you’re 

doing.” 

For all three data sets, audio recordings were transcribed verbatim, and after reading 

through the transcripts a master list of directed propositions (labeled Subject = Source, Verb, and 

Object = Target) was created using a common set of terms (see Supplementary Table 2 and a 

publicly-available how-to guide at https://hdl.handle.net/2142/121704). We then tallied 

propositions that students picked up on, defined as propositions that were included in any 

verbalization of passage content that was not reading or re-reading.  

https://hdl.handle.net/2142/121704
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We then applied the 12 NA metrics identified from the literature review above to each 

participant’s propositional network (see Supplementary Table 3 for R code using the igraph 

package). We then used Pearson correlations on rankit transformed data (Bishara & Hittner, 

2012) to analyze the relation between each of these metrics and participant posttest 

comprehension score. 

3. Study 1 

3.1. Method 

Study 1 is a re-analysis of think-aloud data from Cromley et al. (2020); please see that 

publication for more detail about the study.  

3.1.1 Participants 

Participants were 77 of the original 86 undergraduate biology course participants reported 

in Cromley et al. (2020); we selected participants who read three sequential pages from the 

original reading packet on the immune system. These participants did not differ from the sample 

in Cromley et al. by race, sex, or first-generation college status, but they had more recently 

completed the course we recruited from and had lower ACT reading and mathematics scores. 

They had a mean age of 20.1 (SD = 1.2), were 30% sophomores, 64% juniors, 5% seniors, and 

1% post-baccalaureate. On average they had taken the introductory biology course 2.7 semesters 

(SD = 1.3) before participating. Seventy percent self-identified as female, 51% self-identified as 

White, 36% Asian, 4% Latine, and 9% of mixed or other race. Twenty-two percent had neither 

parent with a Bachelor’s degree. Mean ACT reading scores were 30.1 (SD = 3.6) and mean ACT 

math scores were 30.9 (SD = 3.4). 

3.1.2. Materials and procedure 

In an individual session in our laboratory in Fall, 2016, participants gave informed 

consent including consent to be audiotaped and were asked to learn as much as they could from a 
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set of provided textbook passages in pdf format in 40 minutes. The three consecutive textbook 

passages concerned mast cell immune response, the steps from antigen recognition to cytokine 

production inside cells, and antibody structure and function, and were taken in sequence from an 

introductory undergraduate biology textbook (Sadava et al., 2012). 

Participants were given task instructions to think aloud while learning and were given 

paper and pen to take notes with the instruction: “if that is what you usually do when you are 

studying by yourself from your textbooks.” After they were done reading, any notes were 

collected, and the audio recording was stopped, they were taken to another room and asked to 

type in a Word document everything they remembered from the text. Demographics were 

collected, and the process for payment of $35 compensation was explained. 

3.1.4. Tallying propositions 

Before tallying propositions from each set of think-aloud protocols, we read through all 

transcripts for participant content-related utterances that were not re-reading. The original 

transcripts had been formatted using italics for segments read (or re-read) from the text, and our 

focus was on other participant verbalizations related to the text set, either from text or diagram. 

Content-related verbalizations that we tallied were mostly in subject-verb-object form 

(noun/noun phrase followed by verb/verb phrase, followed by another noun/noun phrase), but 

lists of nouns—called isolates in SemNA—were also tallied to be consistent with KI theory. 

Only factually accurate verbalized propositions related to the text sets were tallied, but all 

legitimate synonyms were considered factually accurate (e.g., ‘phagocytes gobble up the germs’ 

for ‘phagocytes engulf pathogens’). If a participant first verbalized an isolated fact but later 

connected the fact in a proposition within the same page (of the 4 pages in each text set), we 

tallied the proposition rather than the isolate. Non-content verbalizations that were not tallied 

included, for example, metacognitive monitoring, evaluating quality of text or figure, or noticing 
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that there is more text or that there is a figure. Figure 4 shows a sample portion of one transcript 

with the tallied propositions. As can be seen in this figure, tallying was overall a low-inference 

process.  

The allergen binds to IgE on a mast cell. Mast 
cells quickly release histamine, resulting in 
an allergic reaction.  
Ok.  
[Figure 2. An Allergic Reaction.] An allergen 
is an antigen that stimulates B cells to make 
large amounts of IgE antibodies, which bind 
to mast cells and basophils. When the body 
encounters the allergen grain, these cells 
produce large amounts of histamine, which 
have harmful physiological effects. 
[5:08] Alright. So this is about how allergens 
bind to B cells, then B cells clone of, this 
causes a clone of the plasma cells to form. So 
B cells get formed because there are multiple 
IgE antibodies and those antibodies are then 
connecting to the mast cell onto its receptors. 
And once the receptors connect to the 
antibodies, then the mast cell releases a lot of 
histamine 

 
 
 
 
 
 
 
 
 
 
 
Antigen binds Bcell 
 
 
 
Ab binds MastCell 
 
 
MastCell releases histamine 
 

Fig. 4 Sample portion of one transcript (left) with the tallied propositions (right) 

Note: reading/rereading is shown in Italics and participant verbalizations are shown in plain text. 

We used an iterative process to make the master list of propositions to tally from 

participant verbalizations by first making a list without tallying for any participant. We then 

began tallying propositions for participants, adding any new propositions to the master list. We 

continued this process, adding any new propositions, until we had created the master lists shown 

in Supplementary Table 2. The mean number of propositions tallied per participant was 28.7 (SD 

= 9.8).  

3.1.5. Posttest scoring 

In addition to detailed scoring of posttests explained in Cromley et al. (2020), the typed 

post-reading recalls were scored using researcher-developed concept maps that gave central 
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concepts more credit (2 points) than supporting facts (1 point). All posttests were scored 

independently by two researchers. 

3.1.6. Data analysis—choice of nodes for node-specific metrics  

Inspection of the graphs and comparisons among a few each of high-scoring, medium-

scoring, and low-scoring participants suggested we should systematically calculate node-level 

metrics for 3 terms: bacterium, cytokine, and phagocytes (note that these are the exact spellings 

we used). Not only did the node-level metrics suggest these 3 terms might be associated with 

learning, but they are conceptually important in the biology content covered in the text (bacteria 

trigger immune system cells to make cytokines which signal phagocytes [also immune system 

cells] which destroy bacteria) and they serve as the concepts which link the three passages. 

3.2. Results 

The main results of interest for Study 1 (as well as results for both Study 2 data sets) are 

shown in Table 2. The complete table of correlations, median and interquartile range across all 

metrics is found in Supplementary Table 4. Results of exploratory regressions are found in 

Supplementary Table 5. 

Table 2 

Pearson correlations with posttest comprehension by NA metric across all 3 data sets 

Data set 
NA Metric 

Study 1 Study 2 
AH 

Study 2 
TC 

Number of nodes .51* .39* .43* 
Number of edges .45* .50* .47* 
Edge/node ratio .41* .43* .23 

  
Indegree Bacterium: .25* 

Cytokine: .38* 
Phagocytes: .33* 

Antibody: .72* 
Histamine: .26 
Mast cells:  .39* 

Antigen: .44* 
MHCs: .n.c. 

TCR: .31 
  

Outdegree Bacterium: .20 
Cytokine: .29* 

Phagocytes: .26* 

Antibody: .41* 
Histamine: .23 
Mast cells:  .33* 

Antigen: .47* 
MHCs: .47* 

TCR: .32 
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Data set 
NA Metric 

Study 1 Study 2 
AH 

Study 2 
TC 

  
Betweenness Bacterium: .28* 

Cytokine: .33* 
Phagocytes: .27* 

Antibody: .49* 
Histamine: .34* 
Mast cells:  .49* 

Antigen: .49* 
MHCs: . n.c. 

TCR: .52* 
  

PageRank Bacterium: .03 
Cytokine: .07 

Phagocytes: .17 

Antibody: .56* 
Histamine: .08 

Mast cells:  -.22 

Antigen: .29 
MHCs: -.23 

TCR: .03 
  

Density -.34* .10 -.16 
Number of clusters -.02 -.34 .04 
LCC as % .15 .37* .27 
Centralization degree -.10 .05 .05 
Mean distance .41* .42* .53* 
Diameter .39* .39* .57* 
Note: All reported correlations used the RANKIT percentile transformation (Bishara & Hittner, 
2012), * indicates statistically significant at p < .05, LCC as % indicates number nodes in 
Largest Connected Component as percent of all nodes, n.c. indicates not calculable because 
specific edges were not present in the data set. 
  

3.3. Brief discussion 

Results for the NA metrics with comprehension of these 3-passage think-alouds were 

very consistent with significant findings in prior SemNA research on verbal data and were 

consistent with the KI framework for number of nodes, number of edges, and the edge/node 

ratio. Picking up more facts during learning and making more connections among them—even  

when controlling for the number of facts picked up via the average degree metric—yields 

significantly better post-reading comprehension scores.  

Centrality results for comprehension on these think-alouds for the 3 key nodes—

bacterium, cytokine, and phagocytes—were also quite consistent with prior SemNA research and 

were consistent with the KI framework for in-degree (causes of), outdegree (effects of; except 

for bacterium) and betweenness. However, results for PageRank centrality were non-significant; 

one possible explanation is the lack of triples (AB, AC, BC [or CB]) seen in the plots 
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from this data set. Also, results for PageRank centrality were inconsistent in the two published 

studies we found (positive in Bodin, 2012 and negative in Pokorny et al., 2018). Picking up on 

more causes of and effects of key ideas in the text during learning is associated with better 

posttest comprehension. During-learning linking from and to (i.e., betweenness) key terms that 

connect the sequential passages is associated with better posttest comprehension. 

