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ABSTRACT  

            Measuring and analyzing local field potential (LFP) signals from basolateral amygdala (BLA), hippocampus 
(HPC) and medial prefrontal cortex (mPFC) may help understand how they communicate with each other during fear 
memory formation and extinction. In our research, we have formulated a computationally simple and noise immune 
instantaneous amplitude cross correlation technique which can deduce lead and lag of LFPs generated in BLA, HPC, and 
mPFC and the directionality of brain signals exchanged between regions. LFP signals are recorded using depth 
electrodes in the rat brain and cross correlation analysis is applied to theta wave signals after filtering. We found that rats 
resilient to traumatic conditions (based on post-stress rapid eye movement sleep (REM)) showed a decrease in LFP 
signal correlation in REM and non-REM (NREM) sleep cycles between BLA-HPC regions after shock training and one 
day post shock training compared to vulnerable rats that show stress-induced reductions in REM. It is presumed this 
difference in neural network behavior may be related to REM sleep differences between resilient and vulnerable rats and 
may provide clues to help understand how traumatic conditions are processed by the brain.  

Keywords: functional connectivity of brain regions; posttraumatic stress disorder (PTSD); medial prefrontal cortex; 
hippocampus; basolateral amygdala; local field potential; cross correlation of brain signals; multi-site recording; 
directionality. 
 

1. INTRODUCTION  
        Understanding functional connectivity in the brain may help detect diseases at an early stage, guide the 
development of treatments, and also give medical practitioners deeper understanding of brain diseases such as PTSD, 
epilepsy and schizophrenia [1][2][3]. In this project, we determined electrophysiologically defined sleep and recorded 
LFPs from the BLA, HPC and mPFC, regions important for fear memory and responding to stress, before and after 
shock training in a fear conditioning paradigm. We compared signals in vulnerable rats that show stress-induced 
reductions in REM to those in resilient rats that do not show significant stress-induced reductions in REM. LFP signal 
data were recorded by taking extreme care to minimize external effects on the signals. These recorded signals were 
further filtered and processed for finding directionality of signals, cross correlation signals strength and time delay 
between brain regions. Existing techniques for determining functional connectivity between regions involves 
computationally complex models like Spike Train analysis using multivariate autoregressive model, Granger Causality 
and Time Reversal Granger Causality for LFP signals. However, sampling enough spikes from multiple sites is often 
difficult and recordings can be sensitive to noise [4][5][6]. Some previous studies suggested that LFP signals can be used 
for estimating the directionality of signals and to find lags in multi-site recordings [4]. Using a cross correlation-based 
data analysis algorithm helped to derive the analytical lead-lag values and the strength of cross correlation between the 
signals helped to identify specific differences in resilient and vulnerable rats.  

2. METHODOLOGY  
2.1 Data Acquisition 

The signals were recorded with polyimide insulated wire electrodes attached using a head plug and fine wire cable that 
was routed through a suspended commutator to allow free movements. Data acquisition was at two times: prior to shock 
training (baseline) and after shock training. Continuous LFP signals were recorded with sample rate of 2048 samples per 
second using DataWaveTM Technologies software. For sleep state determination, recorded data were hand-scored by a 
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trained observer using SleepWave software. Neural activity from BLA, HPC and mPFC was recorded simultaneously to 
obtain LFPs signals as shown in Figure 1. 
 

 
Figure 1. Animal recording setup. A schematic of instrumentations for in-vivo neural recording. This includes data an 
acquisition system, a commutator, and a video recording system. 

 
2.2 Subjects  

To perform the experiment, male Wistar rats were obtained from Harlan Laboratories (Frederick, MD) and were kept at 
Eastern Virginia Medical School. All rats were given a unique identifier that was used to keep track across recording 
days and conditions including baseline, shock training and NREM and REM sleep. For example, a data file named 
RAT1BN gives the animal ID: RAT1, experiment day: B-baseline, and sleep state: N-NREM and indicates recordings 
for RAT1 during baseline and within the NREM sleep stage.   

2.3 Surgery 

One to two weeks following arrival, the rats were anesthetized with isoflurane (5% induction; 2-3% maintenance) and 
implanted with skull screw electrodes for recording their EEG and stainless steel wire electrodes were sutured to the 
dorsal neck musculature for recording their electromyogram (EMG). Bipolar electrodes were implanted into the BLA, 
HPC and mPFC. Leads from the recording electrodes were routed to a 9-pin miniature plug that mated to one attached to 
a recording cable. The recording plug was affixed to the skull with dental acrylic and stainless steel anchor screws. 
Ibuprofen (15 mg/kg) was made available in their water supply 24-48 hours prior to surgery and for a minimum of 72 
hours after surgery for relief of post-operative pain. All procedures were conducted in accordance with the National 
Institutes of Health Guide for the Care and Use of Experimental Animals and were approved by Eastern Virginia 
Medical School’s Institutional Animal Care and Use Committee. 

