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Abstract. We show how, using linear-algebraic tools developed to prove Tver-

berg’s theorem in combinatorial geometry, we can design new models of multi-
class support vector machines (SVMs). These supervised learning protocols

require fewer conditions to classify sets of points, and can be computed us-

ing existing binary SVM algorithms in higher-dimensional spaces, including
soft-margin SVM algorithms. We describe how the theoretical guarantees of

standard support vector machines transfer to these new classes of multi-class

support vector machines. We give a new simple proof of a geometric charac-
terization of support vectors for largest margin SVMs by Veelaert.

1. Introduction. Support vector machines (SVMs) are a supervised learning model
for data classification with a wide range of applications [4, 14, 21]. The underlying
geometric problem is, given two finite sets A,B of points in Rd, to find a hyper-
plane separating A and B. A key example are largest margin SVMs, in which the
separating hyperplane maximizes the minimum distance to each set. We assume
that convA ∩ convB = ∅ for such a hyperplane to exist. If convA ∩ convB ̸= ∅,
minimizing the number of misclassified points by a hyperplane is NP-hard, but one
can use adaptations such as soft-margin SVM.

A variation of this model, multi-class support vector machines, arises when we
want to classify more than two sets of points. If we want to classify k classes
A1, . . . , Ak, the most common approaches are one-versus-all (1vA) and all-versus-
all (AvA) models, both of which break the classification problem into many binary
support vector machines. In the first, we have to solve for k support vector machines,
each separating a single class from the union of the other k − 1, In the second,
we solve for

(
k
2

)
support vector machines separating each pair of classes. Some

optimization methods aggregate several SVMs into a single optimization problem
in a higher-dimensional space, which can then be adjusted to be easier to solve
[11, 8]. Multiple other models for multi-class SVMs have been proposed [10, 15].

Many combinatorial properties of SVMs are related to classic results in discrete
geometry, such as Radon’s theorem [23, 1]. Radon’s theorem states that given
d + 2 points in Rd, there exists a partition of them into two sets whose convex
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Figure 1. (1) An example of an SVM, we emphasize the support
hyperplanes parallel to the generated hyperplane for each class.
(2) An example of an multi-class SVM under the proposed model.
Notice that it is not possible to separate any two classes of points
with a hyperplane. (3) The half-spaces in part (2) can be used
to classify space using convex regions. The model can distinguish
regions where it is ambiguous.

hulls intersect [16]. A well-known generalization of Radon’s theorem is Tverberg’s
theorem, in which we seek to split a set of points into several subsets whose convex
hulls intersect. Tverberg proved that given (k−1)(d+1)+1 points in Rd, there exists
a partition of them into k sets whose convex hulls intersect [22]. The case k = 2
is Radon’s theorem. There is active research around Tverberg’s theorem, as it has
led to important developments in discrete geometry and topological combinatorics
[5, 3, 7].

A far-reaching tool to prove variations of Tverberg’s theorem is a linear-algebraic
technique devised by Sarkaria [18] and simplified by Bárány and Onn [6]. In addition
to leading to one of the simplest known proofs of Tverberg’s theorem, this technique
is highly malleable and can be used to prove a multitude of variations of Tverberg’s
theorem.

The goal of this manuscript is to show a link between Tverberg’s theorem and
multi-class SVMs via the linear algebra techniques mentioned above. The existence
of a connection between multi-class SVMs and Tverberg’s theorem was conjectured
by Adams et al. [1], when they linked Radon’s theorem to binary SVMs. To have
a multi-class SVM that does not missclassify any points, the (1vA) model requires
each class to be separable from the union of the other k − 1, and the (AvA) model
requires any two classes to be separable. We propose a new type of multi-class
SVM which uses a weaker condition. Applying our model for k = 2 leads to classic
SVMs. Of course, since we do not ask any two Ai, Aj to be separable, potential

miss-classifications are unavoidable. We only require
⋂k

i=1 conv(Ai) = ∅. The
output will be a family of k closed half-spaces H1, . . . ,Hk such that

• For each i = 1, . . . , k we have have Ai ⊂ Hi and

• the half-spaces satisfy
⋂k

i=1 Hi = ∅.

