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Abstract. We consider a model convection-diffusion problem and
present our recent analysis and numerical results regarding mixed finite
element formulation and discretization in the singular perturbed case
when the convection term dominates the problem. Using the concepts
of optimal norm and saddle point reformulation, we found new error es-
timates for the case of uniform meshes. We compare the standard linear
Galerkin discretization to a saddle point least square discretization that
uses quadratic test functions, and explain the non-physical oscillations
of the discrete solutions. We also relate a known upwinding Petrov-
Galerkin method and the stream-line diffusion discretization method,
by emphasizing the resulting linear systems and by comparing appro-
priate error norms. The results can be extended to the multidimensional
case in order to find efficient approximations for more general singular
perturbed problems including convection dominated models.

1. Introduction

We start with the model of a singularly perturbed convection diffusion
problem: Find u = u(x) on [0, 1] such that

(1.1)

{
−εu′′(x) + u′(x) = f(x), 0 < x < 1

u(0) = 0, u(1) = 0,

in the convection dominated case, i.e., ε� 1. Here, the function f is given
and assumed to be square integrable on [0, 1]. We will use the following
notation:

a0(u, v) =

∫ 1

0
u′(x)v′(x) dx, (f, v) =

∫ 1

0
f(x)v(x) dx, and

b(v, u) = ε a0(u, v) + (u′, v) for all u, v ∈ V := H1
0 (0, 1).

A variational formulation of (1.1) is: Find u ∈ V such that

(1.2) b(v, u) = (f, v), for all v ∈ V.
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The discretization of (1.2), and its multi-dimensional variants arise when
solving practical PDE models such as heat transfer problems in thin do-
mains, as well as when using small step sizes in implicit time discretizations
of parabolic convection diffusion type problems, [30]. The solutions to these
problems are characterized by boundary layers, see e.g., [21, 31, 34]. Approx-
imating such solutions poses numerical challenges due to the ε-dependence of
the solution. The error analysis is also challenging due to the ε-dependence
of the stability constants. The goal of the paper is to investigate finite ele-
ment discretization of a model convection diffusion problem that proved to
be a challenging problem for the last few decades, see e.g., [28, 21, 34, 19].
The focus is on analysis of the variational problem that is written in a mixed
formulation and ledas to new stability and approximation results. To im-
prove the rate of convergence in particular norms, we will use the concept
of optimal norm, see e.g., [3, 4, 17, 19, 21, 23, 22, 26, 28], that provides
ε-independent stability. In addition, we will take advantage of the mixed
reformulations of the variational problem given by the Saddle Point Least
Squares (SPLS) method, as presented in [5, 6, 7, 9]. The ideas, concepts,
and methods we present here, can be extended to the multidimensional case,
leading to new and efficient finite element discretizations for convection dom-
inated problems.

The SPLS approach uses an auxiliary variable that represents the residual
of the original variational formulation on the test space and adds another
simple equation involving the residual variable. The method leads to a
square symmetric saddle point system that is more suitable for analysis and
discretization. The SPLS method was used succesfully for more general
boundary value problems problems, see e.g., [8, 21, 25, 28]. Many of the
aspects regarding SPLS formulation are common to both the DPG approach
[15, 18, 23, 24, 22, 26] and the SPLS approach developed in [5, 6, 7, 9]. In our
work here, the concept of optimal norms will play a key role in providing a
unified error analysis for mixed finite element discretizations of convection-
diffusion problems.

The paper is organized as follows. We review the main ideas of the SPLS
approach in an abstract general setting in Section 2. In Section 3, we present
the SPLS discretization together with some general error approximation
results. We also prove a new approximation result for the Petrov-Galerkin
case when the norms on the continuous and discrete test spaces are different.
Section 4 reviews and connects four known discretization methods that have
C0 − P 1 as a trial space, and are to be analyzed as mixed methods. Using
various numerical test, we illustrate and explain the non-physical oscillation
phenomena for the standard and SPLS discretization. In addition, we show
the strong connection between the upwinding Petrov-Galerkin (PG) and the
stream-line diffusion (SD) methods. Section 5, focuses on the study of the
stability and approximability of the mixed discretizations. Numerical results
are presented in Section 6. We conclude with Section 7.
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2. The notation and the general SPLS approach

In this section we present the main ideas and concepts for the SPLS
method for a general mixed variational formulation. We follow the Saddle
Point Least Squares (SPLS) terminology that was introduced in [5, 6, 7, 9].

2.1. The abstract variational formulation at the continuous level.
We consider an abstract mixed or Petrov-Galerkin formulation that gener-
alizes the formulation (1.2): Find u ∈ Q such that

(2.1) b(v, u) = 〈F, v〉, for all v ∈ V.
where b(·, ·) is a bilinear form, Q and V are possible different separable
Hilbert spaces and F is a continuous linear functional on V . We assume that
the inner products a0(·, ·) and (·, ·)Q induce the norms | · |V = | · | = a0(·, ·)1/2

and ‖ · ‖Q = ‖ · ‖ = (·, ·)1/2Q . We denote the dual of V by V ∗ and the dual

pairing on V ∗ × V by 〈·, ·〉. We assume that b(·, ·) is a continuous bilinear
form on V ×Q satisfying the sup− sup condition

(2.2) sup
u∈Q

sup
v∈V

b(v, u)

|v| ‖u‖
= M <∞,

and the inf − sup condition

(2.3) inf
u∈Q

sup
v∈V

b(v, u)

|v| ‖u‖
= m > 0.

