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Abstract—Graph neural networks (GNNs) have recently em-
powered various novel computer vision (CV) tasks. In GNN-
based CV tasks, a combination of CNN layers and GNN layers
or only GNN layers are employed. This paper introduces GCV-
Turbo, a domain-specific accelerator on FPGA for end-to-end
acceleration of GNN-based CV tasks. GCV-Turbo consists of two
key components: (1) a novel hardware architecture optimized
for the computation kernels in both CNNs and GNNs using the
same set of computation resources. (2) a compiler that takes a
user-defined model as input, performs end-to-end optimization
for the computation graph of a given GNN-based CV task, and
produces optimized code for hardware execution. The hardware
architecture and the compiler work synergistically to support
a variety of GNN-based CV tasks. We implement GCV-Turbo
on a state-of-the-art FPGA and evaluate its performance across
six representative GNN-based CV tasks with diverse input data
modalities (e.g., image, human skeleton, point cloud). Compared
with state-of-the-art CPU (GPU) implementations, GCV-Turbo
achieves an average latency reduction of 68.4x (4.1x) on these
six GNN-based CV tasks. Moreover, GCV-Turbo supports the ex-
ecution of the standalone CNNs or GNNs, achieving performance
comparable to that of state-of-the-art CNN (GNN) accelerators
for widely used CNN-only (GNN-only) models.

Index Terms—Graph neural network, computer vision, com-
puter architecture, domain-specific accelerator.

1. INTRODUCTION

Graph Neural Networks (GNNs) are playing an increasingly
important role in various computer vision (CV) tasks [1], [2].
Figure 1 demonstrates several examples. These applications
utilize the combined power of convolution in CNN layers
and message passing in GNN layers. This has given rise to
a new domain called GNN-based CV: CV tasks that utilize
a combination of CNN and GNN layers (e.g., iteratively
interleaving CNN layer and GNN layer) or rely solely on GNN
layers.

GNN layers have gained widespread adoption in CV tasks
because: (1) Firstly, GNN layers facilitate label-efficient image
classification. Training standalone CNN [7] or vision trans-
former (ViT) [8] typically requires a substantial number of
labeled images. For instance, achieving high accuracy with
ViTs requires over 300 million labeled images. In contrast,
researchers have devised label-efficient few-shot learning tech-
niques [3] that combine GNN layers and CNN layers, requir-
ing only a small number of labeled images. (2) Secondly, GNN
layers can naturally handle non-Euclidean data structures in
diverse CV tasks, such as point clouds [9]-[11], 3D meshes
[12], [13]. In contrast, the convolution of the CNN layer
and the multi-head self-attention (MSA) of ViTs are designed
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Fig. 1: Examples of GNN-based CV tasks [3]-[6]

for regular grids and cannot be directly employed with non-
Euclidean data structures. For example, convolution operates
on 2D grids, and MSA [8] relies on positional encodings on
2D grids. (3) Thirdly, the message passing of GNN layers
excel in relation learning for various CV tasks, allowing them
to understand complex object relationships. In video action
recognition, a CNN [14] detects multiple objects, while GNN
layers [15] are employed to capture object relationships.
Given this domain’s expanding scope and future relevance,
there is an urgent need for end-to-end acceleration for these
GNN-based CV tasks. For example, in autonomous driving,
low latency inference is crucial to ensure safety. Neverthe-
less, it poses significant challenges: while there are various
CNN accelerators [16]-[22] or GNN accelerators [23]—-[30]
proposed. The hardware architecture of these CNN or GNN
accelerators is optimized solely for one layer type, which is
inefficient for the end-to-end acceleration of GNN-based CV.
For example, CNN accelerators [16]-[22] are not efficient
for message passing in GNN layers while GNN accelerators
achieve suboptimal performance on convolution operation of
CNN layers. While we can potentially combine a CNN accel-
erator and a GNN accelerator for GNN-based CV, it can lead to
sub-optimal performance due to resource underutilization. For
example, when executing a CNN layer, the GNN accelerator
will be idle and vice versa. Another possible solution is to
build FPGA bitstreams for CNN and GNN layers, respectively.
However, this requires dynamic reconfiguration of FPGA for
executing a model, which can incur significant latency and is
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not suitable for latency-sensitive applications. (2) GNN-based
CV model has a mixture of dataflow because the GNN layer
and CNN layer can be interleaved but have very different
data layouts. Existing compilers and hardware architectures
of the aforementioned CNN or GNN accelerators are not
optimized for this dataflow mixture, which can potentially
lead to large overhead in transforming data layouts between
two types of layers. Coordinating the data layout between the
CNN and GNN layers requires non-trivial compiler-hardware
codesign. (3) General purpose processors (CPU, GPGPU)
are not well-suited for low-latency inference of GNN-based
CV. Because they have complex cache hierarchies leading
to large and unpredictable memory access latency, unsuitable
for latency-sensitive applications. Given that there are no
existing accelerators for GNN-based CV, the execution of
existing GNN-based CV [3]-[6], [10], [31] rely on CPU/GPU,
leading to suboptimal performance. (4) Moreover, autonomous
driving systems execute various CV tasks including non-GNN
CV. Therefore, an accelerator should not only achieve high
performance for GNN-based CV, but also not sacrifice much
performance for tasks that utilize standalone CNNs or GNNs.

To address the above challenges, we propose GCV-Turbo,
a domain-specific accelerator on FPGA for end-to-end accel-
eration of GNN-based CV. Unlike existing CNN and GNN
accelerators, the architecture design of GCV-Turbo employs
the resource sharing strategy that different computation ker-
nels in CNNs and GNNs share the same computation resources
for improved resource utilization. Moreover, the compiler not
only optimizes CNN layers or GNN layers but also performs
end-to-end optimizations for the mixture dataflow of CNN and
GNN layers. Our main contributions are:

o We propose GCV-Turbo, the first domain-specific acceler-
ator for end-to-end acceleration of GNN-based CV tasks.

« We design a novel hardware architecture with a flexible
data path and memory organization capable of executing
various computation kernels in CNN and GNN layers
using the same set of hardware resources.

o We develop a customized compiler for end-to-end opti-
mizations that reduces inference latency of GNN-based
CV, including (1) optimizations for data manipulation
between CNN layers and GNN layers, (2) data layout
centric mapping, (3) sparsity-aware computation primitive
mapping.