We describe how the half-spaces can be used to split Rd into k convex regions,
each corresponding to an Ai. The model can also be used to distinguish the regions
of ambiguity. The subdivision of Rd is most natural when k ≤ d+ 1.
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(AvA)
(
k
2

)
τ(n/k, n/k; d)

(1vA) k · τ(n/k, n− (n/k); d)
(Simple TSVM) τ(1, n− 1; (d+ 1)(k − 1))

(TSVM) O
(
n · τ

(
1, (d+ 1)(k − 1) + 1; (d+ 1)(k − 1) + 1

))
(randomized)

τ((n/k)k, 1; d(k − 1) + 1) (deterministic)

Table 1. Any linear SVM algorithm can be applied to the compu-
tation of our multi-class SVM, including soft-margin SVMs. If we
denote τ(a, b; d) the complexity of computing an SVM with a + b
data points in Rd (one class with a points and one with b points),
then the computational complexity in terms of n of our results can
be described as listed above. We assume our original set of points
has k classes with n/k points each. We include the complexity
of a naive approach to (AvA) and (1vA) for comparison. The
randomized algorithm for (TSVM) also has constant factors that
depend on the product dk but not n. Statistical guarantees would
be the same as those running a linear SVM with the parameters
above. (Simple TSVM) and deterministic (TSVM) are equivalent
to running a single SVM, while randomized (TSVM) is equivalent
to running O(n) binary SVMs.

We describe in Table 1 the complexity of computing these multi-class SVM. We
compare directly with the complexity of computing a single SVM, to highlight the
influence of the dimension.

Tverberg’s theorem is a challenging algorithmic problem [13]. One key differ-
ence between the problem addressed in this manuscript and the problem of finding
Tverbreg partitions is that when training SVMs the labels are assigned beforehand.
Tverberg’s theorem has also been applied to multi-class logistic regression [9].

Since the constructions are based on Sarkaria’s linear-algebraic technique, we
can deduce several combinatorial properties of these multi-class SVMs. The model
(simple TSVM) is invariant under orthogonal transformations, but not under trans-
lations. The model (TSVM) is invariant under any isometry of Rd. To prove these
properties, a closer look at Sarkaria’s method is needed, so the arguments presented
here may be useful in the classic context of variations of Tverberg’s theorem.

We also discuss the existence and properties of support vectors. It is known
that for any two separable sets A,B ⊂ Rd, there exist A′ ⊂ A,B′ ⊂ B such that
|A′∪B′| ≤ d+1 and such that the largest-margin SVM induced by A,B is the same
as the largest-margin SVM induced by A′, B′. For (TSVM) and (simple TSVM) a
similar property holds. For any k-tuples of sets A1, . . . , Ak, there is a (k−1)(d+1)-
subset of A1 ∪ . . .∪Ak that induces the same (TSVM). The same holds for (simple
TSVM). In either case we call this (k − 1)(d+ 1)-subset the support vectors of the
multi-class SVM.

The manuscript is organized as follows. First, we present in Section 2 a new
proof of a characterization of critical points in largest-margin SVMs. In Section3
we describe the linear-algebraic tools needed for our constructions. In Section 4 we
describe the models (TSVM) and (simple TSVM), and their main properties. In
Section5 we discuss the induced partitions of Rd and finally in Section 6 we study
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Figure 2. An example of a largest-margin SVM with two sets. If
we project the support vectors onto the separating hyperplane, the
convex hulls of the projections of different sides intersect.

how the model behaves when we apply orthogonal transformations to the sets of
points.

2. Projection of support vectors. Given two finite sets of points A,B in Rd

that are linearly separable, let H be a separating hyperplane at maximal distance
from A and B. We denote by ε this distance, so

ε = dist(H, convA) = dist(H, convB)

We say that a point in a ∈ A is a support vector if dist(a,H) = ε, and similarly
for points in B. We assign labels to the points so that the points of A assigned
positive and the points of B are assigned negative.

One interesting property about the projections of the support vectors is that the
convex hulls of the projections onto the separating hyperplane of each side intersect,
as in Figure 2. This was proven independently by Veelaert and by Adams, Carr,
and Farnell [23, 1]. One of the proofs involves the Karush–Kuhn–Tucker theorem
and the other Householder transformations. We present an elementary proof.

Theorem 2.1. Given a separable set of points in Rd with two labels, the convex
hulls of the projections of the negative and positive support vectors onto the induced
largest margin SVM intersect.

