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Abstract—Graph Neural Networks (GNNs) have revolution-
ized many Machine Learning (ML) applications, such as social
network analysis, bioinformatics, etc. GNN inference can be
accelerated by exploiting data sparsity in the input graph,
vertex features, and intermediate data in GNN computations.
For dynamic sparsity exploitation, we leverage the heterogeneous
computing capabilities of AMD Versal ACAP architecture to
accelerate GNN inference. We develop a custom hardware module
that executes the sparse primitives of the computation kernel
on the Programmable Logic (PL) and efficiently computes the
dense primitives using the AI Engine (AIE). To exploit data
sparsity during inference, we devise a runtime kernel mapping
strategy that dynamically assigns computation tasks to the PL
and AIE based on data sparsity. Our implementation on the
VCKS000 ACAP platform leads to superior performance com-
pared with the state-of-the-art implementations on CPU, GPU,
ACAP, and other custom GNN accelerators. Compared with these
implementations, we achieve significant average runtime speedup
across various models and datasets of 162.42x, 17.01x, 9.90x,
and 27.23x, respectively. Furthermore, for Graph Convolutional
Network (GCN) inference, our approach leads to a speedup of
3.9-96.7x compared to designs using PL only on the same ACAP
device.

Index Terms—Graph neural networks, Versal Architecture,
Hardware acceleration

I. INTRODUCTION

Graph Neural Networks (GNNs) have become increasingly
popular in recent years due to their ability to effectively
learn from (unstructured) graph data. GNNs offer remarkable
versatility and can be applied to a wide range of graph-related
problems, including node classification [1], link prediction [2],
graph classification [3], etc. This versatility has established
GNNs as a powerful technique for various domains, such
as computer vision [4], natural language processing [5], and
recommendation systems [6], among others. In many practical
applications [7], performing low-latency GNN inference is
crucial for enabling real-time decision-making.

The computational characteristics of GNN inference present
challenges for real-time applications, primarily due to the high
computational complexity and the irregular memory access
of graph data. CPUs are ill-suited for GNN acceleration
[8] due to their sequential instruction-based architecture. On
the other hand, GPUs excel at parallel processing and can
accelerate GNNs. Still, they have limitations (e.g., complex
cache hierarchy) in handling certain graph structures and
memory access requirements [9]. To address these challenges,
Field-Programmable Gate Arrays (FPGAs) offer a compelling

9§Equal contribution

solution. FPGAs provide flexibility [10], [11], programmabil-
ity, and parallelism [12]-[14], making them well-suited for
specific tasks such as message passing in GNN inference.

The Adaptive Compute Acceleration Platform (ACAP) [15]
offers sequential instruction-based execution, parallel vector
processing, and adaptive computing. Because GNN computa-
tion kernels can be mapped to sparse and dense primitives
based on dynamic sparsity exploitation [16], ACAP offers
a promising platform for accelerating GNN inference. The
programmable logic (PL) component of ACAP can be lever-
aged to handle sparse primitives, while the Al Engine (AIE)
are well suited to handle dense primitive. Nonetheless, there
are several challenges in achieving efficient GNN acceleration
using ACAP: (1) Developing an efficient hardware module
for PL is crucial to accelerate sparse primitives effectively—
this module must be carefully designed and optimized to
maximize performance and resource utilization. (2) Although
Al Engine exhibits high peak performance, achieving low-
latency inference, using them can be a complex undertaking.
Optimizing the utilization of the Al Engine and minimizing
inference latency requires careful consideration of algorith-
mic optimizations to exploit the architectural features. (3)
The interaction between PL and AIE must be designed ef-
ficiently to reduce data communication overhead. Effective
data movement and synchronization mechanisms need to be
implemented to facilitate seamless collaboration between the
PL and AIE. The key contributions of this paper are:

« We develop an efficient accelerator design that leverages
the heterogeneity of PL and AIE of the Versal architecture
to accelerate GNN inference. The accelerator executes
sparse primitives on PL and dense primitive on the AIE.

o« We develop a runtime system that consists of a task
analyzer and scheduler using the on-chip ARM processor
that dynamically assigns computation tasks to the PL and
AIE based on data sparsity.

o We evaluate the design on diverse datasets, including
CiteSeer (CI), Cora (CO), PubMed (PU), Flickr (FL),
NELL (NE), and Reddit (RE), for inference using state-
of-the-art GNN models such as GCN, GraphSage, GIN,
and SGC. The experimental results show that our imple-
mentation on VCKS5000 achieves 162.42x, 17.01x, 9.90x,
and 27.23x average speedup compared with the state-
of-the-art CPU, GPU, ACAP, and other custom GNN
accelerators, respectively.
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The rest of the paper is organized as follows: Section
II introduces the Background and Related work. In Section
III, we demonstrate the intricate details of the Accelerator’s
design. The evaluation results are presented in Section IV.
Finally, we conclude the paper in Section V.