With the form b, we associate the operators B : V → Q defined by

(Bv, q)Q = b(v, q) for all v ∈ V, q ∈ Q.
We define V0 to be the kernel of B, i.e.,

V0 := Ker(B) = {v ∈ V | Bv = 0}.
Under assumptions (2.2) and (2.3), the operator B is a bounded surjective
operator from V to Q, and V0 is a closed subspace of V . We will also assume
that the data F ∈ V ∗ satisfies the compatibility condition

(2.4) 〈F, v〉 = 0 for all v ∈ V0 = Ker(B).

The following result describes the well posedness of (2.1) and can be used
at the continuous and discrete levels, see e.g. [1, 2, 13, 14].

Proposition 2.1. If the form b(·, ·) satisfies (2.2) and (2.3), and the data
F ∈ V ∗ satisfies the compatibility condition (2.4), then the problem (2.1)
has unique solution that depends continuously on the data F .

It is also known, see e.g., [8, 9, 10, 21] that, under the compatibility con-
dition (2.4), solving the mixed problem (2.1) reduces to solving a standard
saddle point reformulation: Find (w, u) ∈ V ×Q such that

(2.5)
a0(w, v) + b(v, u) = 〈F, v〉 for all v ∈ V,
b(w, q) = 0 for all q ∈ Q.



4 CONSTANTIN BACUTA, DANIEL HAYES, AND TYLER O’GRADY

In fact, we have that u is the unique solution of (2.1) if and only if (w = 0, u)
solves (2.5), and the result remains valid if the form a0(·, ·) in (2.5) is replaced
by any other symmetric bilinear form a(·, ·) on V that leads to an equivalent
norm on V .

3. Saddle point least squares discretization

Let b(·, ·) : V × Q → R be a bilinear form as defined in Section 2. Let
Vh ⊂ V and Mh ⊂ Q be finite dimensional approximation spaces. We
assume the following discrete inf − sup condition holds for the pair of spaces
(Vh,Mh):

(3.1) inf
uh∈Mh

sup
vh∈Vh

b(vh, uh)

|vh| ‖uh‖
= mh > 0.

As in the continuous case, we define

Vh,0 := {vh ∈ Vh | b(vh, qh) = 0, for all qh ∈Mh},

and Fh ∈ V ∗h to be the restriction of F to Vh, i.e., 〈Fh, vh〉 := 〈F, vh〉 for all
vh ∈ Vh. In the case Vh,0 ⊂ V0, the compatibility condition (2.4) implies the
discrete compatibility condition

〈F, vh〉 = 0 for all vh ∈ Vh,0.

Hence, under assumption (3.1), the PG problem of finding uh ∈ Mh such
that

(3.2) b(vh, uh) = 〈F, vh〉, vh ∈ Vh
has a unique solution. In general, we might not have Vh,0 ⊂ V0. Conse-
quently, even though the continuous problem (2.1) is well posed, the discrete
problem (3.2) might not be well-posed. However, if the form b(·, ·) satisfies
(3.1), then the problem of finding (wh, uh) ∈ Vh ×Mh satisfying

(3.3)
a0(wh, vh) + b(vh, uh) = 〈f, vh〉 for all vh ∈ Vh,
b(wh, qh) = 0 for all qh ∈Mh,

does have a unique solution. We call the component uh of the solution
(wh, uh) of (3.3) the saddle point least squares approximation of the solution
u of the original mixed problem (2.1).

The following error estimate for ‖u− uh‖ was proved in [9].

Theorem 3.1. Let b : V ×Q→ R satisfy (2.2) and (2.3) and assume that
F ∈ V ∗ is given and satisfies (2.4). Assume that u is the solution of (2.1)
and Vh ⊂ V , Mh ⊂ Q are chosen such that the discrete inf − sup condition
(3.1) holds. If (wh, uh) is the solution of (3.3), then the following error
estimate holds:

(3.4)
1

M
|wh| ≤ ‖u− uh‖ ≤

M

mh
inf

qh∈Mh

‖u− qh‖.
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Note that the considerations made so far in this section remain valid if
the form a0(·, ·), as an inner product on Vh, is replaced by another inner
product a(·, ·) which gives rise to an equivalent norm on Vh.

For the case Vh,0 = {0}, the compatibility condition (2.4) is trivially
satisfied and there is no need for an SPLS discretization, unless we want to
precondition the discretization (3.2). Thus, (3.2) leads to a square linear
system that is the Petrov-Galerkin discreization of (2.1). In this case, we
might have a different norm ‖ · ‖∗ on Q and a different norm ‖ · ‖∗,h on the
discrete trial space Mh. The approximability Theorem 3.1 can be adapted
in this case to the following version:

Theorem 3.2. Let | · |, ‖ · ‖ = ‖ · ‖∗ and ‖ · ‖∗,h be the norms on V,Q, and
Mh respectively such that they satisfy (2.2), (2.3), and (3.1). Assume that
for some constant c0 we have

(3.5) ‖v‖∗ ≤ c0‖v‖∗,h for all v ∈ Q.

Let u be the solution of (2.1) and let uh be the unique solution of problem
(3.2). Then the following error estimate holds:

(3.6) ‖u− uh‖∗,h ≤ c0
M

mh
inf

ph∈Mh

‖u− ph‖∗,h.

