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Comparing storm resolving models 
and climates via unsupervised 
machine learning
GrifÏn Mooers 1*, Mike Pritchard 1,2, Tom Beucler 3, Prakhar Srivastava 4, Harshini Mangipudi 4, 
Liran Peng 1, Pierre Gentine 5 & Stephan Mandt 4

Global storm-resolving models (GSRMs) have gained widespread interest because of the 
unprecedented detail with which they resolve the global climate. However, it remains difÏcult to 
quantify objective differences in how GSRMs resolve complex atmospheric formations. This lack 
of comprehensive tools for comparing model similarities is a problem in many disparate fields that 
involve simulation tools for complex data. To address this challenge we develop methods to estimate 
distributional distances based on both nonlinear dimensionality reduction and vector quantization. 
Our approach automatically learns physically meaningful notions of similarity from low-dimensional 
latent data representations that the different models produce. This enables an intercomparison of 
nine GSRMs based on their high-dimensional simulation data (2D vertical velocity snapshots) and 
reveals that only six are similar in their representation of atmospheric dynamics. Furthermore, we 
uncover signatures of the convective response to global warming in a fully unsupervised way. Our 
study provides a path toward evaluating future high-resolution simulation data more objectively.

�e Earth’s atmosphere is a complex system, with many di�erent factors in�uencing its dynamics on scales rang-
ing from microns to thousands of kilometers. �anks to modern high-resolution global Earth system models, 
much of this complexity can now be captured with unprecedented accuracy, down to the “storm-resolving” 
scale of several kilometers1–4. By explicitly resolving fundamental nonlinear and high-resolution processes like 
deep convection (precipitating clouds) formation, these models can address longstanding issues with cloud and 
precipitation patterns in conventional climate simulations5–10. However, despite these advances, there remain 
substantial di�erences in how these models are designed, which contribute to uncertainty in their weather and 
climate predictions4. While attempts have been made to validate and compare ensembles of these models, this 
has traditionally been done using coarsened statistics, such as annual averages, guided by physically informed 
approaches. A community goal is to directly compare models at the scale of storm formation, which could 
improve understanding of the consequences of di�erent design decisions and help narrow the uncertainty of 
cloud-climate feedback4,11–13.

One of the biggest challenges with understanding those simulations’ output is the massive amount of high-
resolution data produced. �is can quickly become overwhelming, as seen in the �rst inter-comparison study of 
Global Storm-Resolving Models (GSRMs), the DYAMOND project4. For just 40 days of hourly simulation out-
put, nearly two petabytes per GSRM were generated. �is means that storing the data is a signi�cant hurdle and 
analyzing it is even more challenging. To get around these barriers to understanding those simulations’ results 
simpler dimensionality reduction methods such as clustering and projections are traditionally used. However, 
these methods may not fully capture the non-linear relationships embedded in small-scale physical processes, 
which are what make these simulations so valuable14–16.

To gain more insight and con�dence in these climate predictions, we need objective ways to quantify changes 
in convective organization, identify models that are outliers, and more comprehensively analyze modern 
GSRMs4,17. As intercomparisons of multiple GSRMs across multiple climates were not available at the time of 
this work, this paper proposes a novel kind of comparison: we compare models based on their high-resolution 
simulation data of the present climate. In machine learning terminology, we quantify di�erences between GSRMs 

OPEN

1Department of Earth System Science, University of California at Irvine, Irvine, CA  92697, USA. 2NVIDIA, 
Santa Clara, CA  95050, USA. 3Institute of Earth Surface Dynamics, University of Lausanne, 1015  Lausanne, 
Switzerland. 4Department of Computer Science, University of California at Irvine, Irvine, CA  92617, 
USA. 5Department of Earth and Environmental Engineering, Columbia University, New York, NY  10027, 
USA. *email: gmooers96@gmail.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-49455-w&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2023) 13:22365  | https://doi.org/10.1038/s41598-023-49455-w

www.nature.com/scientificreports/

based on the notion of distribution shi�s across di�erent simulated data sets. �is approach enables a fully data-
driven approach towards model inter- and intra-comparisons.

Our contributions are threefold. (1) We introduce novel methods and metrics utilizing unsupervised machine 
learning techniques, speci�cally variational autoencoders (VAEs) and vector quantization, to systematically ana-
lyze and compare high-resolution climate models. �is approach compliments traditional physically informed 
analysis allowing for a detailed inter-comparison of nine diverse GSRMs informed by the small-scale convective 
organization unique to these detailed simulations. (2) Our analysis uncovers inconsistencies in the representa-
tions of tropical convection among GSRMs, highlighting the need for further investigation into parameteriza-
tion choices. (3) Our study provides insights into the impact of climate change on high-resolution simulations. 
In a fully data-driven fashion, we identify distinct signatures of global warming, including the expansion and 
intensi�cation of arid, dry zones over the continents and the concentration of deep convection over warm waters.

Data: storm‑resolving models and preprocessing
�is paper examines high-resolution atmospheric model data (5 kilometers or less horizontally) provided by 
the DYAMOND project4. To simplify modeling, we focus our new unsupervised method on the vertical velocity 
variable, giving us information about updra� and gravity wave dynamics across di�erent scales and phenom-
ena. Speci�cally, we consider eight di�erent DYAMOND GSRMs: the Icosahedral Nonhydrostatic Weather and 
Climate Model (ICON), the Integrated Forecasting System (IFS), the Nonhydrostatic ICosahedral Atmospheric 
Model (NICAM), the Uni�ed Model (UM), the System for High-resolution modeling for Earth-to-Local Domains 
(SHIELD), the Global Environmental Multiscale Model (GEM), the System for Atmospheric Modeling (SAM), 
and the Action de Recherche Petite Echelle Grande Echelle (ARPEGE). In addition, we include SPCAM, a 
Multi-Model Framework (MMF) that embeds many miniature 2D GSRMs in a host global climate model18,19.

We extract two-dimensional image-like snapshots of the original 3D vertical velocity data (pressure/altitude 
vs. longitude), which are taken every three hours. We use 285,000 randomly selected samples from each model 
(160,000 for training, 125,000 for testing), spanning the 15 S–15 N latitude belt and representing diverse tropical 
convective regimes. �e GSRMs’ varying horizontal and vertical resolutions and other sub-grid parameterization 
choices are detailed in Tables 1 and 2 of4. Figure 2 and Movie S1 provide example data. �ese selected datasets 
provide us with a comprehensive testbed of vertical velocity imagery.

Besides comparing di�erent GSRMs on the present climate, we also consider data produced by a single 
model, but for di�erent simulated climates. Here, we use SPCAM to simulate global warming by increasing 
sea surface temperatures by four Kelvin. We treat this as a proxy for climate change, where we consider spatial 
and intensity shi�s between convective updra�s in two simulated climates. �e use of the SPCAM model is a 
pragmatic choice which facilitates exploration of climate change emulation, due to its computational e�ciency 
compared to GSRMs20 that allows sampling of multiple climates, and the known characteristics of its climate 
change behavior10. �e use of the SPCAM model is essential for climate change emulation as at this point no 
climate change simulations exist from DYAMOND4.

Unsupervised model intercomparison
Our approach is based on variational autoencoders (VAEs)21, a deep learning approach to dimensionality reduc-
tion and density estimation. (For more details, see “Methods”.) VAEs are probabilistic autoencoders that use 
neural networks to embed data in a low-dimensional “latent” bottleneck representation termed the “latent space”. 
From there, the VAE attempts to reconstruct the original data with minimal information loss. At the same time, 
VAEs impose a regularization on the latent space that encourages the latent representation to have a simple 
structure so that the latent representation can be used to discover patterns in high-dimensional data. �e tradeo� 
between both tasks is a manifestation of the rate-distortion tradeo� from information theory22 and forms the 
basis for deciding on an architecture.

In order to facilitate the discovery of hidden structure in the latent space, we additionally cluster the embed-
ded data using k-means clustering. In machine learning terminology, such an approach is also called vector 
quantization (see “Methods” for details), in particular if the number of clusters is large. We �nd that VAEs are 
essential to our dimensionality reduction task. Directly attempting the clustering in the raw data space does not 
result in stable and reproducible clusters. Likewise, a simpler dimensionality reduction technique such as PCA 
also fails to create robust results (Fig. 8). Furthermore, we �nd that the VAE-based clusters are interpretable and 
correspond to di�erent convective and geographical phenomena, which will be discussed next. Finally, we show 
that working with a large number of clusters gives rise to natural similarity metrics across GSRMs (Fig. 3). See 
the Supplementary Information for more details.

Latent space inquiry uncovers differences among storm‑resolving models
As follows, we will provide evidence that the learned low-dimensional representations are semantically mean-
ingful and can be well-described using only three learned latent clusters that correspond to distinct convective 
organizations.