II. BACKGROUND AND RELATED WORK
A. Background

1) Graph Neural Networks: GNNs have been proposed
for representation learning on graphs denoted as G(V,&).
GNNs follow the message-passing paradigm (as outlined in
Algorithm 1), where vertices recursively aggregate information
from their neighbors. The last-layer embedding of the target
vertex v is denoted as hf. Typically, the Update() operation is
implemented as a Multi-Layer Perceptron that transforms the
vertex features. After the Aggregate() and Update() operations
in each layer, an element-wise activation function is applied to
the feature vectors. The output embedding h can be utilized
for various downstream tasks, including node classification (
[17], [18]), link prediction, and more. GCN [18], GraphSAGE
[17], GIN [19], and SGC [20] are some representative GNN
models.

Algorithm 1 GNN Computation Abstraction

Input: Input graph: G(V, £); vertex features: {h(l),hg, h3, ..., h‘ovl ;
Output: Output vertex features {hlL7 h%, hg, ey hlLv‘};
1: for [ =1...L do

2: for each vertex v € )V do

3: al, = Update(h!7t, W)

4: zl = Aggregate(al, : u e N'(v))
5: Rl = a(zf,)

2) Computation Kernels and Primitives in GNNs: The
computation kernels involved in GNN inference consist of
feature aggregation and feature transformation, corresponding
to the Aggregate() and Update() operations in the message-
passing paradigm of GNNs. These computation kernels can
be mapped to fundamental computation primitives based on
the data sparsity. These primitives include dense-dense matrix
multiplication (GEMM), sparse-dense matrix multiplication
(SpDMM), and sparse-sparse matrix multiplication (SpMM).

B. Data Sparsity in GNN Inference

The density of a matrix is defined as the total number of
non-zero elements divided by the total number of elements.
Note that, the sparsity is given by (1 — density). The compu-
tation kernels in GNNSs involve three types of matrices: graph
adjacency matrix A, vertex feature matrix H, and weight
matrix W. The adjacency matrix A of different graph datasets
[21] can have different densities. For a given adjacency matrix,
different parts of the matrix can have different densities. For
various graphs, the input feature matrices can have different
densities. The feature matrices of different layers also have
different densities. For the weight matrices, prior works [22],
[23] have proposed various pruning techniques to reduce the
density of the weight matrices. To leverage the above data
sparsity, Zhang et al. [16] propose a technique called Dynas-
parse, which focuses on dynamically mapping computation
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kernels to primitives such as GEMM, SpDMM, and SpMM.
The authors introduce a unified hardware architecture capable
of supporting various primitives (GEMM, SpDMM, SpMM).
This architecture offers different execution modes, each with
distinct computation parallelism and the ability to skip zero-
elements in the input matrix. Furthermore, the authors de-
velop a runtime system that dynamically maps computation
kernels to the appropriate primitives (to be executed on the
unified architecture) using a performance model based on
data sparsity. The performance model considers the trade-off
between the computation parallelism and the ability to skip
zero-elements of different execution modes, in order to reduce
the inference latency. In this study, we extend the dynamic
kernel-to-primitive mapping strategy from Dynasparse [16]
to leverage the heterogeneous computing capabilities of the
ACAP architecture for accelerating GNN inference. Specifi-
cally, for hardware mapping, we employ the AIE to execute
the dense primitive (GEMM) due to its high peak performance.
Additionally, we utilize the PL to construct a customized data
path and memory organization, enabling efficient execution of
sparse primitives (SpDMM, SpMM).

C. Related Work

H-GCN [24] introduces a hybrid accelerator that lever-
ages the heterogeneity of ACAP architecture by partitioning
the input graph into subgraphs and assigning computations
to either the Al Engine (AIE) or the Programmable Logic
(PL) based on subgraph density. However, H-GCN’s graph
partitioning and reordering approach can result in significant
preprocessing overhead. In contrast, our work adopts a simple
data partitioning strategy where we decompose the GNN ker-
nel into different primitives (Section II-A2) and dynamically
map them to the AIE or PL based on the data sparsity
at runtime. This approach eliminates the need for complex
graph partitioning and enables efficient execution of the GNN
computations. The Dynasparse framework [16] presents a
hardware-software codesign for accelerating GNN inference
on data-center FPGAs. It encompasses offline compilation
optimizations, a runtime system based on soft processors,
and a PL-based accelerator design that exploits sparsity. In
contrast, our work capitalizes on the heterogeneity of AMD
ACAP devices, utilizing an ARM Cortex-A72 processor to
execute a runtime system. Additionally, we employ both the
PL and AIE components to execute GNN kernels mapping
to different primitives of the GNN inference computations,
leveraging the specific strengths of each component. Several
existing works [16], [25]-[38] have proposed FPGA-based
acceleration techniques for GNN inference without AIE. These
works typically employ custom compute hardware modules for
operations such as SpMM, SpDMM, and GEMM on PL. In
contrast, our work focuses on mapping onto the most suitable
hardware components in ACAP to execute these compute
kernels efficiently. By leveraging the capabilities of both PL
and AIE, we enable efficient GNN inference on the ACAP
platform.
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III. ACCELERATOR DESIGN
A. Problem Definition

Our objective is to leverage the computational characteris-
tics of the Programmable Logic - Al Engine, along with the
Processor System (PS) of ACAP architecture, to accelerate full
graph inference. Full graph inference involves performing the
message-passing paradigm (as described in Algorithm 1) on
the entire graph [16], [26]-[28]. This can be computationally
demanding and memory-intensive, particularly for large graphs
which do not fit on the on-chip memory.