Proof. Let Th : Q→ Q be the operator defined by Thu = uh where b(vh, u) =
b(vh, uh) for all vh ∈ Vh. On Q we consider the norm ‖ · ‖∗,h. By the
uniqueness of the discrete solution to the problem “Find ũh ∈Mh such that

b(vh, ũh) = b(vh, uh), for all vh ∈ Vh,

we have that Thuh = uh, i.e. T 2
h = Th. Using that ‖I − Th‖L = ‖Th‖L ,

where ‖ · ‖L = ‖ · ‖L(Q,Q), see [29, 35], we get

‖u− uh‖∗,h = ‖(I − Th)u‖∗,h = ‖(I − Th)(u− qh)‖∗,h
≤ ‖I − Th‖L ‖u− ph‖∗,h = ‖Th‖L ‖u− ph‖∗,h

where ph is any element of Mh. Thus, we need a bound for ‖Th‖L:

‖Thu‖∗,h ≤
1

mh
inf

vh∈Vh

b(vh, uh)

|vh|
=

1

mh
inf

vh∈Vh

b(vh, u)

|vh|

≤ M

mh
‖u‖∗ ≤

c0M

mh
‖u‖∗,h.

By combining the last two estimates, we have:

(3.7) ‖u− uh‖∗,h ≤ c0
M

mh
‖u− ph‖∗,h

Since ph ∈Mh was arbitrary, we obtain (3.6). �
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4. Discretization with C0 − P 1 trial space for the 1D
Convection reaction problem

In this section, we review standard finite element discretizations of prob-
lem (1.1) and emphasize ways the corresponding linear systems relate. The
concepts presented in this section are focused on uniform mesh discretiza-
tion, but most of the results can be easily extended to non-uniform meshes.

We divide the interval [0, 1] into n equal length subintervals using the
nodes 0 = x0 < x1 < · · · < xn = 1 and denote h := xj−xj−1, j = 1, 2, · · · , n.
For the above uniform distributed notes on [0, 1], we define the corresponding
discrete space Mh as the subspace of Q = H1

0 (0, 1), given by

Mh = {vh ∈ V | vh is linear on each [xj , xj+1]},
i.e.,Mh is the space of all continuous piecewise linear functions with respect
to the given nodes, that are zero at x = 0 and x = 1. We consider the nodal
basis {ϕj}n−1j=1 with the standard defining property ϕi(xj) = δij .

4.1. Standard Linear discretization. We couple the above discrete trial
space with a discrete test space Vh =Mh. Thus, the standard linear discrete
variational formulation of (1.2) is: Find uh ∈Mh such that

(4.1) b(vh, uh) = (f, vh), for all vh ∈ Vh.
We look for uh ∈ Vh with the nodal basis expansion

uh :=
n−1∑
i=1

uiϕi, where ui = uh(xi).

If we consider the test functions vh = ϕj , j = 1, 2, · · · , n − 1 in (4.1), we
obtain the following linear system

(4.2)
( ε
h
S + C

)
U = F,

where U,F ∈ Rn−1 and S,C ∈ R(n−1)×(n−1) with:

U :=


u1
u2
...

un−1

 , F :=


(f, ϕ1)
(f, ϕ2)

...
(f, ϕn−1)

 , and

S :=


2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2

 , C :=
1

2


0 1
−1 0 1

. . .
. . .

. . .

−1 0 1
−1 0

 .
Note that, by letting ε→ 0 in (1.2), we obtain the simplified problem:
Find w ∈ H1

0 (0, 1) such that

(4.3) (w′, v) = (f, v), for all v ∈ V.
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The problem (4.3) has unique solution, if and only if
∫ 1
0 f(x) dx = 0.

The linear finite element discretization of the simplified problem (4.3)

reduces to finding wh :=
∑n−1

i=1 uiϕi, such that

(4.4) C U = F.

It is interesting to note that, even though, in general, (4.3) is not well posed,
for n = 2m+ 1, the system (4.4) decouples into two independent systems:

(4.5)


u2 − u0 = 2(f, ϕ1)

u4 − u2 = 2(f, ϕ3)
...

u2m − u2m−2 = 2(f, ϕ2m−1),

and

(4.6)


u3 − u1 = 2(f, ϕ2)

u5 − u3 = 2(f, ϕ4)
...

u2m+1 − u2m−1 = 2(f, ϕ2m),

where u0 = u2m+1 = 0. In this case, the systems (4.5) and (4.6) have unique
solutions and can be solved, forward and backward respectively, to get

(4.7)

{
u2k = 2

∑k
j=1(f, ϕ2j−1), k = 1, 2, · · · ,m

u2m−2k+1 = −2
∑k

j=1(f, ϕ2m−2j+2), k = 1, 2, · · · ,m

For f = 1 on [0, 1], we have (f, ϕi) = h for all i = 1, 2, · · · , 2m, and

(4.8)

{
u2k = 2kh = x2k, k = 1, 2, · · · ,m
u2m−2k+1 = −2kh = x2m−2k+1 − 1, k = 1, 2, · · · ,m.

Thus, for f = 1, the even components interpolate the solution of the function
x, and the odd components interpolate the function x − 1. The combined
solution leads to a very oscillatory behavior when n→∞. For ε/h ≤ 10−4,
the solution of (4.1), with n = 2m + 1, is very close to the solution of the
simplified system (4.4) and a similar oscillatory behavior is observed, see
Fig.1.

For a the general case f ∈ L2([0, 1]), we consider the reduced problems:
Find w ∈ H1(0, 1) such that

(4.9) w′(x) = f(x) for all x ∈ (0, 1), and w(0) = 0,

with the solution w(x) =
∫ x
0 f(s) ds, and: Find θ ∈ H1(0, 1) such that

(4.10) θ′(x) = f(x) for all x ∈ (0, 1), and θ(1) = 0,

with the solution θ(x) = −
∫ 1
x f(s) ds. Thus, θ(x) = w(x) −

∫ 1
0 f(x) dx.