Cluster characterization
As a �rst qualitative analysis, we can learn a shared clustering across the dimensionality-reduced data of all 
nine GSRMs (Fig. 3). Since the latent space is 1000-dimensional, we plot the dominant two (or three) principal 
components for visualization purposes. Each data point is colorized according to its cluster assignment, i.e., its 
nearest cluster, where each cluster has a unique color. We �nd that the VAE organizes convection in the way an 
atmospheric scientist might23,24. By analyzing each cluster in the latent space’s vertical velocity kinetic energy √
w′w′ pro�les (which can be thought of as a measure of the variance in vertical velocity at each vertical level of 
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the atmosphere), we �nd a clear distinction between top-heavy (deep) and bottom-heavy (shallow) convection 
types. Furthermore, plotting the proportion of each of the three clusters for every spatial coordinate separately 
reveals a distinction of one cluster dominating over land, and two over oceans. We thus �nd that the three 
dominant clusters represent marine shallow convection (blue), deep convection (red), and continental shallow 
convection (green) (Fig. 4).

Qualitative model intercomparison
Inspecting the dimensionality-reduced data along with the learned latent clustering and spatial visualization 
(Fig. 4) gives unique qualitative insights into commonalities and di�erences across GSRMs. While most GSRMs 
share similar distributions in the latent space, Fig. 3 reveals that the SPCAM and SAM models show systematic 
di�erences compared to the other ones (Fig. 3 g, j vs. all). SAM reveals a di�erently-shaped deep convection cluster 
(Fig. 3j, red regime). SPCAM shows an unusual deep convection cluster adjacent to the marine shallow (blue) 
mode. A closer inspection of the 

√
w′w′ pro�le shows a unique regime of continental convection with a short 

horizontal scale of variability for SPCAM, particularly near the surface of the Earth (Fig. S9b, red line vs. all). 
For SAM, the 

√
w′w′ pro�le of deep convection is much more intense than that of other GSRMs, especially in the 

upper atmosphere (Fig. S9b; blue line). �ese di�erences in intensity statistics and vertical structure help explain 
the unusually wide extent of the deep convection cluster on the latent space projection (Fig. 3j, red cluster vs. all).

A further inspection of the GSRMs’ relative cluster proportions (Fig. S10) con�rms this perspective. SPCAM 
and SAM di�er signi�cantly from the other models (Fig. S10, second and third rows vs. bottom six). �ese two 
divergent GSRMs contain high proportions of stronger convection types, consistent with our previous analysis 
(Fig. 3 and Figs.  S5–7, S9). For ICON, we �nd similarly pronounced di�erences in cluster proportions, showing 
a higher proportion of strong convection types (continental shallow and deep). While these were primarily 
qualitative �ndings, we will quantify distributional di�erences across GSRMs next.

Dynamic consistency between high‑resolution climate models
In our analysis, we delve into a comprehensive inter-comparison of various GSRMs on a distributional level, 
aiming to uncover both commonalities and disparities across their entire simulated datasets. �e idea behind 
the following approach is to consider model dissimilarities or distances as distribution shi�s. In the machine 
learning literature25, such shi�s occur in various contexts (e.g., changing lighting conditions in videos, medical 
data from di�erent hospitals, etc.) and are usually associated with a degradation of the trained classi�er. In 
contrast, we consider an unsupervised version of distribution shi� assessment and use it to assess similarities 
between simulation data sets.

ELBO scores
To initiate this comparison, we turn our attention to the VAE’s training objective, the Evidence Lower Bound 
(ELBO) (Eq. 3). As detailed in “Methods”, this metric serves as a re�ection of the model’s likelihood estimate for 
each observation, indicating the probability of a particular sample’s occurrence. Examining the probability density 
function (PDF) of ELBO scores o�ers a distinct and unique �ngerprint for each GSRM. �e ELBO also aids in 
measuring disparities between di�erent data distributions, making it a pivotal tool in our analysis. Utilizing a 
common encoder model, we visualize the PDF of each GSRM test dataset, providing valuable insights into the 
intricacies of their respective data distributions.

Figure 5a shows nine resulting PDFs, where the red lines corresponding to ICON, SPCAM, and SAM have 
di�erent distributions than the (blue lines denoting the) other six GSRMs. Speci�cally, the ELBO PDFs of ICON, 
SPCAM, and SAM are more right-skewed and less symmetric, con�rming our earlier �ndings of a “majority” 
group involving most GSRMs, and a “minority”/“outlier” group involving ICON, SPCAM, and SAM.

Assessing GSRM distances using vector quantization
In order to further quantify the distribution shi�s between di�erent GSRMs, we revisit our non-linear dimen-
sionality reduction and clustering technique from before. But crucially, for a more quantitative comparison, we 
partition the latent space into a large number of regions, essentially through k-means clustering with a large 
( K = 50 ) number of clusters. As before, we then attribute each data by their nearest cluster centroid. �is tech-
nique is called vector quantization and is commonly used in the context of data compression27,28. �is discrete 
representation has the advantage of making certain computations tractable. In particular, it allows computing 
statistical distance measures between (discrete) data distributions, such as the symmetrized Kullback–Leibler 
(KL) divergence. See “Methods” for technical details. Using this approach, we present a matrix of pairwise simi-
larities among the nine GSRMs (Fig. 5b–g).

Figure 5g shows the results of the analysis, where a dark red indicates a high distance between models. We 
make two observations: �rstly, three GSRMs (SAM, SPCAM, and ICON) exhibit a signi�cant dissimilarity with 
respect to each other and with the rest of the models. Secondly, a group of “similar” models (GEM, UM, NICAM, 
IFS, SHIELD, ARPEGE) shows a relatively high degree of mutual similarity. It is worth noting that Fig. 5b shows 
similar results; here we use a lower but physically interpretable cluster count (K = 3).

Our results obtained from vector quantization align well with our earlier investigations in “Latent space 
inquiry uncovers di�erences among storm-resolving models”. In both approaches (“Latent space inquiry uncovers 
di�erences among storm-resolving models”, “Dynamic consistency between high-resolution climate models”), 
we found a split between six similar GSRMs and three divergent GSRMs. Speci�cally, our analysis revealed that 
ICON had a lower proportion of shallow convection compared to other GSRMs, SAM contained unusually 
intense “Deep Convection”, and SPCAM exhibited small scale turbulence with distinct pro�les of 

√
w′w′ show-

ing unusual updra� intensity near the earth’s surface not seen in other GSRMs.
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�ough we have put much of the focus on using our framework to identify unique GSRMs and hone in on 
the causes behind these inter-GSRM di�erences, the apparent similarity among the GEM, UM, NICAM, IFS, 
SHIELD, and ARPEGE models is another key �nding of our approach. �is conformity mirrors what we found 
by inspecting the latent representations (Figs.  3, S5–7), the vertical structure of the leading three convection 
regimes (Fig. S9), and the proportion of each type of convection in the simulation (Fig. S10). It would be worth 
elucidating the degree to which the similarity between these GSRMs is a re�ection of DYAMOND GSRMs better 
representing observational reality than coarser GCMs or an artifact of the inter-dependence of climate-models 
occluding the interpretation of a multi-model ensemble29, but this question is outside the scope of our present 
work. Instead, we will move on from inter-GSRM comparisons in the same climate state to a comparison of 
di�erent climate states.

VAEs extract planetary patterns of convective responses to global warming
�e assessment of the distribution shi� is a powerful tool for comparing di�erent climate models, but also for 
investigating the impact of global warming on atmospheric convection. In this section, we apply our approach 
to the SPCAM model, which provides simulation data for two di�erent global temperature levels: present-day 
conditions and a scenario with +4 K of sea surface temperature warming. Besides predicting changes to the 
vertical velocity pro�les, we can also identify geographic regions that are most a�ected by climate change.

In order to investigate the geographic e�ects of global warming on convection and speci�c regions where 
convection undergoes the most signi�cant changes, we build on the methods described in “Latent space inquiry 
uncovers di�erences among storm-resolving models” by �rst learning global convection clusters and initializing 
three cluster centers ( K = 3 ) for physical interpretability. We then stratify the SPCAM data by their latitude/
longitude gridcell and calculate location-speci�c cluster proportions based on the �xed cluster centers. �ese 
proportions (π1,π2,π3) with π1 + π2 + π3 = 1 indicate the fraction of the data being assigned to each cluster 
K ∈ {1, 2, 3} ; see “Methods” for details. We can now visualize the geographic distribution of these cluster 
proportions and identify the dominant convection types in each region (see Fig. S11).

When we examine the latent space of SPCAM, we again three distinct regimes of convection. �e �rst mode 
corresponds to deep convection over the Paci�c Warm pool, almost identical to the other GSRMs. A second 
mode of shallow convection dominates over areas where air is descending, both over continents and the oceans. 
In contrast to the other GSRMs, which treat continental connection as a single regime, we have identi�ed a third 
unique mode that we call “Green Cumulus,” which is exclusively found over speci�c sub-regions of semi-arid 
tropical land areas (see Fig. S11a).