« We implement the hardware design on a state-of-the-
art FPGA board, Alveo U250. Evaluated on six rep-
resentative GNN-based CV tasks, GCV-Turbo achieves
average latency reduction of 68.4x and 4.1x compared
with the state-of-the-art implementations on CPU and
GPU, respectively.

o We compare GCV-Turbo with state-of-the-art CNN and
GNN accelerators. GCV-Turbo demonstrates performance
comparable to CNN DSAs for CNN-only models (with a
speedup of 0.88 to 0.93x), and to GNN accelerators for
GNN-only models (with a speedup of 1.03 to 1.25x).

To the best of our knowledge, GCV-Turbo is the first hardware-
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compiler codesign capable of executing both CNN and GNN
layers, optimized for the end-to-end acceleration of GNN-
based CV, and also maintaining good performance on tasks
that utilize standalone CNN or GNN.

II. BACKGROUND

1) GNN-based Computer Vision Tasks: Figure 1 shows
several representative GNN-CV tasks. We conduct an exper-
imental study to understand the challenges of accelerating
GNN-based CV: (1) In CNN-based CV tasks, both CNN and
GNN layers can be computationally extensive. Moreover, the
computation workloads of CNN/GNN layers vary in tasks
ranging from 2% — 100% (Figure 2). Directly combining a
CNN accelerator and a GNN accelerator can lead to severe
hardware underutilization. For example, the GNN accelerator
will be idle when executing a CNN layer. This underutilization
can increase the inference latency. (2) In GNN-based CV tasks,
the CNN layer and GNN layer have very different data layouts
for input and output data. Moreover, the CNN layer and GNN
layer can be interleaved (which is for better feature fusion in
GNN-based CV. See image segmentation and skeleton-based
human action recognition in Figure 1). Switching the data
layout (including permute(), transpose(), and other indexing
functions) between the CNN layer and the GNN layer can
lead to significant overhead, taking 1% — 15% execution time
on a state-of-the-art GPU platform (Figure 2). This can be
more severe on embedded platforms with limited memory
bandwidth since layout transformation is memory-bound. (3)
General purpose processors (CPU, GPU) are hard to achieve
low-latency inference for GNNss [23], [25], [26], because GNN
has irregular data access patterns and memory access patterns.
Due to the complex cache hierarchy, CPU and GPU have low
efficiency [23], [25], [26] for executing GNNs.
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Fig. 2: Breakdown analysis of GNN-based CV tasks (bl-
b6) on state-of-the-art GPU (RTX AS5000). The details of the
models and datasets are elaborated in Section VI.
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2) Domain Specific Accelerators: A multitude of domain-
specific accelerators (DSAs) [16]-[21] have been proposed to
accelerate CNNs. However, these CNN-specific DSAs have
challenges in both hardware design and compiler implemen-
tation when it comes to executing GNN-based CV tasks, as
elaborated in Section I. Recently, a DSA known as GraphAG-
ILE [32] has emerged to accelerate GNNs. Unfortunately, the
GraphAGILE compiler does not accommodate CNNs, which
is crucial for GNN-based CV tasks. Moreover, GraphAGILE
does not explore the data sparsity in GNNs, which can result
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in suboptimal performance when applied to GNN-based CV
tasks. Meanwhile, there exist other accelerators [33] designed
for specific GNN-based CV tasks. RFC-HyPGCN [33] spe-
cializes in running 2S-AGCN [34] for human-skeleton-based
action recognition, while Pointacc [35] is tailored to accelerate
several GNNSs utilized in point cloud applications. In summary,
prior research efforts either (1) design DSAs exclusively for
CNNs or GNNs, or (2) design accelerators optimized for
specific GNN-based CV tasks.

III. OVERVIEW
A. Problem Definition

Our objective is to perform end-to-end inference accelera-
tion of GNN-based CV tasks. End-to-end acceleration refers to
reducing the inference latency of a GNN-based CV task, which
is duration from when the input data is given to the time when
the inference result is obtained. This includes data loading
from external memory, executing all the layers of the model on
the accelerator, and storing the results in the external memory.
To this end, we propose a compiler-hardware codesign. The
compilation is an offline process. The GCV-Turbo compiler
takes a user-defined model (written in PyTorch [36] and
PyTorch Geometric [37]) as input and generates optimized
code for hardware execution. The GCV-Turbo hardware design
has a fixed architecture that execute various models without
reconfiguring the FPGA. This is important for many real-world
systems, such as autonomous driving, which execute various
models for various data modality. We target latency-sensitive
applications such as autonomous driving, where inference
latency should be low to ensure safety.

B. Overview of GCV-Turbo

Figure 3 illustrates the overview of GCV-Turbo: (1) Com-
piler: It is executed on the host processor. The input parser
generates the intermediate representation (computation graph)
from the given input model. The computation graph or in-
termediate representation is the high-level representation of
the input model with each node representing a layer and
each arrow representing the data dependency. Then, compiler
performs five-step compilation to map the input model onto
the hardware accelerator. We apply several compiler optimiza-
tions (Section V-C) for GNN-based CV. Finally, the compiler
generates an instruction sequence for hardware execution.
(2) Application processing unit (APU): The APU of FPGA
[38] takes the instruction sequence as input and launches
the workload of inference on the hardware accelerator. (3)
Hardware accelerator: The hardware accelerator executes the
computation tasks scheduled by APU.

Hardware design: As discussed in Section I, existing CNN
or GNN accelerators suffer from inefficiency when handling
GNN-based CV tasks. To tackle this challenge, we identify
fundamental computation primitives (Section IV-A) capable of
representing computation kernels in both GNNs and CNNs.
Subsequently, we design a flexible data path and memory
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organization for efficient execution of these computation prim-
itives within our hardware design. This enables our accelerator
to support both CNNs and GNNs. Meanwhile, our proposed
accelerator incorporates an instruction set (Section IV-B) pro-
viding software-like programmability. Note that our hardware
design employs resource sharing strategy (Section IV) such
that the computation kernels of CNN and GNN share the same
set of computation resources.
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Fig. 3: Overview of GCV-Turbo

Compiler design: Designing a compiler to support GNN-
based CV is not merely merging separate compiler optimiza-
tion for CNNs and GNNs. Instead, it needs the end-to-end
optimization of the computation graph of a GNN-based CV
model. Because: (1) a GNN-based CV task often comprises
both CNN and GNN layers, and these layers can be interwoven
(e.g., [6]). (2) These two layer types exhibit different data
layouts and memory access patterns. Without careful dataflow
optimization, switching data layouts can lead to substantial
overhead and increased memory access latency. To address this
challenge, we devise a five-step compilation workflow (Section
V) with various compiler optimizations for GNN-based CV
(Section V-C).