2.4 Behavioral Protocol and Animal Testing Setup 

After implantation of the electrodes, the animals were permitted to recover for at least two weeks before obtaining a 
baseline sleep recording. Sleep stages of REM and NREM for animals were monitored in an animal recording set up as 
shown in Figure 1. For fear conditioning, individual rats were placed in shock chambers (Coulbourn Habitest cages 
equipped with grid floors (Model E10-18RF) housed in Coulbourn Isolation Cubicles (Model H10-23)) and allowed to 
freely explore for 5 min. Over the next 20 min, they were presented with 20 footshocks (0.8 mA, 0.5 s duration) at 1.0 
min intervals. Shock was produced by Coulbourn Precision Regulated Animal Shockers (Model E13-14) and presented 
via the grid floor of the shock chamber. Five min after the last shock, the rats were returned to their home cage for sleep 
recording. The shock chamber was thoroughly cleaned with diluted alcohol (70% EtOH) following each session. 
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ICA is a machine learning algorithm that is used to remove unwanted artifacts from signals. After applying ICA, most of 
the signal artifact gets separated from the mixture of all the signal that has been recorded. ICA for the raw signals was 
implemented using the MATLAB rica function. Figure 2 shows the raw signals before applying ICA and Figure 3 shows 
the signals after applying ICA. 

                                   
Figure 2. 120 second recordings of raw BLA, HPC and mPFC signals during NREM obtained 7 days post shock training in rat, 

WM71.  

                             
Figure 3. 120 second recordings of ICA filtered BLA, HPC and mPFC signals during NREM obtained 7 days post shock training in 

rat, WM71.  

2.5 Independent Component Analysis (ICA) 
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After applying ICA, the brain signal independent of nearby brain regions influence was obtained. To obtain theta 
frequency which ranges from 4.5 Hz to 8 Hz, a band-pass filter was applied. A MATLABTM bandpass function was used 
to apply the filter for this range and sample rate of 2048 was provided to function. Theta frequency signals obtained after 
applying the bandpass filter is been plotted in Figure 4. 

 
Figure 4. 120 second recordings of bandpass filtered BLA, HPC and mPFC BLA, HPC and mPFC signals during NREM obtained 7 

days post shock training in rat, WM71. 

2.7 Hilbert Transform 

Hilbert transform is used to obtain instantaneous amplitude and phase information of neural signals. After applying the 
band-pass filter to obtain theta frequency, the instantaneous amplitude was obtained by applying Hilbert transform. The 
MATLABTM Hilbert function was used for computing the Hilbert transformation (Figure 5). 

 

                                 
Figure 5. 120 seconds recordings of Hilbert transformed BLA, HPC and mPFC BLA, HPC and mPFC signals during NREM obtained 

7 days post shock training in rat, WM71. 

2.6 Bandpass Filter 
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2.8 Cross Correlation Analysis 

After verifying the algorithm with several data sets, we applied the algorithm for the analysis of neural recordings within 
sleep using two min time epochs. Each two-min epoch was divided into several time intervals and was analyzed 
throughout the 120 sec period. This was to find an optimum window where correlation and lead-lag values could be 
obtained accurately. Using this approach, we found that one sec windows provided the optimum results using the 
proposed algorithm. Cross-correlation and lead-lag values in the brain regions for before and after shock training were 
analyzed with the 1 sec time window.  

The value of correlation was normalized to ranges between 0 to 1. If the value is 0 or near to zero, it will indicate that the 
signal was not correlated or loosely correlated. Figure 6 shows examples of highly correlated signals. 

                                 
Figure 6. 120 seconds of cross correlation coefficients and time delay values for BLA, HPC and mPFC within NREM at 7 days post 

shock training in rat, WM71. 

 

3. DISCUSSION AND RESULTS 
We choose to study LFP signals over EEG and fMRI signals as they are more immune to volume conduction and noise 
interference which are major challenges in analyzing functional connectivity of brain regions [7]. A cross-correlation 
based lead and lag method was found suitable for identifying functional connectivity of brain regions during different 
sleep stages in rats. As these recordings were recorded at different times, i.e., before and after shock training, it is likely 
that each recording will have a different noise level in the recorded signal. The cross-correlation based lead and lag 
method is better at noise handling compared to other existing methods like Granger causality and Partial Directed 
Coherence (PDC) as these methods are highly sensitive to noise [5]. Existing methods like Granger Causality and PDC 
are better than the cross-correlation based lead and lag method in calculating directionality, lead and lag time for all 
frequencies and signals in single analysis at a given time while Cross-correlation based lead and lag method would 
calculate time delay for pair of signals at a time and would need more steps for calculations. Noise immunity and 
computation simplicity of cross-correlation based lead and lag method makes it an ideal method for using LFP signals to 
determine functional connectivity of brain LFP signals within sleep states.  

 

Proc. of SPIE Vol. 11590  1159011-5



 

 
 

 

4. CONCLUSION  
Implementation of a cross-correlation based data analysis algorithm was found to be effective to assess neural network 
activities between multiple brain regions. The effects on brain activity due to shock training could be visualized using 
cross-correlation and lead-lag values. In the future, our aim is to achieve higher accuracy and implement real time data 
analysis to examine ongoing neural activity within networks. 
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