Changing probabilities of convective modes in response to global warming
We again use technical notation to measure the shi� in convection patterns between the control and warmed 
climates. We �rst encode our dataset into a latent space and cluster the encoded data using K-means. �e fraction 
of data assigned to each cluster represents the prevalence of each convective regime in the dataset. We can use 
these “cluster assignment” vectors to identify the spatial pattern of each type of convection across the tropics. By 
comparing these normalized probabilities between the control and warmed climates, we can objectively quantify 
the change in the atmosphere’s structure with warming, which we refer to as a distribution shi�. Speci�cally, let 
(π0K

1 ,π0K
2 ,π0K

3 ) denote the cluster proprotions at present temperatures, and (π+4K
1 ,π

+4K
2 ,π

+4K
3 ) the correspond-

ing quantities in a climate globally warmed by four Kelvin. �en, the probability shi�s �πk = (π
+4K

k
− π0K

k
) for 

K ∈ {1, 2, 3} reveal the e�ects of climate change on convection patterns.
�e most prominent signal of climate change that our analysis captures are the shi�s in deep and shallow 

convection across di�erent geographic regions. Figure 6a shows that shallow convection is increasing over 
areas of subsidence, while Fig. 6b shows a corresponding decrease in deep convection over these less active 
oceanic regions. Simultaneously, Fig. 6b depicts an expected increase in the proportion and intensity of deep 
convection over warm ocean waters and particularly the Paci�c Warm pool30, with shallow convection becoming 
less prevalent in these unstable areas. Finally, as shown in Fig. 6c, the rare “Green Cumulus” mode becomes more 
common over semi-arid land masses, consistent with the overall intensi�cation and expansion of arid zones (dry 
get drier mechanism)31,32.

We �nd evidence of the vertical shi� in the structure of each convective regime as temperatures warm, 
as shown in Fig. 6d. �e upper-tropospheric maximum in 

√
w′w′ shi�s upwards with warming. �is �nding 

is consistent with the expected tropopause vertical expansion induced by climate change33,34. Additionally, a 
reduction in mid-tropospheric 

√
w′w′  can be explained by the decrease in vertical transport of mass in the 

atmosphere due to the enhanced saturation vapor pressure in a warmer world35,36. �e decrease in lower-
tropospheric 

√
w′w′  , indicated by the blue lines, corresponds to a decrease in marine shallow convection 

intensity, which we believe is evidence of marine boundary layer shoaling37. Finally, beyond the median 
√
w′w′ 

statistics, we see an increase in the upper percentiles of deep convection (Fig. S12b), revealing an intensi�cation 
of already powerful storms over warm waters, consistent with observational trends30.

�e expected geographic and structural e�ects of climate change become apparent by inspecting the latent 
space’s leading three clusters, showing that VAEs can quantify distribution shi�s due to global warming in a 
meaningful and interpretable way.

Global warming impacts on rare “Green Cumulus” convection
Finally, we hone in on the unique ways in which “Green Cumulus” Convection changes with a warming climate 
as inferred from our unsupervised framework. Within SPCAM, this sub-group of continental convection 
corresponds to a rare form of convection that was �rst identi�ed by38. We choose to formally adopt the unique 
label of “Green Cumulus” here due to the near total overlap between the geographic domain of this subsection 
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of continental convection in SPCAM and the regions of the highest proportion of “Green Cumulus” convection 
identi�ed in satellite imagery (Figure 6a in38). Both our results and38 identify this convection primarily over 
semi-arid continents (Fig. S11a). Despite its existing identi�cation in literature, is not traditionally included in 
the analysis of tropical convection23,24,39. �is is due both to its rarity and the fact that previous e�orts to “rigidly” 
classify it fail to identify statistically signi�cant di�erences in physical properties between “Green Cumuli” and 
other existing convection types40. However, the clustering of the latent space of SPCAM immediately separates 
“Green Cumulus” out into its own unique mode distinct from the rest of the continental convection.

By geographically conditioning the latent space cluster associated with “Green Cumuli” we can not only 
con�rm the regional patterns of the mode, but we can begin to uncover unique physical properties behind its 
formation and growth. Looking at the condition of the atmosphere in these geographic regions during the times 
when “Green Cumuli” dominate, we identify consistent signatures of very high sensible heat �ux, relatively low 
latent heat �ux, and the smallest lower tropospheric stability values (as de�ned in41) (Fig. S13). �is unique 
atmospheric state at locations of this convective mode, combined with its very distinct 

√
w′w′ pro�le (Green lines 

in Fig. 6d), suggests it does in fact deserve to be separated out from other types of convection despite its scarcity.
Although other studies have made note of this convective form42–44, our distribution shi� analysis shows that 

“Green Cumuli” expand as global temperatures rise (Fig. 6c). We observe that both the proportion and geographic 
localizations of “Green Cumulus” increase in a hotter atmosphere—this is likely aided by expected dry-zone 
expansions31,32. Comparison of these “Green Cumuli” 

√
w′w′ cluster pro�les between the control and warmed 

climates also shows a substantial increase in the associated boundary layer turbulence (Fig. S12c). �is suggests 
two trends as the climate changes: (1) “Green Cumuli” will become more frequent over larger swaths of semi-
arid continents in the future and (2) when “Green Cumuli” occur, they will be even more intense. Unsupervised 
machine learning models here proved capable of isolating rare-event “Green Cumuli” and capturing its climate 
change signals, synthesizing dynamic analysis and allowing new discovery.

Discussion
We introduced new methods and metrics to compare high-resolution climate models (global storm-resolving 
models—GSRMs) based on their very large output data by using unsupervised machine learning. Systemically 
comparing models and providing an understanding of the e�ect of climate change in such high-�delity high-
resolution simulations has been challenged by their enormous dataset sizes and has limited progress. Our 
new unsupervised approach relied on a combination of non-linear dimensionality reduction using variational 
autoencoders (VAEs) and vector quantization for an unsupervised inter-comparison of these storm resolving 
models. Beyond inter-model comparisons, we also compared global climates at di�erent temperatures and 
developed new insights into the changes in convection regimes.

Our data-driven method provides a complementary viewpoint to physics-based climate model comparisons, 
potentially less susceptible to human biases. For example, we could independently reproduce known types of 
tropical convection veri�ed through examination of the geographic domain and vertical structure. At the same 
time, our machine learning methods facilitate an intuitive understanding of simulation di�erences.

Our distributional comparisons identify consistency in only six of the nine considered storm resolving 
models. �e other three (SAM, SPCAM, ICON) deviate from the larger group in their representations of the 
intensity, type, and proportions of tropical convection. �ese divergences temper the con�dence with which we 
can trust GSRM simulation outputs. Note we cannot rule out the possibility that one of the divergent GSRMs may 
still be re�ecting observational reality better than the majority group. We leave this comparison to observations 
for future work.

Our work suggests the need to further investigate the parameterization choices in these high-resolution 
simulations. In the DYAMOND initiative, ICON was con�gured at an unusually high resolution (grid-cell 
dimension of  2 km) so that typical sub-grid orography and convection parameterizations were deactivated45. 
In the design of both SPCAM and SAM, there are approximations required for the anelastic formulations of 
buoyancy46,47. When these formulations are ultimately used to calculate vertical velocity, they could be causing 
the deviations between models in the intensity of updra� speeds. We believe there is a high chance these speci�c 
distinctions between parameterizations could be causing the split in the dynamics of the GSRMs. However, 
further investigation is needed to con�rm the true root causes of the di�erences between GSRMs we have 
identi�ed.

When comparing di�erent climates, convolutional variational autoencoders identify two distinct signatures 
of global warming: (1) an expansion and (at the atmosphere’s boundary layer) an intensi�cation of “Shallow 
Cumulus” Convection and (2) an intensi�cation and concentration of “Deep Convection” over warm waters. We 
argue that the �rst signal contributes to distribution shi�s in the enigmatic “Green Cumulus” mode of convection.

�e present study has focused on vertical velocity �elds in high-resolution climate models as one of the 
most challenging data to analyze. Improved performance could be obtained by jointly modeling multiple 
“channels” (i.e. variables) of spatially-resolved data such as temperature and humidity. While we have performed 
preliminary analysis of these results here48, we leave more detailed conclusions for further studies. Our study 
could also be extended to alternative data sets, such as the High Resolution Model Inter-comparison Project 
(HighResMIP)49,50 and observational satellite data sets. Besides variational autoencoders, future studies could 
also focus on other methods such as hierarchical variants, normalizing �ows, or di�usion probabilistic models. 
Ultimately, we hope that our work will motivate future data-driven and/or unsupervised investigations in the 
broader scienti�c �elds where Big Data challenges conventional analysis approaches.

Methods
A broad overview of our approach can be seen in Fig. 1, with more details discussed below.
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Simulation data and preprocessing
We examine the data on vertical velocity generated by high-resolution km-scale global storm resolving models 
(GSRMs) from the DYAMOND archive, and a multi-scale modeling framework (MMF)51,52. GSRMs are 
numerical simulators that provide uniform high-resolution simulations of the entire atmosphere. On the other 
hand, MMFs are a specialized type of coarse-resolution global climate model that incorporate small, periodic 
2D subdomains of local storm resolving dynamics (LSRMs)5,53. In our study, we utilize the Super Parameterized 
Community Atmosphere Model (SPCAM) v5 as our MMF. It is consistent with the code base of REF33 but 
con�gured at a coarser exterior resolution, consisting of 13,824 local 2D (vertical level—longitude cross sections) 
GSRMs, with each spanning 512 km and composed of 128 grid columns spaced 4 km apart. Since we are 
only using the DYAMOND II GSRMs data covering the boreal winter (though future work could include the 
DYAMOND III GSRM data when it is publically released as the next phase could cover the entire year), we 
generate six separate realizations of boreal winter for the MMF by introducing perturbed initial conditions to 
gather more data points. Although there is DYAMOND I data modeling the boreal summer, it is not with the 
exact same set of models and many models in common between DYAMOND I and II were con�gured di�erently 
making a synthesis of data across DYAMOND data generations challenging54.