Workflow: The workflow is illustrated in Figure 4. At com-
pile time, the compiler takes the user-defined model as input
and produces the intermediate representation (i.e., computation
graph). The compiler then performs a five-step compilation
to generate an instruction sequence stored in a binary file.
During hardware execution, the APU reads the binary file and
schedules the computation tasks on the hardware accelerator.

Experimental study: We conduct the comprehensive experi-
mental study on six representative GNN-based CV tasks (Sec-
tion VII-A). Because these tasks (1) cover various use cases
and data modalities (See Table III) in real-world applications,
such as autonomous driving, (2) cover various computational
characteristics of GNN-based CV (See Figure 2), such as
varying portions of CNN/GNN layers, varying patterns of lay-
out transformation between CNN and GNN layers. Evaluating
these tasks, we expect GCV-Turbo to perform similarly on a
broad range of GNN-based CV tasks.

IV. HARDWARE ARCHITECTURE

As illustrated in Figure 5, GCV-Turbo has a unified hard-
ware architecture that efficiently executes various computation
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primitives (Section IV-A) in CNNs and GNNs. The accel-
erator has multiple parallel processing elements (PEs), with
each having an Instruction Queue (IQ) and an Instruction
Decoder (ID). Each PE has a computation array (CA) with
p2, computation units. Each computation unit executes the
basic arithmetic operations. Each PE has a Scalar Buffer
(SB), a Vector Buffer (VB), a Weight Buffer (WB), and a
Result Buffer (RB). Each Buffer (SB/VB/WB/RB) has pe,
memory banks. Each bank can output p., data per cycle. There
are two all-to-all data routing networks — Buffer-to-Buffer
(B2B) and Buffer-to-Pipeline (B2P) Routing Network. Data
Manipulation Module performs transformations of data layout
between different layers (e.g., CNN layer and GNN layer).

Resource sharing: Note that in a PE, different computation
primitives share the same set of computation units, data
buffers, and routing networks. See more details in Section
IV-A. This increases the resource utilization for executing a
GNN-based CV task. For resource sharing, it only requires
extra extra wire connections and hardware multiplexers for
selecting data path for different computation primitives, which
incur small hardware cost (See Section VI).

A. Computation Primitives

In GNN-based CV tasks, we identify five basic compu-
tation primitives (Figure 5), including dense-dense matrix
multiplication (DDMM), sparse-dense matrix multiplication
(SpDMM), sampled dense-dense matrix multiplication (SD-
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DMM), parallel scalar-vector multiplication (PSVM), and par-
allel vector-vector addition (PVVA). Each layer can be mapped
to these basic computation primitives. The PE has a flexible
architecture to support these computation primitives. Each
PE maintains hardware multiplexers to select the data path
for executing various primitives. Switching among primitives
incurs one clock cycle overhead. For simplicity, the input to a
computation primitive are two matrices denoted as X € R®1**2
and Y € R*2*%3, The output matrix is denoted as Z € R%1*%3,

DDMM: DDMM executes X x Y, and views X and Y
as dense matrices. To this end, the computation array is
organized as a 2-D systolic array (See Figure 5) with local-
ized interconnection. X and Y are stored in VB and WB,
respectively. Different from traditional 2-D systolic arrays,
DDMM incorporates a B2P routing network for shuffling the
position of input vectors (rows of X), which supports data
layout transformation between CNN layer and GNN layer
(See Section V-C). DDMM can execute pe, X pe, multiply-
accumulate (MAC) operations in each clock cycle.

SpDMM: SpDMM executes X xY where X is a sparse matrix.
The computation array is organized as multiple pipelines with
each having a Scatter Unit (SCU) and a Gather Unit (GAU).
Each non-zero element in X is represented using a three-
tuple (sre,dst,val), denoting row index, column index, and
value, respectively. The execution follows the scatter-gather
paradigm [39], [40] as shown in Algorithm 1. Executing XxY

takes Isppmm clock cycles: Isppmm (X, Y) = [M:Jiz/(;()] x [ﬁ]

Authorized licensed use limited to: Purdue University. Downloaded on October 23,2024 at 15:41:29 UTC from IEEE Xplore. Restrictions apply.



where Nonz(X) denotes the number of non-zeros in X.

Algorithm 1 SpDMM using Scatter-Gather paradigm

while not done do
for each (src,dst,val) € X in SB do

> Pipelined Execution
> Data Fetching

Route (src,dst,val) from SB to VB > B2B
Fetch row src of Y: Y[src] from VB

Form input pair {Y[src], (sre,dst,val)}

Route the input pair to pipeline dst% (pea/2) > B2P

for each input pair {Y[src], (src,dst,val)} do
Produce u < val x Y[src] > Scatter Unit (SCU)
Update Z[dst]+ =u > Gather Unit (GAU)

SDDMM: SDDMM executes Z = A © (XY) (A € R¥1*%),
where ® is the element-wise multiplication. A is a sampling
matrix where each element is either 1 or 0 to sample results
from XY. For example, if A[i][j] = 1, then Z[:][j] =
(X[#],Y[j]) where (,) denotes vector inner product operator.
If A[i][j] = 0, Z[¢][j] = 0. Each computation pipeline is
organized as an adder tree (ADT). The execution of SDDMM
is shown in Algorithm 2. Executing A ® (XY) takes Isppmm

clock cycles, where Isppym(X,Y) = [M:iz/(;()] X [;—2]

Algorithm 2 Sampled dense-dense matrix multiplication

while not done do
for each (src,dst) € A in SB do

> Pipelined Execution
> Data Fetching

Route (sre,dst) from SB to VB > B2B

Fetch X[src] and Y[dst] from VB

Form input pair {X[src], Y[dst]}

Route the input pair to a pipeline > B2P
for each input pair do > Computation

Update Z[src][dst]+ = (X[src], Y[dst]) > ADT

PSVM: To execute PSVM, the computation array is organized
as pea/2 independent pipelines. Each pipeline has a vector
multiplier (VM) to execute the multiplication between a scalar
and a vector of length p.,. A PE can execute p2 /2 multiply
operations per clock cycle. PSVM can be used to perform
matrix-vector multiplication.