Network-level results for comprehension on these think-alouds were very consistent for 

diameter and mean distance (correlated r ~ .9 with each other) with significant findings in prior 

SemNA research and were consistent with the KI framework. Verbalizing longer causal chains 

during learning—weather measured as the single longest chain in the entire network or the 

average chain length in the network—is associated with better posttest comprehension. 

For this data set, network-level results for comprehension on these think-alouds were 

somewhat inconsistent for density, number of clusters, LCC as a percent of nodes, and 

centralization degree with findings in prior SemNA research and were somewhat inconsistent 

with the KI framework. We found density negatively related to posttest comprehension, whereas 

prior research had found positive relations, and KI research had found increases from pre- to 

posttest. We believe this is due to density being highly negatively correlated with number of 

nodes. This is negatively correlated because very small networks do tend to be more 

interconnected relative to the possible number of interconnections. We found no significant 

relation to posttest score for number of clusters, LCC as percent of nodes or for centralization 

degree. When there are many clusters, when the largest component captures a higher percent of 

all nodes, and when there is a larger SD for the number of edges per node, these are unrelated to 

posttest scores.  

4. Study 2 

4.1. Method 
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Study 2 is a re-analysis of think-aloud data from Cromley et al. (2021); please see that 

publication for more detail about the study.  

4.1.1 Participants 

Thirty undergraduate participants were recruited in fall 2018 after completing one of two 

introductory biology courses at a single US university. The majority were in their sophomore 

year (77%) and identified as female (80%). They were recruited via email and were compensated 

with a $35 gift card for participation.  

4.1.2. Materials and procedure 

The illustrated reading materials consisted of two 4-page text sets on the immune system, 

one of which described allergic hypersensitivity (AH) and the other the structure and function of 

t cell receptors (TC). The 4 pages within each set each came from a separate, reputable web or 

textbook source, and included overlapping, complementary information. None of the texts were 

the same as in Study 1, though there was substantial overlapping content between Study 1 and 

Study 2 texts. Each page had text on the left and one figure on the top right of the pdf page 

presented on a computer. Order of administration of the two text sets was counterbalanced across 

participants, but no differences were found for order of reading.  

After consenting, participants were given think-aloud directions and were asked to read 

for the purpose of explaining the topic of the 4-page text set “as if you were explaining it to a 

peer.” They were told they could read and think aloud about the 4 pages in any order and switch 

among pages as much as they wished. They were told that after the text was removed they would 

provide an oral explanation and a drawn explanation, which could be done simultaneously. No 

during-reading note-taking materials were provided. Participants read the first text set, provided 

their oral and drawn explanation of it, read the second text set, provided their oral and drawn 
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explanation of it, and finally completed a demographics form. The entire session took about 1 

hour. 

4.1.4. Tallying propositions 

Using the same procedures described for Study 1, we tallied from the think-aloud 

transcript each proposition the participant picked up on. The mean number of propositions per 

participant for AH was 10.0 (SD = 2.9) and for TC was 16.4 (SD = 6.3).  

4.1.5. Posttest scoring 

We typed up oral explanations for AH and TC to score these post-reading explanations. 

As explained in Cromley et al. (2021), we created a list of elements and relations for AH, then 

tallied the number of drawn AH elements, drawn AH relations, oral explanation AH elements 

and oral explanation AH relations. These 4 counts for AH were then z scored and combined into 

a single Principal Components score. We similarly created a list of elements and relations for 

TC, then tallied the number of drawn and oral explanation elements and relations. These 4 counts 

for TC were then z scored and combined in the same way using PCA. All posttest data were 

scored independently by two researchers. 

4.1.6. Data analysis—choice of nodes for node-specific metrics  

AH: Inspection of the graphs and comparisons among a subset of participants suggested 

we should calculate node-level metrics for 3 AH-specific terms: antibody, histamine, and Mast 

cell (note that these are the exact spellings we used). Not only did the node-level metrics suggest 

these 3 terms might be associated with learning, but they are conceptually important in the text 

set (mast cells are first responders to allergens, mast cells release histamine and also signal B 

cells to create antibodies specific to allergen proteins). 

TC: Inspection of the graphs and comparisons among a subset of participants suggested 

we should calculate node-level metrics for 3 TC-specific terms: antigen, MHCs, and TCR (note 
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that these are the exact spellings we used). Not only did the node-level metrics suggest these 3 

terms might be associated with learning, but they are conceptually important in the text set (TCR 

[T cell receptors] recognize pathogenic or allergy-related antigen that is pushed to cell surfaces 

by the MHC molecule [Multiple Histocompatibility Complex]). 

4.2. Results 

The main results of interest for both Study 2 data sets are shown in Table 2. The complete 

tables of correlations, median and interquartile range across all metrics are found in 

Supplementary Table 4. Results of exploratory regressions are found in Supplementary Table 5. 

4.3. Brief discussion 

4.3.1. Text set AH 

Results for the NA metrics with comprehension of these 4-page AH think-alouds were 

very consistent with significant findings in prior SemNA research on verbal data and were 

consistent with the KI framework for number of nodes, number of edges, and the edge/node 

ratio. As in Study 1, picking up more facts during learning and making more connections among 

them—even when controlling for the number of facts picked up via the average degree metric—

yields better post-reading comprehension scores.  

Centrality results for comprehension on these think-alouds for the 3 key AH nodes—

antibody, histamine, and mast cells—were also quite consistent with prior SemNA research and 

were consistent with the KI framework for in-degree (causes of), outdegree (effects of; except 

for histamine) and betweenness. As in Study 1, results for PageRank centrality were mostly non-

significant for comprehension (PageRank for Antibody showed quite a large relation at r = .56*); 

we believe that the lack of triples—except for Antibody—explains this result. Picking up on 

more causes of and effects of key ideas in the text during learning is associated with better 

posttest comprehension. During-learning linking from and to (i.e., betweenness) key terms that 
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connect the information—and are repeated across the complementary text sets—is associated 

with better posttest comprehension. 

Network-level results for comprehension from these think-alouds in multiple 

complementary AH texts were very consistent for diameter and mean distance (correlated r ~ .9 

with each other as in Study 1) with significant findings in prior SemNA research and were 

consistent with the KI framework. Making longer causal chains during learning—weather 

measured as the single longest chain in the entire network or the average chain length in the 

network—is associated with better posttest comprehension. 

As in Study 1, network-level results for comprehension on these think-alouds from 

complementary AH texts were somewhat inconsistent for density, number of clusters, LCC as a 

percent of nodes, and centralization degree with findings in prior SemNA research and were 

somewhat inconsistent with the KI framework. We found density non-significantly related to 

posttest comprehension, whereas prior research had found positive relations, and KI research had 

found increases from pre- to posttest. Density in this data set is still negatively correlated with 

number of nodes but at r = .6. Again, this is negatively correlated because very small networks 

do tend to be more interconnected relative to the possible number of interconnections. We did 

not find a significant relation to posttest comprehension for number of clusters, but we did find a 

significant relation for LCC as percent of nodes. When reading the AH text set, having more 

nodes in the single largest connected cluster—but not having fewer clusters—is related to 

integrative comprehension. Centralization degree—a larger SD for the number of edges per 

node—is unrelated to integrative comprehension. 

4.3.2. Text set TC 

Results for the NA metrics with comprehension of these 4-page TC think-alouds were 

very consistent with significant findings in prior SemNA research on verbal data and quite 
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consistent with the KI framework for number of nodes, number of edges, but not for the 

edge/node ratio. As in Study 1 and Study 2 AH, picking up more facts during learning and 

making more connections among them—even when controlling for the number of facts picked 

up via the average degree metric—yields better post-reading comprehension scores.  

Centrality results for comprehension on these think-alouds for the 3 key TC nodes—

antigen, MHCs, and TCR—were somewhat consistent with prior SemNA research and were 

somewhat consistent with the KI framework for in-degree (causes of; Antigen only), outdegree 

(effects of; Antigen and MHCs) and betweenness (Antigen and TCR only). As found in Study 1 

and mostly in Study 2 AH, results for PageRank centrality were non-significant for 

comprehension; again, we believe that the lack of triples explains this result. Picking up on more 

causes of antigen and effects of antigen and MHCs—key ideas in the text—during learning is 

associated with better posttest comprehension. During-learning linking from and to (i.e., 

betweenness of) antigens and TCR, which are key terms that connect the information and are 

repeated across the complementary text sets is associated with better posttest comprehension. A 

possible explanation for finding fewer relations of centrality to comprehension in the TC set is 

the seeming structure focus of the text, which began with the first heading “Structure of the T 

cell receptor.” 

Network-level results for comprehension from these think-alouds in multiple 

complementary TC texts were very consistent for diameter and mean distance (weighted or 

unweighted; correlated r ~ .9 with each other as in Study 1 and Study 2 AH) with significant 

findings in prior SemNA research and were consistent with the KI framework. Making longer 

causal chains during learning—weather measured as the single longest chain in the entire 

network or the average chain length in the network—is associated with better posttest 

comprehension. 
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As in Study 1 and for the AH data set, network-level results for comprehension on these 

TC think-alouds were quite inconsistent for density, LCC as a percent of nodes, and 

centralization degree with findings in prior SemNA research and were somewhat inconsistent 

with the KI framework. We found density non-significantly related to posttest comprehension, 

whereas prior research had found positive relations, and KI research had found increases from 

pre- to posttest. Density in this data set is still negatively correlated with number of nodes but at 

r = -.8. Again, this is negatively correlated because very small networks do tend to be more 

interconnected relative to the possible number of interconnections. We did not find a significant 

relation to posttest score for number of clusters, LCC as percent of nodes, or for centralization 

degree. When reading the TC text set, having more clusters, having more nodes in the single 

largest connected cluster, or a larger SD for the number of edges per node is unrelated to posttest 

comprehension.  