To preprocess the input, we follow these steps: we convert the 4D vertical velocity data from the DYAMOND 
GSRMs into 2D input samples of horizontal width and vertical level. To do this, we extract the 2D instantaneous 
subsets that are aligned in the pressure-longitude plane. �is allows for a direct comparison with the MMF, which 
uses 2D LRSMs aligned in the same way. We restrict our data sampling to the tropical latitudes between 15◦ S 
and 15◦ N during boreal winter. �is results in a dataset of 160,000 training sample images that is large enough 
to capture the diverse spatial-temporal patterns of tropical weather, turbulence, and cloud regimes.

We normalize the input values by scaling each pixel’s original velocity value in meters per second (m/s) 
to a normalized range between 0 and 1. We do this consistently across all samples using the range measured 
across the entire dataset. To ensure uniform structure across all samples, we interpolate the input images onto a 
standardized vertical (pressure) and horizontal grid. �is is necessary to account for di�erences in the GSRMs’ 
respective grid structures when performing pairwise comparisons.

Figure 1.   An overview of our machine learning based approach. We extract 2D vertical velocity �elds from 
GSRM’s across the tropics. We use a variational autoencoder to reduce these high dimensional vertical velocity 
�elds to low dimensional latent representations for analysis. Clustering of these latent representations reveals 
three unique regimes of tropical convection. We can compare the “Distance” between these GSRMs by looking 
at the symmetrized KL divergence between the normalized PDF of convection type probabilities. �e image of 
earth’s surface was taken from https://​explo​rer1.​jpl.​nasa.​gov/​galle​ries/​earth-​from-​space/.

https://explorer1.jpl.nasa.gov/galleries/earth-from-space/
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Figure 2 provides vertical velocity snapshots for various models used in this paper. For more examples, see 
Movie 1.

Understanding convection via vertical structure
To analyze the dominant vertical structure of convection, we calculate the horizontal variance of vertical velocity 
within each image. For this, we compute the horizontal mean wi  separately at each vertical level (Note this is 
done over a 2D �eld at each grid cell, not globally, so wi  is not equal to 0), and then subtract it to create the 
layerwise anomaly w′

= w − w at a given vertical level. �en the �nal measure of the variance we are interested 
in is calculated by

�e resulting 1D second-moment vector is widely analyzed in the study of atmospheric turbulence as it helps 
characterize the altitudes of most vigorous convection55. We average it across a cluster to estimate the convective 
structures present and use it as one metric to discriminate the average physical properties sorted by the VAE 
latent space in Figs. 4, 6, S3, S8, S9, S12.

The horizontal extent of convection
To distinguish narrow from wide convective structures, it is necessary to separate convective updra�s based on 
their width. To elucidate these di�erences, we measure the Turbulent Length Scale (TLS)56, which is a way to 
derive the horizontal breadth of the updra�s. We calculate the TLS at each vertical level and then combine the 
TLS across all layers to get a composite value for the vertical velocity �eld. We then calculate the power spectrum 
of the weighted average length of all samples, using ϕ to represent the power spectra, ||k|| as the complex modulus, 
n as the number of dimensions, and 〈〉 as the vertical integral:

(1)
√

w′w′
def
=

√

(w − w)2,

Figure 2.   A selected vertical velocity �eld from each of the nine GSRMs used in this intercomparison. 
Atmospheric pressure is denoted on the y axis and the number of embedded columns in a given snapshot 
is shown on the x axis. We see a rich mix of turbulent updra�s (red) of various scales and types. For more 
examples, see Movie S1.
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Figure 3.   Two-dimensional principal component analysis (PCA) projection plots of DYAMOND data 
encoded with a shared VAE (trained on UM data). �e le� column (panels a–c; see also S5–S7) shows data 
points colorized by physical convection properties, including convection intensity (a), land fraction (b), and 
turbulent length scale (c). �e VAE visibly disentangles all three properties. �e right columns (panels d–i) 
show data points from di�erent DYAMOND data sets, colorized by convection type (as found by clustering). 
�e top panels (g,j) show clear di�erences in their latent organization compared to the remaining models; see 
“Dynamic consistency between high-resolution climate models” for a discussion. Movies S2–S6 show additional 
animations of the latent space.

Figure 4.   �e results from the VAE trained on DYAMOND UM data. Unsupervised clustering ( k = 3 ) 
obtained from UM test data reveals three distinct regimes of convection. Panel (a) shows each cluster’s median 
vertical structure, calculated by 

√
w′w′ . Panels (b–d) show the proportion of occurrence of each convection 

type at each lat/lon grid-cell of a sample assigned to a particular regime, showing distinct geographical patterns. 
Additional evidence of this disentanglement can be seen qualitatively in Fig. 3a,b,c,h.
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We can use this information to colorize the vertical velocity samples in the latent space, as shown in Figs. 3 
and S7.

Variational autoencoders
Variational autoencoders (VAEs) are widely-used latent-variable models for high-dimensional density estimation 
and non-linear dimensionality reduction21. VAEs di�er from regular autoencoders in that (1) both encoders 
and decoders are conditional distributions (as opposed to deterministic functions), and (2) they combine the 
learning goal of data reconstruction with simultaneously matching a pre-speci�ed “prior” in the latent space, 
enabling data generation.

In more detail, VAEs model the data points x in terms of a latent variable z , i.e., a low-dimensional vector 
representation, through a conditional likelihood p(x|z) and a prior p(z) . Integrating over the latent variables 
(i.e., summing over all possible con�gurations) yields the data log-likelihood as log p(x) = log

∫
p(x|z)p(z)dz . 

�is integral is intractable, but can be lower-bounded by a quantity termed evidence lower bound (ELBO),

�is involves a so-called variational distribution qθ (z|x) , also called “encoder”, and pθ (x|z) which is commonly 
referred to as the “decoder”. Both the encoder and decoder are parameterized by neural network21. �e β
-parameter is usually set to 1 but can be tuned to larger or smaller values to trade o� between data reconstruction 
ability and disentanglement of the latent space (the rate-distortion trade o�), see21,57,58 for details. To achieve a 
better model �t, one typically anneals β from zero to one over training epochs.

Our selected VAE architecture prioritizes representation learning over data reconstruction. For our 
experiments, we anneal β linearly over 1600 training epochs. We use 4 layers in the encoder and decoder with 
a stride of two) (Fig. 1). We use ReLUs as the activation function in both the encoder and the decoder. We pick 
a relatively small kernel size of 3 to preserve the small-scale updra�s and downdra�s of our vertical velocity 
�elds. �e dimension of our latent space is 1000. For more details on the VAE design choices, see the Methods 
section of59.

(2)TLSi
def=

2π
√
n

�ϕi�

〈

ϕh

||k||

〉

,

(3)L(θ; x) := Eqθ (z|x)

[

log pθ (x|z)
]

− βKL
[

qθ (z|x)||pθ (z)
]

.

Figure 5.   Unsupervised storm-resolving model (GSRM) inter-comparison. �e top panel (a) shows the ELBO 
(Eq. 3) score distribution of data from di�erent DYAMOND simulations. (�e VAE encoder is trained on 
UM data before all nine di�erent test datasets are applied.) We see that three model types (ICON, SPCAM, 
and SAM) have qualitatively di�erent ELBO score distributions than the remaining models. Panels (b–g) 
show symmetrized KL divergences between DYAMOND models obtained through nonlinear dimensionality 
reduction and vector quantization (see main text). Panel (b) shows results obtained from K = 3 physically 
interpretable clusters while panel (g) shows the results from K = 50 in order to better approximate the true 
lower bound of the KL Divergence. Panels (c–f) are intermediate K values. To better highlight the structure, we 
apply agglomerative clustering to the columns26 and symmetrize the rows. Regardless of the selected K value, 
the ultimate results are similar, particuarly for K > 20. We �nd dynamical consistency between six of the nine 
GSRMs we examine (6 × 6 light red sub-region corresponding to NICAM, IFS, GEM, SHIELD, ARPEGE, UM), 
which is in agreement with panel (a).
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K‑means clustering
A central element of our analysis pipeline is analyzing the distribution of the dimensionality-reduced, embedded 
data zi using K-means clustering60,61. We use this algorithm both for small K (yielding interpretable convection 
types) and large K (for vector quantization, see below).