PVVA: To execute PVVA, for p.,/2 independent pipelines,
each pipeline has a vector adder (VA) to execute the vector
addition between two vectors of length p.,. A PE can execute
p2,/2 addition operations per cycle. PVVA can be used to
execute matrix addition.

B. Instruction Set

We develop a customized instruction set, including compu-
tation instructions, memory read/write instructions. (1) Com-
putation Instructions includes the instruction for each compu-
tation primitives (e.g., DDMM instruction). Each instruction
contains the meta data (e.g., matrix size) of the corresponding
computation primitive. The Instruction Decoder decodes the
instruction and generates control signal for the PE to exe-
cute the computation primitives in pipelined manner. Memory
Read/Write Instructions launch the data transactions between
the on-chip buffer and the external memory.
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V. COMPILER

Existing compilers for CNN or GNN accelerator [16]-[22],
[41] support only one type of model (CNN or GNN). In
contrast, GCV-Turbo offers an end-to-end compilation/opti-
mization workflow for GNN-based CVs. For a given input
model developed using PyTorch, the Input Parser converts
it into an intermediate representation (Section V-A), which
serves as the computation graph underlying the inference
process. The compiler then performs a five-step compilation
(Section V-B) to generate an instruction sequence. Especially,
we perform a number of specific optimizations (Section V-C)
for GNN-based CV tasks: including (1) data manipulation
(DM) layer generation, (2) layer fusion for DM layer, (3)
uniform mapping, (4) data layout centric mapping, and (5)
sparsity-aware primitive mapping. Our compiler utilizes the in-
frastructure of TVM framework [42]. Based on it, we develop
our own input parser, intermediate representation, compilation
workflow, and compiler optimizations.

A. Intermediate Representation

We develop the intermediate representation (IR) for the
following set of computation layers in GNN-based CV tasks:

Convolutional (Conv) Layer: The input §i, has ¢, feature
maps (channels), each having a size of hj, x wy,. The output
Sou has coy feature maps (channels) with each having the
size of hou X Wou. The convolution kernel 2 has the size of
Cout X Cin X k1 % ko. The output o is obtained through 2D
convolution between input §j, and kernel 2J.

Message Passing (MP) Layer: It is used in GNNs for
message passing within graph G(V,€). The input are ver-
tex feature vectors {hj,[v] € Rf : v € V} and edges
{eyy € R : e,, € E£}. The output vertex feature vectors
{hou[v] € Rf : v eV} are obtained through message passing:
how[v] = p({€wy - hin[u] s w e N(v)}) where N(v) denotes
the set of neighbors of v, and p() is the element-wise reduction
function, such as Max() and Sum().

Linear Layer: In a Linear Layer, an input matrix H™™ is
multiplied by a weight matrix W' to obtain output matrix H".

Vector Inner Product (VIP) Layer: The inputs are the vertex
feature vectors {h;,[v] € RY : v € V}, and predefined edge
connectivity {e,, € Rl:ey, €& } with the value of e, to be
calculated. e, is calculated by: ey, = (hj,[u], hi,[v]) where
(,) denotes vector inner product.

Data Manipulation (DM) Layers: The DM layer is our
proposed new layer that represents the necessary data manip-
ulation operation between the CNN layer and the GNN layer.
See details in Section V-C1.

Other Layers: Include other types of layers, such as Pooling
layers, Normalization (Norm) layers, and Activation layers.

Following the convention of TVM [42], we implement the
IR of each layer as a tensor IR function (T.prim_func)
using TVMScript. The input parser of the compiler generates
the computation graph from the input model and represents
each layer using the IR.
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B. Compilation Workflow

We introduce the basic compilation workflow of GCV-
Turbo, which has five steps:

o Step I - layer fusion: For the computation graph of an in-
put model, the layer fusion step merges some layers (e.g.,
activation layer, normalization layer) into the adjacent
layers to facilitate task-level parallelism, reduce memory
traffic, and reduce overall computation complexity.

o Step 2 - layer-to-matrix operation mapping: For each
layer in the computation graph, the compiler maps it into
a set of matrix operations (e.g., matrix multiplication).

o Step 3 - data tiling and task partitioning: Because the ac-
celerator has limited on-chip memory, this step performs
data tiling for each matrix operation. Therefore, a large
matrix operation can be decomposed into a set of matrix
operations on small data tiles.

o Step 4 - mapping matrix operation to Computation Prim-
itive: This step maps each matrix operation into the basic
computation primitives (Section IV-A) that are supported
by the accelerator.

o Step 5 - Task scheduling: This step plans the execution of
the computation graph on the accelerator. The proposed
accelerator processes the model layer-by-layer. For each
layer, the APU schedules its computation using a cen-
tralized load balancing scheme [43] for workload balance
between PEs, according the status (idle or busy) of PEs.

In our design, each step is implemented as a compilation pass.
Finally, the compiler generates an instruction sequence for
hardware execution.

C. Compiler Optimizations for GNN-based CV tasks

We introduce the following set of compiler optimizations
for GNN-based CV:

1) Data Manipulation Layer Generation: CNN layer and
GNN layer can have very different data layouts. For example,
the output data layout of a CNN layer may not be compatible
with the input data layout requirement of a GNN layer, and
vice versa. The input parser generates the data manipulation
(DM) layer between the CNN and GNN layers. In GNN-based
CV tasks, the data manipulation process between the CNN and
GNN layers is illustrated in Figure 6. For example, for the
output feature maps of a CNN layer, GNN is used to perform
reasoning in channel or spatial dimensions. For reasoning
in channel dimension, each channel is viewed as a graph
node (channel-to-node transformation), while for reasoning in
spatial dimension, each patch of pixels in spatial dimension is
viewed as a graph node (patch-to-node transformation). This
data manipulation process can lead to significant overhead and
requires careful compiler-hardware co-optimization. The DM
layer will be optimized during the compilation process.

2) Layer fusion for DM layer: To reduce the overhead
of the DM layer, the compiler merges the DM layer with
the following computation layer (Conv layer or MP layer).
This overlaps the data manipulation and the computation.
In our hardware design (Figure 5), each PE maintains a
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Data Manipulation Module (DMM), which pipelines the data
manipulation operation and computation.

3) Uniform Mapping: CNN layer (Conv layer) and GNN
layer (MP layer) have very different computation patterns. To
leverage our flexible hardware design, the compiler performs
uniform mapping for the CNN layer and GNN layer in step
2. Both CNN layer and GNN layer are mapped to matrix
operations, including matrix multiplication and matrix addi-
tion. Since our hardware architecture is optimized for various
matrix operations, both the CNN layer and GNN layer can be
efficiently executed using our unified architecture design.

