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Abstract—Deep neural networks (DNNs) have proven to be
effective models for accurate Memory Access Prediction (MAP),
a critical task in mitigating memory latency through data
prefetching. However, existing DNN-based MAP models suffer
from the challenges such as significant physical storage space
and poor inference latency, primarily due to their large number
of parameters. These limitations render them impractical for
deployment in real-world scenarios. In this paper, we propose
PaCKD, a Pattern-Clustered Knowledge Distillation approach
to compress MAP models while maintaining the prediction
performance. The PaCKD approach encompasses three steps:
clustering memory access sequences into distinct partitions in-
volving similar patterns, training large pattern-specific teacher
models for memory access prediction for each partition, and
training a single lightweight student model by distilling the
knowledge from the trained pattern-specific teachers. We evaluate
our approach on LSTM, MLP-Mixer, and ResNet models, as
they exhibit diverse structures and are widely used for image
classification tasks in order to test their effectiveness in four
widely used graph applications. Compared to the teacher models
with 5.406M parameters and an F1-score of 0.4626, our student
models achieve a 552⇥ model size compression while maintaining
an F1-score of 0.4538 (with a 1.92% performance drop). Our
approach yields an 8.70% higher result compared to student
models trained with standard knowledge distillation and an
8.88% higher result compared to student models trained without
any form of knowledge distillation.

Index Terms—Memory Access Prediction, Deep Neural Net-
works, Knowledge Distillation, Clustering

I. INTRODUCTION

Memory access prediction (MAP) models play a crucial
role in modern computer systems, addressing the need to
optimize memory operations and overcome performance lim-
itations imposed by the ”memory wall”. The memory wall
refers to the widening disparity between processor speeds
and memory access times leading to significant latency is-
sues and hampering overall system performance [1], [2]. To
combat these challenges, MAP models based on deep neural
networks (DNNs) are designed to prefetch data in advance,
effectively reducing latency and enhancing system efficiency
by proactively loading data into the cache [3]. This proactive
data prefetching strategy improves the instructions per cycle
(IPC) by anticipating future data requests and fetching the data
before it is actually needed [4].

Distribution Statement A: Approved for public release. Distribution is
unlimited.

* These authors contributed equally.

Existing MAP models typically exhibit substantial mem-
ory system requirements and encounter significant inference
latency issues. These limitations pose challenges when de-
ploying these models in memory-constrained systems or ap-
plications that prioritize low inference latency [5]. Addition-
ally, existing MAP models may not effectively handle the
dynamic and diverse memory access patterns encountered in
complex workloads, such as those found in graph applications,
resulting in sub-optimal prefetching performance [6]. Prior
work has explored the compression of LSTM prefetchers, but
despite achieving some level of compression, the resulting
models still remain relatively large and focus on enabling
online training [7]. In contrast, our approach aims to address
these limitations by targeting offline training with a highly
compressed model that undergoes extensive training to ensure
performance and efficiency. By leveraging the benefits of
offline training and achieving significant compression, we aim
to enhance the practicality and performance of MAP models
for various target platforms.

Compressing MAP models while preserving performance
poses significant challenges. First, decreasing the size of a
neural network model can lead to a notable drop in accuracy,
thus impacting its ability to accurately predict memory access
patterns [8]. Since few layers imply quick weight saturation,
smaller models fail to accurately capture complex relationships
between the input and output. Compressed neural network
models face the problem of inattention or carelessness where
they may only work well for commonly appearing patterns
and falter for infrequent patterns [9]. This problem is further
exacerbated in memory access prediction, where the intricate
patterns involved pose additional challenges for smaller ma-
chine learning models to adequately capture and generalize the
underlying patterns. Second, the memory access patterns vary
across different execution stages of an application, hindering
model training and overall knowledge learnt through features.
For example, graph processing applications with multiple
phases [10]–[12] make it difficult to train a general ML model
that performs well across all phases [13], [14].