In a nutshell, K-means clustering alternates between assigning the (dimensionality-reduced) data points zi 
to K cluster centers µk based on euclidean distance, and updating the cluster locations µk (setting them to the 
mean of the assigned data). To formalize the algorithm, one frequently de�nes the cluster assignment variables 
mi ∈ {1, . . . ,K} , indicating which cluster data point zi belongs to. A measure of convergence is the inertia, 
I =

∑
N

i=1
||zi − µmi

||2 , measuring the intra-cluster variance of the data.
In all experiments, we perform the clustering ten times, each with a di�erent, random initialization and 

�nally select the result with the lowest inertia. �is process enables us to derive the three data-driven convection 
regimes within an GSRM, which we highlight in Fig. 3h. Notably, we never �nd the clusters to be strictly spatially 
isolated; rather, our clustering can be thought of as a partitioning (or a Voronoi tessellation) of the latent space 
into semantically similar regions.

In order to identify the optimal number of cluster centroids in our analysis, we adopt a qualitative approach 
that takes into account our domain knowledge. Instead of relying on conventional methods such as the Silhouette 
Coe�cient62 or the Davies–Bouldin Index63, we de�ne a “unique cluster” as a group of convection in the latent 
space that exhibits physical properties (vertical structure, intensity, and geographic domain) that are distinct from 
those of other groups. By identifying the maximum number of unique clusters, we are able to create three distinct 
regimes of convection, as shown in Fig. 4. We have observed that increasing K above three usually results in sub-
groups of “Deep Convection” that do not exhibit any discernible di�erences in either vertical mode, intensity, or 
geography. �erefore, for our purposes, we do not consider K > 3 to be physically meaningful.

Our method o�ers a signi�cant advantage in creating directly comparable clusters of convection between 
di�erent GSRMs. In recent works, clustering compressed representations of clouds from machine learning models 
o�en employs Agglomerative (hierarchical) clustering64,65. In contrast, our use of the K-means approach allows 

Figure 6.   Convection type change induced by +4K of simulated global warming (see main text) in the SPCAM 
model. Results are from a VAE trained on this SPCAM control ( +0K ) data. Panels (a–c) show di�erences in 
convection type proportion (see main text), where we strati�ed and plotted the data by latitude/longitude grid 
cell. Each panel displays probability shi�s in the three convection types found through clustering with K = 3 , 
corresponding to marine shallow convection (a), deep convection (b), and “Green Cumulus” convection (c). 
Panel (d) shows the shi� in the mean vertical structure of each convection type with warming (solid vs. dashed 
lines). �is unsupervised approach captures key signals of global warming, including geographic sorting of 
convection (a,b), expansion of arid zones over the continents (c), and anticipated changes to turbulence in a 
hotter atmosphere (d).
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us to save the cluster centroids at the end of the algorithm, which provides a basis for cluster assignments for 
latent representations of out-of-sample test datasets when we use a common encoder as in “Latent space inquiry 
uncovers di�erences among storm-resolving models” of our results section. By only using the cluster centroids 
to get label assignments in other latent representations and not moving the cluster centroids themselves once 
they have been optimized on the original test dataset, we can objectively contrast cluster di�erences through 
the lens of the common latent space. Using this approach, we create interpretable regimes of convection across 
nine di�erent GSRMs, as shown in Fig. 3d–l.

Vector quantization
We seek to approximate di�erences between data distributions by directly estimating their Kullback–Leibler (KL) 
divergence. �e KL divergence is a measure of how one probability distribution di�ers or diverges from another. 
It quanti�es the additional information needed to represent one distribution using another. In the context of 
our study, we utilize the KL divergence as a measure of distance between the distribution of convective features 
within our model and a reference distribution (Fig. 1).

The KL divergence is always non-negative and becomes zero only when two distributions 
match. For any two continuous distributions pA(x) and pB(x) , the KL divergence is defined as 
KL(pA||pB) = EpA(x)[log p

A(x) − log pB(x)] . However, if both distributions are only available in the form of 
samples, the KL divergence is intractable since the probability densities are unavailable.

In theory, the KL divergence between data distributions can be well approximated by using a technique 
called vector quantization27. �is technique involves coarse-graining an empirical distribution into a discrete 
one obtained from clustering, allowing us to work in a tractable discrete space where the KL divergence can be 
computed.

In more detail, we perform a K-means clustering on the union of both data sets. We then de�ne the cluster 
frequencies or cluster proportions as the fraction of the data claimed by each cluster k: πk =

1
N

∑
N

i=1 δ(mi , k) , 
where δ denotes the Kronecker delta. By construction, 

∑
K

k=1
πk = 1 are normalized probabilities.

By increasing the number of clusters (making enough bins), we can quantize continuous distributions into 
discrete ones with increasing con�dence. �e two data distributions pA(x) and pB(x) result in two distinct cluster 
proportions πA and πB for which we can estimate the KL as

�e inequality comes from the fact that any such discrete KL estimate lower-bounds the true KL divergence66.
Vector quantization su�ers from the curse of dimensionality. To mitigate this issue, we work in the latent 

space of a VAE and cluster the latent representations of the data instead (i.e., we replace x by z in Eq. (4)). Our 
VAE’s latent space still has su�ciently high dimensionality (typically 1000) to allow for a reliable KL assessment. 
In the Supplementary Information provided, we investigate the required cluster size to get convergent results 
and �nd that K = 50 gives reasonable results (Fig. 7).

Computing pairwise GSRM distances
To quantify the similarities and dissimilarities among the data produced by di�erent GSRMs (and hence measures 
of distance between models), we employ the vector quantization approach to compute KL divergences. Since the 
KL divergence is not symmetric, we explicitly symmetrize it as KL(q||p) + KL(p||q) (termed Je�reys divergence). 
Since we adopt vector quantization in the latent space, this amounts to training nine di�erent VAEs, one for each 
GSRM. Brie�y, to compare Models A and B, we (1) save the K-means cluster centers from the latent vector of the 
VAE trained on Model A, (2) feed both models’ outputs into Model A’s encoder as test data, (3) obtain discrete 
distributions of cluster proportions for Model A and Model B, and (4) compute symmetrized KL divergences 
based on the discrete distributions using the right-hand side of Eq. (4).

(4)KL
(

pA(x)||pB(x)
)

≥ KL
(

πA||πB
)

=

K
∑

k=1

πA
k log

πA
k

πB
k

.

Figure 7.   Approximating the KL divergence using vector quantization (VQ) based on K-means clustering, 
using a variable number of clusters. As discussed in the main paper, VQ lower-bounds the KL and becomes 
asymptotically exact for large K. We considered the distributional divergence between ICON and the eight other 
GSRMs. Empirically, the KL approximation seems to saturate at K = 50.
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Robustness of results
Our unsupervised framework utilizes K-means clustering as part of the vector quantization process. However, 
the choice of the number of clusters (K) introduces variability in the results. To assess the generalizability of the 
results, we calculate symmetrized KL divergence between models from three di�erent approaches: VAE, PCA, 
and pixel space (Pure K-means clustering on the full vertical velocity �eld) analysis. �ese tests involve compar-
ing models generated from K = 2 to K = 50 , with 15 unique trials conducted at each K.

To evaluate the variation in results for each K, we �atten the table of symmetrized KL divergences at a given 
K and calculate its Pearson correlation coe�cient67 with the table of KL divergences at K + 1 . �is process yields 
15 unique Pearson correlation coe�cients, which are then averaged. �e summarized outcomes are presented 
in Fig. 8.

�e analysis reveals that the VAE approach exhibits the highest level of robustness for an approximation of 
the true KL Divergence, showing a rapid convergence towards a correlation coe�cient of nearly 1 as K increases. 
�is suggests that, regardless of the selected K (when K > 20 ) value, the results remain consistent. Empirically 
we see this for the VAE approach in Fig. 8, where panels d, e, f show consistency in GRSM similarity but there are 
slight di�erences (particularly in ARPAGE) at lower K counts prior to convergence (a,b,c). In sharp contrast, the 
other approaches exhibit lower correlation coe�cients and do not converge even at greater K counts (as shown 
in Fig. 8). Taken as a whole, these results suggest that for robustness of the measurement of model distance, a 
higher value of K is most appropriate.

However, it is important to note that we do not care solely about the approximation of the KL divergence when 
we consider the cluster count. We also desire for interpretability for our cluster’s and for purposes of visualization 
we want each cluster to correspond to a unique regime of convection. �erefor, we still show results for lower 
values of K, in particular K = 3.

Data availability
Instructions for acquiring DYAMOND simulation data used to train our models can be found here. Compressed 
data used for main text and SI �gures is publically available at 10.​5281/​zenodo.​80240​93.

Figure 8.   Comparing the robustness of our VAE-based approach with two baseline methods (clustering in PCA 
space and in pixel space), we assess symmetrized KL divergences across DYAMOND models. Across physically 
interpretable ( K = 3 ), approximately converged ( K = 50 ), and intermediate K values, only the VAE-based 
approach shows consistent performance. In the bottom plot, examining K from 2 to 50, our VAE approach 
exhibits increasing correlation coe�cients close to one between symmetrized KL divergences at adjacent indices 
(K and K + 1 ), indicating robustness to clustering hyper-parameter variations. (We consider 15 di�erent trials 
at each K and report the mean correlation coe�cient.) �is trend is not observed in the baseline approaches, 
where correlation coe�cients are signi�cantly less than one and do not trend upwards towards convergence as K 
approaches 50.

https://www.esiwace.eu/services/dyamond-initiative
https://zenodo.org/record/8024093
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Code availability
Training and postprocessing scripts, as well as saved model weights and python environments, are available on 
GitHub at 10.​5281/​zenodo.​80240​76. �e geographic visualizations in Figs. 4, 6, S11,  and S13 were rendered in 
Python68 version 3.7.3 using cartopy69 version 0.17.0 and matplotlib version 3.0.3.70.