To address this challenge, we propose an accelerator that ef-
fectively utilizes the on-chip heterogeneity of ACAP platform.
By leveraging both the PL and AI Engine, our accelerator
can efficiently accelerate GNN inference on datasets with
varying degrees of sparsity. Note that our approach does not
require generating an accelerator for each input graph and
GNN model, thereby enhancing its efficiency and flexibility.
For a given input graph and GNN model, initially stored on
the host memory, we perform pre-processing (Section III-B)
of the input graph and the GNN model on the host processor
for hardware execution and transfer the processed input graph
and GNN model to FPGA DDR.

B. System Overview

( Host ) ACAP )
Platform
Host ALU AIE
Processor APU Array Array
@ K=
PCle
Host
NOC
Memory L < A4S > y,
A4
L ) FPGA DDR |

Fig. 1: System Overview

Figure 1 depicts the proposed design of leveraging ACAP
architecture for dynamic sparsity exploitation (See Dynas-
parse [16]) in GNN inference. The architecture consists of
three main parts: Application Processing Unit (APU), Pro-
grammable Logic (PL), and Al Engine (AIE) array. On PL,
we implement multiple ALU (Arithmetic Logic Unit) arrays
to execute sparse primitives (SpDMM, SpMM). The AIE
array efficiently executes the dense primitive (GEMM) due
to low-latency inter-tile communication and high computation
density. The APU hosts a runtime system that dynamically
maps kernels for execution. The host processor performs
preprocessing for the input graph and GNN model. The board
also has a high-performance communication infrastructure that
efficiently interconnects computational and memory elements
called Network on Chip (NoC). The input graph and the GNN
model are stored in the host memory. After preprocessing, they
are transferred to the FPGA DDR.

Preprocessing: For preprocessing, the host processor performs
2-D data partitioning [39], partitioning the input graphs into
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smaller submatrices along both dimensions to fit in the on-chip
memory of ACAP, and enable parallel processing and efficient
computation, for feature matrix H, graph adjacency matrix A,
and weight matrix W. We use X; to denote a partition of
matrix X.

Runtime: The runtime system consists of an analyzer and a
scheduler. The analyzer dynamically maps the computation
kernels (e.g., feature aggregation, feature transformation) to
the basic primitives (GEMM, SpDMM, and SpMM) based
on the data sparsity. As the AIE array is efficient for dense
primitives and ALU arrays are efficient for sparse primitives,
the analyzer uses a performance model to determine the
kernel-to-primitive mapping and creates the tasks. Then, the
scheduler adds the tasks to the task queues and dynamically
schedules the tasks to ALU arrays and AIE array.

The following two sections elaborate on the hardware design
and the runtime system. Figure 2 depicts the details of the
proposed accelerator.

C. Al Engine (AIE) Array

The AI Engine Array is responsible for executing the dense-
dense matrix multiplication (GEMM). Figure 2 provides an
illustration of the organization of the AIE array specifically
designed for GEMM execution. It consists of three main
components: Buffer Tiles (BTs), Computation Cores (CCs),
and Gather Tiles (GTs). To execute a GEMM operation X xY,
the BTs load the input matrices, denoted as X and Y, into
their data memory from the DDR through the Direct Memory
Access (DMA) engine. The loaded data is then transferred
to the CCs. Communication between two consecutive kernels
is established using a common buffer in the shared memory
module [40]. Neighboring Al engine tiles can easily share
data without memory transfers over DMA and AXI4-Stream
interconnect by using the shared memory.

AIE Computation Core (CC): Each AIE Computation Core
(CC) consists of four AIE tiles. Each AIE tile is equipped
with its own data memory module. The data flow involves
transferring the data from the Buffer Tiles to the AIE Tiles.
During each cycle, the vertex feature vectors are loaded
into the AIE tile. The next step involves performing the
Multiply-Accumulation (MAC) operation using the partial
results obtained in the previous cycle. Figure 3 illustrates the
computation process of executing the matrix multiplication
X xY on a Computation Core. Each matrix (e.g., X, Y) is
evenly divided into four partitions. In each cycle, the X matrix
is loaded in row-major order, and the Y matrix is loaded in
column-major order into the respective CC. In the first cycle,
the first row of matrix data is multiplied, and in the consequent
cycles, subsequent rows are multiplied and accumulated with
the previous product, as shown in the output matrix in Figure
3. The final output is sent to the Gather AIE Tiles to form the
output matrix.

