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Abstract—Raman spectroscopy is a common identification
and analysis technique used in research and manufacturing
industries. This study investigates the use of Raman
spectroscopy and deep learning techniques for identifying
various nanofabrication chemicals. Four solvents and SU-8
developer were identified inside common chemical storage
and distribution containers. The containers attenuated the
spectra and contributed varying amounts of background
fluorescence, making manual identification difficult. Two
varieties of SU-8 photoresist were differentiated inside
amber glass jars, and cured samples of three ratios
of polydimethylsiloxane (PDMS) were differentiated using
Raman microscopy. The neural network accurately identified
the nanofabrication chemicals 100% of the time, without additional preprocessing. This investigation demonstrates
the use of Raman spectroscopy and neural networks for the identification of nanofabrication chemicals and makes
recommendations for use in other challenging identification applications.

Index Terms— Convolutional neural nets, deep learning, machine learning, nanofabrication, Raman spectroscopy.

I. INTRODUCTION

RAMAN spectroscopy is a nondestructive, contact-free,
chemical identification, and analysis technique often used

in forensics, biology, materials science, pharmaceuticals, and
nanotechnology [1]. Materials can be identified based on
a set of Raman peaks and other spectral features can be
related to the crystallinity, uniformity, temperature, and stress
inside of a material [2]. Pairing Raman spectroscopy with
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optical microscopy allows for the analysis of micrometer-
scale samples and structures, making Raman spectroscopy
a popular technique for analyzing micro-electromechanical
systems (MEMS) and semiconductor devices [2], [3]. Due to
its nondestructive, contact-free nature, it has recently become
a popular method for identifying materials in situ, with
minimal preprocessing. Portable Raman spectrometers have
also been developed to detect pollutants in environmental
samples [4], [5], to remotely detect explosive materials
[6], [7], to monitor SU-8 photoresist exposure [3], to identify
biological materials through the container walls, both in vivo
and in vitro [1], [8], and to authenticate olive oil inside
the original container [9]. Although the portable Raman
systems hold promise as an easy-to-use, quick, and field-
deployable instrument for the evaluation of a variety of
materials, the accuracy achieved by the embedded pattern
recognition software and hardware is not always 100% [10].
If the container or substrate of the substance changes, the
acquired signal could be unidentifiable by a general-purpose
handheld Raman system. It is challenging to customize
the software of a commercial product, work with a large
dataset, and manually identify each material [11], [12],
[13]. For this reason, machine learning techniques are
gaining popularity for automating the spectral identification
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process. Some of the most common algorithms used to identify
materials include random forest, support vector machine,
k-nearest neighbors, multilayer perceptron, fully connected
neural networks, convolutional neural networks (CNNs), and
principal component analysis [12], [14], and most of these
libraries are open-source.

Misidentifying laboratory chemicals and materials can lead
to delays and potentially result in dangerous situations. The
labeling on chemical storage containers can become damaged
over time from exposure to chemicals in the environment.
Mediating this risk is especially important for labs that reuse
chemicals and regularly transfer them to new containers.
Instrument and human error can also lead to mistakes in
procedures, resulting in products that do not perform as
expected or cannot be used for subsequent processes.

This study proposes the use of Raman spectroscopy and
deep learning techniques to identify unknown solvents and
materials in the context of a nanofabrication laboratory. The
entire script used for this study and the user instruction
are made open-source (see Supplementary Materials). The
adoption of this technique would allow labs to quickly verify
their chemicals in the event of a damaged label or a mistake
in processing. Under normal laboratory conditions, identifying
various chemicals and materials using Raman spectroscopy
is trivial. However, through-wall identification requires the
excitation laser and Raman signal to pass through the walls of
the container. The container contributes its own Raman peaks
and fluorescence and significantly attenuates the characteristic
Raman peaks of the chemical. There is also a lack of
documentation using Raman spectroscopy to differentiate
varieties of uncured SU-8 photoresist. SU-8 photoresist is
a photocuring epoxy resin used to make micrometer-scale
structures. The thickness of these structures can be partly
controlled by using different viscosities. The resist can only be
opened under certain lighting and should not be opened outside
of a fume hood. Bottle identification could allow labs to easily
identify viscosities of SU-8 photoresist. Bottle identification
of SU-8 developer would also be beneficial. There is also a
lack of documentation identifying the ratio of elastomer and
curing agent in cured polydimethylsiloxane (PDMS). PDMS is
a flexible and chemically inert silicone rubber that is often used
in microfluidic chip fabrication. The elastic modulus of PDMS
is important for ease of fabrication and the functionality of the
microfluidic device. Once the two parts (elastomer and curing
agent) have been mixed, there are a few nondestructive options
for ensuring that the correct ratio was used. However, there are
subtle shifts in the spectra. Nanofabrication labs could use this
technique to differentiate between similar viscosities of SU-
8 photoresist and to verify the ratio of elastomer and curing
agent used in cured PDMS microfluidic chips.