Received: 29 June 2023; Accepted: 8 December 2023

References
	 1.	 Brient, F. & Bony, S. Interpretation of the positive low-cloud feedback predicted by a climate model under global warming. Clim. 

Dyn. 40, 05. https://​doi.​org/​10.​1007/​s00382-​011-​1279-7 (2012).
	 2.	 Blossey, P. N. et al. Cgils phase 2 les intercomparison of response of subtropical marine low cloud regimes to co2 quadrupling and 

a CMIP3 composite forcing change. J. Adv. Model. Earth Syst. 8(4), 1714–1726. https://​doi.​org/​10.​1002/​2016M​S0007​65 (2016).
	 3.	 Schneider, T. et al. Climate goals and computing the future of clouds. Nat. Clim. Change 7(1), 3–5. https://​doi.​org/​10.​1038/​nclim​

ate31​90 (2017).
	 4.	 Stevens, B. et al. Dyamond: �e dynamics of the atmospheric general circulation modeled on non-hydrostatic domains. Prog. 

Earth Planet Sci. 6(1), 61. https://​doi.​org/​10.​1186/​s40645-​019-​0304-z (2019).
	 5.	 Randall, D., Khairoutdinov, M., Arakawa, A. & Grabowski, W. Breaking the cloud parameterization deadlock. Bull. Am. Meteorol. 

Soc. 84(11), 1547–1564. https://​doi.​org/​10.​1175/​BAMS-​84-​11-​1547 (2003).
	 6.	 Christensen, H. M., Moroz, I. M. & Palmer, T. N. Simulating weather regimes: Impact of stochastic and perturbed parameter 

schemes in a simple atmospheric model. Clim. Dyn. 44(7), 2195–2214. https://​doi.​org/​10.​1007/​s00382-​014-​2239-9 (2015).
	 7.	 Daleu, C. L. et al. Intercomparison of methods of coupling between convection and large-scale circulation: 1 comparison over 

uniform surface conditions. J. Adv. Model. Earth Syst. 7(4), 1576–1601. https://​doi.​org/​10.​1002/​2015M​S0004​68 (2015).
	 8.	 Li, Z. et al. Long-term impacts of aerosols on the vertical development of clouds and precipitation. Nat. Geosci. 4(12), 888–894. 

https://​doi.​org/​10.​1038/​ngeo1​313 (2011).
	 9.	 Li, G. & Xie, S.-P. Origins of tropical-wide sst biases in cmip multi-model ensembles. Geophys. Res. Lett. 39, 22. https://​doi.​org/​

10.​1029/​2012G​L0537​77 (2012).
	10.	 Kooperman, G. J., Pritchard, M. S., Burt, M. A., Branson, M. D. & Randall, D. A. Impacts of cloud superparameterization on 

projected daily rainfall intensity climate changes in multiple versions of the community earth system model. J. Adv. Model. Earth 
Syst. 8(4), 1727–1750 (2016).

	11.	 Judt, F. Insights into atmospheric predictability through global convection-permitting model simulations. J. Atmos. Sci. 75(5), 
1477–1497. https://​doi.​org/​10.​1175/​JAS-D-​17-​0343.1 (2018).

	12.	 Bretherton, C. S. & Khairoutdinov, M. F. Convective self-aggregation feedbacks in near-global cloud-resolving simulations of an 
aquaplanet. J. Adv. Model. Earth Syst. 7(4), 1765–1787. https://​doi.​org/​10.​1002/​2015M​S0004​99 (2015).

	13.	 Mapes, B., Tulich, S., Nasuno, T. & Satoh, M. Predictability aspects of global aqua-planet simulations with explicit convection. J. 
Meteorol. Soc. Jpn. Ser. II II(86), 175–185. https://​doi.​org/​10.​2151/​jmsj.​86A.​175 (2008).

	14.	 Blumenthal, M. B. Predictability of a coupled ocean-atmosphere model. J. Clim. 4(8), 766–784. https://​doi.​org/​10.​1175/​1520-​
0442(1991)​004<​0766:​POACO​M>2.​0.​CO (1991).

	15.	 Yan Xue, M. A., Cane, S. E. Z. & Blumenthal, M. B. On the prediction of enso: A study with a low-order markov model. Tellus A 
Dyn. Meteorol. Oceanogr. 46(4), 512–528. https://​doi.​org/​10.​3402/​tellu​sa.​v46i4.​15641 (1994).

	16.	 Wilks, D. S. Statistical Methods in the Atmospheric Sciences (Elsevier, 2006).
	17.	 Palmer, T. N. A personal perspective on modelling the climate system. Proc. Math. Phys. Eng. Sci. 472(2188), 20150772. https://​

doi.​org/​10.​1098/​rspa.​2015.​0772 (2016).
	18.	 Marat, K. & David, R. Cloud resolving modeling of the arm summer 1997 iop: Model formulation, results, uncertainties, and 

sensitivities. J. Atmos. Sci. 60, 607–625. https://​doi.​org/​10.​1175/​1520-​0469(2003)​060<​0607:​CRMOT​A>2.​0.​CO;2 (2003).
	19.	 Khairoutdinov, M. F. & Kogan, Y. L. A large eddy simulation model with explicit microphysics: Validation against aircra� observa-

tions of a stratocumulus-topped boundary layer. J. Atmos. Sci. 56(13), 2115–2131. https://​doi.​org/​10.​1175/​1520-​0469(1999)​056<​
2115:​ALESM​W>2.​0.​CO;2 (1999).

	20.	 Khairoutdinov, M., Randall, D. & DeMott, C. Simulations of the atmospheric general circulation using a cloud-resolving model 
as a superparameterization of physical processes. J. Atmos. Sci. 62(7), 2136–2154. https://​doi.​org/​10.​1175/​JAS34​53.1 (2005).

	21.	 Kingma, D. P. & Welling, M. Auto-encoding variational bayes. arXiv:​abs/​1312.​6114 [CoRR] (2014).
	22.	 Alemi, A. A., Poole, B., Fischer, I. S., Dillon, J. V., Saurous. R. A., & Murphy, K. Fixing a broken elbo. In ICML (2018).
	23.	 Tulich, S. N., Randall, D. A. & Mapes, B. E. Vertical-mode and cloud decomposition of large-scale convectively coupled gravity 

waves in a two-dimensional cloud-resolving model. J. Atmos. Sci. 64(4), 1210–1229. https://​doi.​org/​10.​1175/​JAS38​84.1 (2007).
	24.	 Johnson, R. H., Rickenbach, T. M., Rutledge, S. A., Ciesielski, P. E. & Schubert, W. H. Trimodal characteristics of tropical convec-

tion. J. Clim. 12(8), 2397–2418. https://​doi.​org/​10.​1175/​1520-​0442(1999)​012<​2397:​TCOTC​>2.​0.​CO;2 (1999).
	25.	 Rabanser, S., Günnemann, S., & Lipton, Z. Failing loudly: An empirical study of methods for detecting dataset shi�. In Advances 

in Neural Information Processing Systems (Wallach, H., Larochelle, H., Beygelzimer, A., d’ Alché-Buc, F., Fox, E.  & Garnett, R. edi-
tors, ), Vol. 32 (Curran Associates, Inc., 2019). https://​proce​edings.​neuri​ps.​cc/​paper/​2019/​�le/​846c2​60d71​5e5b8​54�a​d5f70​a516c​
88-​Paper.​pdf.

	26.	 Schonlau, M. �e clustergram: A graph for visualizing hierarchical and nonhierarchical cluster analyses. Stand. Genom. Sci. 2(4), 
391–402. https://​doi.​org/​10.​1177/​15368​67X02​00200​405 (2002).

	27.	 Gray, R. Vector quantization. IEEE Assp Mag. 1(2), 4–29 (1984).
	28.	 Yibo, Y., Stephan, M., & Lucas, T. An introduction to neural data compression. arxiv:​2202.​06533. (2022)
	29.	 Knutti, R., Masson, D. & Gettelman, A. Climate model genealogy: Generation cmip5 and how we got there. Geophys. Res. Lett. 

40(6), 1194–1199. https://​doi.​org/​10.​1002/​grl.​50256 (2013).
	30.	 Allan, R. P. et al. Physically consistent responses of the global atmospheric hydrological cycle in models and observations. Surv. 