D. Arithmetic Logic Unit (ALU) Array

The sparse primitives, specifically SpDMM and SpMM,
are executed on the ALU Arrays, which are designed for
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efficient execution of sparse matrix multiplication. Figure 2
illustrates the architecture of the Arithmetic Logic Unit (ALU)
Array. This array consists of p computation pipelines, each
comprising a Multiply Unit (MU) and an Accumulator Unit
(AU). Each Multiply Unit contains an array of g hardware
multipliers, while each Accumulator Unit consists of an array
of ¢ accumulators. Each Multiply unit and accumulator is
instantiated as a Digital Signal Processing (DSP) slice on
FPGA and value of p and ¢ is restricted by the number
of DSPs available. Additionally, the ALU Array incorporates
three data buffers: BufferA, BufferG, and Result Buffer (RB).
BufferA and BufferG are responsible for storing the two input
matrices, denoted as X and Y respectively, while the Result
Buffer stores the output matrix, Z. To facilitate the routing
of input data from BufferA and BufferG to the computation
pipelines, each ALU Array includes a Pairing Unit. The
Pairing Unit for each non-zero element in X from BufferA it
fetches ¢ elements from BufferG. It effectively handles the
irregular memory access patterns typically associated with
sparse primitives. Furthermore, the ALU Array operates in
two distinct execution modes: SpDMM mode and SpMM
mode, dedicated to the execution of SpDMM and SpMM,
respectively. The execution mode is set by the control bits of
the ALU array. The overhead of switching execution modes
is just one clock cycle.

SpDMM Mode: Multiplication of a sparse matrix with a dense
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Algorithm 2 SpDMM using Scatter-Gather Paradigm

Input: Sparse matrix (BufferA): X; Dense matrix (BufferG): Y;
Output: Output matrix (Result Buffer): Z (Z = X xY);
while not done do
for each e(%, j,value) in X Parallel do
Fetch Y'[¢] from BufferG
Form input pair (Y'[4], e)

> Scatter Phase
> Pairing Unit
> Pairing Unit
> Gather Phase
> Multiply Unit

1:
2
3
4:
5: for each input pair Parallel do

6: u «<Update(Y [], e.value)

7 Fetch Z[j] from Result Buffer
8 Z[j] < Reduce(u)

> Accumulator Unit

matrix is executed using the Scatter-Gather Paradigm [16]
shown in Algorithm 2. The sparse matrix denoted as X is
stored in BufferU using the Coordinate (COO) format. The
dense matrix denoted as Y is stored in BufferG. In SpDMM
Mode the ALU array can execute upto p x ¢ MAC operations
per clock cycle.

Algorithm 3 SpMM using Row-wise Product

Input: Sparse matrix (BufferA): X; Sparse matrix (BufferG): Y';
Output: Output matrix (In Result Buffer): Z = X xY’;
for each row Z[j] in Z Parallel do
Assign the workload of Z[j] to (j%p)™ pipeline
for each e(%, j,value) in X[j] do > Scatter Phase
Fetch Y'[¢] from BufferO > Pairing Unit
Form input pair (Y [4], e) > Pairing Unit
for each input pair (Y[7], e) do > Gather Phase
for each non-zero Y [i][k] in Y[¢] do
Produce u < Update(e.value x Y [i][k])

1:
2
3
4
St
6
7
8
9 Merge Z[j][k] < Reduce(u)

SpMM Mode: The multiplication of two input sparse matrices
is executed using the Row-wise Product with Scatter-Gather
paradigm as shown in Algorithm 3. For Row-wise Product, a
row Z[j] of output matrix Z is calculated through:

Z[j]= Y X[jlli]* Y[d] M
For calculating the output matrix Z , a pipeline is assigned the
workload of a row of output matrix (Equation 1). p pipelines
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can calculate p output rows in parallel until all the rows of
the output matrices are calculated. SpMM Mode can execute
p multiply-accumulate (MAC) operations per clock cycle.

E. Dynamic Task Management (Runtime System)

In the proposed accelerator design, the AIE array is efficient
for dense primitives(GEMM), and the ALU array is efficient
for sparse primitives(SpDMM, SpMM). To exploit various
data sparsity in GNN inference, we implement a runtime
system on APU that performs dynamic task management based
on data sparsity.

Given a matrix multiplication Z = X xY, we define a task
as the process of calculating the partition of the large output
matrix Z. For example, for a partition {Z;,;}, the task can be
expressed as:

2

Therefore, each computatiorllC kernel (e.g., feature aggregation
or feature transformation) can be decomposed into indepen-
dent tasks. To execute these tasks efficiently, we dynamically
schedule the tasks by analyzing the sparsity in the runtime
system as shown in Algorithm 4.