To demonstrate the capability of our proposed technique,
three experiments were performed. The first experiment identi-
fied four common nanofabrication solvents inside application-
relevant containers. The chemicals include acetone, ethanol,
isopropyl alcohol, and methanol. The solvents were identified
inside amber glass jars, low-density polyethylene (LDPE)
squeeze bottles, and high-density polyethylene (HDPE) jars.
An SU-8 developer also should not be opened outside of a

Fig. 1. Common storage containers: (a)–(c) LDPE squeeze bottles,
(d) HDPE jar, and (e) amber glass jar.

fume hood. The amber glass jars are similar to the glass
containers used for shipping and storage. They are also used
to store light-sensitive materials, such as SU-8 photoresist,
since they block certain wavelengths of light. The LDPE
squeeze bottles are typically used for administering small
amounts of solvent. The HDPE containers are often used for
long-term storage and are typical for storing SU-8 developer.
The second experiment differentiated two varieties of SU-8
photoresist: SU-8 2050 and SU-8 2075. These were identified
inside amber glass jars. The last experiment differentiated
cured samples of PDMS that used three different ratios of
elastomer and curing agent: 8:1, 10:1, and 12:1. Due to
the weak Raman scattering of PDMS, these samples were
measured on gold-coated microscope slides. Surface-enhanced
Raman spectroscopy (SERS), enabled by the gold-coated
slides, improved the performance of the PDMS measurements.
These slides are often used for detecting weak samples and
even single molecules [11]. Due to the SERS effect, the
intensity of the Raman peaks was increased and further
distinguished the spectra from background noise. These slides
also contributed minimal background fluorescence, in contrast
to uncoated glass slides.

The CNN identified all samples with no error. This result is
expected for the solvents in the LDPE squeeze bottles and the
SU-8 photoresist, due to signal strength and the difference
between the spectra. The advantage of the neural network
became especially apparent for the HDPE jars, where even
the main characteristic peaks were difficult to identify in
individual spectra. For the same reason, the neural network
was necessary for differentiating the three ratios of PDMS.

II. METHODS

A. Raman Measurements
Raman measurements were performed using a Raman-

HR-TEC-785 Raman spectrometer from StellarNet Inc. The
spectrometer came equipped with a 1200 lines/mm diffraction
grating providing a resolution of 4 cm−1 with a spectral
range of 200–2750 cm−1. The detector was a 2048-pixel
Sony ILX CCD detector, cooled to –15 ◦C by a single-stage
thermoelectric cooler. The detector had a signal-to-noise ratio
of 1000:1. The system was fiber coupled to a Raman probe
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Fig. 2. System layout for container and glass slide measurements: (a) experimental setup for container measurements, (b) system diagram
for container measurements, (c) experimental setup for glass slide measurements, (d) system diagram for glass slide measurements, (e) model
diagram of the neural network, and (f) GUI for data loading and classification.

that had a working distance of 4.5 mm, allowing the beam to
focus inside the containers. The probe was used to perform
measurements of the solvents, SU-8 developer, and SU-8
photoresist. The containers shown in Fig. 1 were filled with
each solvent. Fig. 1(a)–(c) shows the LDPE squeeze bottles
for methanol, acetone, and isopropyl alcohol, respectively.
Fig. 1(d) shows the HDPE jar and Fig. 1(e) shows the amber
glass jar.

The experimental setup for container measurements is
shown in Fig. 2(a). The system diagram for container
measurements is shown in Fig. 2(b). For amber glass jars and
LDPE squeeze bottles, the laser power and integration time
were set to 330 mW and 15 s, respectively. To account for

signal attenuation, from the HDPE jars, the laser power and
integration time were set to 450 mW and 30 s, respectively.
Fifty measurements were collected at ten locations along the
perimeter of the containers using the Raman probe. This
methodology was repeated for the two viscosities of SU-8
photoresist in amber glass jars and for the SU-8 developer
in HDPE jars. The SU-8 developer came in an HDPE jar
with slightly thinner walls than those used for the solvents.
To account for this, the integration time was reduced to 15 s.
A 2-mm-thick layer of each PDMS ratio (8:1, 10:1, and 12:1)
was poured onto three separate glass microscope slides. The
samples were cured for 24 h and then were transferred to a
microscope slide coated with a 100-nm-thick layer of gold,
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Fig. 3. Averaged and offset corrected Raman spectra of the four solvents in each container: (a) methanol, (b) isopropyl alcohol, (c) ethanol, and
(d) acetone.

purchased from Platypus Technologies. The PDMS samples
were then measured using the Raman probe coupled with
an Olympus CX31 microscope purchased from Stellarnet. A
10× objective was used to focus on the underside of the
PDMS samples, avoiding any air bubbles in the PDMS. The
integration time and the laser power were set to 10 s and
330 mW, respectively. Fifty measurements were collected with
ten random locations on each sample to account for differences
in sample thickness.