Then, the even components {u2k} approximate the solution w(x) of the
Initial Value Problem (IVP) (4.9), and the odd components approximate
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θ(x) the solution of the IVP (4.10). See see Fig.1 and Fig.5 for a numerical
validation of the statement. The statement can be justified rigorously as fol-
lows. If we replace in (4.5) the values (f, ϕi) by h f(xi) - the corresponding
trapezoid rule approximation of the integral, the solution of the modified
system coincides with the mid-point approximation method for w the solu-
tion of IVP (4.9), on the even nodes, (h→ 2h). Similarly, the solution of the
modified system (4.6) obtained by replacing (f, ϕi) with h f(xi) coincides
with the mid-point approximation method for θ the solution of IVP (4.10)
on the odd nodes.

Fig.1: f = 1, n = 101, ε = 10−6 Fig.2: f = 1, n = 102, ε = 10−6

Fig.3: f = 1, n = 101, ε = 10−4 Fig.4: f = 1, n = 400, ε = 10−4
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Fig.5:f = cos(7π2 x), n = 101, ε = 10−6 Fig.6:n = 300, ε = 10−4

For the case n = 2m, the system (4.5) is identical, but since u0 = u2m = 0,
the system might not have a solution. In addition, the second system (4.6)
with the last equation removed, is undetermined, and could have infinitely
many solutions. Nevertheless, the discretization (4.1) has unique solution
that is still very oscillatory in this case, see Fig.2.

Numerical tests for the case
∫ 1
0 f(x) dx 6= 0 show that, as ε/h → 1,

the linear finite element solution of (4.1) oscillates between two curves and
approximates well the graph of w on intervals [0, α(h)] with α(h)→ 1 as h
gets closer and closer to ε, see Fig.3, Fig.4, and Fig.6.

The behavior of the standard linear finite element approximation of (4.1)
motivates the use of non-standard discretization approaches, such as the
saddle point least square or Petrov-Galerkin methods.

4.2. SPLS discretization. For improving the stability and approximabil-
ity of the finite element approximation a saddle point least square (SPLS)
method has been used, see e.g., [8, 21, 22]. The SPLS method for solving
(1.2) is: Find (w, u) ∈ V ×Q such that

(4.11)
a0(w, v) + b(v, u) = (f, v) for all v ∈ V,
b(w, q) = 0 for all q ∈ Q,

where V = Q = H1
0 (0, 1), with possible different type of norms, and

b(v, u) = ε a0(u, v) + (u′, v) = ε (u′, v′) + (u′, v).
For the discretization of (4.11), we choose finite element spaces Mh ⊂ Q

and Vh ⊂ V and solve the discrete problem: Find (wh, uh) ∈ Vh ×Mh such
that

(4.12)
a0(wh, vh) + b(vh, uh) = (f, vh) for all vh ∈ Vh,
b(wh, qh) = 0 for all qh ∈Mh.

Similar analysis and numerical results for finite element test and trail
spaces of various degree polynomial were done in [21, 22]. In this section,
we provide some numerical results forMh = C0−P 1 := span{ϕj}n−1j=1 , with

ϕj ’s the standard linear nodal functions and Vh = C0 − P 2 on the given
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uniformly distributed nodes on [0, 1], to show the improvement from the
standard linear discretization. We note that, using the optimal norm on
Mh (see Section 5.3), we have a discrete inf − sup condition satisfied. The
presence of non-physical oscillation is diminished, and the errors are better
for the SPLS discretization, see Table 1 and Table 7.

For
∫ 1
0 f(x) dx = 0 there is no much difference in the solution behaviour

for the two methods. But, for
∫ 1
0 f(x) dx 6= 0, our numerical tests showed an

essential improvement for the SPLS solution. Inside the interval [3h, 1− 3h]
the SPLS solution uh, approximates the shift by a constant of the solution
u of the original problem (1.2), see Fig.7-Fig.10. The oscillations appear
only at the ends of the interval. The behavior can be explained by similar
arguments presented in Section 4.1 as follows: The simplified problem, ob-

tained from (4.11) by letting ε→ 0, is not well posed when
∫ 1
0 f(x) dx 6= 0.

However, the simplified linear system obtained from (4.12) by letting ε→ 0,
i.e.: Find (wh, uh) ∈ Vh ×Mh such that

(4.13)
(w′h, v

′
h) + (u′h, vh) = (f, vh) for all vh ∈ Vh,

(wh, q
′
h) = 0 for all qh ∈Mh,

has unique solution, because a discrete inf − sup condition, using optimal
trial norm, holds (see Section 5.3). Numerical tests for ε ≤ 10−3 show
that the solution of the simplified system (4.13) approximates the function
1
2(w(x) + θ(x)) where w, θ, are defined in Section 4.1. Similar type of oscil-
lations (depending only on h) occur towards the ends of [0, 1]. For example,
for f = 1 and n = 101, the solution of (4.13) is close to x − 1/2, see Fig.7.
For ε/h ≤ 10−4 the solution of (4.12) is close to the solution of (4.13). How-
ever, as 10−4 < ε/h→ 1, the solution of (4.12) is decreasing the size of the
shifting constant and approximates u, rather than 1/2(w(x)+θ(x)). Similar
oscillations are still present, but only outside of the interval [3h, 1−3h]. The
error analysis of Section 5.3 reveals also the SPLS solution behavior based
on the explicit form of the optimal norm that we found.