Proof. Let L be the set of labeled points. Let H be the separating hyperplane
at maximum distance from the labeled sets, and let S+, S− be the positive and
negative support vectors, respectively. Let ε > 0 be the distance of the support
vectors to H. This means that

dist(x,H) = ε for x ∈ S+ ∪ S−

dist(x,H) > ε for x ∈ L \ (S+ ∪ S−).

Let P+ be the orthogonal projection of S+ onto H, and P− be the orthogonal
projections of S− onto H. We assume that convP+ ∩ convP− = ∅ and look for a
contradiction.
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Since convP+ ∩ convP− = ∅, there exists a co-dimension one affine subspace
H ′ of H that separates P+ and P−. Notice that H ′ is a co-dimension two affine
subspace of Rd.

Let us project all the points into the two-dimensional subspace (H ′)⊥. We denote
this projection by π. In (H ′)⊥, π(H) is a line ℓ and π(H ′) is a point p. Let ℓ2 be
the orthogonal line to ℓ through p.

The lines ℓ and ℓ2 split (H ′)⊥ into four quadrants. Since conv P+ ∩ convP− = ∅,
the points of π(S+) and those of π(S−) are separated by ℓ2. They are also separated
by ℓ by construction, so π(S+) and π(S−) are in opposite quadrants.

This means that we can rotate ℓ slightly around p so that its distance to each
point in π(S+) and π(S−) increases. If the angle of rotation is small enough, the
distance of π−1(ℓ) to the rest of the points in L remains strictly larger than ε. This
contradicts H being the largest-margin SVM.

3. Linear-algebraic tools. In this section, we introduce Sarkaria’s construction
to tackle Tverberg-type problems. Suppose we are given k sets A1, . . . , Ak in Rd.
We introduce v1, . . . , vk, which are the vertices of a regular simplex in Rk−1 cen-
tered at the origin. We further assume that each vi is a unit vector. A crucial
property of this k-tuple is that its linear dependences are precisely the linear com-
binations in which all coefficients are equal. For each i we associate vi to Ai.
Given x ∈ Ai we first append a coordinate 1 to make it into a vector in Rd+1,

x̄ =

[
x
1

]
. Then, we take the tensor product with its corresponding vi, defining

S(x) = x̄⊗ vi = x̄vTi ∈ R(d+1)(k−1).
In this manuscript we treat R(d+1)(k−1) as the set of (d + 1)(k − 1) × 1 vectors

and as the set of (d+ 1)× (k − 1) matrices interchangeably.
Finally, for i = 1, . . . , k, we define the set

Yi = {S(x) : x ∈ Ai} ⊂ R(d+1)(k−1).

The main difference with our approach and the one by Bárány and Onn is that
for each point in A1 ∪ . . . ∪ Ak we already know to which class it belongs, so it
yields a unique point in the higher-dimensional space. When one wants to prove
Tverberg’s theorem, we have to assign classes to unlabeled sets of points, so each
point in Rd is represented by a k-tuple in R(d+1)(k−1).

The main reason why this transformation can be used to study Tverberg-type
problems and why we can use it in the context of multi-class SVMs is the following
lemma.

Lemma 3.1. Let k, d be positive integers. Let A1, . . . , Ak be finite sets of points

in Rd such that
⋂k

i=1 conv(Ai) = ∅. Then, for Y1, . . . , Yk defined as above, 0 ̸∈
conv

(⋃k
i=1 Yi

)
.

Proof. Let A =
⋃k

i=1 Ai and Y =
⋃k

i=1 Yi. We prove the contrapositive. Assume

that the origin in R(d+1)(k−1) is in the convex hull of Y . We want to show that
the convex hulls of the sets Ai intersect. Then, for each x ∈ A there exists a
non-negative coefficient α(x) such that

∑
x∈A α(x) = 1 and

0 =
∑
x∈A

α(x)S(x) =
∑
x∈A1

α(x)S(x) + . . .+
∑
x∈Ak

α(x)S(x)
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=
∑
x∈A1

α(x)(x̄⊗ v1) + . . .+
∑

x∈AK

α(x)(x̄⊗ vk)

=

(∑
x∈A1

α(x)x̄

)
⊗ v1 + . . .+

(∑
x∈Ak

α(x)x̄

)
⊗ vk.

If we look at the linear dependences of v1, . . . , vk in Rk−1, we can see that
β1v1 + . . . + βkvk = 0 if an only if β1 = . . . = βk. This carries through the tensor
product and we have

∑
x∈A1

α(x)x̄ = . . . =
∑

x∈Ak
α(x)x̄.