We propose PaCKD, a novel Pattern-Clustered Knowledge
Distillation approach to address the challenges. First, we pro-
pose applying knowledge distillation for compressing memory
access prediction models. Knowledge Distillation (KD) [15] is
a technique that transfers knowledge from a large model to a
smaller model, enabling the smaller model to replicate the
behavior and performance of the larger model. This approach
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facilitates more efficient deployment and improves generaliza-
tion, making it well-suited for MAP models. In offline training,
training time and model size are variable, but for online
deployment, MAP models have the strict requirements of fast
inference and efficient storage. Therefore, we can train large
teacher models and distill the knowledge to a compact student
model offline while deploying the student model for online
inference. Second, we propose to cluster the memory access
patterns to train higher performance, pattern-specific teachers
for each cluster. In this way, we are able to distill specialized
knowledge from multiple teachers to a single student that
works for all patterns within a specific trace. We demonstrate
the effectiveness of our PaCKD1 through the widely used GAP
Benchmark Suite [16].

Our main contributions can be summarized as follows:
• We present PaCKD, a novel knowledge distillation (KD)

framework for compressing memory access prediction
models while maintaining the performance.

• We propose to cluster the memory access sequences
based on history memory access windows comprised of
the past block addresses, past block address deltas, and
past instruction pointers to increase the performance of
DNN-based MAP models.

• We introduce an ensemble multi-label KD approach to
transfer specialized knowledge from large pattern specific
models to a single smaller and lightweight student model
for the task of multi-label memory access prediction.

• We evaluate the effectiveness of PaCKD on LSTM,
MLP-Mixer, and ResNet using the GAP Benchmark. We
achieve 552⇥ model size compression in average with a
1.92% F1-score drop, which is is 8.70% higher compared
with student models using standard KD and 8.88% higher
compared with student models trained without KD.

II. BACKGROUND

A. Memory Access Prediction using Machine Learning

Memory access prediction is a critical task that involves
correlating past memory accesses with the present, detecting
patterns in memory access behavior, and accurately predicting
future memory access addresses. This capability is crucial
for enabling efficient data prefetching to minimize memory
latency and improve overall system performance. Traditional
prefetchers focus on exploiting spatial or temporal locality
of memory references [17], [18]. However, machine learning
(ML) models have emerged as a promising approach for
prefetching complex data access patterns. The problem def-
inition of ML-based memory access prediction shown below.
Problem Definition. Let Xt = {x1, x2, ..., xN} be the se-
quence of N history memory addresses at time t; let Yt =
{y1, y2, ..., yk} be a set of k outputs that will be accessed
in the future; an ML model can approximate P (Yt|Xt), the
probability that the future addresses Yt will be accessed given
the history events Xt.

1The code is available at: https://github.com/neeleshg23/PaCKD

Recent research has demonstrated the effectiveness of ML
models in memory access prediction tasks [19], [20]. These
existing approaches leverage fine-grained memory address
input and attention-based models to achieve accurate multi-
label memory access prediction. By capturing intricate depen-
dencies and patterns in memory access behavior, image models
offer improvements in memory access prediction compared to
traditional techniques [7], [19].

While existing MAP models focus primarily on prediction
performance, this work aims to make these models more
hardware-friendly by reducing their size without sacrificing
performance.

B. Clustering Memory Access Sequences
Clustering memory access sequences based on patterns is

a valuable technique for identifying similar behaviors within
these traces [21], [22]. This approach groups together trace
instructions with shared characteristics, further specializing
models. Through finding patterns in each sequence, models
are able to exploit patterns in order to improve performance.
Problem Definition. Given a set of N memory access se-
quences {x1, x2, ..., xn} and an integer k, a memory access
sequence clustering algorithm is to partition the sequences to
k clusters {C1,C2, ...,Ck} such that sequences in the same
cluster share similar patterns.

We leverage K-Means [23] algorithm for clustering a mem-
ory access sequence. K-means represents each cluster by a
centroid which is the mean of the cluster members, then uses
squared Euclidean distance to measure for cluster membership,
as defined below:

dsq =
DX

i=1

(xi � yi)
2 (1)

where x, y are points in the D-dimensional space. Number of
clusters k is determined by minimizing the Sum of Squared
Errors (SSE), which is the sum of the squared error between
each data point and its nearest centroid, as defined below:

SSE =
nX

i=1

kX

j=1

wi,j ||xi � cj ||2 (2)

where cj is the centroid of the jth cluster, wi,j = 1 if the data
point xi is in cluster j, and wi,j = 0 otherwise [24].