4) Data Layout Centric Mapping: CNN layer and GNN
layer have very different data layouts. To reduce the data
manipulation overhead (Figure 6) between two layers, we pro-
posed to perform data layout centric mapping, which involves
the mapping of Conv layers and mapping of MP layers:
Mapping of a Conv layer: As shown in Figure 7, for a
Conv layer, the convolution kernel matrix 2U is rearranged
into k1 x ko submatrices, denoted as {IKM,; : 0 < < kyko — 1},
where each KIM; has dimensions ¢, x ¢oy. The input feature
maps Jin are organized into a matrix denoted IFM of size
Cin X hinwiy, With each input feature map represented as a row
in this matrix. Each KM; is multiplied by IFM to obtain
k1 ko output matrices, denoted as {OFM,; : 0 <i < kika — 1},
each having dimensions Coy X oy Wour. Through shift and add
(shift-add) operations, the kjke output matrices are merged
into a single output matrix OFM of size cou X RouwWout-
OFM can be further reorganized back to ¢y, output feature
maps. Consequently, a Conv Layer is mapped to matrix
multiplication and matrix addition operations.

Data layout of Conv Layer: The proposed mapping strat-
egy brings several benefits: (1) The computation of a Conv
Layer is mapped to the matrix operations associated with the
computation primitives. (2) The reorganization of data layout
for the kernel matrix (20) occurs at compile time, incurring
a one-time cost. (3) The data layout for both IFM and
OFM remains consistent without the need for data layout
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transformations between consecutive Conv Layers. (4) Most
importantly, the data layout of IFM/OFM can simplify
the data layout manipulation between CNN layer and GNN
layer. For example, if the data manipulation layer performs
channel-to-node transformation, each row of IFM/OFM
corresponds to a channel in the feature maps of a CNN layer.
IFM/OFM can serves as the input feature matrix for the
following MP layer. If the data manipulation layer performs
patch-to-node transformation, each column or several columns
of IFM/OFM corresponds to an image patch in the feature
maps of a CNN layer. The following MP layer can load node
features through matrix transpose, which can be efficiently
executed by the Data Manipulation Module.

Output feature maps Foue

Kernel Matrix 90t

Input feature maps iy,

Wout
C
Win out hout
houtWout
c
mn hin Cout
Cin l shift-add T

[V
-mx_l Cout IFM Cout

X ¢ =
== —
houtwout

Fig. 7: Mapping a Conv layer to matrix operations

hinwin C,
out

Mapping of MP layer: An MP layer is mapped to the
multiplication of graph adjacency matrix A and feature matrix
H. This matrix multiplication will be mapped to either dense
computation primitive (DDMM) or sparse computation primi-
tive (SpDMM), which will be introduced later (Section V-C5)
in detail. To reduce the overhead of data manipulation from
MP layer to Conv layer (Figure 6), the compiler utilizes the
Buffer-to-pipeline (B2P) routing network for channel shuffling
in DDMM and SpDMM. Because for the data from a GNN
layer to a CNN layer (Figure 6), each node feature vector
or a piece of node feature vector needs to be routed to the
corresponding channel of the feature maps of a CNN layer.
During compilation, the compiler assigns a channel index for
each node feature vector or a piece of feature vector. During
hardware execution, when performing DDMM or SpDMM,
the B2P routing network routes the feature vector to the
corresponding channel stored in the result buffer. Through this
on-the-fly channel shuffling, we eliminate the overhead of data
manipulation from the GNN layer to the CNN layer.

5) Sparsity-aware primitive mapping: In step 2, both CNN
layers and GNN layers are mapped to matrix operations.
Nevertheless, the weight matrix of a CNN/GNN layer or the
adjacency matrix of a GNN layer can have different data
sparsity. To exploit the data sparsity, the compiler performs
sparsity-aware primitive mapping in step 4. In Step 4, for each
matrix multiplication operation, the compiler maps it to dense
computation primitive (DDMM) and sparse computation prim-
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itive (SpDMM) based on the data sparsity and performance
models of computation primitives (Section IV-A).

VI. IMPLEMENTATION DETAILS

Hardware: We implement the accelerator and the APU
(Figure 3) on an Alveo U250 FPGA [44]. We empirically
set pea = 16 for each PE and use the half-precision floating-
point data format (fp16). The Alveo U250 board consists of
four Super Logic Regions (SLRs). Each SLR can be deployed
with 2 PEs, except for SLR1, where half of it is occupied by
FPGA shell and APU. We utilize Verilog HDL for developing
the PE, and use MicroBlaze [38] IP core from AMD Xilinx
for implementing the APU. FPGA synthesis and place-route
are carried out using Vivado 2022.2. The generated device
map and resource utilization are reported in Figure 8. We also
perform frequency optimization following the methodology in
Xilinx DPU [45] to set the frequency of the computation units
(few = 600 MHz) to double that of the data buffers (foufrer = 300
MHz), enhancing the peak performance of the accelerator.
Impact of resource sharing: As discussed in Section IV,
different computational primitives share the same set of com-
putation units, on-chip buffers, and routing networks. The
wires of different primitives and multiplexers for selecting
data paths incur extra area costs. In each PE, these wires and
multiplexers consume 37K LUTs (Figure 8), taking 31% LUTs
consumption of a PE (A PE consumes 118K LUTs). Through
resource sharing, our PE design only costs extra 31% LUTs
for supporting various computation primitives.

Compiler: We develop the compiler using Python built
upon TVM infrastructure [42]. Based on it, we develop our
own intermediate representation, compilation workflow, and
compiler optimizations. The compiler takes the computation
graph generated by PyTorch [46] and the metadata of input
data as input. We develop customized intermediate represen-
tation (IR) as TVM prime functions. The five-step compilation
is implemented as IR transformation passes to process the
generated IR step by step. The output of the compiler is a
sequence of instructions that is stored in a binary file.