This is an equality inRd+1. If we look at the last coordinate, we have
∑

x∈A1
α(x) =

. . . =
∑

x∈Ak
α(x). Since the total sum of the coefficients was one, each of the sums

above must be 1/k. If we look at the first d coordinates and multiply each equation
by k, we have ∑

x∈A1

(kα(x))x = . . . =
∑
x∈Ak

(kα(x))x.

and each of the terms above is a convex combination. This means that the convex
hulls of the Ai have non-empty intersection,

⋂k
i=1 conv(Ai) ̸= ∅.

Therefore, the origin in R(d+1)(k−1) can be separated from Y by a hyperplane.
We can find this hyperplane with any existing algorithm for SVMs, which is the
central point of this manuscript. If we have a hyperplane separating a set from
the origin in R(d+1)(k−1), we want to obtain a set of half-spaces as described in the
introduction.

In other words, we need to be able to map hyperplanes in R(d+1)(k−1) into k-
tuples of hyperplanes in Rd explicitly. This has been done recently [17]. We describe
the process below.

Let Π : Rd+1 → Rd be the function that erases the last coordinate. For each
y ∈ R(d+1)(k−1) let us think of y as a (d+1)× (k− 1) matrix. For i ∈ [k] we define
the function

fi : R
(d+1)(k−1) → Rd

y 7→ Π(yvi)

where yvi is considered as a product of matrices.

Lemma 3.2. If x ∈ Ai, then fi(S(x)) = x.

Proof. A simple computation shows that

fi(S(x)) = fi(x̄v
T
i ) = Π(x̄vTi vi) = Π(x̄) = x.

The third equality follows since vi is a unit vector.

For each i ∈ [k], consider the d-dimensional affine subspace Ui = {x̄ ⊗ vi : x ∈
Rd} ⊂ R(d+1)(k−1). Given a half-space H in R(d+1)(k−1), consider the k half-spaces
in Rd defined by Hi = fi(Ui ∩H) for i ∈ [k].

Lemma 3.3. Let H be a closed half-space in R(k−1)(d+1). If 0 ̸∈ H then
⋂k

i=1 Hi =
∅.
Proof. As before, let’s consider R(d+1)(k−1) as the set of (d+ 1)× (k− 1) matrices.
Each closed half-space H can be defined using a linear functional and a constant.
Using the Frobenius product, we can express H using a (k− 1)× (d+1) matrix M
and a constant λ such that

H = {S ∈ R(d+1)(k−1) : tr(SM) ≥ λ}.
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Since the origin is not contained in H, we can assume that λ > 0. Suppose on

the contrary that there exists an x ∈ Rd so that x ∈
⋂k

i=1 fi(Ui ∩ H) and we
look for a contradiction. In other words, for i = 1, . . . , k we have x̄ ⊗ vi ∈ H, so
tr(x̄vTi M) ≥ λ > 0.

If we write each of the k inequalities as i varies and add them, we have

0 < kλ ≤
k∑

i=1

tr(x̄vTi M) = tr

(
x̄

(
k∑

i=1

vTi

)
M

)
= 0.

The last equality follows as
∑k

i=1 vi = 0. This is the contradiction we wanted.

Now we have all the ingredients to define a multi-class SVM. Another important
subspace for our computations is the following d(k − 1)-dimensional space

R = {y ∈ R(d+1)(k−1) : the last row of y, as a (d+ 1)× (k − 1) matrix, is zero}.

This subspace has been used previously to prove some variations of Tverberg’s
theorem with some coloring conditions added to the set [20]. Some particular trans-
lates of R will also be useful. For i = 1, . . . , k we define Ri = {S ∈ R(d+1)(k−1) :
the last row of S is vTi }.

Notice that Ui ⊂ Ri for each i = 1, . . . , k.

Lemma 3.4. Let z1, z2, . . . , zk ∈ R(d+1)(k−1) such that zi ∈ Ui for each i = 1, . . . , k.
The only point in R ∩ conv{z1, . . . , zk} is the barycenter of the set {z1, . . . , zk}.

Proof. Consider each zi as a (d+1)×(k−1) matrix. Suppose that λ1z1+ . . .+λkzk
is a convex combination in R. If we look at the last row of this linear combination
we have λ1v1 + . . .+ λkvk = 0. This means that λ1 = . . . = λk, as we wanted.