Building upon the existing clustering approaches, we cluster
the memory access sequences based on different memory ac-
cess features, aiming to create specialized clusters that capture
distinct patterns and domain-knowledge within memory access
traces to enable effective training.

C. Knowledge Distillation
Knowledge Distillation aims to transfer knowledge from

a large, complex model (referred to as the teacher model)
to a smaller, more lightweight model (referred to as the
student model) [15]. The student model is trained to mimic
the behavior and predictions of the teacher model by learning
the embedded information in the teacher’s logits. This process
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Fig. 1: The Pattern-Clustered Knowledge Distillation (PaCKD) framework for compressing memory access prediction models.

has been shown to be effective in improving the performance
of compact models in hopes of achieving comparable perfor-
mance to their larger counterparts. The problem definition of
using KD for model compression is as below.
Problem Definition. Given a trained large teacher network
f(x; ✓), where x is the input to the network and ✓ is the pa-
rameters. The goal of knowledge distillation is to learn a new
set of parameters ✓0 for a shallower student network f(x; ✓0),
such that the student network achieves similar performance to
the teacher, with much lower computational cost.

The original knowledge distillation work primarily focuses
on single-label classification. In this context, a custom loss
function L is designed that considers both the hard labels from
ground truth and soft labels from a teacher model. Importantly,
the soft labels are obtained using a T-temperature softmax
activation function.

The softmax activation function returns probabilities
P (zi, T ) is defined as:

P (zi, T ) =
exp

�
zi
T

�
PN

k=1 exp
�
zk
T

� (3)

Therefore, the complete loss L can be represented as:

Lsoft = �
NX

i=1

P (ti, T ) log (P (si, T )) (4)

Lhard = �
NX

i=1

P (ci, 1) log (P (si, 1)) (5)

L = ↵Lsoft + �Lhard (6)

where ↵ and � are hyperparameters, ti are the logits from
the teacher model, si are the logits from the student model, ci
is the ground truth for the i-th instance, N is the total number
of instances, and T is the temperature parameter for softmax.

In this work, we extend the original KD approach by
training pattern-specific teacher models and designing a soft-
sigmoid activation function for multi-label knowledge distilla-
tion (Section III-D1). By implementing the proposed approach
in memory access prediction models, achieving efficient com-
pression becomes possible by transferring the expertise of
a large and intricate teacher model to a smaller and more
streamlined student model. This approach allows for signif-
icant memory savings without compromising on performance
and accuracy, as the student model can closely match the
capabilities of the teacher model [25].

III. APPROACH

A. Overview

Existing DNN-based MAP models require large storage al-
location, making them impractical for hardware data prefetch-
ers. We propose PaCKD to address such limitations.
Research Hypothesis. By leveraging featured clustering,
pattern-specific teacher models, and multi-label ensemble
knowledge distillation, we can effectively compress memory
access prediction models, reducing their memory footprint
while preserving their performance.

Figure 1 shows an illustration of the proposed training
framework, PaCKD, for compressing memory access predic-
tion models. Our approach involves three key steps. Firstly,
we employ clustering by memory pattern-specific access
trace data to partition memory access sequences into distinct
clusters, effectively capturing underlying patterns. Secondly,
we train large pattern-specific teacher models specializing
in predicting memory access within each cluster, enhancing
overall prediction performance. Finally, we employ knowledge
distillation to train a lightweight student model, transferring
novel insights from the pattern-specific teacher models. This
process balances accuracy and computational cost, optimizing
the training of compact memory access prediction models.
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B. Memory Access Sequence Clustering

We use k-means for memory access sequence clustering,
exploring various memory access features.

• Past Block Address: The previous memory address
accessed in the program’s execution trace, representing
a lookback window of one block for cache optimization.

• Past Block Address Deltas: The numerical difference
between consecutively accessed memory addresses in the
trace plays a pivotal role in domain-specific hardware-
level instructions since it reflects a lookback window
essential for fine-tuning and enhancing cache access.