B. Neural Network and Spectra Identification
The four-layer CNN, outlined in the work by

Kukula et al. [15], was adapted to accept the dataset
generated in this study. This code allows for pretraining,
testing, and fine-tuning of provided datasets. A diagram of
the network can be seen in Fig. 2(e). It consists of three
consecutive convolutional layers, followed by one pooling
layer, one flattened layer, and a final dense classification
layer. This yields a total network depth of four layers. The

convolutional kernel size was 5 × 5 × 5 and the filter
size was 10 × 25 × 25. The batch size for pretraining and
fine-tuning was 100 and 12, respectively. The number of
epochs for both pretraining and fine-tuning was 30. The
learning rate for both pretraining and fine-tuning was 0.001.

Python was used to individually normalize the data and split
it into arrays, an x-array for data arrays and a y-array for
classification arrays. An array for each category per material
was created. The final x array used in classification was created
by concatenating each category together.

The CNN was first trained on 38 random labeled spectra
of each sample, with a vector output of possibilities across
the solvent types. Fine-tuning and testing were conducted on
six random spectra allowing for calculations of classification
accuracies. These datasets were then combined with the
datasets from the other containers, for each solvent. The final
model dataset for each solvent was composed of 114 spectra
for pretraining, 18 spectra for fine-tuning, and 18 spectra for
testing. The datasets for the other samples were broken down
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similarly: 38 spectra for pretraining, six spectra for fine-tuning,
and six spectra for testing. This model also allows for manual
hyperparameter tuning.

For tracking model accuracy, a confusion matrix was
used. Model efficiency was studied by plotting the model’s
performance in relation to the number of epochs, allowing for
the model to be manually tuned for time efficiency.

The network also produced an exportable model for use on
other devices. A graphical user interface (GUI) was created to
load unknown spectra and display the predicted classification,
as shown in Fig. 2(f). The GUI directly loads the selected
spectra from the spectrometer (referred to as.SSM files),
compares them to the exported model, and then displays the
classification that had the highest similarity to the unknown
spectrum. The code for data preprocessing, the neural network,
and the GUI are shown in the Supplementary Document.

III. RESULTS

The first experiment measured the spectra of the four
solvents inside each of the three types of containers. This
allowed the model to account for the fluorescence and
attenuation caused by the containers. A total of 150 spectra
were collected for each solvent, with 50 spectra per container.
The measurements were broken into ten locations along the
perimeter of the containers, to account for variations in wall
thickness. The spectra were corrected for any initial offset and
then averaged, as shown in Fig. 3(a)–(d). In these figures, the
offset caused by the material of the containers is clearly shown.
The amber glass jars contribute less overall attenuation than
the HDPE jars but obscure the Raman peaks with additional
noise. However, all of the characteristic peaks are present in
these spectra: 798 cm−1 for acetone; 883 cm−1 for ethanol;
820 cm−1 for isopropyl alcohol; and 1035 cm−1 for methanol.

To determine the network’s ability to differentiate varieties
of the same substance, the last experiment measured two
viscosities of SU-8 photoresist and three ratios of PDMS. Both
varieties of SU-8 were tested inside amber glass jars. Fifty
spectra were collected for both viscosities, measured at ten
random locations along the perimeter of the jars. The offset-
corrected and averaged spectra from the two SU-8 viscosities
are shown in Fig. 4. The spectra of SU-8 2050 had greater
intensities than that of SU-8 2075. A number of the strongest
characteristic peaks are shown in both spectra: 900, 1253, and
1816 cm−1.

Cured samples of the three PDMS ratios were measured
on gold-coated glass microscope slides. Fifty spectra were
collected for each ratio at ten random locations on the
samples. The averaged and offset corrected spectra from
each of the mixtures are shown in Fig. 5. All three ratios
show characteristic peaks (472, 607, and 692 cm−1) that are
indistinguishable by eye.

To build a more complete model, the SU-8 developer was
also measured. The developer was tested inside an HDPE
container that had slightly thinner walls than those used for
the solvents. For this reason, an integration time of 15 s was
used. As with the solvents, 50 spectra were collected at ten
random locations along the perimeter of the container. The

Fig. 4. Averaged and offset corrected Raman spectra of SU-8 2050 and
SU-8 2075.

Fig. 5. Averaged and offset corrected Raman spectra of three PDMS
mixtures: 8:1, 10:1, and 12:1.