5. Extended discussion 

How strong are the associations between during-reading knowledge structure 

characteristics measured in think-aloud data and post-reading comprehension? The answer 

depends on which knowledge structure characteristics as measured, as captured by different 

metrics. On the most-frequently used SemNA metrics from the literature and key elements of the 

KI framework—number of nodes, edges, and average degree—knowledge structure 

characteristics of our think-aloud data were significantly correlated with comprehension across 8 

of 9 tests—picking up on more nodes and more edges during reading was significantly related to 

comprehension in our larger data set from 3 sequential texts with a typed posttest and in both 

analyses of the smaller data sets (AH and TC) from 4-page complementary multiple texts with a 

drawn-and-oral-explanation integrative posttest. Results for the edge-node ratio were significant 

across the first two data sets. Consistent with a strong positive trend in the literature, it appears 
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that picking up more facts and connections during reading is associated with better post-reading 

comprehension, and researchers using think-alouds should consider this a useful metric. Based 

on two of three positive results for the edges/nodes metric, we also recommend its use for 

quantifying knowledge structures from think-aloud data.  

On the degree centrality metrics from the literature and key elements of the KI 

framework—in-degree, out-degree, betweenness, and PageRank centrality—we found largely 

consistent results in analyses of our think-aloud data. It should be kept in mind that the chosen 

nodes in our three data sets—and indeed across the literature we reviewed—are specific to a text. 

For in-degree, we found 6 significant correlations out of 8 that could be calculated for in-degree; 

picking up on the cause(s) of key ideas in the text is associated with better post-reading 

comprehension, again across the different samples, sample sizes, texts, and posttest measures we 

used. For out-degree, we found 6 significant correlations out of 9 that were calculated for in-

degree; picking up on the effect(s) of key ideas in the text is associated with better post-reading 

comprehension, again across the specific samples, sample sizes, texts, and posttest measures we 

used. For betweenness, we found 8 significant correlations out of 8 that could be calculated for 

betweenness; picking up on both cause(s) and effect(s) of key ideas in the text is associated with 

better post-reading comprehension, again across the specific samples, sample sizes, texts, and 

posttest measures we used. By contrast, PageRank centrality was only significant for 1 of 9 

correlations we tested. One basis of these patterns of findings, we recommend that researchers 

who want to quantify knowledge structures from think-alouds should consider in-degree, out-

degree, and betweenness to be useful metrics. PageRank might be a useful metric for analyzing 

semantic networks that have high inter-connectedness, such as might be found with end-of-year 

data tapping small numbers of nodes. 
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On the mean distance and diameter metrics from the literature and key elements of the KI 

framework we found completely consistent results in analyses of our think-aloud data. We also 

found the expected high correlation between mean distance and diameter (r ~ .9) in all data sets. 

We found 12 of 12 correlations for mean distance and diameter with comprehension were 

statistically significant, and these ranged from .39 to .67, which would be considered medium-

large to large for education research (Cohen, 1988). Beyond linking pairs of nodes, making long 

chains of nodes is associated with better posttest comprehension. Interestingly, this is the 

opposite pattern from a ‘good’ social network, in which short mean distance and short diameter 

are associated with effective social networks (Watts & Strogatz, 1998). 

On the other network-level metrics from the literature, one of which has been tested in 

the KI framework, we found almost no significant results in analyses of our think-aloud data. 

Density was negatively significantly correlated with comprehension in Study 1, and non-

significant for both Study 2 data sets. Number of clusters was not significantly correlated with 

comprehension in any of our 3 data sets. Largest connected component nodes as a percent of all 

nodes was positively significantly correlated with comprehension in Study 2 for the AH text set 

only, and non-significant for the other two data sets. Centralization degree—a measure of the SD 

of node degree—was non-significant for all three data sets. On this basis, we cannot strongly 

recommend these metrics for quantifying knowledge structures from think-aloud data, although 

the prevalence of edge density in the literature (9 articles in our review) might support its use by 

researchers applying NA to think-aloud data.  

Several aspects of the findings appear to be driven by the specific texts that we gave these 

specific students. First, the importance of betweenness centrality for specific nodes appears to be 

driven simultaneously by the conceptual importance of these concepts in all three data sets, but 

also in Study 1 because these specific terms links the 3 textbook subsections. For example, in the 
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first passage a splinter is shown bringing bacteria into the body and via a sequence of signals the 

phagocytes produce cytokines, in the second passage bacteria active the CD14 receptor on a T 

cell and through a long chain of reactions cytokines are produced, and in the third passage 

bacteria attach to the variable segments on the short arms of an antibody molecule(s). Likewise, 

the Antibody node in our master list of propositions from Study 2 AH had the highest PageRank 

score of all 9 focal nodes across the 3 data sets when we analyzed the master list; this suggests 

that nodes in the original text that are connected in more triads could possibly be associated with 

participant PageRank scores being related to comprehension, compared to nodes in the original 

text that are involved in few triads. Density also may depend on the nature of the content being 

learned and how it is represented in the texts/stimuli, since long causal chains with few inter-

connections yield lower density networks.  

Second, compared to an immunologist, we knew these undergraduate students were 

relative novices. Therefore, we would expect a much less interconnected network (a sparser 

network) than we would expect from an expert, e.g., the Study 1 text uses macrophages and 

monocytes as examples of white blood cells, but an expert would know that these two are further 

connected with each other because monocytes are found in the bloodstream and later mature into 

macrophages in tissue. Thus, sparse networks are to be expected with novices upon one reading 

of a textbook excerpt and this leads to certain features of our results (e.g., low density metrics). 

Third, because the texts are aimed at undergraduates taking an introductory biology course, they 

present a level of detail that the authors believe is appropriate for novices. One could argue that 

the texts were impoverished (e.g., density = .054, .090, and .044 across the three master lists) and 

hence student knowledge networks were impoverished, but we reason that a novice would be 

overwhelmed by introductory text that has the level of detail that an expert would develop over 

decades of scientific practice. Among these participants, variability in student networks was 
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significantly related to posttest comprehension for the majority of correlations, showing that 

even in this introductory text, some biology students extracted richer knowledge networks and 

scored better on posttest comprehension whereas others extracted very sparse networks and 

scored worse. 

Thus, researchers applying SemNA to think-aloud data should expect the results to be 

somewhat specific to the learning materials, the task (after reading a passage, after a 5-week 

intervention unit, after a whole year of instruction?), and the expertise level of the participants. 

5.1. Limitations 

Our three data sets all came from undergraduate students, reading biology text about the 

immune system. Future work should consider whether think-aloud protocols can be fruitfully 

analyzed with SemNA metrics across a much wider range of topics and participants. In addition, 

posttests for all 3 data sets were collected immediately after completing the think-aloud on the 

text; in future studies the posttest should be collected after a longer delay to determine how long 

memory for picked-up information might last.  

We used only one theory to drive our use of SemNA metrics, but other researchers 

analyzing during-learning data could, for example, use Expertise theory (e.g., Ericsson et al., 

2018) for analyzing verbal data or eye tracking data or could use the Information Foraging model 

(e.g., Pirolli & Card, 1999) for analyzing eye tracking or other transition data (e.g., moving 

through a game or museum exhibit or a sequence of tool use in a virtual or physical 

environment). 

For the purpose of SemNA, Expertise theory focuses on amount of knowledge (nodes) 

and interconnectedness of knowledge (edges), and also how knowledge is structured around key 

principles of a domain, such as Newton’s laws for knowledge about kinematics (Chi et al., 

1981). This would have implications for centrality of those conceptually key principles in expert 
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versus novice networks. The Information Foraging (IF) model (Pirolli & Card, 1999) makes an 

analogy between a creature foraging for food in a natural environment and a person foraging for 

information in a human environment (e.g., in illustrated text, on a website, etc.). In the IF model, 

a person who knows what sources to forage in, who knows what cues in that source signal rich 

information, and who knows how to proceed through the information sources can very efficiently 

find information in the sense of spending less time/energy and frustration to locate needed 

information. For the purpose of SemNA, very efficient search (e.g., eye gaze) patterns should be 

associated with experienced searchers locating learning-goal relevant information, whereas less-

experienced searchers may show lengthy but systematic search patterns. In sum, different 

theories might lead to identifying different network analysis metrics for different types of during-

learning data. 