SLR3

SLR2 SLR1 SLRO

LUT  1129K/1726K (65.4%)
BRAM  1539/2688 (57.3%)
URAM  960/1280 (75%)

DSP 960/1280 (59.3%)

Fig. 8: Device map on Alveo U250 FPGA
VII. EXPERIMENTAL RESULTS

Overview: We conduct experiments to demonstrate two key
aspects: (1) Scope: GCV-Turbo’s versatility to handle a wide
range of GNN-based CV tasks as well as traditional CNNs
and GNNs; (2) Performance: GCV-Turbo’s ability to achieve
high performance, especially for the end-to-end acceleration
of GNN-based CV tasks. A comparison of scope and perfor-
mance are summarized in Table I and Table II, respectively.
Table I clearly illustrates that unlike existing CNN DSAs
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[16]-[22] and GNN accelerators [23]-[29], which target only
one specific scope (either CNNs or GNNs), GCV-Turbo can
handle all three scopes — CNNs, GNNs, as well as GNN-based
CV. We note that current state-of-the-art implementations of
GNN-based CV tasks run these ML models on CPUs or
GPUs [47]-[51] (given the limited scope of CNN DSAs and
GNN accelerators). Thus, a natural performance comparison
of GCV-Turbo is with standalone CPUs or GPUs for such
tasks. Table II shows a comprehensive comparison of GCV-
Turbo versus all alternative baselines - standalone CPU, GPU
as well as all the DSAs. Note that GCV-Turbo not only
offers comparable performance with CNN DSAs and GNN
accelerators within their specialized scopes, it also outperforms
CPU and GPU platforms in all three scopes.

TABLE I: Scope of various accelerators

Scope (Models) [ Scope 1 Scope 2 Scope 3
Accelerator (CNNs) (GNNs) (GNN-based CV)

Performance
Comparison

CPU and GPU v v v See Section VII-B

CNN DSAs [16]-[22] v X X See Section VII-D1

GNN Accelerators [23]-[29] X v X See Section VII-D2
GCV-Turbo v v v

TABLE II: Average speedup achieved by GCV-Turbo over
various baselines within their specialized scopes. Each entry
represents the performance of GCV-Turbo divided by the
performance of the respective baseline. “Not supported” means
that the scope is not supported by the baseline.

) Scope Models)| GNNs  GNN-based CV tasks
Baseline
CPU (GPU) 418.8x (1.8x) 499.5x (3.2x) 68.4x (4.1%)
CNN DSAs 0.88 - 0.93x  Not supported Not supported

GNN Accelerators Not supported 1.03 x —1.25x Not supported

The rest of this section is organized as follows: (1) Section
VII-A introduces the benchmarks, baselines, metrics, and
datasets. (2) Section VII-B presents the comparison results
with state-of-the-art CPU and GPU on six GNN-based CV
tasks, and standalone CNNs and GNNs. (3) Section VII-C
shows the impact of compiler optimizations. (4) Section VII-D
compares GCV-Turbo’s performance with that of state-of-the-
art CNN and GNN accelerators, within their respective scopes.

A. Benchmarks, Baselines, and Metrics

Benchmarks: We collect benchmarks from three scopes, in-
cluding (1) scope 3 (GNN-based CV): representative GNN-
based CV tasks, as elaborated in Table III, which cover
diverse data modalities and model types. (2) scope 1 (CNNs):
popular CNN models for CV tasks, including c1: AlexNet,
c2: ResNet-50 [7], c3: ResNet-101 [7], c4: VGG16 [52],
and c5: VGG19 [52]; (3) scope 2 (GNNs): widely used GNN
models (g1: GCN [53], g2: GraphSAGE [54], g3: GAT [55]);
Baselines: We compare the performance with the implemen-
tations on CPU and GPU as shown in Table V.

Performance Metrics: We consider two performance metrics
(1) batch-size-one latency: this measures the accelerator’s
latency when the batch size is equal to one. In applications like
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TABLE III: Details of evaluated GNN-based CV tasks

Notation Task Input Modality Model Type Dataset

bl [3] Few-shot image classification image CNN + GNN  Omniglot [56]
b2 [4] Multi-label image classification image CNN + GNN  MS-COCO [57]
b3 [5] Image segmentation image CNN + GNN  Cityscapes [58]
b4 [6]  Skeleton-based action recognition human skeleton CNN + GNN NTU RGB+D [59]
b5 [31] SAR automatic target classification  radar signal CNN + GNN MSTAR [60]
b6 [10] Point cloud classification point cloud GNN ModelNet40 [61]

TABLE IV: Statistics of the graphs in GNN-based CV tasks

Model # of vertices # of edges Feature length ‘ Model # of vertices # of edges Feature length

bl 25-100 300-5000 300-400 b4 25 75-125 9600-19200
b2 80 6400 300-2048 b5 16384 131072 48
b3 100-300  10000-30000  561-33153 b6 1024 10000-30000 64-1024
TABLE V: Specifications of platforms
Platforms | CcPU GPU GCV-Turbo

Platform AMD Ryzen 3990x Nvidia RTX A5000 Alveo U250

Platform Technology TSMC 7 nm Samsung 8 nm  TSMC 16 nm

Frequency 2.90 GHz 1170 MHz 600/300 MHz

Peak Performance 3.7 TFLOPS 27.7 TFLOPS 1.08 TFLOPS
On-chip Memory | 256 MB L3 cache 6 MB L2 cache 45 MB
Memory Bandwidth 107 GB/s 768 GB/s 77 GB/s

autonomous driving [62], low latency is critical for ensuring
safety; (2) throughput: when comparing with state-of-the-
art CNN accelerators for standalone CNNs (Section XI), we
use throughput as the performance metric. CNN accelerator
performance is typically reported in throughput [16], [20].

B. Comparison with CPU and GPU Implementations

In this section, we provide a comprehensive comparison
between GCV-Turbo and CPU/GPU across the three scopes
(Table I). The summarized results can be found in Table II.

1) Evaluation on Scope 3 (GNN-based CV tasks): Figure
9 displays the comparison results with CPU and GPU perfor-
mance on six representative GNN-based CV tasks. The CPU
and GPU implementations of these six tasks are from the
well-optimized open-source implementations [47]-[51], which
utilize the optimized CUDA library for CNN and GNN layers.
Note that b3 employs two different CNN models, ResNet-50
and ResNet-101, in combination with their proposed GNN
layers, resulting in two combinations denoted as b3-r50
and b3-r101, respectively. On average, GCV-Turbo achieves
68.4x and 4.1x latency reduction compared with CPU and
GPU, respectively. This speedup is attributed to two factors:
(1) The proposed accelerator utilizes unified architecture to
accelerate both CNN and GNN layers, improving resource
utilization. (2) Our compiler optimizations hide and eliminate
the overhead of data layouts transformation between CNN and
GNN layers. As illustrated in Figure 9, GCV-Turbo achieves
a higher speedup on bl and b4-6, due to (1) As shown
in breakdown analysis below, GNN layers constitute a larger
portion of the workload in bl and b4-6. GCV-Turbo can
achieve a higher speedup for the GNN layers due to its
optimized architecture for irregular computation in GNN. (2)
As shown in Table VI, the model b1l and b4-6 can fit in the
on-chip memory of our accelerator. Due to the customized on-
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chip memory organization, the Computation Array can access
the parameters of the model in one clock cycle. In contrast,
GPUs have complex cache hierarchy and small L1 cache (128
KB per SM); Accessing the parameters requires navigating
through a complex cache hierarchy, resulting in higher latency.