• Past Instruction Pointer: The memory address of the
last executed instruction, providing a lookback for im-
mediate hardware-level instruction tracking.

C. Training Pattern-Specific Teacher Models

After clustering memory access sequences using memory
trace features that embed application-specific information, we
train large pattern-specific teacher models for each cluster.
Input. We use segmented memory access addresses as model
input, following TransFetch [19]. This approach splits an m-bit
block address into p segments, converting one block address
into a vector. For a history of n lookback block addresses, the
input would be a p⇥ n matrix.
Output. For model training labels, we use a delta bitmap. In
this bitmap, each location represents the difference between
a future memory access address and the current address. A
value of 1 is assigned to a location if the delta falls within a
future window, otherwise, it is set to 0. By setting multiple 1s
in the bitmap, we approach the machine learning problem as
multi-label classification, enabling multiple predictions.
Training. We use binary cross-entropy loss to train the multi-
label classification model, as defined below:

LBCE = � 1

N

NX

i=1

yi log (p (yi)) + (1� yi) log (1� p (yi))

(7)
where yi is the label and p(yi) is the predicted probability for
sample i being 1, N is the number of classes.

D. Ensemble Multi-Label Knowledge Distillation

We align the input and output formats of the student models
with those of the teacher models and train them through
a novel multi-label KD approach, leveraging an ensemble
training scheme based on multiple teachers.

1) Multi-Label Knowledge Distillation: Inspired by [15],
we design a soft-sigmoid function in Equation 8 with tem-
perature T to soften the probability distribution over classes
in multi-label classification outputs. The overall loss function
is the combination of the BCE loss and the soft KD loss
(Equation 9) acquired from the soft-sigmoid, as shown in
Equation 10

zi = p(yi)t=T = �
⇣yi
T

⌘
=

1

1 + e�yi/T
(8)

LKD =
qX

k=1

KL
�⇥
zTi , 1� zTi

⇤
k
⇥
zSi , 1� zSi

⇤�
(9)

where KL(·) is the Kullback-Leibler divergence [26], � is a
hyper-parameter tuning the weights of the two losses.

L = �LKD + (1� �)LBCE (10)

2) Ensemble Training for a Single Student: In order to
train a single student model capable of accurately predicting
the entire memory access sequence, we employ knowledge
distillation from each teacher during every training epoch.
The distillation process utilizes the same clustered data that
was used to train the teachers. The weighting of the teacher’s
logits in the overall loss of the student model is determined
by �, which is carefully tuned to assign greater importance to
teachers with more precise predictions.

IV. EVALUATION

A. Experimental Setup
1) Models: We evaluate the performance of PaCKD on

three state-of-the-art DNN models chosen based on their
diverse underlying structures. This evaluation allows us to
assess the how general PaCKD works across different model
architectures. We underscore the usage of any image, vision,
or multi-label classification model in critical system tasks,
including, but not limited to, memory access prediction.

• Long Short-Term Memory (L): LSTM-based models
have been successful in both single-label and multi-label
prediction tasks and are widely adopted due to high
applicability. LSTM models capture long-range features
along with temporal patterns [27], [28].

• Multi-Layer Perceptron Mixer (M): Without convolu-
tions or attention, an all MLP-based model, made of two
types of layers: channel-mixing and token-mixing layers,
allows effective model learning that mixes both spatial
and temporal information [29].

• Residual Networks (R): ResNets are Convolution Neu-
ral Networks (CNN) which rely on a residual learning
framework to transfer knowledge to deeper layers over
time, improving with increases in depth and size [30].

Table I presents specific student and teacher model config-
urations, including paramters, dimensions, number of layers,
and critical path, where N represents the number of time steps
and L represents the number of layers in the model.

The average teacher model size is 5.406M parameters and
the average student model size is 10.487K parameters. The
compression rate for the two student models are 445⇥, 538⇥,
and 584⇥, and the average compression rate is 552⇥.