Fig.7: f = 1, n = 101, ε = 10−6 Fig.8: f = 1, n = 400, ε = 10−4
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Fig.9 f = cos(7π2 x), n = 101, ε = 10−6 Fig.10 f = cos(7π2 x), n = 300, ε = 10−4

4.3. Petrov Galerkin (PG) with bubble enriched test space Vh. We
consider b(v, u) := ε a0(u, v) + (u′, v) for all u, v ∈ V := H1

0 (0, 1). We view
the PG method as a particular case of the SPLS formulation (4.11). The
second equation in (4.11) implies w = 0, and the SPLS problem reduces to:
Find u ∈ Q such that

(4.14) b(v, u) = (f, v) for all v ∈ V,
which is a Petrov-Galerkin method for solving (1.1).

4.3.1. Upwinding Petrov Galerkin discretization. One of the well known
Petrov-Galerkin discretization of the model problem (4.14) with Mh =
span{ϕj}n−1j=1 consists of modifying the test space such that diffusion is cre-
ated from the convection term. This is also known as an upwinding finite
element scheme, see Section 2.2 in [33]. We define the test space Vh by
introducing a bubble function for each interval [xi−1, xi], i = 1, 2, · · · , n:

Bi := 4ϕi−1 ϕi, i = 1, 2, · · · , n,
which is supported in [xi−1, xi]. The discrete test space Vh is

Vh := span{ϕj +Bj −Bj+1}n−1j=1 .

We note that both Mh and Vh have dimension n− 1 and Vh ⊂ C0 − P 2.
In a more general approach the test functions can be defined using up-

winding parameters σi > 0 to get Vh := span{ϕj + σi(Bj −Bj+1)}n−1j=1 .

4.3.2. Variational formulation and matrices. The upwinding Petrov Galerkin
discretization for (1.1) is: Find uh ∈Mh such that

(4.15) b(vh, uh) = (f, vh) for all vh ∈ Vh.
We look for

uh =
n−1∑
j=1

αjϕj ,
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and consider a generic test function

vh =
n−1∑
i=1

βiϕi +
n−1∑
i=1

βi(Bi −Bi+1) =
n−1∑
i=1

βiϕi +
n∑
i=1

(βi − βi−1)Bi,

where, we define β0 = βn = 0. Denoting,

Bh :=

n∑
i=1

(βi − βi−1)Bi, and wh :=

n−1∑
i=1

βiϕi,

we have

vh = wh +Bh.

For a generic bubble function B with support [a, b],

B :=
4

(b− a)2
(x− a)(b− x), x ∈ [a, b], we have

(4.16)

∫ b

a
B(x) dx =

2(b− a)

3
,

∫ b

a
B′ dx = 0,

∫ b

a
(B′)2 dx =

16

3(b− a)
.

Using the above formulas, the fact that u′h, w
′
h are constant on each of the

intervals [xi−1, xi], and that w′h = βi−βi−1

h on [xi−1, xi], we obtain

(u′h, Bh) =

n∑
i=1

∫ xi

xi−1

u′h(βi−βi−1)Bi =

n∑
i=1

u′hw
′
h

∫ xi

xi−1

Bi =
2h

3

n∑
i=1

∫ xi

xi−1

u′hw
′
h.

Thus

(4.17) (u′h, Bh) =
2h

3
(u′h, w

′
h), where vh = wh +Bh.

In addition,

(u′h, B
′
i) = 0 for all i = 1, 2, · · · , n, hence

(4.18) (u′h, B
′
h) = 0, for all uh ∈Mh, vh = wh +Bh ∈ Vh.

From (4.17) and (4.18), for any uh ∈Mh, vh = wh +Bh ∈ Vh we get

(4.19) b(vh, uh) =

(
ε+

2h

3

)
(u′h, w

′
h) + (u′h, wh).

Thus, adding the bubble part to the test space leads to the extra diffusion
term 2h

3 (u′h, w
′
h) with 2h

3 > 0 matching the sign of the coefficient of u′ in
(1.1). It is also interesting to note that only the linear part of vh appears
in the expression of b(vh, uh). The functional vh → (f, vh) can be also
viewed as a functional only of the linear part wh. Indeed, using the splitting
vh = wh +Bh and that Bh :=

∑n
i=1(βi − βi−1)Bi, we get

(f, vh) = (f, wh) + (f,
n∑
i=1

hw′hBi) = (f, wh) + h (f, w′h

n∑
i=1

Bi).
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The variational formulation of the upwinding Petrov-Galerkin method can
be reformulated as follows: Find uh ∈Mh such that, for all wh ∈Mh,

(4.20)

(
ε+

2h

3

)
(u′h, w

′
h) + (u′h, wh) = (f, wh) + h (f, w′h

n∑
i=1

Bi).

The reformulation allows for a new error analysis using an optimal test
norm and facilitates the comparison with the known stream-line diffusion
(SD) method of discretization, as presented in the next section.

For the analysis of the method, using (4.18) and the last formula in (4.16),
we note that for any vh = wh +Bh ∈ Vh we have

(v′h, v
′
h) = (w′h +B′h, w

′
h +B′h) = (w′h, w

′
h) + (B′h, B

′
h) =

= (w′h, w
′
h) +

n∑
i=1

(βi − βi−1)2(B′i, B′i) =

= (w′h, w
′
h) +

16h

3

n∑
i=1

(
βi − βi−1

h

)2

=

= (w′h, w
′
h) +

16

3

n∑
i=1

(∫ xi

xi−1

(w′h)2

)2

= (w′h, w
′
h) +

16

3
(w′h, w

′
h).