5.2.  Potential future applications 

Here, we provided 3 examples of applying Network Analysis to think-aloud data, but our 

literature review includes examples of brief interview, concept map, dyadic discourse, and open-

ended written response data. The studies we reviewed reported on data collected on varied 

learning materials, over varying time spans (from 1 hour to 1 year), with participants at differing 

levels of expertise. In addition to these 4 types of data, other researchers might want to use 

content of longer interviews, one person’s social media contributions, or LMS chat over a time 

period to analyze that person’s knowledge structures or possibly to analyze beliefs or 

perceptions, to analyze self-explanations, or use other kinds of knowledge data in formal or 

informal learning contexts. On the one hand, we believe that our literature review supports the 

set of metrics for this kind of individual SemNA data and that important existing metrics are not 

highly likely to be missing. On the other hand, we do not have the basis for saying that the 

metrics that were significant or non-significant for our three data sets will be significant or non-
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significant across all types of individual knowledge network data. This is especially true because 

our data in all three data sets were missing triads to a great extent, and possibly as a consequence 

this made the PageRank statistic non-significant. Note that we attribute this to the stimulus-task-

participant constellations in our three data sets. Therefore, we recommend that analysts apply all 

of the metrics frequent in the literature to build a more robust knowledge base about what 

metrics yield valuable information for understanding learning with which types of stimuli, tasks, 

and participants. 

Furthermore, metrics that might be useful for other kinds of during-learning data such as 

eye gazes, web search/navigation, movement through virtual spaces, and so on, require a 

different literature review to identify the frequently used metrics for those types of during-

learning data. We have already found such differences in our own work in progress (Cromley & 

Kunze, 2024).  

Future work could also apply automated text extraction techniques (NLP, machine 

learning) to during-learning data to try to reduce the work of hand extracting lists of 

propositions. One such automated system is T-MOTICAR which yields only average degree 

from among the metrics applied here (Pirnay-Dummer, 2020). An alternative would be to use 

web-based learning environments where logfiles would capture note-taking or ‘type-alouds’ 

while learning as a representation of what is ‘picked up’. These approaches could make SemNA 

a much easier technique to use on individual verbal data with learning outcomes. We look 

forward to learning how researchers apply these techniques to and learn from additional 

information available from the multitude of during-learning data that educational researchers 

collect. 

5.5 Conclusion 



 
37 

 

Ample previous research supports the idea that readers actively transforming what they 

read—via self-explanation, using specific strategies, answering embedded questions—is 

associated with better comprehension (McNamara, 2004). Our re-analyses of the content picked 

up during reading further supports this idea, and potentially explains why strategies are effective; 

those who picked up more content formed more complex during-reading knowledge structures 

and characteristics of knowledge structures were significantly correlated with posttest 

comprehension.  
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Supplementary Tables for Three Applications of Semantic Network Analysis to Individual 

Student Think-Aloud Data 



Supplementary Table 1 

Studies located in the literature review of semantic network analysis applied to learning-relevant outcomes 

Cite Notes Number of nodes Number of 
edges 

Average degree = 
Edges/Nodes 

Degree centrality Betweenness 
centrality 

PageRank 
Centrality 

Diameter Edge 
density 
Aka 
Network 
density, 
Density 

Mean 
distance 

LCC 
proportion 
(proportion 
of nodes in 
largest 
connected 
component) 

Graph 
centralization 

Number of 
clusters 

1. Salmon et al., 
2013 

TA 15 experienced 
and 9 novice 
drivers 
Co-occurrence 

   Key concepts (a la 
sociometric status) 
differ between 
experts and novices 

  smaller is better 
* 
 

larger is 
better * 
 

    

2. Kubsch et al., 
2019 

Interviews 30 
middle school 
science students 
Co-occurring ideas 
within one 
explanation 

   Total degree for one 
node considered to 
be critical for 
understanding, 
higher is better * 

   larger is 
better * 

    

3. Podschuweit & 
Bernholt, 2020 

Dyad discourse 28 
high school 
students taking 
chemistry 

Ns            

4. Bodin, 2012 Interviews before 
after for 6 physics 
students 

More is better* More is 
better* 

   For specific 
sets of nodes, 
higher is 
better* 

      

5. Siew, 2019 Concept maps of 
101 Psych 
undergrads 
Drew immediately 
after learning in 
class 

Ns        Larger is 
better* 

Ns   

6. Clariana et al., 
2013 

Concept maps of 40 
undergraduates  
Drew after one of 
two collaborative 
learning conditions 

          Ns  

7. Kapuza et al., 
2020 
Presents 3 
novel network 
metrics 

Concept maps of 
experts (gathered 
once) and of 
students gathered 
early in a year long 
course and 6 
months later 

More is better *  Average degree higher is 
better * 
 

Hubs – outdegree 
higher is better * 
Authority – 
indegree lower is 
better * 
Authorities/Hubs, 
lower is better* 

        

8. Schwendimann 
2014 

Concept maps of 
students over the 
course of a school 
year, weighted by 
KI level of concepts 

   Outdegree higher is 
better * 
Indegree higher is 
better * 

   Higher is 
better 

    

9. Haiyue & 
Yoong, 2010 

Concept maps of 
students on the 
topic of triangles 

   Group_Outdegree 
higher is better * 

        



Cite Notes Number of nodes Number of 
edges 

Average degree = 
Edges/Nodes 

Degree centrality Betweenness 
centrality 

PageRank 
Centrality 

Diameter Edge 
density 
Aka 
Network 
density, 
Density 

Mean 
distance 

LCC 
proportion 
(proportion 
of nodes in 
largest 
connected 
component) 

Graph 
centralization 

Number of 
clusters 

Group_Indegree 
higher is better * 

10. Hoppe et al 
2012 

Concept maps on 
climate change, 
scored relative to an 
expert map 

More is better * More is 
better * 
 

 higher is better*          

11. Wei and Yue, 
2016 

Concept maps 
made in 5 
Information 
Systems courses 

More is better* More is 
better* 
 

Edges/nodes ratio mixed 
results 
 

Mixed   Longer is better *      

12. Wagner and 
Priemer, 2023 

Concept maps of 
physics content 
made by 9 experts 
and by 56 students 

More is better*    Higher is better, 
for critical 
concepts* 

 Ns 
Diameter/size 
ratio, smaller is 
better* 

    Fewer is 
better* 

13. Pokorny et al 
2018 

Interviews with 
meditation retreat 
participant, Purpose 
in Life 
questionnaire 

     Higher is 
worse * 
(recalculated 
from their 
data by 
ranking) 

      

14. Daems et al., 
2014 

Student-given 
verbal explanations 
as part of 
workshops, Expert 
ontologies 

   Three main topics 
of workshop* 

Terms that link the 
3 topics* 

       

15. Hecking et al., 
2017 

Student annotations 
on STEM videos, 3 
clusters sorted by 
posttest ‘soft skills’ 
knowledge 

   Which words have 
highest centrality 
differs between 
groups* 

        

16. Smith & 
Parrott, 2013 

Open-ended student 
knowledge about 
Human Papilloma 
Virus 

Vaccinated 
women > Men > 
Unvaccinated 
women 

  Normalized in- and 
out-degree 
centrality for cancer 
Vaccinated women 
> Men > 
Unvaccinated 
women 

        

17. Gobbo & Chi 
1986 

5 more-
knowledgeable and 
5 less-
knowledgeable 7 
year old boys (sy 
what you know 
about dinosaurs) 

Ns Exp>Nov  Exp>Nov         



Cite Notes Number of nodes Number of 
edges 

Average degree = 
Edges/Nodes 

Degree centrality Betweenness 
centrality 

PageRank 
Centrality 

Diameter Edge 
density 
Aka 
Network 
density, 
Density 

Mean 
distance 

LCC 
proportion 
(proportion 
of nodes in 
largest 
connected 
component) 

Graph 
centralization 

Number of 
clusters 

18. Gogus et al., 
2009 

Expert and novice 
concept maps about 
two science topics 

Exp>Nov 
(both topics) 

Exp>Nov 
(both topics) 

 Exp>Nov –not 
formally degree 
centrality-- 
(both topics) 

        

19. Lehmann et al., 
2020 

Student essays in a 
2 x 2 experimental 
design 

  Prompted>Unprompted*          

20. Guerra et al., 
2005 

8913 
question/problem 
attempts by 83 
students over 3 
semesters of Java 
programming. 

 When 
weighted by 
success at 
question * 

Ns    Ns Ns Higher is 
better* 

   

21. Jamieson, 2012 Mind maps (nodes 
and unlabeled 
edges) of  

       Ns     

22. Kim & 
McCarthy, 
2021 
(Improving 
summary 
writing) 

Change over time 
in (revised) essays 
of graduate 
instructional design 
students 

Increases* Increases* Increases*    Ns Increases* ns    

23. Ifenthaler et al, 
2011 

25 graduate 
students taking a 
research methods 
course, concept 
maps 5 times over 
semester 

Ns with grade 
Increases* over 
semester 

 Higher is better* 
No change over semester 

   Ns with grade 
Increases * over 
semester 

Ns with 
grade 
 

   Ns with 
grade 
Increases* 
over 
semester 

24. Dauer et al., 
2019 

289 life science 
majors making 
conceptual models 
(concept maps with 
causal arrows) 
before and after an 
instructional video 
on content 

Increases after 
instruction* 

Increases 
after 
instruction* 

 For key nodes, 
increases and 
decreases after 
instruction (no stat 
test) 

        



Cite Notes Number of nodes Number of 
edges 

Average degree = 
Edges/Nodes 

Degree centrality Betweenness 
centrality 

PageRank 
Centrality 

Diameter Edge 
density 
Aka 
Network 
density, 
Density 

Mean 
distance 

LCC 
proportion 
(proportion 
of nodes in 
largest 
connected 
component) 

Graph 
centralization 

Number of 
clusters 

25. Yang, Zhang et 
al., 2018 

403 undergraduate 
calculus students 
given a list of 
concepts, connect 
and weight the 
strength of 
connections among 
the 82 