2) Benchmarks: To evaluate PaCKD and the baselines,
we use four real-world graph analytic benchmarks from the
GAP Benchmark Suite [16]. For each application, we capture
memory requests from the last level cache over a duration of
11 million instructions. The initial one million instructions are
skipped, while the subsequent 8 million instructions are used
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Fig. 2: Clustering results for applications in GAP benchmark under various input features.

TABLE I: Model Configurations

Model Parameters Dimensions Layers Critical Path
Tch-L 5.302M 128 40 O(NL)
Tch-M 5.484M 512 20 O(L)
Tch-R 5.423M 30 50 O(L)
Stu-L 11.904K 16 1 O(NL)
Stu-M 10.206K 18 8 O(L)
Stu-R 9.324K 4 11 O(L)
Note: L means LSTM, M means MLPMixer, R means ResNet

for training while the remaining 2 million instructions are used
for evaluation. Table II shows the application-specific memory
trace sequence level statistics, including the unique number of
instruction pointers, block addresses, and block address deltas.

TABLE II: Benchmark Application Memory Trace Statistics

Trace Description # IPs # Addr # Delta
bc Betweenness Centrality 78 144.2K 52.6K
cc Connected Components 45 95.5K 80.1K
pr PageRank 38 186.4K 2.6K

sssp Single-Source Shortest Path 102 86.7K 66.8K

3) Metrics: We use F1-score to evaluate the memory access
prediction performance, F1-score is the weighted average of
precision and recall [31].

Precision =
True Positives

True Positives + False Positives
(11)

Recall =
True Positives

True Positives + False Negatives
(12)

F1 = 2⇥ Precision ⇥ Recall
Precision + Recall

(13)

TABLE III: F1-Score of the teacher models and student models
trained without Knowledge Distillation and Clustering

Models bc cc pr sssp
Tch-L 0.3580 0.2167 0.7719 0.2411
Tch-M 0.3717 0.3002 0.9754 0.4134
Tch-R 0.3817 0.3095 0.8932 0.3178
Stu-L 0.3580 0.2213 0.7723 0.2165
Stu-M 0.3579 0.2855 0.8803 0.2338
Stu-R 0.3575 0.2225 0.8629 0.2334

B. Baseline Frameworks
We demonstrate the effectiveness of the proposed approach

by comparing PaCKD with the following baseline frameworks:
• Student Only: Trained without knowledge distillation, this

serves as a measure of the baseline performance.
• Teacher Only: Larger models trained without clustering,

enabling us to gauge the influence of our pattern-driven
clustering approach.

• Standard KD Student: Smaller models trained with a
single teacher, using a � value of 0.5, allow us to evaluate
the benefit of ensemble knowledge distillation.
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TABLE IV: F1-score of ensemble teacher models, trained on traces clustered using different memory access features

Memory Access bc cc pr sssp
Features K Stu-L Stu-M Stu-R Stu-L Stu-M Stu-R Stu-L Stu-M Stu-R Stu-L Stu-M Stu-R

2 0.2226 0.3624 0.3573 0.2167 0.3080 0.3397 0.7717 0.9897 0.8006 0.2316 0.4151 0.3223
Past Block Address 3 0.3575 0.3640 0.3570 0.2156 0.3316 0.2787 0.7687 0.9658 0.8090 0.2364 0.3834 0.3876

4 0.3578 0.3627 0.3589 0.2096 0.3247 0.3655 0.7689 0.9779 0.8251 0.2317 0.3741 0.2890
2 0.2836 0.2917 0.2855 0.1267 0.3214 0.2983 0.7709 0.8472 0.8306 0.1851 0.2882 0.3319

Past Address Delta 3 0.2603 0.2748 0.2792 0.0585 0.1300 0.1040 0.8339 0.9693 0.9477 0.0883 0.2249 0.1717
4 0.2422 0.2456 0.2487 0.0661 0.1285 0.0971 0.8287 0.9651 0.9466 0.0847 0.1744 0.1778
2 0.3685 0.3926 0.3824 0.2169 0.2981 0.2894 0.7035 0.8706 0.8687 0.2422 0.4071 0.2959

Past Instruction Pointer 3 0.3621 0.3687 0.3696 0.2186 0.3040 0.2803 0.8375 0.9876 0.9705 0.2506 0.4223 0.2880
4 0.3621 0.3706 0.3689 0.2117 0.2977 0.2967 0.8359 0.9874 0.9641 0.2505 0.4149 0.2849