4. Construction and basic properties of multi-class SVM. We are now
ready to formalize the multiclass SVMs described in the introduction. Given k
sets A1, . . . , Ak in Rd whose convex hulls do not all overlap, we seek a family of
k half-spaces H1, . . . ,Hk such that Ai ⊂ Hi for each i = 1, . . . , k and so that the
half-spaces H1, . . . ,Hk do not all intersect. For the following definition we need the
subspaces Ui = {x̄⊗ vi : x ∈ Rd} and their associated functions fi defined above.

Definition 4.1 (Simple TSVM). Let A1, . . . , Ak be finite families of points in
Rd whose convex hulls do not intersect. We define the multi-class support vector
machine (Simple TSVM) as a family of k closed half-spaces H1, . . . ,Hk obtained as
follows. First, for each x ∈ Ai construct the point S(x) = x̄vTi ∈ R(d+1)(k−1). Let
Y be the collection of all points obtained this way. Find H the closed half-space
in R(d+1)(k−1) that contains Y and whose distance from the origin is maximal. For
i = 1, . . . , k the half-space Hi is defined as Hi = fi(Ui ∩H).

The computation of (simple TSVM) consists of finding the distance from Y to the
origin. We can also think of this as finding the largest-margin SVM in R(d+1)(k−1)

that separates the origin from Y , and then doubling the distance to the origin. The
discussion in the previous section shows that this multi-class support vector machine
satisfies the desired properties. For a soft-margin version, it suffices to compute
in R(d+1)(k−1) an SVM with one class equal to Y and the other equal to {0}. If
we denote by τ(a, b; d) the complexity of an algorithm to compute an SVM with
data points in Rd and two classes of size a and b, then the complexity of computing
(simple TSVM) is τ(n, 1; (d + 1)(k − 1)), where n is the number |A1| + · · · + |Ak|
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of data points. Any other performance metrics we have for an SVM transfer to
(simple TSVM) if we do the change of parameter as outlined above.

For the second type of multi-class SVM, we consider the following alternative
definition. Recall that in the space of (d + 1) × (k − 1) matrices we denoted by R
the subspace where the last row is equal to zero.

Definition 4.2 (TSVM). Let A1, . . . , Ak be finite families of points in Rd whose
convex hulls do not intersect. We define the multi-class support vector machine
(TSVM) as a family of k closed half-spaces H1, . . . ,Hk obtained as follows. First,
for each x ∈ Ai construct the point S(x) = x̄vTi ∈ R(d+1)(k−1). Let Y be the
collection of all points obtained this way and consider P = R ∩ conv(Y ). Compute
p the closest point of P to the origin, and H the closed half-space in R(d+1)(k−1)

that contains Y , whose boundary hyperplane contains p, and whose distance from
the origin is maximal. The half-spaces Hi are defined as Hi = fi(Ui ∩H).

The definition above assumes that P is not empty, which is a consequence of the
proof of Theorem 4.4 below. Even though this definition is more involved it has two
big advantages. First, it is stable under translations of the sets of points. Second,
in the case k = 2 it is precisely a largest-margin SVM. We prove these properties
in the next section. Just like SVM have critical points, any (TSVM) is fixed by a
small set of points.

Theorem 4.3. Let A1, . . . , Ak be k finite sets in Rd such that
⋂k

i=1 convAi = ∅.
We can find subsets A′

1 ⊂ A1, . . . , A
′
k ⊂ Ak such that A′

1, . . . , A
′
k induces the same

(simple TSVM) as A1, . . . , Ak and such that |A′
1|+ . . .+ |A′

k| ≤ (d+ 1)(k − 1)

Proof. We follow the construction in Definition 4.1. Since 0 ̸∈ conv(Y ) the closest
point to the origin in conv(Y ) must be in a face of the polytope conv(Y ). This
face K can have dimension at most (d + 1)(k − 1) − 1. Recall p is the closest
point of P to the origin. By Carathéodory’s theorem, we can choose a set of at
most (d+ 1)(k − 1) points in Y ∩K whose convex hull contains p. The subsets of
A1, . . . , Ak that induced this subset in Y ∩K satisfy the condition we wanted.