Not reported—
from among 82 
fixed/provided 
nodes 

Best-
achieving 
students > 
Middle 
students = 
Worst 
students 
*(stat test) 

Best-achieving students > 
Middle students > Worst 
students (no stat test) 

For 4 high-
centrality nodes 
noted by all groups, 
Best-achieving 
students > Middle 
students > Worst 
students (no stat 
test) 

     number of 
nodes /LCC 
Best-
achieving 
students > 
Middle 
students > 
Worst 
students (no 
stat test) 

 Best-
achieving 
students < 
Middle 
students < 
Worst 
students 
(no stat 
test) 
 

26. Frerichs et al., 
2018 

21 AfAm 
Adolescents 
making concept 
maps 3 times 
during a workshop 
on causes of 
obesity, weighted 
by number of 
repeated edges 

Increases after 
instruction (p = 
.08) 

Increases 
after 
instruction* 

     Increases 
after 
instruction 
(ns from 
.36 to .44) 

    

27. Zhou et al., 
2015 

30 HS (age 15) 
students 
interviewed after a 
chemistry lesson, 
followed by exam 

Ns More is 
better* 

          

28. Giabbanelli &  
Tawfik, 2021 

28 CS students 
presented with a 
positive or negative 
case in PBL 

Increased (no stat 
test) 

Increased 
(no stat test) 

Mostly increased (no stat 
test), but mixed 

   Increased (no stat 
test) 

 Mostly 
increased 
(no stat 
test), but 
mixed 

   

29. Yang, Zhu et 
al., 2018 

206 high school (16 
YO) trigonometry 
students given a list 
of concepts, 
connect and weight 
the strength of 
connections among 
the 44 

  Best-achieving students > 
Middle students = Worst 
students* (stat test) 

    Best-
achieving 
students > 
Middle 
students > 
Worst 
students 
(no stat 
test) 

 number of 
nodes /LCC 
Best-
achieving 
students > 
Middle 
students > 
Worst 
students (no 
stat test) 

 Best-
achieving 
students < 
Middle 
students < 
Worst 
students 
(no stat 
test) 
 

30. Wagner, Kok, 
& Priemer, 
2020 

(possibly a subset 
of Wagner & 
Priemer, 2023) 
3 experts and 19 
students providing 

Experts>Novices    Experts>Novices 
(experts have a 
few high-
betweenness 
nodes, novices 

 Experts>Novices 
Ratio 
D/numNodes 
also 
Experts>Novices 

     



Cite Notes Number of nodes Number of 
edges 

Average degree = 
Edges/Nodes 

Degree centrality Betweenness 
centrality 

PageRank 
Centrality 

Diameter Edge 
density 
Aka 
Network 
density, 
Density 

Mean 
distance 

LCC 
proportion 
(proportion 
of nodes in 
largest 
connected 
component) 

Graph 
centralization 

Number of 
clusters 

written 
explanations of 
refraction in water 

have no nodes high 
on betweenness) 

31. Laukkanen, 
2023 

7 new 
entrepreneurs 
interviewed before 
and after launching 
a startup (learning 
about running a 
new business) 

Increases Increases  Increases         

32. Kim & 
McCarthy, 
2021 (Using 
graph 
centrality… 

32 graduate 
students in an 
online course who 
revised their 
writing 

No change No change No change    No change Increases 
over time 

No 
change 

 Experts < 
Novices, 
decrease over 
time 

 

 

 

 

 

 

 



S Supplementary Table 2 

Lists of propositions for all three data sets 

Study 1 proposition list 

Source Target verb 
1. Ab Antigen neutralize 
2. Ab Antigen binds 
3. Ab Antigen binds 
4. Ab HeavyChains Have 
5. Ab Immunoglobulins Are 
6. Ab LargeComplexes Form 
7. Ab LightChains Have 
8. Ab PolypeptideChains Have 
9. Ab TwoAntigenMolecules Binds 
10. AntBindSites Antigen match shape 
11. AntBindSites Ab are on outer end of 
12. AntBindSites AntBindSites Are 
13. Antigen Bacterium is part of 
14. Antigen Pollen is part of 
15. Antigen Virus is part of 
16. Bacterium CD14 binds to 
17. Bcell Ab Makes 
18. BloodVessel Complement Release 
19. BloodVessel Heat Cause 
20. BloodVessel Phagocytes Admits 
21. BloodVessel Redness Cause 
22. Body DefenseProteins Makes 
23. Brain Fever Produce 
24. CD14 CellMembrane sits outside 
25. CD14 TollLikeReceptor Activates 
26. CD14 TollLikeReceptor Binds 
27. CD14 WBCs is found on 
28. Complement Phagocytes Attracts 
29. Complement Tissue Enters 
30. ConstantRegion DestinationAndFunction Determine 
31. ConstantRegion SameAASequence Has 
32. Cytokine Brain Signals 
33. Cytokine Fever Produce 
34. Cytokine ImmmunSys Activates 
35. Cytokine InfectedCell Kills 
36. CytoTcell Antigen Engulfs 
37. DamagedTissue MastCells Attracts 



Source Target verb 
38. DefenseProteins Complement Includes 
39. DefenseProteins Cytokine Includes 
40. DefenseProteins Interferon Includes 
41. DefenseProteins Phagocytosis Regulate 
42. Epitope Epitope Is 
43. Epitope ForeignProtein Is 
44. Epitope VariableRegion Binds 
45. Fever ImmunSys Increases 
46. Fever Lymphocytes Increases 
47. Fever Pathogens Inhibits 
48. FungalCellWall CD14 binds to 
49. GrowthFactor Tissue Signals 
50. HeavyChains Ab is most of 
51. HeavyChains DisulfideBond connected by 
52. HeavyChains Identical Are 
53. HeavyChains Inside Located 
54. HelperT Antigen Signals 
55. HelperT Bcell Signals 
56. HelperT CytoTcell Signals 
57. Histamine AllergicRx Causes 
58. Histamine BloodVessel Dilates 
59. Histamine BloodVessel Enters 
60. Histamine BloodVessel Leakifies 
61. Histamine Inflammation Causes 
62. HIV HelperT Damages 
63. ImmuneResponse Non-specific Has 
64. ImmuneResponse Specific Has 
65. ImmunSys Ab is part of 
66. ImmunSys Bcell is part of 
67. ImmunSys CellSignaling Signals 
68. ImmunSys CytoTcell is part of 
69. ImmunSys HelperT is part of 
70. Infection Inflammation Causes 
71. Inflammation Damage Isolates 
72. Inflammation MastCells Attracts 
73. Inflammation Molecules Recruits 
74. Inflammation Pain Cause 
75. Inflammation Phagocytes Recruits 
76. Inflammation Spread Stops 
77. Injury Inflammation Causes 
78. LargeComplexes EasyTargets Are 
79. LightChains Identical Are 



Source Target verb 
80. LightChains Outside Located 
81. Lymphocyte ImmunSys part of 
82. MastCells Cytokine Release 
83. MastCells Damage go to 
84. MastCells Early Respond 
85. MastCells Histamine Release 
86. MastCells Histamine stop release 
87. MastCells Phagocytes Signals 
88. MastCells Skin adhere to 
89. MoreTissue Scab Forms 
90. NfkB NuclearFactorKappaBCells Is 
91. NfkB Nucleus Enters 
92. NfkB Nucleus straightened enters 
93. NfkB Promoters binds to 
94. Pathogen Body Invades 
95. Pathogen ImmunSys Signals 
96. Pathogen MolecularChange binding causes 
97. Phagocytes Cytokine Produce 
98. Phagocytes Damage go to 
99. Phagocytes DeadCells Engulf 
100. Phagocytes Healing do most 
101. Phagocytes ImmunSys part of 
102. Phagocytes LargeComplexes Destroy 
103. Phagocytes LargeComplexes Ingest 
104. Phagocytes Pathogens Engulf 
105. Phagocytes Tissue Enters 
106. Plasma Swelling Causes 
107. Plasma Tissue Enters 
108. PolypeptideChains ConstantRegion Have 
109. PolypeptideChains VariableRegion Have 
110. Promoters DefenseProteins Makes 
111. Promoters Transcription Start 
112. Prostoglandins BloodVessel Dilate 

113. Prostoglandins Nerves 
increase sensitivity 
of 

114. ProteinKinaseCascade CellMembrane happens inside 
115. ProteinKinaseCascade FortyGenesTranscribed Causes 
116. ProteinKinaseCascade NfkB Straightens 
117. Splinter BloodVessel Injures 
118. Splinter DamagedCells Has 
119. Splinter Pathogens Has 
120. Tcell Pathogen Binds 



Source Target verb 
121. Tissue MoreTissue Divides 
122. TNF Cytokine is a 
123. TNF ImmmunSys Activates 
124. TNF InfectedCell Kills 
125. TollLikeReceptor CellMembrane passes through 
126. TollLikeReceptor Development involved in 
127. TollLikeReceptor ImmuneResponse involved in 
128. TollLikeReceptor ProteinKinaseCascade Starts 
129. Transcription DefenseProteins Makes 
130. VariableRegion OnOuterEndOfAb Are 
131. VariableRegion Specificity responsible for 
132. WBCs Macrophages Includes 
133. WBCs Monocytes Includes 

 