Z;; = Zsz x Yy

Algorithm 4 Runtime System

Input: Input graph G(V, &, X ); GNN model with L layers;
Output: Output of GCN Inference;

1: STQ <~ @ > Sparse task queue
2: DTQ <~ @ > Dense task queue
3: ======= Anulyzer ===—=—====

4: for [ =1to L do > Iterate each layer

5: for each kernel kernel; in layer [ do [> Iterate each kernel
6: for each task tasky in kernel; do
7: taru = Paru(tasky)
8: taie = Pa(tasks)
9: if taLu > tae then
10: STQ.push(tasky)
11: else
12: DTQ.push(tasks)
13: ======= Scheduler ========
14: while True do
15: if there is an idle ALU array: ALU; then
16: tasky, < STQ.pop()
17: Execute task, on ALU;
18: while True do
19: if AIE array is idle then
20: taski < DTQ.pop()
21: Execute task; on AIE array

The runtime system consists of an Analyzer and a Scheduler.
Moreover, the runtime system maintains two task queues —
Sparse Task Queue (STQ) and Dense Task Queue (DTQ). For
each task, the analyzer estimates its execution time on the
ALU array and AIE array based on the theoretical performance
model Pary() and Paje(). Then, the analyzer adds the task
to the Sparse Task Queue (STQ) or Dense Task Queue (DTQ)
according to the estimated execution time. The scheduler
schedules the tasks from the two task queues to the ALU
arrays and AIE array.

Performance Model (Papu(), Pame()): The performance
model (shown in Table I) estimates the execution cycle of each
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TABLE I: Performance Model

‘ Paie() ‘ Paru()
Primitives GEMM SpDMM SpMM
MACs per Cycle | Nag xS pq D
. . d . d d
Execution cycles Napxp | Qmin "5y axoy ™R
Frequency JAIE JrL JeL

task. Based on the performance model, the Analyzer adds the
task to the appropriate task queue. We define the density o x of
a matrix X as the total number of non-zero elements divided
by the total number of elements. For a given task (Equation
2), we use X;. to denote the concatenation of {X;;} and
use Y. ; to denote the concatenation of {Y};}. Then, the task
(Equation 2) can be rewritten as:

Zij=X;. %Y, ; 3)

which has several properties w.r.t data sparsity, including the
density of X;. denoted as ax,,, and the density of Y ;
denoted as vy; ;. Suppose X;. e R™™ and Y’ ; € R™*¢_ Using
AIE array to execute this task, the task is treated as GEMM,
and the total execution cycle is:

mnd
fale * Nag * 8

where farg is the frequency of AIE, Najg is the total number
of AIEs in the Computation Cores, and [ is the number of
multiply-accumulate (MAC) operations that an AIE tile can
perform each clock cycle. Using the ALU arrays to execute
this task, the task is treated as SpDMM or SpMM, depending
on which leads to lower execution cycle:
) 1
« —
JeL

where omin = min(ax,,, oy, ), and fp is the frequency of
the ALU array.

“)

tAIE =

. mnd mnd
taLy = Min | Omin——, ax, Qy, ; ——
pq p

&)

IV. EXPERIMENTAL RESULTS
A. Implementation Details

We implement the proposed accelerator on the AMD Xilinx
Versal VCK5000 board. We use Verilog HDL to develop ALU
arrays on PL and Vitis to develop Task Scheduler on APU [41]
and Al Engine Compute Cores on AIEs. We integrate the
complete system using Vitis. The Application Processing Unit
(APU) - ARM Cortex-A72 runtime system uses C++ in
AMD Xilinx Vitis Unified Software Platform (version 2021.2).
For the AIE array, we implement 32 AIE CCs. Due to the
limited on-chip memory, we implement 8 ALU arrays. In the
performance model, each ALU array is configured with p =8
and ¢ = 4, determining the number of Multiply-Accumulate
(MAC) operations per cycle. The resource utilization of the
overall system is summarized in Table II. The ALU arrays,
NoC, and AIE array operate at 297 MHz, 800 MHz, and
1 GHz, respectively. We develop a cycle-accurate simulator
for our architecture design and runtime system (Algorithm 4)
to obtain the hardware execution time. In the cycle-accurate
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simulator, Ramulator [42] is used to simulate the performance
of DDR memory. Also, we use the host processor to execute
the preprocessing steps (see Section III-B) and measure the
preprocessing overhead.

TABLE II: Resource utilization of AIE and PL on VCKS5000

. AIE to NoC AIE to PL
Tiles
Interface Interface
Overall AIE 192 16 32
Utilization 48% 100% 100%
LUTS DSPs BRAMs URAMs

Overall PL 776K 1024 880 400
Utilization 86.32% 52% 91% 86.4%

B. Experimental Setup

GNN Benchmarks: We evaluate the performance of our de-
sign on four well-known GNN models: GCN [18], GraphSage
[17], GIN [19], and SGC [20].