Geophys. 35(3), 533–552. https://​doi.​org/​10.​1007/​s10712-​012-​9213-z (2014).
	31.	 Neelin, J. D., Chou, C. & Su, H. Tropical drought regions in global warming and el nino teleconnections. Geophys. Res. Lett. 30(24), 

96. https://​doi.​org/​10.​1029/​2003G​L0186​25 (2003).
	32.	 Chia, C. & Neelin, J. D. Mechanisms of global warming impacts on regional tropical precipitation. J. Clim. 17(13), 2688–2701. 

https://​doi.​org/​10.​1175/​1520-​0442(2004)​017<​2688:​MOGWI​O>2.​0.​CO;2 (2004).
	33.	 Parishani, H. et al. Insensitivity of the cloud response to surface warming under radical changes to boundary layer turbulence 

and cloud microphysics: Results from the ultraparameterized cam. J. Adv. Model. Earth Syst. 10(12), 3139–3158. https://​doi.​org/​
10.​1029/​2018M​S0014​09 (2018).

	34.	 Zelinka, M. D., Klein, S. A. & Hartmann, D. L. Computing and partitioning cloud feedbacks using cloud property histograms 
part ii: Attribution to changes in cloud amount, altitude, and optical depth. J. Clim. 25(11), 3736–3754. https://​doi.​org/​10.​1175/​
JCLI-D-​11-​00249.1 (2012).

https://zenodo.org/record/8024076
https://doi.org/10.1007/s00382-011-1279-7
https://doi.org/10.1002/2016MS000765
https://doi.org/10.1038/nclimate3190
https://doi.org/10.1038/nclimate3190
https://doi.org/10.1186/s40645-019-0304-z
https://doi.org/10.1175/BAMS-84-11-1547
https://doi.org/10.1007/s00382-014-2239-9
https://doi.org/10.1002/2015MS000468
https://doi.org/10.1038/ngeo1313
https://doi.org/10.1029/2012GL053777
https://doi.org/10.1029/2012GL053777
https://doi.org/10.1175/JAS-D-17-0343.1
https://doi.org/10.1002/2015MS000499
https://doi.org/10.2151/jmsj.86A.175
https://doi.org/10.1175/1520-0442(1991)004<0766:POACOM>2.0.CO
https://doi.org/10.1175/1520-0442(1991)004<0766:POACOM>2.0.CO
https://doi.org/10.3402/tellusa.v46i4.15641
https://doi.org/10.1098/rspa.2015.0772
https://doi.org/10.1098/rspa.2015.0772
https://doi.org/10.1175/1520-0469(2003)060<0607:CRMOTA>2.0.CO;2
https://doi.org/10.1175/1520-0469(1999)056<2115:ALESMW>2.0.CO;2
https://doi.org/10.1175/1520-0469(1999)056<2115:ALESMW>2.0.CO;2
https://doi.org/10.1175/JAS3453.1
http://arxiv.org/1312.6114
https://doi.org/10.1175/JAS3884.1
https://doi.org/10.1175/1520-0442(1999)012<2397:TCOTC>2.0.CO;2
https://proceedings.neurips.cc/paper/2019/file/846c260d715e5b854ffad5f70a516c88-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/846c260d715e5b854ffad5f70a516c88-Paper.pdf
https://doi.org/10.1177/1536867X0200200405
http://arxiv.org/abs/2202.06533
https://doi.org/10.1002/grl.50256
https://doi.org/10.1007/s10712-012-9213-z
https://doi.org/10.1029/2003GL018625
https://doi.org/10.1175/1520-0442(2004)017<2688:MOGWIO>2.0.CO;2
https://doi.org/10.1029/2018MS001409
https://doi.org/10.1029/2018MS001409
https://doi.org/10.1175/JCLI-D-11-00249.1
https://doi.org/10.1175/JCLI-D-11-00249.1


14

Vol:.(1234567890)

Scientific Reports |        (2023) 13:22365  | https://doi.org/10.1038/s41598-023-49455-w

www.nature.com/scientificreports/

	35.	 Sherwood, S. C. et al. Relative humidity changes in a warmer climate. J. Geophys. Res. Atmos. 115, D9. https://​doi.​org/​10.​1029/​
2009J​D0125​85 (2010).

	36.	 Romps, D. M. An analytical model for tropical relative humidity. J. Clim. 27(19), 7432–7449. https://​doi.​org/​10.​1175/​JCLI-D-​14-​
00255.1 (2014).

	37.	 Lauer, A., Hamilton, K., Wang, Y., Phillips, V. T. J. & Bennartz, R. �e impact of global warming on marine boundary layer clouds 
over the eastern paci�c—a regional model study. J. Clim. 23(21), 5844–5863. https://​doi.​org/​10.​1175/​2010J​CLI36​66.1 (2010).

	38.	 Dror, T., Koren, I., Altaratz, O. & Heiblum, R. H. On the abundance and common properties of continental, organized shallow 
(green) clouds. IEEE Trans. Geosci. Remote Sens. 59(6), 4570–4578. https://​doi.​org/​10.​1109/​TGRS.​2020.​30230​85 (2021).

	39.	 Mapes, B. E. Convective inhibition, subgrid-scale triggering energy, and stratiform instability in a toy tropical wave model. J. 
Atmos. Sci. 57(10), 1515–1535. https://​doi.​org/​10.​1175/​1520-​0469(2000)​057<​1515:​CISST​E>2.​0.​CO;2 (2000).

	40.	 Dror, T., Silverman, V., Altaratz, O., Chekroun, M. D. & Koren, I. Uncovering the large-scale meteorology that drives continental, 
shallow, green cumulus through supervised classi�cation. Geophys. Res. Lett. 49(8), e2021GL096684. https://​doi.​org/​10.​1029/​
2021G​L0966​84 (2022).

	41.	 Brenowitz, N. D., Beucler, T., Pritchard, M. & Bretherton, C. S. Interpreting and stabilizing machine-learning parametrizations of 
convection. J. Atmos. Sci. 77(12), 4357–4375. https://​doi.​org/​10.​1175/​JAS-D-​20-​0082.1 (2020).

	42.	 Dror, T., Chekroun, M. D., Altaratz, O. & Koren, I. Deciphering organization of goes-16 green cumulus through the empirical 
orthogonal function (eof) lens. Atmos. Chem. Phys. 21(16), 12261–12272. https://​doi.​org/​10.​5194/​acp-​21-​12261-​2021 (2021).

	43.	 Zhang, Y. & Klein, S. A. Factors controlling the vertical extent of fair-weather shallow cumulus clouds over land: Investigation of 
diurnal-cycle observations collected at the arm southern great plains site. J. Atmos. Sci. 70(4), 1297–1315. https://​doi.​org/​10.​1175/​
JAS-D-​12-​0131.1 (2013).

	44.	 Ahlgrimm, M. & Forbes, R. �e impact of low clouds on surface shortwave radiation in the ECMWF model. Mon. Weather Rev. 
140(11), 3783–3794. https://​doi.​org/​10.​1175/​MWR-D-​11-​00316.1 (2012).

	45.	 Klocke, D., Brueck, M., Hohenegger, C. & Stevens, B. Rediscovery of the doldrums in storm-resolving simulations over the tropical 
Atlantic. Nat. Geosci. 10(12), 891–896. https://​doi.​org/​10.​1038/​s41561-​017-​0005-4 (2017).

	46.	 Nugent, J. M., Turbeville, S. M., Bretherton, C. S., Blossey, P. N. & Ackerman, T. P. Tropical cirrus in global storm-resolving models: 
1 role of deep convection. Earth Sp. Sci. 9(2), e2021EA001965. https://​doi.​org/​10.​1029/​2021E​A0019​65 (2022).

	47.	 Atlas, R. & Bretherton, C. Aircra� observations of gravity wave activity and turbulence in the tropical tropopause layer: Prevalence, 
in�uence on cirrus and comparison with global-storm resolving models. Atmos. Chem. Phys. Discuss. 1–30, 2022. https://​doi.​org/​
10.​5194/​acp-​2022-​491 (2022).

	48.	 Mangipudi, H., Mooers, G., Pritchard, M., Beucler, T., & Mandt, S. Analyzing high-resolution clouds and convection using multi-
channel vaes (2021).

	49.	 Eyring, V. et al. Overview of the coupled model intercomparison project phase 6 (cmip6) experimental design and organization. 
Geosci. Model Dev. 9(5), 1937–1958. https://​doi.​org/​10.​5194/​gmd-9-​1937-​2016 (2016).

	50.	 Haarsma, R. J. et al. High resolution model intercomparison project (highresmip v1.0) for cmip6. Geosci. Model Dev. 9(11), 
4185–4208. https://​doi.​org/​10.​5194/​gmd-9-​4185-​2016 (2016).

	51.	 Norman, M. R. et al. Unprecedented cloud resolution in a gpu-enabled full-physics atmospheric climate simulation on olcf ’s 
summit supercomputer. Int. J. High Perform. Comput. Appl. 36(1), 93–105. https://​doi.​org/​10.​1177/​10943​42021​10275​39 (2022).

	52.	 Hannah, W. M. et al. Initial results from the super-parameterized e3sm. J. Adv. Model. Earth Syst. 12(1), e2019MS001863. https://​
doi.​org/​10.​1029/​2019M​S0018​63 (2020).