Discussion on the throughput of GPU: While GCV-Turbo
achieves lower latency when batch size is 1, GPU can achieve
higher throughput by increasing the batch size (e.g., 8/16/32)
as GPU has higher peak performance and memory bandwidth.
Nevertheless, this work targets latency-sensitive applications
(e.g., autonomous driving). For higher throughput, it requires
FPGA vendors to develop more powerful FPGA boards with
more hardware resources.

10000
4566 =Speedup over CPU % Speedup over GPU
1615
100 °f 422 45.1 DR sl A
E47 = = = 216 E44 =152
10 = = = = =34 =4 =N
= o =13 =12 =12 = = =\
1 NSNS = = ENEENEEEN
bl b2 b3-r50  b3-r101 b4 b5 b6

Fig. 9: Speedup (latency reduction) over CPU and GPU
GNN-based CV tasks

on

TABLE VI: Model size in GNN-based CV tasks

Task bl|b2 [b3-r50(b3-r101|b4| b5 | b6
Model size (MB) |9.6[115 66 114 5.210.76|1.67
[EESICNN I GNN |

b2 b3-r50 b3-r101

b1 b4 b5 b6
% < 0, 18 Qo % 0%
& ) i )

Fig. 10: Proportion of hardware execution latency of various
portions (CNN portion and GNN portion) on GCV-Turbo.

Breakdown Analysis: We conduct a breakdown analysis to
understand the speedup of GCV-Turbo compared with the
GPU on bl-6. The results, depicted in Figure 2 and 10,
demonstrate that different GNN-based CV tasks consist of
varying proportions of CNN and GNN layers, and data layout
transformation. Table VII presents the breakdown analysis
of speedup over the baseline GPU. GCV-Turbo achieves a
speedup of 1.2 —-2.4x on the CNN portion and 1.3 -15.2x on
the GNN portion for various GNN-based CV tasks. Moreover,
through our compiler optimizations, the overhead of data
layout transformation is completely reduced and hided, leading
to higher latency reduction.

TABLE VII: Speedup (batch-size-one latency) of GCV-Turbo
over GPU on various portions of the GNN-based CV tasks.
For layout transformation, the speedup is oo because GCV-
Turbo completely eliminates its overhead.

bl | b2 |b3-r50|b3-r101| b4 | b5 b6

CNN layers 2.4x|1.2x| 1.2x 1.2x  [1.8x[2.3x| N/A
GNN layers 7.6x[6.8x| 1.3x 1.3x 8.4x(6.5%|15.2x
Layout transformation| oo | oo oo oo oo | oo 0
Total 5.1x[1.3x| 1.2x 1.2x 3.6x[4.6x[15.2x
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2) Evaluation on Scope 1 (CNNs): Table VIII illustrates the
comparison between GCV-Turbo and highly-optimized CPU
and GPU implementations [63] across various widely used
CNNs. On average, GCV-Turbo achieves 418.8x (1.8x) la-
tency reduction compared with CPU (GPU) implementations.

TABLE VIII: Speedup (batch-size-one latency) over CPU and
GPU on various CNNs

Model c1: AlexNet|c2: ResNet50 [ c3: ResNetl01 [ c4: VGG16|c5: VGG19
Speedup over CPU 182x 43x% 42x 971x 855x%
Speedup over GPU 3.9% 1.2x 1.2x 1.4x 1.5%

3) Evaluation on Scope 2 (GNNs): We evaluate GCV-
Turbo using various GNN models and graph datasets. Table IX
displays the speedup achieved by GCV-Turbo over the CPU
and GPU platforms. The implementation on CPU and GPU
utilizes the state-of-the-art GNN library, PyTorch Geometric
[37]. On average, GCV-Turbo achieves a speedup of 499.5x
compared with CPU and 3.2x compared with GPU.

TABLE IX: Speedup over CPU/GPU across various GNNs
and graph datasets. [] denotes the speedup of GCV-Turbo over
CPU, while () denotes the speedup of GCV-Turbo over GPU.

Cora [53]

CiteSeer [53]

PubMed [53]

Flickr [54]

gl: GCN

[76.2x] (6.7x)

[28.8x] (2.7x)

[1009x] (2.4%)

[312x] (2.4%)

92: SAGE

[131.4x] (2.5%)

[119.7x] (1.9%)

[178.9x] (2.1x)

[421.9%] (3.6%)

g3: GAT

[2250%] (6.8%)

[1016x] (2.9%)

[178.9x] (2.1x)

[278.8x] (2.0x)

C. Impact of Compiler Optimizations

We evaluate the impact of two compiler optimizations:
Layer fusion: Layer fusion yields a speedup ranging from
11.8% to 48.9% across the six GNN-based CV tasks. This
speedup can be attributed to layer fusion’s capacity to enhance
task-level parallelism, reduce external memory traffic, and
decrease the overall computational complexity.
Sparsity-aware mapping: As the weight matrices of the
CNN portions in bl-b6 remain unpruned, sparsity-aware
mapping does not accelerate the CNN portion. As a result, our
speedup measurements exclusively focus on the GNN portion
within b1-b6. The sparsity-aware mapping results in speedup
percentages of 5.2%, 330%, 356%, 356%, 2.3%, 2.3%, 20.5%,
and 0% for the GNN portions within b1 to b6, respectively.
The GNN within b6 does not experience any speedup because,
in b6, the GNN consists of Linear layers, activation layers,
and batch normalization layers. The weight matrices within
the Linear layers of b6 do not have data sparsity.