Theorem 4.4. Let A1, . . . , Ak be k finite sets in Rd such that
⋂k

i=1 convAi = ∅.
We can find subsets A′

1 ⊂ A1, . . . , A
′
k ⊂ Ak such that A′

1, . . . , A
′
k induces the same

(TSVM) as A1, . . . , Ak and such that |A′
1|+ . . .+ |A′

k| ≤ (d+ 1)(k − 1)

Proof. The proof is similar to the previous theorem. If we look for the minimal
face of conv Y containing p, it has dimension at most (k − 1)(d + 1) − 1, so the
same application of Carathéodory’s theorem yields the result. The only additional
detail to check is that R ∩ conv(Y ) ̸= ∅. This holds because for every choice x1 ∈
A1, . . . , xk ∈ Ak, the baryceneter of the point S(x1), . . . , S(xk) is in conv(Y )∩R.

We denote the subsets obtained by Theorem 4.3 and Theorem 4.4 as the support
vectors of a (simple TSVM) or (TSVM), respectively.

As mentioned above, to compute (Simple TSVM) we need to compute an SVM
in a (k − 1)(d + 1)-dimensional space with |A1| + . . . + |Ak| + 1 points. A direct
approach to compute (TSVM) would be to first find the vertices of conv(Y ) ∩ R
and solve the induced SVM. We know R is a linear subspace of co-dimension k− 1,
so the vertices of conv(Y ) ∩R should be the intersection of the (k − 1)-skeleton of
conv(Y ) with R. Due to Lemma 3.4, this is a subset of the barycenters of k-tuples
with one element in each Yi. Therefore, we can compute these barycenters and then
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compute an SVM in R. This leads us to solve an SVM in a (k − 1)d-dimensional
space with |A1| · . . . · |Ak|+ 1 points.

Theorem 4.4 shows that computing a TSVM can be treated as a linear pro-
gramming type problem, as in the framework of Sharir and Welzl [19]. This is a
randomized approach to problems which are combinatorially similar to linear pro-
gramming problems, so that they can be solved in expected linear time in the input,
which is a signficant reduction over brute-force approaches. This means that for
fixed k, d we can compute (TSVM) with a randomized algorithm in expected time
linear in |A1|+. . .+|Ak|. We describe the process in Algorithm 1, before translating
back to Rd.

The key idea to compute this is to order the points randomly. At any point, we
have computed (TSVM) for the first t− 1 points and we kept track of the support
vector of this TSVM. When including the t-th point, if we don’t need to adjust the
current halfspace H generated by (TSVM), we keep going. Otherwise, we adjust
our guess for the support vectors and run the algorithm again for the first t points.
The computations of Sharir and Welzl bound the expected number of times we need
to rerun this procedure, and end up with an expected running time linear on the
input. For deeper explanations, we recommend references on linear-programming
type algorithms and violator spaces [12, 2].

Algorithm 1 Computing TSVM

1: procedure TSVM(Family Y , Tuple Y ′)
2: Order Y randomly as p1, . . . , p|Y | where the first |Y ′| elements are Y ′. The

tuple Y ′ must have (k−1)(d+1) points, and are the candidates for the support
vectors of the TSVM.

3: Find the TSVM for Y ′, denoted H. This is a half-space in R(d+1)(k−1) that
does not contain the origin.

4: for each pt ∈ Y do
5: Check pt ∈ H.
6: if pt ̸∈ H then
7: Find the TSVM H ′ for Y ′ ∪ {pt}.
8: Let Y ′′ be the (d+ 1)(k − 1)-tuple whose TSVM is H ′.
9: H = TSVM({p1, . . . , pt}, Y ′′)

10: return H

The model (TSVM) generalizes largest-margin SVMs when k = 2. This is the
main motivation to use the subspace R in the computation. Let us prove that this
is indeed the case.

Theorem 4.5. For k = 2, the multiclass SVM (TSVM) gives the two support
hyperplanes of the largest-margin SVM of A1 and A2.