Study 2 AH text set proposition list 

Source Target Verb Passage 
1. Ab Ab is P1 
2. Ab Ab links P1 
3. Ab IgE include P1 
4. Ab MastCell binds P1 
5. Ab Receptors binds P1 
6. Allergens Ab causes P1 
7. Allergens Allergens is P1 
8. AllergicRx AllergicRx is P1 
9. Antigen Ab binds P1 
10. Antigen Antigen is P1 
11. Antihistamines Histamine block P1 
12. Bcell BCell is P1 
13. Histamine AllergicRx causes P1 
14. Histamine Histamine is P1 
15. IgE IgE is P1 
16. IgE Immunoglobulin istype P1 
17. MastCell Histamine makes P1 
18. MastCell Histamine release P1 
19. MastCell MastCell is P1 
20. MastCell Receptors has P1 
21. MastCell Vesicles has P1 
22. PlasmaCells Ab make P1 
23. Pollen AllergicRx causes P1 
24. Vesicles Histamine release P1 



Source Target Verb Passage 
25. Ab Ab links P2 
26. Ab Antigens attackspecific P2 
27. Ab Basophils binds P2 
28. Ab BCell binds P2 
29. Ab ConstantEnd has P2 
30. Ab MastCell binds P2 
31. AllergicRx Death cancause P2 
32. AllergicRx genetic canbe P2 
33. Antigen Ab binds P2 
34. Antigen Antigen is P2 
35. Basophils Basophils are P2 
36. Bcell Ab make P2 
37. Bcell Bcell is P2 
38. Bcell PlasmaCells makes P2 
39. Genetics AllergicRx causes P2 
40. Histamine DifficultyBreathing causes P2 
41. Histamine Histamine is P2 
42. IgE IgE is P2 
43. MastCell Histamine makes P2 
44. MastCell Histamine releases P2 
45. MastCell MastCell is P2 
46. PlasmaCells Ab make P2 
47. Ab Ab is P3 
48. Ab Ab links P3 
49. Ab MastCell binds P3 
50. Ab SignalTransduction initiates P3 
51. Antigen Antigen is P3 
52. Antigen Bcell binds P3 
53. Antigen ThCell attaches P3 
54. APC Antigen presents P3 
55. APC APC is P3 
56. Bcell Ab makes P3 
57. Bcell BCell is P3 
58. Bcell PlasmaCell becomes P3 
59. Cytokine BCell signals P3 
60. Cytokine Cytokine is P3 
61. Histamine AllergicRx causes P3 
62. Histamine Histamine is P3 
63. Histamine Signal isa P3 
64. IL-4 Bcell activates P3 
65. IL-4 Cytokine isa P3 
66. IL-4 IL-4 is P3 



Source Target Verb Passage 
67. IL-5 IL-5 is P3 
68. MastCell Histamine releases P3 
69. MastCell MastCell is P3 
70. PlasmaCell Ab makes P3 
71. ThCell Cytokine releases P3 
72. ThCell IL-4 releases P3 
73. ThCell IL-5 releases P3 
74. ThCell ThCell is P3 
75. Ab Ab binds P4 
76. Ab Basophils binds P4 
77. Ab MastCell binds P4 
78. Allergen APC binds P4 
79. Antigen Ab binds P4 
80. APC Antigen neutralizes P4 
81. APC APC is P4 
82. APC ThCell signals P4 
83. Bcell Ab make P4 
84. Bcell Bcell is P4 
85. Bcell PlasmaCells makes P4 
86. Histamine Rash causes P4 
87. MastCell Histamine releases P4 
88. PlasmaCells Ab make P4 
89. ThCell Bcell signals P4 
90. ThCell ThCell is P4 

 

Study 2 TC text set proposition list 

Source Target Verb Passage 
1. Ab 2Polypeptides Madeof P1 
2. Ab Ab Is P1 
3. Ab Antigens bind_to P1 
4. Ab Antigens recognizesOne P1 
5. alphaChain alphaChain Is P1 
6. alphaChain betaChain Attachedto P1 
7. alphaChain ConstantRegion has_both P1 
8. alphaChain exterior is_on P1 
9. alphaChain variableRegion has_both P1 
10. Antigens Proteins Are P1 
11. Antigens variableRegion Bind P1 
12. Bcell Blood respondsTo P1 
13. betaChain betaChain Is P1 



Source Target Verb Passage 
14. ConstantRegion ConstantRegion Is P1 
15. ConstantRegion Immunoglobulin Variesbetween P1 
16. ConstantRegion TCR Anchors P1 
17. Glycoproteins protein_and_sugar Are P1 
18. hydrophobicRegion stopWater Means P1 
19. Immunoglobulin Immunoglobulin Is P1 
20. MHCs Antigens Display P1 
21. MHCs Antigens Display P1 
22. plasmaMembrane hydrophobicRegion Has P1 
23. Tcell Antigens Recognizes P1 
24. Tcell Cell respondsToInfected P1 
25. Tcell self Recognizes P1 
26. Tcell TCR Has P1 
27. TCR 2Polypeptides Madeof P1 
28. TCR alphaChain Has P1 
29. TCR Antigens Bind P1 
30. TCR Antigens Recognizes P1 
31. TCR BCellReceptor Smallerthan P1 
32. TCR betaChain Has P1 
33. TCR ConstantRegion Has P1 
34. TCR plasmaMembrane sits_in P1 
35. TCR Tcell sits_outside P1 
36. TCR TCR Is P1 
37. TCR variableRegion Has P1 
38. variableRegion Antigens Binds P1 
39. variableRegion TCR Variesbetween P1 
40. variableRegion variableRegion Is P1 
41. AntigenBindingSite AntigenBindingSite Is P2 
42. AntigenBindingSite variableRegion Madeof P2 
43. Antigens AntigenBindingSite bind_at P2 
44. Antigens Antigens Are P2 
45. Antigens Cell are_onInfected P2 
46. Antigens Pathogens part_of P2 
47. APCs APCs Are P2 
48. Bcell Bcell Is P2 
49. Bcell Humoral involved_in P2 
50. Bcell lymphNodes found_in P2 
51. Bcell spleen found_in P2 
52. ConstantRegion ConstantRegion Is P2 
53. ConstantRegion TCR sits_at_bottom P2 
54. DisulfideBridge ConstantRegion Connects P2 
55. DisulfideBridge DisulfideBridge Is P2 



Source Target Verb Passage 
56. immatureBcell self Attacks P2 
57. immatureBcell self binds_strongly P2 
58. immatureBcell self binds_weakly P2 
59. ImmuneSystem Diseases trains_on P2 
60. IntracellularDomain IntracellularDomain Is P2 
61. MHCs Antigens Display P2 
62. MHCs Cell are_inside P2 
63. MHCs MajorHistcompatibilityComplex Are P2 
64. MHCs MHCs Is P2 
65. Pathogens Antigens Madeof P2 
66. Pathogens Cell Infect P2 
67. Tcell Antigens Recognizes P2 
68. Tcell Cell-mediated involved_in P2 
69. Tcell immuneResponse Initiates P2 
70. Tcell MHCs Has P2 
71. Tcell Pathogens Recognizes P2 
72. Tcell Tcell Is P2 
73. TCR alphaChain Has P2 
74. TCR betaChain Has P2 
75. TCR Tcell sits_outside P2 
76. TCR ConstantRegion Has P2 
77. TCR plasmaMembrane sits_in P2 
78. TCR variableRegion Has P2 
79. transmembraneRegion transmembraneRegion Is P2 
80. variableRegion TCR sits_at_top P2 
81. variableRegion variableRegion Is P2 
82. Alphabeta TCR form_of P3 
83. alphaChain alphaChain Is P3 
84. AntigenBindingSite variableRegion Madeof P3 
85. Antigens epitope Is P3 
86. Antigens MHCs binds_to P3 
87. betaChain betaChain Is P3 
88. C_terminus TCR sits_at_bottom P3 
89. Calpha Calpha Is P3 
90. carbohydrateGroup carbohydrateGroup Is P3 
91. carbohydrateGroup variability Has P3 
92. Cbeta Cbeta Is P3 
93. ConstantRegion constantRegion Is P3 
94. DisulfideBridge ConstantRegion Connects P3 
95. DisulfideBridge DisulfideBridge Is P3 
96. Epitope epitope Is P3 
97. Gammadelta mucosal found_on P3 



Source Target Verb Passage 
98. Heterodimer heterodimer Is P3 
99. MHCs MHCs Is P3 
100. N_terminus TCR sits_at_top P3 
101. TCR alphaChain Has P3 
102. TCR AntigenBindingSite Has P3 
103. TCR Antigens binds_to P3 
104. TCR Antigens Recognizes P3 
105. TCR betaChain Has P3 
106. TCR C_terminus Has P3 
107. TCR Cell sits_outside P3 
108. TCR ConstantRegion Has P3 
109. TCR N_terminus Has P3 
110. TCR variableRegion Has P3 
111. TCR variableRegion has_at_top P3 
112. transmembraneRegion transmembraneRegion Is P3 
113. Valpha Valpha Is P3 
114. Vbeta Vbeta Is P3 
115. variableRegion Antigens Determines P3 
116. alphaChain betaChain Attachedto P4 
117. AntigenBindingSite loops formed_of P4 
118. AntigenBindingSite TCR at_tip_of P4 
119. AntigenBindingSite variablility Has P4 
120. Diseases Cell causeInfected P4 
121. DisulfideBridge ConstantRegion Connects P4 
122. hydrophobicRegion hydrophobicRegion Is P4 
123. ImmuneSystem Cell killsInfected P4 
124. ImmuneSystem Diseases Finds P4 
125. ImmuneSystem self doesn't_attack P4 
126. Lymphocytes lymphocytes Are P4 
127. MHCs Antigens Display P4 
128. MHCs MHCs Is P4 
129. Tcell Antigens recognizesMultiple P4 
130. TCR Ab half_size_of P4 
131. TCR alphaChain Has P4 
132. TCR Antigens binds_to P4 
133. TCR betaChain Has P4 
134. TCR ConstantRegion Has P4 
135. TCR plasmaMembrane sits_in P4 
136. TCR variableRegion Has P4 
137. variableRegion Pathogens protects_against P4 
138. variableRegion variableRegion Are P4 