D. Comparison with State-of-the-art Accelerators

We compare the performance of GCV-Turbo with CNN
DSAs [16], [20] on CNN models in Section VII-D1 and
with GNN accelerators [25], [41] on GNN models in Section
VII-D2. Different accelerators are implemented on different
hardware platforms and use different amount of hardware
resources. For a fair comparison, we normalize the perfor-
mance (latency/throughput) by their respective peak perfor-
mance (FLOPs). For example, normalized throughput is calcu-

lated by: Normalized Throughput of [X] = sttt ol o
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where [X] can be AMD DPU [16], OPU [20], BoostGCN [25],
GraphAGILE [41], or GCV-Turbo.

TABLE X: Specifications of CNN/GNN accelerators

CNN DSAs GNN Accelerators
Platforms AMD DPU [16] OPU1024 [20] |BoostGCN [25] GraphAGILE [41]
Platform ZCU102 Xilinx XC7K325T | Stratix10 GX Alveo U250
Platform Technology N/A 28 nm Intel 14 nm TSMC 16 nm
Peak Performance | 1.15 TFLOPS 0.2 TFLOPS 0.64 TFLOPS 0.64 TFLOPS
On-chip Memory 32.1 MB 2 MB 45 MB 45 MB
Memory Bandwidth 19.2 GB/s 12.8 GB/s 77 GB/s 77 GB/s

1) Comparison with CNN domain-specific accelerators
(DSAs): We compare GCV-Turbo’s performance with state-
of-the-art FPGA-based CNN DSAs, AMD DPU [16] and
OPU [20] (Table X), on throughput (Table XI). GCV-Turbo’s
throughput is computed as Iatelncy' GCV-Turbo achieves a nor-
malized throughput of 0.88x and 0.93x compared with OPU
and DPU on c1-c5. These results demonstrate GCV-Turbo’s
competitive throughput in various CNN models, despite slight
lower performance. These throughput differences are due to
two design trade-offs: GCV-Turbo’s versatility, supporting
both CNNs and GNNs, sacrifices some CNN-specific archi-
tectural optimizations. For example, OPU’s multi-level paral-
lelism is fine-tuned for CNN convolution operations, whereas
GCV-Turbo’s architecture is more generalized. GCV-Turbo’s
compilation flow optimizes CNNs and GNNs holistically
but cannot support certain convolution-specific optimizations.
DPU, for example, selects dataflow for convolutional layers
based on kernel size, which cannot be directly applied to GNN
layers. Moreover, due to CNN-specific optimizations, OPU
and DPU have higher efficiency for using limited DDR mem-
ory bandwidth for CNNs. However, OPU and DPU compilers
do not support GNNs, and their architectures are inefficient for
irregular computations and memory access patterns of GNNs.

TABLE XI: Comparison of inference throughput (images/sec-
ond) with CNN DSAs on various CNN models

Throughput (unnormalized) | Normalized average speedup of

cl c2 c¢3 c4 c5 GCV-Turbo over the DSA
DPU [16] | N/A 43.4 38.8 274 N/A | 0.93x
OPU1024 [20]| N/A 122 9.7 544 27 | 0.88x

GCV-Turbo [512.9 58.8 46.5 254.7 127.3] 1x

2) Comparison with GNN Accelerators: We compare GCV-
Turbo with state-of-the-art GNN accelerators, BoostGCN [25],
GraphAGILE [41], and FlowGNN [26] (see Table X). Latency
measurements follow the methodology from [25], [41], fo-
cusing on GCN model and various non-CV graph datasets
(Citation networks: CO [53], CI [53], PU [53]; Recommen-
dation systems: FL [64], RE [54], YE [64], AP [64]). Table
XII presents the results, where latency is normalized by peak
performance of the hardware platform to obtain the speedup.
GCV-Turbo outperforms BoostGCN and GraphAGILE with
speedups of 1.25x and 1.03x, respectively. BoostGCN’s in-
ferior performance is attributed to separate sparse and dense
computation hardware modules, leading to underutilization. In
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contrast, GCV-Turbo optimizes resource usage with a unified
architecture for both sparse and dense computations in GNNss.
The slight advantage over GraphAGILE is due to GCV-
Turbo’s sparsity-aware mapping (Section V-CS5), considering
data sparsity in the input graph’s connectivity. GCV-Turbo
maps computations to DDMM for densely connected sub-
graphs, unlike GraphAGILE, which neglects data sparsity in
graph connectivity. Compared with FlowGNN, GCV-Turbo
performs lower because (1) FlowGNN leverages sparsity in
graph feature matrices (CO, CI, PU has high data sparsity
(> 90%) in feature matrices), while GCV-Turbo only uses
sparsity in graph adjacency and weight matrices, and (2)
FlowGNN generates optimized hardware implementation for
different input models. However, the above two optimizations
of FlowGNN are unattractive for CV tasks because (1) the
sparsity of graph feature matrices is only known during hard-
ware execution; Utilizing its sparsity needs on-the-fly sparsity
profiling and data format transformation, causing extra pre-
processing overhead. Moreover, the execution time varies with
the sparsity of the input data. However, autonomous driving
requires deterministic latency for safety. (2) An autonomous
driving system will execute various models for various data
modalities. Generating optimized bitstreams for each model
incurs large latency for switching between the bitstreams
through dynamic reconfiguration.

TABLE XII: Comparison of hardware execution latency (ms)
with state-of-the-art GNN accelerators

Latency (ms) (unnormalized)
CI PU FL RE YE AP

Normalized average speedup of
GCV-Turbo over the accelerator

co

BoostGCN | N/A N/A N/A  20.1 98.5 193.5 793.5 1.25x

GraphAGILE| 0.819
FlowGNN  |6.9E -3 8.3E -3 535 -3 N/A 136 N/A N/A|0.003x (CO/CUPU), 0.38x (RE)
GCV-Turbo | 0.48

2.55 224 11.5 97.2 104.3 315 ‘ 1.03x

1.47 1.25  6.09 72.7 43.5 196.9‘ 1x

VIII. CONCLUSION AND FUTURE WORK

We introduced GCV-Turbo, the first domain-specific accel-
erator for GNN-based CV. It bridges the gap between state-
of-the-art CNN DSAs and GNN accelerators, leading to end-
to-end acceleration of GNN-based CV. GCV-Turbo can also
handle standalone CNNs and GNNs as effectively as special-
ized accelerators while optimizing the execution of CNN and
GNN layers within GNN-based CV tasks. With its unified
architecture and compilation workflow, GCV-Turbo achieved
average latency reduction of 68.4x and 4.1x compared with
state-of-the-art CPU and GPU implementations. In the future,
we plan to broaden GCV-Turbo’s capabilities to accommodate
Vision Transformer (ViT) models.
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