Baselines: We compare the performance of our accelerator
against state-of-the-art CPU, GPU, and GNN accelerators,
including HyGCN [27], BoostGCN [28], Dynasparse [16], and
H-GCN [24]. PyG and DGL are executed on Ryzen 3990x
CPU and Nvidia RTX3090 GPU. Details of the platforms are
shown in Table III.

TABLE III: Platform Specifications

. DDR Memory
Implementation Platform Frequency .

Bandwidth

CPU Ryzen 3990x 2.90 GHz 107 GB/s

GPU Nvidia RTX3090 1.7 GHz 936.2 GB/s
HyGCN [27] ASIC 1 GHz 256 GB/s
BoostGCN [28] Stratix 10 GX 250 MHz 77 GB/s
Dynasparse [16] Alveo U250 250 MHz 77 GB/s

297 MHz (PL)
ACAP VCK 5000 102.4 GB/s
1GHz (AIE)

Datasets: We evaluate our design using several widely used
datasets, including CiteSeer (CI) [18], Cora (CO) [18],
PubMed (PU) [18], Flickr (FL) [43], NELL (NE) [44], and
Reddit (RE) [17]. We evaluate with 2-layer GNNs in [18],
[17], [19], and [20], where CI, CO, and PU have hidden layer
dimensions of 16, while the hidden layer dimension of the
remaining datasets is 128. Detailed dataset statistics are shown
in Table IV.

Performance Metrics: We measure the hardware execution
time, which represents the duration from when the accelerator
starts scheduling computations until it generates the final
results. We also measure the preprocessing time, which is the
overhead of the data partitioning method (see Section III-B).

C. Comparison with State-of-the-art

Comparison with prior implementation on ACAP: We
compare the performance of our implementation with a prior
implementation on the same platform, H-GCN [24]. Because
we exploit data sparsity and utilize the heterogeneity of the
platform and dynamically schedule the tasks to AIE and PL,
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TABLE 1V: Dataset Statistics

. Density of  Density of
Dataset | Vertices  Edges  Features Classes .
A input H
CO [18] 2708 5429 2708 7 0.14% 1.27%
CI [18] 3327 4732 3703 6 0.08% 0.85%
PU [18] 19717 44338 500 3 0.02% 10%
FL [43] | 89,250 899,756 500 7 0.01% 46%
NE [44] | 65,755 251,550 61278 186 0.0058% 0.01%
Re [17] | 232,965 11x107 602 41 0.21% 100%
BoostGCN ®HyGCN + H-GCN
1000 739.9
(-9
25100 30.931.9
a 11.7 238 11.9
E 10 I 1.6 1.7 1.8 = i7 2122
@ 1 sl £ -0A5
0 cO CI PU FL RE
DATASETS

Fig. 4: Comparison of hardware execution time with state-of-
the-art GNN accelerators

we achieve an average of 9.9x speedup compared with H-
GCN [24], as shown in Figure 4.

This speedup is due to our exploitation of matrix sparsity
in all the computation kernels, including feature aggregation
and feature update. In Table V, we provide a detailed analysis
that shows a substantial reduction in both the number of
floating-point operations (FLOPs) and the amount of data to
be loaded, averaging 51x and 23.4x, respectively, for the
Planetoid datasets CO, CI, and PU. However, the reduction
is comparatively smaller for FL. and RE datasets (because the
feature matrices of FL and RE have low sparsity. See Table
IV), resulting in a smaller speedup compared with H-GCN.

Additionally, while H-GCN demonstrates faster hardware
execution time on the Reddit dataset, our proposed approach
significantly reduces the preprocessing overhead, as discussed
in Section IV-E. Considering the end-to-end inference time,
encompassing both the preprocessing overhead and the actual
inference time, our method achieves a 6.6x speedup for the
Reddit dataset.

Comparison with CPU and GPU: We execute the same GNN
models using state-of-the-art Pytorch Geometric (PyG) [45]
and Deep Graph Library (DGL) [46] on a state-of-the-art
CPU and GPU without exploiting data sparsity in feature
matrix H and weight matrix W. The results are shown in
Figure 5; some results are not shown due to out of memory
on the CPU/GPU. In summary, our implementation on ACAP
achieves average speedup of 194.5x, 12.9x, 110.2x, and 21.7x
compared with PyG-CPU, PyG-GPU, DGL-CPU, and DGL-
GPU, respectively. The achieved speedups are from exploiting
the sparsity in GNN inference and the customized hardware
architecture that can efficiently execute the sparse computation
primitives (SpDMM, SpMM).