 



  



Supplementary Table 3 

Network analysis metrics applied to verbal data, definitions, and igraph code  

Metric definition in Semantic Network Analysis code in igraph 

Node level 
  

nodes  number of facts, nouns, noun phrases 

that exist in a person’s knowledge 

network  

gorder(g)  

Edges connections between nodes in whole 

knowledge network, which could be 

verbs in phrases, links in concept 

maps  

gsize(g)  

average degree number of edges/number of nodes in 

whole knowledge network  

Calculate gsize(g)/gorder(g) 

degree centrality a count of all edges for focal node in a 

knowledge network; in-degree if 

pointing into that node and outdegree 

if pointing out from that node 

degree(g, v=V(g)["Antigens"], 

mode = "in", loops=FALSE) 

degree(g, v=V(g)["Antigens"], 

mode = "out", loops=FALSE) 

betweenness 

centrality 

a count of the number of paths 

between other nodes where that path 

passes through a focal node in a 

knowledge network  

betweenness(g, 

v=V(g)["Antigens"]) 



Metric definition in Semantic Network Analysis code in igraph 

PageRank centrality a measure of how influential the nodes 

are that are connected to a focal node 

in a knowledge network   

page_rank(g, 

v=V(g)["Antigens"], 

weights=NA)$vector 

Network level 
  

Diameter  the longest path required to traverse 

the entire knowledge network 

Unweighted: diameter(g, 

weights=NA) 

Weighted: 

diameter(g) 

Density  how interconnected all nodes are in a 

knowledge network, compared to a 

network with all possible 

interconnections 

edge_density(g) 

mean distance the average number of steps out per 

node, across all nodes in the 

knowledge network 

Unweighted: 

mean_distance(g) 

Weighted: 

mean_distance(g, weights=NA) 

network 

centralization 

standard deviation of the number of 

edges per node, across the whole 

knowledge network 

centralization.degree(g, 

loops=FALSE)$centralization 



Metric definition in Semantic Network Analysis code in igraph 

number of 

components 

the number of internally-

interconnected but externally not/little 

connected groupings in a knowledge 

network 

components(g)$csize 

largest connected 

component as 

percent of nodes 

the number of nodes in the largest 

component, divided by the total 

number of nodes in the knowledge 

network  

Calculate max of 

components(g)$csize, divide by 

gorder(g)  



Supplementary Table 4  

Descriptive statistics on all metrics across 3 data sets 

Study 1 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 16 18 19 20 21 22 23 24 25 26 
1. Mweight --                          
2. NumNodes .420** --                         
3. NumEdges .409** .966** --                        
4. AvgDegree -.233* -.701** -.533** --                       
5. DegreeInBacterium .146 .378** .348** -.307** --                      
6. DegreeInCytokine .290* .580** .544** -.432** -.036 --                     
7. DegreeInPhagocyte .394** .483** .412** -.493** .185 .267* --                    
8. DegreeOutBacterium .358** .457** .438** -.344** .126 .255* .327** --                   
9. DegreeOutCytokine .402** .502** .446** -.409** .081 .589** .346** .416** --                  
1. DegreeOutPhagocyte .434** .533** .488** -.469** .383** .263* .269* .213 .278* --                 
11. BetweennessBacterium .264* .498** .429** -.448** .373** .184 .427** .699** .358** .349** --                
12. BetweennessCytokine .393** .559** .488** -.495** -.064 .700** .443** .394** .826** .354** .364** --               
13. BetweennessPhagocyte .424** .466** .402** -.466** .162 .239* .865** .355** .328** .423** .498** .498** --              
14. PageRankBacterium .064 -.142 -.153 .145 .665** -.234* -.018 -.013 -.045 .069 .043 -.206 -.006 --             
15. PageRankCytokine .168 .205 .176 -.154 -.112 .747** .082 .207 .499** .054 .071 .448** .081 -.177 --            
16. PageRankPhagocyte .330** .073 .003 -.177 .208 .019 .509** .099 .112 .409** .275* .128 .448** .187 .015 --           
17. GraphDensity -.376** -.808** -.921** .232* -.328** -.405** -.253* -.434** -.316** -.364** -.381** -.329** -.262* .100 -.107 .065 --          
18. NumberOfClusters .305** .343** .515** .257* .127 .079 -.067 .265* .055 .117 .053 -.017 -.076 -.013 .025 -.114 -.736** --         
19. LCCSize .256* .800** .718** -.753** .477** .402** .474** .379** .339** .582** .539** .436** .511** -.029 .135 .161 -.545** .017 --        
2. LCCPct -.194 .027 -.099 -.484** .187 -.008 .220 .059 .008 .227* .275* .096 .271* .019 -.060 .106 .272* -.645** .544** --       
21. GraphCentralization -.518** -.412** -.496** -.035 -.070 -.226* -.178 -.266* -.316** -.183 -.195 -.255* -.183 .022 -.172 -.022 .572** -.568** -.111 .523** --      
22. MDistWeight .652** .731** .680** -.575** .301** .395** .514** .434** .425** .441** .491** .566** .583** .008 .133 .177 -.556** .154 .628** .050 -.495** --     
23. MDistUnweight .284* .704** .637** -.699** .279* .396** .463** .442** .388** .354** .602** .533** .546** -.117 .149 .074 -.485** -.013 .726** .340** -.269* .844** --    
24. DiameterWeight .483** .740** .694** -.578** .333** .351** .438** .415** .349** .420** .474** .499** .503** -.020 .098 .083 -.580** .176 .661** .067 -.456** .949** .862** --   
25. DiameterUnweight .355** .700** .653** -.618** .260* .375** .463** .433** .341** .368** .572** .493** .567** -.103 .148 .083 -.535** .071 .701** .242* -.352** .872** .964** .902** --  
26. PosttestComprehension .209 .511** .459** -.421** .252* .385** .326** .208 .294** .256* .260* .329** .270* .031 .074 .165 -.342** .031 .492** .150 -.103 .412** .412** .404** .387** -- 
Mean .001 .000 -.000 -.000 .014 .043 .069 .054 .060 .023 .074 .072 .077 .020 .050 .027 -.000 -.005 .003 -.001 .000 .000 .006 -.003 .010 -.000 
Median .016 -.065 -.016 .016 -.197 .297 -.349 -.528 -.566 .213 -.455 -.491 -.314 .000 .000 .000 .000 -.230 -.033 .000 .000 .000 .000 .065 -.147 .049 
Standard Deviation .996 .996 .997 .998 .885 .826 .723 .769 .804 .904 .788 .799 .727 .952 .881 .937 .998 .963 .987 .994 .998 .998 .984 .968 .9450 .995 
25th Percentile -.696 -.675 -.664 -.695 -.197 -.727 -.349 -.528 -.566 -1.127 -.455 -.491 -.314 -.685 -.814 -.685 -.685 -.770 -.566 -.685 -.685 -.685 -.685 -.585 -.579 -.644 
75th Percentile .685 .664 .644 .685 .770 .297 .959 .727 .454 .769 .705 .718 .196 .685 .685 .685 .685 .705 .675 .685 .685 .685 .685 .727 .547 .685 

Note: Correlations above |.221| are statistically significant at p < .05. * indicates significance at p <.05; ** indicates significance at p < .01 

  