	53.	 David, A. R. Beyond deadlock. Geophys. Res. Lett. 40(22), 5970–5976. https://​doi.​org/​10.​1002/​2013G​L0579​98 (2013).
	54.	 Duras, J., Ziemen, F., & Klocke, D. �e dyamond winter data collection. In EGU General Assembly Conference Abstracts, EGU21-

4687 (2021).
	55.	 Deardor�, J. W. Closure of second-and third-moment rate equations for di�usion in homogeneous turbulence. Phys. Fluids, 21, 

525–530 (1978). https://​api.​seman​ticsc​holar.​org/​Corpu​sID:​12122​3716.
	56.	 Beucler, T. & Cronin, T. A budget for the size of convective self-aggregation. Q. J. R. Meteorol. Soc. 145(720), 947–966. https://​doi.​

org/​10.​1002/​qj.​3468 (2019).
	57.	 Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M. M, Mohamed, S., & Lerchner, A. beta-vae: Learning basic 

visual concepts with a constrained variational framework. In ICLR (2017).
	58.	 Alemi, A., Fischer, I., Dillon, J., & Murphy, K. Deep variational information bottleneck. In ICLR (2017). arXiv:​1612.​00410.
	59.	 Mooers, G., Tuyls, J., Mandt, S., Pritchard, M., & Beucler, T. G. Generative modeling of atmospheric convection. In Proceedings 

of the 10th International Conference on Climate Informatics, CI2020, New York, NY, USA, 98–105 (Association for Computing 
Machinery, 2020). ISBN 9781450388481. https://​doi.​org/​10.​1145/​34293​09.​34293​24.

	60.	 Lloyd, S. Least squares quantization in pcm. IEEE Trans. Inf. �eory 28(2), 129–137. https://​doi.​org/​10.​1109/​TIT.​1982.​10564​89 
(1982).

	61.	 Macqueen, J. Some methods for classi�cation and analysis of multivariate observations. In 5-th Berkeley Symposium on Mathemati-
cal Statistics and Probability, 281–297 (1967).

	62.	 Rousseeuw, P. J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 
53–65. https://​doi.​org/​10.​1016/​0377-​0427(87)​90125-7 (1987).

	63.	 Davies, D. L. & Bouldin, D. W. A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. 1(2), 224–227. https://​doi.​
org/​10.​1109/​TPAMI.​1979.​47669​09 (1979).

	64.	 Denby, L. Discovering the importance of mesoscale cloud organization through unsupervised classi�cation. Geophys. Res. Lett. 
47(1), e2019GL085190. https://​doi.​org/​10.​1029/​2019G​L0851​90 (2020).

	65.	 Kurihana, T., Moyer, E., Willett, R., Gilton, D., & Foster, I. Data-driven cloud clustering via a rotationally invariant autoencoder 
(2021).

	66.	 Duchi, J. Lecture notes for statistics 311/electrical engineering 377. Stanford 2, 23 (2016).
	67.	 Student. Probable error of a correlation coe�cient. Biometrika, 6(2/3):302–310 (1908). http://​www.​jstor.​org/​stable/​23314​74.
	68.	 Van Rossum, G. & Drake, F. L. Python 3 Reference Manual (CreateSpace, 2009).
	69.	 Met O�ce. Cartopy: A cartographic python library with a Matplotlib interface. Exeter, Devon, 2010 (2015). https://​scito​ols.​org.​

uk/​carto​py.
	70.	 Hunter, J. D. Matplotlib: A 2d graphics environment. Comput. Sci. Eng. 9(3), 90–95. https://​doi.​org/​10.​1109/​MCSE.​2007.​55 (2007).

Acknowledgements
�e authors acknowledge funding by the National Science Foundation (NSF) Machine Learning and Physical 
Sciences (MAPS) program and NSF Grant 1633631, the Department of Energy, Office of Science under 
Grant number DE-SC0022331, the O�ce of Advanced Cyberinfrastructure Grant OAC-1835863, Division 
of Atmospheric and Geospace Sciences Grant AGS-1912134, Division of Information and Intelligent Systems 
Grants IIS-2047418, IIS-2003237, IIS-2007719, Division of Social and Economic Sciences Grant SES-1928718, 
and Division of Computer and Network Systems Grant CNS-2003237 for funding support and co-funding by 
the Enabling Aerosol-cloud interactions at GLobal convection-permitting scalES (EAGLES) project (74358), 

https://doi.org/10.1029/2009JD012585
https://doi.org/10.1029/2009JD012585
https://doi.org/10.1175/JCLI-D-14-00255.1
https://doi.org/10.1175/JCLI-D-14-00255.1
https://doi.org/10.1175/2010JCLI3666.1
https://doi.org/10.1109/TGRS.2020.3023085
https://doi.org/10.1175/1520-0469(2000)057<1515:CISSTE>2.0.CO;2
https://doi.org/10.1029/2021GL096684
https://doi.org/10.1029/2021GL096684
https://doi.org/10.1175/JAS-D-20-0082.1
https://doi.org/10.5194/acp-21-12261-2021
https://doi.org/10.1175/JAS-D-12-0131.1
https://doi.org/10.1175/JAS-D-12-0131.1
https://doi.org/10.1175/MWR-D-11-00316.1
https://doi.org/10.1038/s41561-017-0005-4
https://doi.org/10.1029/2021EA001965
https://doi.org/10.5194/acp-2022-491
https://doi.org/10.5194/acp-2022-491
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.5194/gmd-9-4185-2016
https://doi.org/10.1177/10943420211027539
https://doi.org/10.1029/2019MS001863
https://doi.org/10.1029/2019MS001863
https://doi.org/10.1002/2013GL057998
https://api.semanticscholar.org/CorpusID:121223716
https://doi.org/10.1002/qj.3468
https://doi.org/10.1002/qj.3468
http://arxiv.org/abs/1612.00410
https://doi.org/10.1145/3429309.3429324
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1109/TPAMI.1979.4766909
https://doi.org/10.1109/TPAMI.1979.4766909
https://doi.org/10.1029/2019GL085190
http://www.jstor.org/stable/2331474
https://scitools.org.uk/cartopy
https://scitools.org.uk/cartopy
https://doi.org/10.1109/MCSE.2007.55


15

Vol.:(0123456789)

Scientific Reports |        (2023) 13:22365  | https://doi.org/10.1038/s41598-023-49455-w

www.nature.com/scientificreports/

of the U.S. Department of Energy O�ce of Biological and Environmental Research, Earth System Model Devel-
opment program area. �is work was also supported by gi�s from Intel, Disney, and Qualcomm. We further 
acknowledge funding from NSF Science and Technology Center LEAP (Learning the Earth with Arti�cial Intel-
ligence and Physics) award 2019625. Computational resources were provided by the Extreme Science and Engi-
neering Discovery Environment supported by NSF Division of Advanced Cyberinfrastructure Grant number 
ACI-1548562 (charge number TG-ATM190002). DYAMOND data management was provided by the German 
Climate Computing Center (DKRZ) and supported through the projects ESiWACE and ESiWACE2. �e projects 
ESiWACE and ESiWACE2 have received funding from the European Union’s Horizon 2020 research and inno-
vation programme under Grant agreements No 675191 and 823988. �is work used resources of the German 
Climate Computing Centre (DKRZ) granted by its Scienti�c Steering Committee (WLA) under project IDs 
bk1040 and bb1153. We are grateful to Scienti�c Reports Editor Ryan Sriver and our two anonymous editors for 
their constructive feedback. �e authors express their gratitude to Jens Tuyls for helping with the initial model 
repository and also thank Yibo Yang, Veronika Eyring, Gunnar Behrens, Ilan Koren, Tom Dror, Peter Blossey, 
Peter Caldwell, Claire Monteleoni, David Rolnick, Imme Ebert-Upho�, and Maike Sonnewald for helpful con-
versations that advanced this work.

Author contributions
G.M., S.M., M.P., and T.B. designed the research. G.M., M.P., L.P., and T.B. performed numerical simulations. 
G.M., S.M., M.P., T.B., P.G., L.P., P.S., and H.M. wrote the manuscript.

Competing Interests 
�e authors declare no competing interests.

Additional information
Supplementary Information �e online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​023-​49455-w.

Correspondence and requests for materials should be addressed to G.M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional a�liations.

Open Access   �is article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. �e images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© �e Author(s) 2023, corrected publication 2024

https://doi.org/10.1038/s41598-023-49455-w
https://doi.org/10.1038/s41598-023-49455-w
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Comparing storm resolving models and climates via unsupervised machine learning
	Data: storm-resolving models and preprocessing
	Unsupervised model intercomparison
	Latent space inquiry uncovers differences among storm-resolving models
	Cluster characterization
	Qualitative model intercomparison

	Dynamic consistency between high-resolution climate models
	ELBO scores
	Assessing GSRM distances using vector quantization

	VAEs extract planetary patterns of convective responses to global warming
	Changing probabilities of convective modes in response to global warming
	Global warming impacts on rare “Green Cumulus” convection


	Discussion
	Methods
	Simulation data and preprocessing
	Understanding convection via vertical structure
	The horizontal extent of convection
	Variational autoencoders
	K-means clustering
	Vector quantization
	Computing pairwise GSRM distances
	Robustness of results

	References
	Acknowledgements