Consequently,

(4.21) |vh|2 =
19

3
|wh|2.

Using the reformulation (4.20), the linear system to be solved is

(4.22)

((
ε

h
+

2

3

)
S + C

)
U = FPG,

where U,FPG ∈ Rn−1 with:

U :=


u1
u2
...

un−1

 , FPG :=


(f, ϕ1)
(f, ϕ2)

...
(f, ϕn−1)

+


(f,B1 −B2)
(f,B2 −B3)

...
(f,Bn−1 −Bn)

 ,
and S,C are the matrices defined at the beginning of this section. Numer-
ical tests show that this method does not lead to any kind of non-physical
oscillations. We will provide our analysis of the method as a mixed method
in Section 5.4.

4.4. Stream line diffusion (SD) discretization. Classical ways to intro-
duce the SD method can be found in e.g., [16, 27]. For our model problem,
we relate and compare the method with the upwinding PG method. We take
Mh = Vh = span{ϕj}n−1j=1 and consider the stream line diffusion method for

solving (1.1): Find uh ∈Mh such that

(4.23) bsd(wh, uh) = Fsd(wh) for all wh ∈ Vh,
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where

bsd(wh, uh) := ε (u′h, w
′
h) + (u′h, wh) +

n∑
i=1

δi

∫ xi

xi−1

u′hw
′
h

with δi > 0 weight parameters, and

Fsd(wh) := (f, wh) +

n∑
i=1

δi

∫ xi

xi−1

f(x)w′h dx.

In a more general approach, δi’s are chosen as functions of xi−xi−1. Optimal
choices for δi’s are discussed in e.g., [20, 31]. For the choice

δi =
2h

3
, i = 1, 2, · · · , n,

and arbitrary wh, uh ∈Mh = Vh the bilinear form bsd becomes

bsd(wh, uh) = b(wh, uh) =

(
ε+

2h

3

)
(u′h, w

′
h) + (u′h, wh),

and the corresponding right hand side functional Fsd is

(4.24) Fsd(wh) = (f, wh) +
2h

3
(f, w′h), wh ∈ Vh.

Thus, by choosing the appropriate weights, the upwinding PG and SD dis-
cretization methods lead to the same stiffness matrix. By comparing the
right hand sides of (4.20) and (4.24), we note that the two methods produce
the same system (solution) if and only if

(4.25) (f, w′h

n∑
i=1

Bi) =
2

3
(f, w′h), for all wh ∈ Vh = C0 − P 1.

This is a feasible condition, as∫ 1

0

n∑
i=1

Bi = n
2h

3
=

2

3
.

In fact, the condition (4.25) is satisfied for f = 1. In this case, both sides of
(4.25) are zero. Due to a reformulation as a mixed conforming variational
method, we expect the upwinding PG method to perform better for certain
error norms, see Tables 4, 5, and 6. It is known, [12, 32, 33] that the error
estimate for the SD method is defined using a special SD-norm. In the one
dimensional case with same weights δi = δ, the norm becomes

‖v‖2sd = ε|v|2 + δ|v|2.

For a fair comparison with the PG method, we take δ = 2h
3 . Provided the

continuous solution u of (1.1) satisfies u ∈ H2(0, 1), for the SD discrete
solution uh of (4.23), we have

(4.26) ‖u− uh‖sd ≤ csd h3/2‖u′′‖.
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For the comparison of the implementation of the two methods, we can
also compare the load vector FPG defined above to the load vector for the
SD method:

FSD :=


(f, ϕ1)
(f, ϕ2)

...
(f, ϕn−1)

+
2h

3


(f, ϕ′1)
(f, ϕ′2)

...
(f, ϕ′n)

 .
5. Stability of mixed discretization for the 1D Convection

reaction problem

We consider the discretization of (4.2) with V = Q = H1
0 (0, 1). The

inner product on V is given by a0(u, v) = (u, v)V = (u′, v′). On Q and
Mh = span{ϕj , j = 1, 2, · · · , n}, we will consider optimal norms that ensure
continuous and discrete stability.

5.1. Optimal trial norms. First, we define the anti-symmetric operator
T : Q→ Q by

a0(Tu, q) = (u′, q), for all q ∈ Q.
By solving the corresponding differential equation, one can find that

(5.1) Tu = xu−
∫ x

0
u(s) ds,

and

(5.2) |Tu|2 =

∫ 1

0
|u(s)− u|2 ds = ‖u− u‖2 = ‖u‖2 − u2,

where u =
∫ 1
0 u(s) ds. The optimal trial norm on Q is defined by

‖u‖∗ := sup
v∈V

b(v, u)

|v|
= sup

v∈V

εa0(u, v) + a0(Tu, v)

|v|
.

Using the Riesz representation theorem and the fact that a0(Tu, u) = 0, we
obtain that the optimal trial norm on Q is given by

(5.3) ‖u‖2∗ = ε2|u|2 + |Tu|2 = ε2|u|2 + ‖u‖2 − u2.
The advantage of using the optimal trial norm on Q resides in the fact that
both inf − sup and sup− sup constants at the continuous level are one.

