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Abstract

High-copy-number plasmids are indispensable tools for gene overexpression studies in prokaryotes to engineer pathways or
probe phenotypes of interest. The development of genetic tools for the industrially relevant Actinobacteria is of special inter-
est, given their utility in producing keratolytic enzymes and biologically active natural products. Within the Actinobacteria,
Streptomyces—Escherichia coli shuttle vectors based on the SCP2* and plJ101 incompatibility groups are widely employed for
molecular cloning and gene expression studies. Here, the sequences of two commonly used plJ101-based Streptomyces—E. coli
shuttle vectors, pEM4 and pUWL201, were determined using next-generation sequencing. These plasmids drive the expression
of heterologous genes using the constitutive ermE*p promoter. pEM4 was found to be 8.3 kbp long, containing a f-lactamase
gene, thiostrepton resistance marker, the lacZa fragment, a ColET origin of replication and the Streptomyces plJ101 origin of
replication. pUWL201 was found to be 6.78 kbp long, containing a f-lactamase gene, thiostrepton resistance marker, the lacZa
fragment, a ColE1 origin of replication and the Streptomyces plJ101 origin of replication. Interestingly, the sequences for both
pEM4 and pUWL201 exceed their previously reported size by 1.1 and 0.4 kbp, respectively. This report updates the literature
with the corrected sequences for these shuttle vectors, ensuring their compatibility with modern synthetic biology cloning
methodologies.

DATA SUMMARY

The sequences for pEM4 (GenBank Accession No. MN970094) and pUWL201 (GenBank Accession No. MN992950) have been
deposited in the National Center for Biotechnology Information database. Supplementary data have been deposited in Figshare
DOTI: https://doi.org/10.6084/m9.figshare.27170772.v1.

INTRODUCTION

Next-generation sequencing (NGS) techniques, such as RNA-seq and Illumina whole-genome sequencing (WGS), have trans-
formed the biological sciences via deep sequencing of whole-cell transcriptomic profiles and genomes at significantly reduced cost
[1, 2]. WGS can also be applied to determine unknown plasmid sequences with great accuracy [3]. As such, WGS is a powerful
tool for determining plasmid vector sequences for plasmids that have been in widespread use for several decades but for which
no sequence information is available in the literature.

pIJ101 is a high-copy plasmid vector replicated in Streptomyces lividans and Streptomyces coelicolor at a copy number of ~70-100
copies per cell [4]. Since the first report of its use in the cloning of Streptomyces genes in the 1980s, many different derivatives of
pIJ101 have been developed, including pWHM3 and pUWL201 [5, 6]. These vectors are commonly used to overexpress genes
of interest in a wide variety of Streptomyces spp. [7, 8].

In early reports, cloning via restriction digest and ligation into a multiple cloning site (MCS) was the gold-standard technique
for studying gene expression in Streptomyces. Yet, due to limitations in the cost and scope of Sanger sequencing, the sequences
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for pIJ101-based plasmids were unreported during the early decades of actinomycete genetic engineering. However, modern
cloning techniques are sequence-specific, including Golden-gate assembly [9], Gibson assembly [10] and even yeast recombination
assembly [11], methods for which these plasmid vectors would be incompatible without exact sequencing information. Therefore,
in this report, we determined the sequence for the popular pEM4 and pUWL201 shuttle vectors using NGS [7, 8, 12-15].

Highlights
Two closely related Escherichia coli-Streptomyces shuttle vectors were sequenced and analysed. Updated sequences and vector
maps for pEM4 and pUWL201 facilitate the incorporation of these plasmids into modern synthetic biology workflows.

METHODS
Bacterial strains, growth conditions and plasmid extraction

E. coli JM109 (Promega) was used to propagate plasmids for sequencing analysis. E. coli JM109 was grown in Lysogeny Broth
(Miller formulation) or on solid lysogeny broth agar plates. Plasmids were introduced into chemically competent E. coli JM109
cells by standard procedures [16]. For E. coli strains harbouring plasmids, ampicillin was added at a final 100 ug ml™ concentration.

Plasmid DNA was extracted from E. coli J]M109 cells using the Wizard Plus SV Minipreps DNA Purification System (Promega
Catalogue No. A1460) following the manufacturer’s instructions. The plasmid was eluted in nuclease-free water. Following the
manufacturer’s instructions, plasmid concentration was measured via a Cytation BioTek Take3 plate reader (Agilent Technologies).
Sufficient plasmid purity for whole plasmid sequencing was determined by a 260/230 absorbance ratio of 2.0-2.2 and a 260/230
absorbance ratio of >1.8.