Study 2 AH  
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 16 18 19 20 21 22 23 24 25 26 
1. Mweight --                          
2. NumNodes .207 --                                                 
3. NumEdges .173 .850** --                                               
4. AvgDegree .072 .350 .752** --                                             
5. DegreeInBacterium .488** .671** .780** .594** --                                           
6. DegreeInCytokine .369* .527** .625** .512** .510** --                                         
7. DegreeInPhagocyte .357 .408* .645** .660** .655** .436* --                                       
8. DegreeOutBacterium .401* .475** .707** .735** .684** .575** .892** --                                     
9. DegreeOutCytokine .334 .494** .424* .220 .482** .600** .335 .364* --                                   
1. DegreeOutPhagocyte .372* .478** .641** .629** .543** .959** .511** .642** .571** --                                 
11. BetweennessBacterium .450* .625** .775** .705** .900** .561** .703** .764** .438* .640** --                               
12. BetweennessCytokine .317 .666** .655** .398* .664** .716** .533** .547** .864** .693** .681** --                             
13. BetweennessPhagocyte .418* .707** .757** .554** .813** .689** .633** .647** .658** .733** .891** .885** --                           
14. PageRankBacterium .752** .083 .273 .416* .576** .132 .464** .456* .131 .239 .594** .149 .390* --                         
15. PageRankCytokine .530** .145 .103 .076 .283 .451* .136 .153 .239 .468** .335 .319 .439* .263 --                       
16. PageRankPhagocyte -.075 -.492** -.410* -.197 -.101 -.509** -.210 -.279 -.230 -.476** -.129 -.282 -.276 .180 -.150 --                     
17. GraphDensity -.060 -.582** -.116 .448* -.021 -.112 .217 .193 -.344 .007 .076 -.235 -.143 .324 -.060 .425* --                   
18. NumberOfClusters -.654** .026 -.203 -.442* -.505** -.383* -.391* -.432* -.248 -.443* -.633** -.341 -.514** -.711** -.549** -.153 -.463** --                 
19. LCCSize .500** .791** .854** .584** .856** .565** .660** .696** .466** .574** .881** .714** .854** .485** .362* -.283 -.112 -.512** --               
2. LCCPct .540** .119 .408* .609** .574** .339 .652** .634** .195 .404* .692** .388* .545** .666** .417* .022 .491** -.861** .669** --             
21. GraphCentralization .281 .012 .024 .050 .110 .153 .175 .088 .413* .101 .136 .354 .181 .234 .048 .363* .104 -.321 .202 .320 --           
22. MDistWeight .447* .548** .649** .582** .758** .561** .575** .578** .514** .650** .877** .735** .888** .480** .507** -.087 .056 -.649** .778** .611** .178 --         
23. MDistUnweight .446* .558** .700** .647** .767** .545** .689** .659** .467** .633** .894** .726** .873** .496** .489** -.139 .120 -.646** .851** .732** .220 .959** --       
24. DiameterWeight .460* .600** .652** .524** .751** .493** .550** .573** .334 .560** .835** .594** .789** .436* .513** -.147 -.001 -.578** .784** .561** .107 .911** .887** --     
25. DiameterUnweight .417* .574** .693** .641** .707** .484** .645** .649** .262 .564** .879** .549** .778** .493** .437* -.169 .094 -.603** .820** .678** .115 .890** .931** .921** --   
26. PosttestComprehension .407* .392* .495** .432* .686** .233 .413* .407* .173 .320 .556** .284 .451* .573** .228 -.079 .102 -.343 .540** .371* .054 .403* .418* .488** .393* -- 
Mean -.033 .004 .004 .000 .005 .022 -.007 .005 .018 .018 .012 .045 .032 .000 .011 .000 .000 .028 .001 -.042 .000 -.000 -.000 -.012 -.004 .000 
Median 0.00 -0.17 0.00 0.00 0.08 0.04 -0.25 0.00 -0.13 0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.04 0.00 0.00 0.00 0.00 0.00 -0.21 -0.21 0.00 
Standard Deviation 0.92 0.98 0.97 0.99 0.94 0.90 0.91 0.95 0.87 0.89 0.97 0.89 0.92 1.00 0.97 1.00 0.99 0.88 0.99 0.90 0.99 1.00 1.00 0.93 0.96 1.00 
25th Percentile -0.70 -0.67 -0.67 -0.73 -0.78 -1.11 -1.04 -1.04 -1.04 -1.11 -0.73 -0.84 -1.04 -0.70 -0.70 -0.70 -0.78 -0.97 -0.73 -0.66 -0.70 -0.70 -0.70 -0.67 -0.73 -0.70 
75th Percentile 1.04 0.68 0.67 0.66 0.69 0.73 0.48 0.73 0.67 0.46 0.73 0.62 0.78 0.70 0.70 0.70 0.73 0.97 0.62 0.90 0.72 0.72 0.72 0.57 0.52 0.70 

 



Study 2 TC  
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
1. Mweight --                        
2. NumNodes .412*  --                                            
3. NumEdges .318 .879** --                                           
4. AvgDegree .057 .178 .560** --                                         
5. DegreeInAntigen .765** .744** .686** .162 --                                       
6. DegreeInTCR .268 .445* .537** .404* .468** --                                     
7. DegreeOutAntigen .241 .549** .470** .073 .473** .110 --                                   
8. DegreeOutMCH .766** .455* .370* .005 .743** .203 .358 --                                 
9. DegreeOutTCR -.063 .335 .641** .742** .187 .451* .015 -.098 --                               
11. BetweennessBacterium .191 .447* .414* .122 .394* .103 .946** .261 .083 --                             
11. BetweennessPhagocyte .107 .415* .590** .520** .402* .752** .368* .070 .613** .474** --                           
12. PageRankBacterium .756** .261 .318 .197 .639** .516** .126 .606** .133 .151 .365* --                         
13. PageRankCytokine .096 -.368* -.337 -.253 -.072 -.370* -.176 .083 -.345 -.098 -.266 .084 --                       
14. PageRankPhagocyte .002 -.454* -.281 .205 -.180 .455* -.362* -.120 .197 -.217 .361 .306 .024 --                     
15. GraphDensity -.307 -.823** -.564** .116 -.521** -.184 -.405* -.311 .071 -.287 -.126 -.036 .156 .616** --                   
16. NumberOfClusters .114 .734** .571** -.022 .376* .062 .329 .122 .066 .216 .085 -.165 -.235 -.687** -.831** --                 
17. LCCSize .243 .785** .858** .421* .617** .534** .489** .431* .566** .468** .589** .349 -.298 -.234 -.473** .348 --               
18. LCCPct -.255 -.296 -.030 .354 -.151 .158 -.005 -.075 .364* .091 .302 .104 .052 .408* .545** -.646** .299 --             
19. GraphCentralization -.257 -.228 .111 .608** -.188 .231 -.212 -.390* .700** -.117 .360 -.043 -.241 .464** .602** -.394* .063 .534** --           
20. MDistWeight .397* .490** .588** .488** .540** .483** .631** .369* .388* .715** .759** .473** -.239 .107 -.216 .181 .607** .202 .149 --         
21. MDistUnweight .084 .395* .540** .508** .348 .606** .529** .101 .535** .652** .917** .312 -.261 .276 -.117 .111 .574** .301 .300 .877** --       
22. DiameterWeight .369* .516** .613** .530** .526** .539** .573** .412* .419* .650** .782** .482** -.253 .136 -.258 .152 .660** .224 .127 .962** .882** --     
23. DiameterUnweight .168 .482** .587** .455* .398* .558** .608** .266 .424* .693** .837** .339 -.231 .157 -.230 .182 .631** .226 .146 .901** .953** .927** --   
24. PosttestComprehension .324 .434* .468** .225 .438* .309 .467** .478** .317 .488** .517** .291 -.225 .026 -.157 .040 .591** .266 .046 .601** .531** .671** .570** -- 
Mean -.000 .001 -.003 .004 .013 .022 .063 .023 .004 .074 .033 .016 .020 .000 -.001 .003 -.001 .002 .000 .007 .033 .007 .029 .000 
Median .000 .000 .000 .000 -.126 .000 -.385 -.210 .000 -.385 -.084 .000 .000 .000 .000 .042 -.021 .000 .000 .000 .000 .000 -.210 .000 
Standard Deviation .995 .992 .984 .987 .948 .873 .729 .886 .979 .761 .918 .959 .949 .996 .994 .979 .982 .987 .995 .978 .920 .969 .902 .996 
25th Percentile -.702 -.702 -.716 -.626 -.784 -1.036 -.385 -1.036 -.635 -.385 -1.036 -.702 -.702 -.702 -.702 -.728 -.903 -.903 -.702 -.702 -1.036 -.674 -1.036 -.702 
75th Percentile .702 .663 .728 .702 .842 .903 .903 .432 .623 .728 .678 .702 .702 .702 .702 .784 .842 .702 .702 .702 .702 .573 .431 .702 

c indicates could not be calculated 

 

 



Supplementary Table 5 

Results of exploratory regressions predicting posttest comprehension across 3 data sets 

Study 1 

 
Predictors entered in 
stepwise regression 

Model 1 
(b) 

Model 2 
(b) 

Model 3 
(b) 

Number of nodes .42* -.62 -.65 
Number of edges .— 1.13* 1.11* 
PageRank Phagocytes .— .— 13.49* 

R2 .20 .30 .34 
F of change in R2 19.13* 9.70* 4.40* 

Note: Metrics were entered in 6 blocks: 1) number of nodes, 2) number of edges, 3) number of clusters, 4) 
diameter and mean distance, 5) all centrality metrics, 6) all other metrics. * indicates statistically significant at p 
< .05. 

Study 2 AH Dataset 

 
Predictors entered in 
stepwise regression 

Model 1 
(b) 

Model 2 
(b) 

Model 3 
(b) 

Number of nodes .14* -.06 -.06 
Number of edges .— .10* < .01 
Indegree Antibodies .— .— .46* 

R2 .16 .28 .53 
F of change in R2 5.47* 4.56* 13.45* 

Note: Metrics were entered in 6 blocks: 1) number of nodes, 2) number of edges, 3) number of clusters, 4) 
diameter and mean distance, 5) all centrality metrics, 6) all other metrics. * indicates statistically significant at p 
< .05. 

Study 2 TC Dataset 

 
Predictors entered in 
stepwise regression 

Model 1 
(b) 

Model 2 
(b) 

Model 3 
(b) 

Number of nodes .04* .01 < .01 
Diameter .— .38* .37* 
Outdegree MHCs .— .— .29* 

R2 .17 .34 .47 
F of change in R2 5.67* 7.17* 6.03* 

Note: Metrics were entered in 6 blocks: 1) number of nodes, 2) number of edges, 3) number of clusters, 4) 
diameter and mean distance, 5) all centrality metrics, 6) all other metrics. * indicates statistically significant at p 
< .05. 
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