For the purpose of obtaining a discrete optimal norm on Mh, we let
Ph : Q→ Vh be the standard elliptic projection defined by

a0(Ph u, vh) = a0(u, vh), for all vh ∈ Vh,
where the discrete test space Vh could be different from Mh. The optimal
trial norm on Mh is

(5.4) ‖uh‖∗,h := sup
vh∈Vh

b(vh, uh)

|vh|
.
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As in the continuous case,

‖uh‖∗,h := sup
vh∈Vh

εa0(uh, vh) + a0(Tuh, vh)

|vh|
= sup

vh∈Vh

εa0(uh, vh) + a0(Ph Tuh, v)

|vh|
.

Assuming that Mh ⊂ Vh and using

a0(Ph Tuh, uh) = a0(Tuh, uh) = 0,

by the Riesz representation theorem on Vh, we get

(5.5) ‖uh‖2∗,h = ε2|uh|2 + |PhTuh|2 := ε2|uh|2 + |uh|2∗,h.

Note that for the given trial spaces Mh and Q, the above norm is well
defined for any u ∈ Q. Hence, the continuous and discrete optimal trial
norms can be compared on Q.

5.2. Analysis of the standard linear discretization with optimal
trial norm. We let Vh = Mh = span{ϕj}n−1j=1 , with ϕj ’s the standard

linear nodal functions. The optimal trial norm on Mh is given by (5.5).
However, in the one dimensional case, the elliptic projection Ph on the con-
tinuous piecewise linear functions coincides with the interpolant, see e.g.,
[11]. Consequently, using the formula (5.1) for Tu, we obtain that PhTu
can be determined explicitly. We have

Ph(Tu)(xi) = xi

∫ 1

0
u(s) ds−

∫ xi

0
u(s) ds, and

(5.6) |u|2∗,h := |PhTu|2 =
1

h

n∑
i=1

(∫ xi

xi−1

u(x) dx

)2

−
(∫ 1

0
u(x) dx

)2

.

To obtain a precise estimates that relate the norms ‖ · ‖2∗,h and ‖ · ‖2∗, we
define c0 to be the best constant in the following Poincare Inequality

(5.7) ‖w‖ ≤ cp(b− a) |w|, for all w ∈ L2
0(a, b) ∩H1(a, b).

It has been known that the best constant is cp = 1/π, which can be proved by
using the spectral theorem for compact operators on Hilbert spaces for the
inverse of the (1D) Laplace operator with homogeneous Neumann boundary
conditions. A more direct proof for (5.7) can be done with the constant
c = 1/

√
2.

Proposition 5.1. Let ‖u‖∗ and ‖u‖∗,h be the optimal trial norms defined

in Section 5.1 for Vh =Mh = span{ϕj}n−1j=1 . We have

(5.8) ‖u‖2∗,h ≤ ‖u‖2∗ ≤ ‖u‖2∗,h + c2ph
2|u|2 for all u ∈ Q.
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Proof. The left side inequality follows from comparing the formulas for ‖u‖∗
and ‖u‖∗,h, and by using that the norm of the projection operator Ph is one.
For the other inequality, using (5.7) on each subinterval [xi−1, xi] we get

‖u‖2∗ − ‖u‖2∗,h =

∫ 1

0
u2(x) dx− 1

h

n∑
i=1

(∫ xi

xi−1

u(x) dx

)2

=

n∑
i=1

∫ xi

xi−1

(
u− 1

h

∫ xi

xi−1

u(x) dx

)2

dx

≤ c2ph2
n∑
i=1

∫ xi

xi−1

(u′(x))2 dx = c2ph
2|u|2,

which proves the right side inequality. �

From (5.8) it is easy to obtain

(5.9) ‖u‖2∗,h ≤ ‖u‖2∗ ≤
(

1 +
(cp h)2

ε2

)
‖u‖2∗,h for all u ∈ Q.

As a consequence of the approximation Theorem 3.2 and (5.9) we obtain:

Theorem 5.2. If u is the solution of (1.2), and uh the solution of the linear
discretization (4.1), then

‖u− uh‖∗,h ≤ c(h, ε) inf
vh∈Vh

‖u− vh‖∗,h, where

c(h, ε) =

√
1 +

(cp h)2

ε2
≈ cp h

ε
if ε << h.

The estimate can be useful for the case
∫ 1
0 f(x) dx = 0, when the H1 or

H2 norms of the solutions are less dependent on ε, see e.g. [33]. In this case,
we can use that

inf
vh∈Vh

‖u− vh‖∗,h ≤ c(h, ε)‖u− uI‖∗,h,

where uI is the linear interpolant of u on the nodes x0, x1, · · · , xn, and
exploit the approximation properties of the interpolant. In the general case,
the error estimate is weak because ‖u‖2∗,h = ε2|u|2 + |PhTu|2 and |u|∗,h =

|PhTu| can be bounded above by ‖u‖L2 , but |PhTu| is not a norm by itself.
Indeed, using (5.6) and the Cauchy-Schwarz inequality, we have

(5.10) |u|2∗,h ≤
1

n

n∑
i=1

(
1

h

∫ xi

xi−1

u(x) dx

)2

≤
n∑
i=1

∫ xi

xi−1

u2(x) dx = ‖u‖2.
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On the other hand, by rearranging the integrals in (5.6), we obtain

|u|2∗,h =
1

n

n∑
i=1

(
1

h

∫ xi

xi−1

u(x) dx

)2

−

(
1

n

n∑
i=1

1

h

∫ xi

xi−1

u(x) dx

)2

=

∑n
i=1 ui

2

n
−
(∑n

i=1 ui
n

)2

,

where ui := 1
h

∫ xi
xi−1

u(x) dx. This shows that | · |2∗,h is in general a seminorm

and we can have |u|∗,h = 0 if and only if∫ xi

xi−1

u(x) dx =
1

n

∫ 1

0
u(x) dx, for all i = 1, 2, · · · , n.