Proof. Notice that k = 2 is the only case when Ui = Ri for all values of i. Addi-
tionally, each Ui is a translate of R. In this case we also have v1 = 1, v2 = −1 in
R1. Therefore R1 = {x̄ ∈ Rd+1 : x ∈ Rd} and R2 = {−x̄ ∈ Rd+1 : x ∈ Rd}. Let p
be the closest point of conv(Y )∩R to the origin, and H be the affine hyperplane in
Rd+1 through p from Definition 4.2. Let H ′ be the hyperplane through the origin of
Rd+1, parallel to H, and let H ′′ = H ′∩U1. Notice that ∥p∥ is the distance between
H and H ′. Since a translate of p lies in U1 (consider p as a directional vector, not
just a point), H ′′ + p contains the support vectors of A1 in U1. The same holds
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Figure 3. This figure shows the process to find (TSVM) for two
sets of points. First we embed the sets in U1, then we reflect A2

across the origin to obtain their representatives in U2. We take
the convex hull of Y1 and Y2 and intersect it with R, which in
the figure gives us a hexagon. We take the closest point p to the
origin in conv(Y ) ∩ R and construct a hyperplane parallel to the
facet containing p of conv(Y ) through the origin. This hyperplane
intersects U1 in the largest-margin SVM for the original sets.

U1

U2

R
p0

for (H ′ ∩ U2) + p for the support vectors in A2, so H ′′ − p contains the support
vectors of A2 in U1. This means that the (TSVM) induced by A1, A2 is an SVM at
common distance ∥p∥ from each side.

Similarly, given a separating hyperplane H̃ for A1, A2 at distance ε from each
set, we can embed Rd in U1 and then reflect the embedding of A2 with respect to
the origin in Rd+1 so that it lies in U2. If we extend H̃ through the origin in Rd+1,
we have a hyperplane through the origin at distance ε from the convex hull of the
embedding of A1 in U1 and A2 in U2. The largest margin SVM must therefore
coincide with the one induced by (TSVM).

An illustration of the ideas behind this proof is shown in Figure 3.

5. Subdivision of ambient space and potential classification errors. In each
of Definition 4.1 and Definition 4.2 we use a half-space H in R(d+1)(k−1) that does
not contain the origin to generate the corresponding half-spaces H1, . . . ,Hk in Rd.

In each case, we can introduce a half-space H ′ that is a translate of H and whose
boundary contains the origin. Notice that the half-spaces H ′

i = fi(Ui ∩H ′) for i =
1, . . . k have non-empty intersection but their interiors have an empty intersection.
This is a direct consequence of Lemma 3.3 because H ′ contains the origin and the
interior of H ′ does not.

As an illustration, for k = 2 the two half-spaces H ′
1, H

′
2 from (TSVM) share their

boundary, which is precisely the largest-margin SVM for A1, A2.

Let T =
⋂k

i=1 H
′
k and ∆ = Rd \

(⋃k
i=1 H

◦
i

)
, where X◦ denotes the interior of X

for any X ⊂ Rd. Now for i = 1, . . . , k we define the convex sets Mi = {p+ tq : p ∈
T, t ≥ 0, q ∈ ∆ ∩Hi}.

Intuitively, ∆ is the polytopal region not contained in the union of the Hi. The
set T is an affine subspace inside ∆. If k ≤ d+1, the set ∆ is constructed by making
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a simplex in the orthogonal complement of T and extending it in the directions of
T . The set Mi is formed by taking all possible rays that start at T and go in the
direction of a point of Hi in the boundary of ∆. The case when ∆ is a simplex is
perhaps the most illustrative one, since in this case T is a point and we simply take
the cones from T towards each of the facets of ∆. This case looks like Figure 1 (3).

As mentioned before, the condition needed to generate (TSVM) or (simple TSVM)
is that the convex hulls of the sets Ai do not all overlap. If the convex hulls of fewer
of these sets overlap, any model that subdivides Rd into convex pieces is bound to
miss-label some data. We minimize the mislabelings with our constructions.

6. Equivariance. In this section we describe how the multi-class SVMs we in-
troduced interact with transformations of the set of points. It is clear that if we
apply the same affine transformation to the sets of points A1, . . . , Ar and the half-
spaces H1, . . . ,Hr the containments are preserved, but we are interested to see if
the algorithms to obtain H1, . . . ,Hr behave as expected with these transformations.

Theorem 6.1. Let M be an orthogonal linear transformation of Rd. Let H1, . . . ,Hk

be the (simple TSVM) induced by A1, . . . , Ak. Then (MH1, . . . ,MHk) is the (simple
TSVM) induced by MA1, . . . ,MAk.

Proof. First notice that M can be extended to Rd+1 by acting on the first d co-
ordinates and leaving the last coordinate fixed. This is also an orthogonal trans-
formation. We denote this transformation by M2, so Mx = M2x̄. Finally, we
denote by M3 the transformation on R(d+1)(k−1) that multiplies every column of a
(d+ 1)× (k − 1) matrix by M2, so y 7→ M2y as a product of matrices.