Next-generation plasmid sequencing

The plasmid DNA samples were diluted to a final concentration of 40-65ng pl™!, and aliquots of =35 ul were submitted for
complete plasmid sequencing. Whole plasmid verification was performed at the Massachusetts General Hospital Center for
Computational and Integrative Biology (MGH-CCIB) DNA Core (Cambridge, MA). Sequencing was carried out on an Illumina
MiSeq platform with V2 chemistry. Plasmid sequences were assembled using MGH CCIB’s de novo assembler UltraCycler v1.0
(Brian Seed and Huajun Wang, unpublished).

RESULTS AND DISCUSSION

Sequencing and analysis of pEM4 and pUWL201

Plasmids pEM4 and pUWL201 were sequenced via the Illumina MiSeq NGS platform. pEM4 was sequenced with 209 963
reads, and pUWL201 was sequenced with 12699 reads. pEM4 is a high-copy number, E. coli-Streptomyces spp. shuttle vector,
which is derived from pWHM4 via insertion of the strong ermE*p promoter from Saccharopolyspora erythraea [17]. The ermE*p
promoter (i.e. the ‘ermE-up promoter) is a mutated version of the ermE promoter that features a TGG deletion of the ermE P1
promoter [18, 19]. pEM4 (GenBank Accession No. MN970094) was determined to be an 8289 bp plasmid, which features an
additional 1089 bp of sequence as compared to the initially reported plasmid size of 7200 bp [6]. The extra bp of the sequence

Table 1. Plasmid features of pEM4 and pUWL201

Plasmid features PEM4 pUWL201
Size (bp) 8289 6780
G+C content (%) 62.6 57.8
ColEl origin 6901...7583 6383...285
pIJ101 origin 3847...5433 1052...2422
bla resistance 7678...249 5626...6285
tsr resistance 1607...2416 3564...4373
ermE”p promoter 892...933 633...671
Polylinker 846...1073 509...632
LacZ alpha 688...756 4772...4840

Feature is not present in the vector.
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Fig. 1. Plasmid maps of pEM4 and pUWL201. The Streptomyces and E. coli origins of replication are coloured silver. The drug resistance markers for
bla® and tsr® are coloured red.

include the ermE*p promoter and sequence encoding a partial ATP-binding cassette transporter from pIJ486 carried over from
the original cloning scheme. pEM4 contains the bla gene encoding ampicillin resistance, the ¢sr 23S-rRNA methyltransferase
from Streptomyces azureus encoding thiostrepton resistance, the high-copy-number ColE1 origin of replication from pUC19 and
the pIJ101 origin of replication for Streptomyces spp. (Table 1 and Fig. 1).

pUWL201 is another high-copy, E. coli-Streptomyces shuttle vector derived from pIJ4070 via introducing a 280 bp fragment
encoding the ermE*p promoter into the KpnI-Xbal sites of the polylinker region [5]. pUWL201 was determined to be 6780 bp in
size, which is 380 bp larger than the originally reported plasmid size of 6400 bp. Sequencing of the MCS revealed the presence of
one additional Xbal restriction site at position 618 in addition to the site in the polylinker. pUWL201 was determined to have the
bla gene encoding ampicillin resistance, the tsr 23S-rRNA methyltransferase from S. azureus encoding thiostrepton resistance, the
ColE1 origin of replication for E. coli and the pIJ101 origin of replication for Streptomyces spp. (Table 1 and Fig. 1). The plasmid
also features the fd phage terminator from bacteriophage fd [20]. The fd terminator arrests transcription of the upstream tsr gene.
The bacteriophage f1 origin of DNA replication is from bacteriophage f1 and initiates and terminates viral ssDNA synthesis [21].
Using a helper phage, the f1 origin facilitates the packaging of ssDNA into phage particles [21]. The f1 origin does not interfere
with plasmid replication or play any role without a helper phage.

SUMMARY

The sequences for the broadly used pEM4 and pUWL201 E. coli-Streptomyces shuttle vectors were determined via NGS and analysed.
Both vectors revealed additional nucleotide sequences and were larger in size than previously reported. The characterisation of these
vectors reveals that vectors traditionally used for the genetic engineering of prokaryotes may contain carryover sequences not explicitly
required for plasmid function. This work should facilitate efforts to generate ‘minimal’ versions of these E. coli-Streptomyces spp.
vectors and will enable their adaptation to synthetic biology.
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