TABLE V: F1-score of student models, trained on traces clustered using different memory access features

Memory Access bc cc pr sssp
Features K Stu-L Stu-M Stu-R Stu-L Stu-M Stu-R Stu-L Stu-M Stu-R Stu-L Stu-M Stu-R

Standard KD 1 0.3580 0.3579 0.3575 0.2234 0.2845 0.2216 0.7723 0.8774 0.8731 0.2168 0.2340 0.2336
2 0.3580 0.3579 0.3587 0.2216 0.2866 0.3076 0.7724 0.9305 0.9525 0.2426 0.2683 0.2710

Past Block Address 3 0.3580 0.3578 0.3577 0.2212 0.2898 0.2939 0.7725 0.9268 0.9518 0.2429 0.2422 0.3323
4 0.3580 0.3579 0.3580 0.2215 0.2807 0.2209 0.7724 0.8595 0.8339 0.2164 0.2316 0.2269
2 0.3580 0.3580 0.3579 0.2216 0.2931 0.3196 0.7724 0.8860 0.9222 0.2429 0.2652 0.2938

Past Address Delta 3 0.3580 0.3578 0.3580 0.2216 0.2957 0.3087 0.7724 0.7742 0.8147 0.2429 0.2705 0.2489
4 0.3580 0.3580 0.3579 0.2214 0.2876 0.2342 0.7719 0.7735 0.7851 0.2168 0.2347 0.2336
2 0.3580 0.3582 0.3577 0.2216 0.2913 0.3196 0.7727 0.9519 0.9639 0.2426 0.2352 0.2466

Past Instruction Pointer 3 0.3580 0.3579 0.3580 0.2216 0.2957 0.3114 0.7723 0.7742 0.8138 0.2422 0.2343 0.2418
4 0.3580 0.3580 0.3580 0.2214 0.2876 0.2343 0.7719 0.7734 0.7854 0.2168 0.2316 0.2326

C. Clustering and Training

Based on the features of each memory access trace, we split
the application into K distinct clusters. Figure 2 shows the
clustering results for applications in GAP benchmark under
various input features when K=3. The clusters are visualized
using dimensions of Page Address, Instruction Pointer, and
Block Index with respective scale and bias shown with the
axis labels. Various input features significantly influence the
clustering results, influencing the training of pattern-specific
teacher. For the prediction models, we set the lookback win-
dow as 10. We collect future deltas within a page in a window
of 128 future memory accesses. We predict deltas in a range of
±128. We generate train and evaluation data for each cluster
to be given to teacher models, as well as evaluation data over
the entire cluster to validate the student model.

D. Result Analysis

1) Effectiveness of Clustering for Teacher Training: Clus-
tering significantly enhanced our teacher models. As shown
in Table III, the average F1-score started at 0.4626 across all
models and applications. After clustering, the score rose to
0.4931 as shown in Table IV, marking a 6.61% improvement,
showing the effectiveness of clustering in our approach.

2) Effectiveness of Standard Knowledge Distillation: Table
V reveals that student models trained with standard KD exhibit
a marginal increase of 0.16% in F1-score compared to the
baseline student models without distillation (Table III).

3) Effectiveness of Ensemble Knowledge Distillation: Table
V shows that student models trained using ensemble KD
achieve an average F1-score of 0.4538, surpassing the perfor-
mance of student models trained with standard KD by 8.70%.

4) Effectiveness of PaCKD: PaCKD demonstrates its ef-
fectiveness through achieving an average F1-score increase of
8.88% compared to baseline student models trained without
KD. Additionally, PaCKD achieves a compression rate of
522⇥ with only a 1.92% drop in F1-score compared to the
baseline teacher models without clustering.

V. CONCLUSION

In this paper, we introduced PaCKD, a novel approach for
compressing memory access prediction models. Our method
utilizes pattern-clustered knowledge distillation, leveraging
clustering for improved performance in large pattern-specific
teacher models. By distilling specialized knowledge from
multiple teachers to a lightweight student model, we achieved
an impressive compression ratio of 552⇥ with only a 1.92%
drop in F1-score. This result outperforms standard knowledge
distillation by 8.70% and direct student training by 8.88%.