This last transformation is also orthogonal. To see this, we first show that it
preserves the dot product between vectors in Ui and Uj for any (possibly equal)
i and j. We use a known factorization for the dot product of tensor products, as
shown below.

⟨x̄⊗ vi, ȳ ⊗ vj⟩ = ⟨x̄, ȳ⟩⟨vi, vj⟩ = ⟨M2x̄,M2ȳ⟩⟨vi, vj⟩ =
= ⟨(M2x̄)⊗ vi, (M2ȳ)⊗ vj⟩ = ⟨M3(x̄⊗ vi),M3(ȳ ⊗ vj)⟩

Consider the union of an affine basis for each of U1, . . . , Uk−1. This set of
(d+1)(k− 1) vectors forms a basis of R(d+1)(k−1), and M3 preserves the dot prod-
uct between any two of these vectors. Therefore M3 preserves the dot product in
R(d+1)(k−1) and is therefore orthogonal.

If we consider the set Y (as in the definition of (simple TSVM) generated by
A1, . . . , Ak, then M3Y will be the set generated by MA1, . . . ,MAk. Since M3 is
orthogonal, it will preserve the distance from Y , it will send the closest point to the
origin on Y to the closest point on the origin to M3Y . The transformation M3 will
also map the half-space H containing Y furthest from the origin to the half-space
containing M3Y furthest from the origin, proving our claim.

Theorem 6.2. Let M be an orthogonal linear transformation of Rd and H1, . . . ,Hk

be the (TSVM) induced by A1, . . . , Ak. Then (MH1, . . . ,MHk) is the (TSVM)
induced by MA1, . . . ,MAk.

Proof. We follow the ideas used in the proof of Theorem 6.1. We notice that M3

fixes R. Therefore, the restriction of M3 to R is an orthogonal transformation. This
means that for any half-space H in R(d+1)(k−1), we have (M3H)∩R = M3(H ∩R).
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Again, if H is the half-space in R(d+1)(k−1) that induces our (TSVM), we have that
M3H is the half-space for the new set of points.

Now, if we consider the (TSVM) induced by A1, . . . , Ak, we have to find the
half-space H in R(d+1)(k−1) farthest from the origin that contains Y . Clearly, M3H
is the farthest half-space from the origin that contains M3Y . For i = 1, . . . , k, we
also have fi(Ui ∩ (M3H)) = Mfi(Ui ∩H).

Theorem 6.3. Let q be a vector in Rd. Let X be the set of support vectors of the
(TSVM) induced by A1, . . . , Ak. Then X + q is the set of support vectors of the
(TSVM) induced by A1 + q, . . . , Ak + q.

Proof. To find the (TSVM) induced by A1, . . . , Ak we need to compute conv(Y )∩R.

Notice that this set is invariant under translations of A =
⋃k

i=1 Ai. This is because
for any points x1, . . . , xk the barycenter of {x̄1 ⊗ v1, . . . , x̄k ⊗ vk} is the same as the

barycenter of {(x1 + q)⊗v1, . . . , (xk + q)⊗vk}. Since conv(Y )∩R does not change,
the set of support vectors remains the same.
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[5] Imre Bárány, Pavle V. M. Blagojević, and Günter M. Ziegler. Tverberg’s Theorem at 50:
Extensions and Counterexamples. Notices of the American Mathematical Society, 63:732 –

739, 2016.
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[7] Imre Bárány and Pablo Soberón. Tverberg’s theorem is 50 years old: A survey. Bulletin of

the American Mathematical Society, 55(4):459 – 492, 2018.
[8] Koby Crammer and Yoram Singer. On the algorithmic implementation of multiclass kernel-

based vector machines. Journal of machine learning research, 2(Dec):265–292, 2001.
[9] Jesus A De Loera and Thomas Hogan. Stochastic tverberg theorems with applications in

multiclass logistic regression, separability, and centerpoints of data. SIAM Journal on Math-

ematics of Data Science, 2(4):1151–1166, 2020.
[10] Kai-Bo Duan and S Sathiya Keerthi. Which is the best multiclass svm method? an empirical

study. In International workshop on multiple classifier systems, pages 278–285. Springer,

2005.
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