Fig. 6. Averaged and offset corrected Raman spectra of SU-8 developer
in the HDPE jar.

averaged spectra are shown in Fig. 6. The main characteristic
peaks are at 1466, 821, and 616 cm−1.

Accounting for the accuracy and condition of the gold
slides is important for ensuring that the neural network is
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Fig. 7. Scanning electron microscope surface images of a used gold-
coated microscope slide.

Fig. 8. Scanning electron microscope cross-sectional images of a used
gold-coated microscope slide.

identifying differences in the PDMS and not just differences
in the gold coating. Scanning electron microscopy was used
to characterize the gold-coated microscope slides. The surface
of a used microscope slide is shown in Fig. 7. Damage to
the gold coating, likely caused during cleaning, is indicated
by the dark lines and pits. A cross-sectional image of the
gold coating is shown in Fig. 8. The thickness measurements
shown in the image verify the thickness reported by the
manufacturer.

The neural network was then trained on the dataset. The
spectra were labeled as their respective material, regardless
of the container. The average accuracy was 100%, and the
average runtime was 80.08 s. The performance of the model
versus the number of epochs is shown in Fig. 9. These
data show that fine-tuning accuracy and loss are relatively
unaffected by the number of epochs. However, the pretraining
accuracy and loss are affected. To minimize loss and optimize
accuracy, at least 20 epochs are required for pretraining. The
number of epochs was set to 30 to minimize the pretraining
loss. The learning rate was adopted from the paper by

Fig. 9. Model performance versus number of epochs.

Fig. 10. Normalized confusion matrix showing identification accuracies
for the substances.

Kukula et al. [15] and was not optimized further. The model
was deemed an adequate fit since the accuracy and loss shown
in Fig. 7 do not diverge within the tested number of epochs.
The confusion matrix used to visualize the accuracy of the
testing network is shown in Fig. 10. The y-axis of the figure
shows the true sample, and the x-axis shows the predicted
sample. The number and color on the tiles are determined
by how many times a sample was predicted to be the same
sample or a different sample. The model performed with no
error, so the incorrect tiles are labeled with zeros and the
color associated with zero errors. The same network had
been previously trained using spectra whose characteristic
peaks were significantly less intense. The model had less
accuracy for these data, so the laser power and the integration
time were increased. The performance of the model was
deemed adequate although it is likely that the laser power,
integration time, and a number of epochs could be further
optimized to minimize the acquisition and identification
times.
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IV. DISCUSSION

In this study, nanofabrication chemicals were identified
using Raman spectroscopy and neural networks. Misidentify-
ing laboratory chemicals can be inconvenient and potentially
dangerous. Under optimal conditions, substances can be
identified based on the characteristic Raman peaks. However,
typical storage containers attenuate the Raman spectra making
traditional identification methods unreliable. Neural networks
can overcome this issue by using models that account for a
wide range of conditions.

The first experiment identified four common solvents inside
various containers. This allowed for the development of a
model that can identify these chemicals when many of the
characteristic peaks are significantly attenuated. Averaging the
spectra removed most of the random noise and corrected
for lower intensity spectra, making the characteristic peaks
more distinguishable. The main characteristic peak for each
solvent is present in the spectra from all bottles: 798 cm−1

for acetone, 883 cm−1 for ethanol, 820 cm−1 for isopropyl
alcohol, and 1035 cm−1 for methanol. Other characteristic
peaks are difficult to identify in spectra from amber glass
bottles and are often indistinguishable from background noise
in spectra from HDPE bottles. Increasing the laser power
and integration time would help distinguish the characteristic
peaks, possibly making it feasible to identify the weaker
spectra without a neural network. However, collecting and
averaging 50 spectra without increasing integration time or
changing the location of the container could take as long as
15 min, and the results might not be as reliable. Another
consideration is that the container and sample may be damaged
if the integration time and laser power were increased. The
neural network accurately identified all solvents using only
one spectrum, with the sample measurement and identification
time being completed in under 2 min.

The last experiment differentiated varieties of the same
substances: two viscosities of SU-8 photoresist and samples
of three cured PDMS ratios. Despite having similar levels
of background fluorescence, the characteristic peaks of SU-8
2075 were significantly stronger than the characteristic peaks
of SU-8 2050. The spectra of the two SU-8 viscosities
were differentiated based on overall intensity but contained
the same characteristic peaks. The neural network is not
needed for differentiating these two viscosities but would
be useful for viscosities that have similar intensities and
are otherwise indistinguishable. The spectra of the PDMS

samples had the same characteristic peaks but with slightly
different intensities. Unlike the two SU-8 viscosities, the
PDMS spectra are indistinguishable based on characteristic
peaks. While the characteristic peaks of the PDMS spectra are
easily differentiated from the other chemicals, they are nearly
indistinguishable from each other.
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