Comparison with GNN Accelerators: The speedup com-
pared with the state-of-the-art accelerators is shown in Figure
4. The proposed design achieves an average speedup of
194.18x and 8.58x compared with HyGCN [27] and Boost-
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Fig. 5: Comparison of inference speedup over CPU and GPU (some speedups are not shown as those are OoM or N/A)

TABLE V: FLOPs and data count exploiting sparsity in
feature matrices (FMs) and adjacency matrix (AM) for GCN
inference. ”Sp. AM” refers to “Sparsity in AM only,” and
”Sp. AM + FMs” to ”Sparsity in AM and FMs.” The FLOPs
Reduction Factor refers to the ratio of FLOPs count when
exploiting Sp. AM + FM to the scenario of Sp. AM only,
while the Data Reduction Factor is the ratio for data count.

(e(0) CI PU FL NE RE
#FLOPs Sp. AM 63E7 2.0E8 1.6E8 509E9 5.1E12 3.8EI0
#FLOPs Sp. AM + FMs | 1.2E6 2.1E6 1.8E7 28E9 53El10 3.7E10
FLOPs Reduction Factor | 48.6x 95.5x  8.8x 2.1x 9.7x 1.0x
#Data Sp. AM 4.0E6 1.3E7 1.1E7 7.0E7 4.1E9 4.4E8
#Data Sp. AM + FMs 1.9E5 29E5 1.8E6 39E7 4.4E8 4.1E8
Data Reduction Factor 209x  43.5x 6.0x 1.8x 9.2x 1.1x

GCN [28]. This is because our implementation utilizes the data
sparsity in the vertex feature and input adjacency matrix, and
AIE can efficiently execute the dense computation primitives
(GEMM). We also compare our design with Dynasparse [16],
which exploits data sparsity in GNN inference on FPGA. We
achieve average speedup of 0.83x, 2.90x, 1.39x, and 8.04x
for GCN, GraphSage, GIN, and SGC models.

The hardware execution time is summarized in Table VI,
where the fastest hardware execution time for various models
and datasets is highlighted in bold, and the second fastest
time is underlined. Our design achieves the best or second-
best hardware execution time across all models and datasets.

D. Exploring the heterogeneity of ACAP

Table VII compares the hardware execution time of the
proposed accelerator design (PL + AIE) and the PL accelerator
design (PL Only) for various datasets for GCN inference. The
results highlight the significant speedup achieved by leveraging
the heterogeneity of the ACAP device. On the average, the PL.
+ AIE design achieves a speedup of 32.9x compared with the
PL-only design. The improvement is due to the architecture of
the AIE array that provides high parallelism when processing
GEMM primitives, while the PL can efficiently compute the
sparse primitives (SpDMM, SpMM).

The board has limited external memory access bandwidth,
so our current design uses only 32 AIE CCs (192 tiles).
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Increasing the number of AIE CCs will not proportionally
increase the peak performance (# of AIE CCs * #MACs/cycle)
as the computation would become memory bound. However,
we simulate a scenario with double the AIE CCs, using 384
of 400 AIE tiles, assuming sufficient external memory access
bandwidth to support all the AIE CCs. Table VIII shows that
for the larger datasets (FL, NE, RE), increasing the number of
tiles shows a speedup in hardware execution time. However,
our hardware execution time on RE is still slower than H-
GCN for RE as SpDMM dominates the overall performance
on RE. While H-GCN utilizes AIEs to execute SpDMM, our
approach uses PL only. Despite each ALU array being more
efficient than one AIE CC at computing sparse primitives, the
AIE has superior overall peak performance on SpDMM than
PL-based design. Therefore, our hardware execution time is
slower than H-GCN on RE dataset.

E. Analysis of Preprocessing and Runtime System Overhead

Preprocessing Overhead: We evaluate the overhead of pre-
processing, detailed in Section III-B. This involves data par-
titioning on the host processor (Intel Xeon Gold CPU with
32 cores at 2.9 GHz) only once before the inference tasks
start. The overhead of partitioning was smaller than the
preprocessing time of the state-of-the-art GCN Accelerator on
ACAP, H-GCN (which used Intel Xeon Gold with 56 CPU
cores [24]). Figure 6 shows our speedups in preprocessing
time.

w
o 0
L =N
g <+
-9 =
=) =
i 'z?a
a0z
5 o 2
l .
I
(o{0) CI PU FL RE
DATASETS

Fig. 6: Comparison of preprocessing time with H-GCN [24]

Runtime System Overhead: The runtime system overhead
corresponds to the execution time of Algorithm 4, performed
on the Arm Cortex-A72 APU running at 1.7 GHz. After the
initial tasks assignment, the runtime system overhead can be
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TABLE VI: Comparison of hardware execution time with state-of-the-art CPU, GPU, FPGA, and ACAP implementations. The
values are in ms and rounded to the nearest hundredth (The best results are in bold, and the second best results are underlined;
OoM means out of GPU memory, and N/A means not available).