To improve the practicality of ML-based models for data
prefetching, we are also exploring novel modeling of memory
accesses, such as graph representation of memory accesses and
graph neural networks for memory access prediction. We are
also exploring efficient parallel implementation and look-up ta-
ble approximation for neural networks for real-time ML-based
prefetching. In future work, we hope to extend our approach
to heterogeneous memory systems and heterogeneous clusters.

ACKNOWLEDGMENT

This work was supported by Army Resarch Lab (ARL)
under award number W911NF2220159 and National Science
Foundation (NSF) under grants under award number CCF-
1919289.

979-8-3503-0860-0/23/$31.00 ©2023 IEEE
Authorized licensed use limited to: Purdue University. Downloaded on October 23,2024 at 15:45:14 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] W. A. Wulf and S. A. McKee, “Hitting the memory wall: Implications
of the obvious,” ACM SIGARCH computer architecture news, vol. 23,
no. 1, pp. 20–24, 1995.

[2] C. Carvalho, “The gap between processor and memory speeds,” in Proc.
of IEEE International Conference on Control and Automation, 2002.

[3] J.-L. Baer and T.-F. Chen, “An effective on-chip preloading scheme to
reduce data access penalty,” in Supercomputing ’91:Proceedings of the
1991 ACM/IEEE Conference on Supercomputing, 1991, pp. 176–186.

[4] S. Vander Wiel and D. Lilja, “When caches aren’t enough: data
prefetching techniques,” Computer, vol. 30, no. 7, pp. 23–30, 1997.

[5] H. Choi and S. Park, “A survey of machine learning-based system
performance optimization techniques,” Applied Sciences, vol. 11, no. 7,
2021. [Online]. Available: https://www.mdpi.com/2076-3417/11/7/3235

[6] M. Hashemi, K. Swersky, J. A. Smith, G. Ayers, H. Litz,
J. Chang, C. Kozyrakis, and P. Ranganathan, “Learning memory
access patterns,” CoRR, vol. abs/1803.02329, 2018. [Online]. Available:
http://arxiv.org/abs/1803.02329

[7] A. Srivastava, A. Lazaris, B. Brooks, R. Kannan, and V. K. Prasanna,
“Predicting memory accesses: the road to compact ml-driven prefetcher,”
in Proceedings of the International Symposium on Memory Systems,
2019, pp. 461–470.

[8] Y. Zeng, “Long short term based memory hardware prefetcher,” 2017.
[Online]. Available: http://preserve.lehigh.edu/etd/2901

[9] S. Hooker, A. Courville, G. Clark, Y. Dauphin, and A. Frome,
“What do compressed deep neural networks forget?” arXiv preprint
arXiv:1911.05248, 2019.

[10] K. Lakhotia, R. Kannan, S. Pati, and V. Prasanna, “Gpop: A scalable
cache-and memory-efficient framework for graph processing over parts,”
ACM Transactions on Parallel Computing, vol. 7, no. 1, pp. 1–24, 2020.

[11] A. Roy, I. Mihailovic, and W. Zwaenepoel, “X-stream: Edge-centric
graph processing using streaming partitions,” in Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles.
ACM, 2013, pp. 472–488.

[12] K. Lakhotia, R. Kannan, and V. Prasanna, “Accelerating pagerank
using partition-centric processing,” in 2018 USENIX Annual Technical
Conference (USENIX ATC 18). USENIX Association, 2018.

[13] R. M. French, “Catastrophic forgetting in connection-
ist networks,” Trends in Cognitive Sciences, vol. 3,
no. 4, pp. 128–135, 1999. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1364661399012942

[14] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins,
A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska,
D. Hassabis, C. Clopath, D. Kumaran, and R. Hadsell, “Overcoming
catastrophic forgetting in neural networks,” Proceedings of the National
Academy of Sciences, vol. 114, 12 2016.

[15] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” arXiv preprint arXiv:1503.02531, 2015.
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