Model Platform Dataset
CO CI PU FL NE RE
PyG-CPU 2.10E+00 3.30E+00 8.70E+00 2.81E+02 1.54E+03 3.21E+04
PyG-GPU 3.36E-01 3.76E-01 3.43E-01 7.02E+00 3.22E+01 OoM
DGL-CPU 1.90E+00 7.70E+00 7.20E+00 3.58E+01 N/A 1.41E+02
DGL-GPU 1.40E+00 1.40E+00 1.40E+00 2.10E+01 N/A 5.07E+01
GCN BoostGCN 2.90E-01 1.90E-02 1.60E-01 4.00E+01 N/A 1.90E+02
HyGCN 3.00E-01 2.10E-02 6.40E+01 N/A N/A 2.90E+02
H-GCN 1.10E-01 2.90E-01 1.03E+00 1.02E+01 N/A 4.18E+01
Dynasparse 4.70E-03 7.70E-03 6.30E-02 8.80E+00 2.90E+00 1.00E+02
This paper 9.40E-03 1.22E-02 8.65E-02 6.10E+00 5.20E+00 9.10E+01
PyG-CPU 1.36E+01 2.81E+01 4.15E+01 3.36E+02 2.13E+04 OoM
PyG-GPU 7.30E-01 1.43E+00 1.69E+00 1.78E+01 OoM OoM
GraphSage DGL-CPU 3.42E+01 1.40E+01 2.43E+01 7.39E+01 N/A 3.39E+03
DGL-GPU 8.61E-01 8.75E-01 8.37E-01 2.16E+01 N/A 4 45E+02
Dynasparse 1.11E-01 3.34E-01 4.21E-01 1.91E+01 8.37E+02 3.31E+02
This paper 1.01E-01 2.51E-01 1.95E-01 1.91E+00 5.07E+02 2.81E+02
PyG-CPU 1.26E+01 3.27E+01 4.14E+01 5.05E+02 1.91E+04 OoM
PyG-GPU 6.80E-01 1.46E+00 1.22E+01 1.73E+01 OoM OoM
GIN DGL-CPU 6.00E+00 2.28E+01 1.82E+01 1.52E+02 N/A 3.39E+03
DGL-GPU 3.96E-01 4.30E-01 3.86E-01 1.95E+01 N/A 4.95E+02
Dynasparse 1.08E-01 3.29E-01 3.71E-01 1.21E+01 8.37E+02 2.73E+02
This paper 1.02E-01 2.52E-01 2.05E-01 7.61E+00 5.08E+02 2.94E+02
PyG-CPU 2.44E+01 5.63E+01 7.63E+01 1.27E+03 4.32E+04 OoM
PyG-GPU 1.08E+00 2.50E+00 3.01E+00 3.32E+01 OoM OoM
SGC DGL-CPU N/A N/A N/A N/A N/A N/A
DGL-GPU N/A N/A N/A N/A N/A N/A
Dynasparse 2.67E+00 8.70E-01 2.34E+00 1.27E401 8.84E+02 5.05E+02
This paper 1.22E-01 3.14E-01 3.18E-01 3.29E+00 7.82E+01 4.71E+02

TABLE VII: Hardware execution time on ACAP (ms) using
PL only and using PL + AIE

[ Daaset [ CO  CI  PU FL NE RE |
PL Only [2.45E-1 7.26E-1 6.55E-1 2.09E+1 5.02E+2 3.52E+2
PL + AIE[9.40E-3 1.22E-2 8.65E-2 6.10E+0 5.20E+0 9.10E+1

TABLE VIII: Hardware execution time (ms) using various
numbers of AIE tiles assuming sufficient external memory
bandwidth. (192 and 384 are the number of AIE tiles used.)

‘ Dataset
Current(192)
Scaled(384)

| co CI PU FL NE RE |
9.40E-3 1.22E-2 8.65E-2 6.10E+0 5.20E+0 9.10E+1
9.40E-3 1.22E-2 8.65E-2 2.53E+0 4.25E+0 7.97E+1

overlapped by concurrently analyzing and scheduling the tasks
on AIE CCs and ALU arrays while they are working on the
previously assigned tasks. The time it takes for the runtime
system to analyze and schedule the initial tasks is less than
1% of the total hardware execution time.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a hardware accelerator that
utilized the heterogeneity of Versal Architecture to exploit

the data sparsity to accelerate GNN inference. The proposed
system that dynamically maps tasks on PL and AIE leads to
the speedup of 3.9-96.7x compared to PL-only implementation
for GCN inference. The proposed design achieves 162.42x,
17.01x%, 9.90x, and 27.23% average speedup compared with the
state-of-the-art implementations on CPU, GPU, other ACAP,
and other GNN accelerators, respectively.

Currently, the limited PL resources become a bottleneck.
This restricts the number of ALU arrays that can be compiled,
causing sparse primitives to dominate the overall execution
time for some datasets. In the future, we plan to implement
more resource-efficient ALU arrays and expand the use of
AIE for sparse computations such as SpDMM and SpMM.
This strategy would allow the AIE array to support sparse
computations when the ALU arrays are fully utilized.
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