If u = wh ∈ Mh, the above condition can be satisfied for n = 2m and
wh = c

∑m
i=1 ϕ2i−1, where c is an arbitrary constant. The graph of such wh

is highly oscillatory when h → 0 and |wh|∗,h = 0. For small ε/h, the “zig-
zag” behavior of the standard linear finite element solution uh of (4.1) can
be justified by the fact that the solution vector corresponding to uh is close
to U the solution of CU = F , see (4.2). On the other hand, the coefficient
vector W of wh, satisfies CW = 0. Thus, the solution uh can capture the
oscillatory mode wh or is “insensitive” to perturbation by wh.

5.3. Analysis of the SPLS with quadratic test space Vh. We consider
the model problem (1.2) with the discrete space Mh = span{ϕj}n−1j=1 and

Vh := span{ϕj}n−1j=1 + span{Bj}nj=1, which coincides with the standard C0−
P 2 on the given uniformly distributed nodes on [0, 1]. In this section we use
the definition of the discrete trial norm from Section 5.1. Note that, in this
case, the projection Ph is the projection on the space Vh = C0 − P 2. For
any piecewise linear function uh ∈Mh we have that

Tuh = xuh −
∫ x

0
uh(s) ds,

is a continuous piecewise quadratic function. Consequently, Tuh ∈ Vh, and
Ph Tuh = Tuh. The optimal discrete norm on Mh becomes

‖uh‖2∗,h = ε2|uh|2 + |Tuh|2 = ‖uh‖2∗.
Thus, in this case we can consider the same norm given by

‖u‖2∗ = ε2|u|2 + ‖u− u‖2,

on both spaces Q andMh. As a consequence of the approximation Theorem
3.1, we obtain the following optimal error estimate:

Theorem 5.3. If u is the solution of (1.2), and uh the SPLS solution for
the (P 1 − P 2) discretization, then

‖u− uh‖∗ ≤ inf
ph∈Mh

‖u− ph‖∗ ≤ ‖u− uI‖∗.
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5.4. Analysis of the upwind Petrov Galerkin method. We consider
the model problem (1.2) together with the discrete spaces of Section 4.3.
Thus, we take Mh = span{ϕj}n−1j=1 and Vh := span{ϕj +Bj −Bj+1}n−1j=1 .

Using the formula (4.19) we can find a representation of the discrete
optimal trial norm. We note that b(vh, uh) can be written independently
of the bubble part of vh. This allows us to use the characterization of the
discrete trial norm using arguments presented in Section 5.2. We mention
here that the projection Ph used below is the projection on the C0 − P 1

discrete space and not on the test space Vh.

Theorem 5.4. For the discrete problem with continuous piecewise linear
trial space Mh and bubble enriched test space Vh, the discrete optimal norm
on Mh is given by

‖uh‖2∗,h =
3

19

((
ε+

2h

3

)2

|uh|2 + |PhTuh|2
)

where |PhTuh| = |uh|∗,h is given by the formula (5.6).

Proof. Using the definition of ‖uh‖∗,h along with the work of Section 5.1 we
can reduce the supremum over Vh to a supremum over Mh. Indeed,

‖uh‖∗,h = sup
vh∈Vh

b(vh, uh)

|vh|
= sup

wh∈Mh

b(wh +Bh, uh)

|wh +Bh|

= sup
wh∈Mh

(
ε+ 2h

3

)
(u′h, w

′
h) + (u′h, wh)√

19
3 |wh|

= sup
wh∈Mh

√
3

19

((
ε+ 2h

3

)
u′h, w

′
h

)
+ (Tu′h, w

′
h)

|wh|

= sup
wh∈Mh

√
3

19

((
ε+ 2h

3

)
u′h, w

′
h

)
+ (PhTu

′
h, w

′
h)

|wh|

=

√
3

19

((
ε+

2h

3

)2

|uh|2 + |PhTuh|2
)1/2

�

Proposition 5.5. The following inequality between ‖u‖∗ and ‖u‖∗,h holds
on Q.

(5.11) ‖u‖2∗ ≤
19

3
‖u‖2∗,h.

Proof. By using the formula (5.5) and the right side of the inequality (5.8)
we have

‖u‖2∗ ≤ ε2|u|2 + |PhTu|2 + c2ph
2|u|2 = (ε2 + c2ph

2)|u|2 + |PhTu|2.
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To prove (5.11), we just notice that, for cp = 1/π we have

(ε2 + c2ph
2)|u|2 + |PhTu|2 ≤

19

3
‖u‖2∗,h.

�

The following optimal error estimate result is an immediate consequence
of Proposition 5.5.

Theorem 5.6. If u is the solution of (1.2), and uh the solution of the
upwinding PG formulation, then

‖u− uh‖∗,h ≤
√

19

3
inf

ph∈Mh

‖u− ph‖∗,h.

Consequently,

‖u− uh‖∗,h ≤ εO(h) +O(h2).

Proof. The first estimate is a direct consequence of the approximation
Theorem 3.2 and the Proposition 5.5. For the second estimate, we note that

‖u− uh‖2∗,h ≤
19

3
inf

ph∈Mh

‖u− ph‖2∗,h ≤
19

3
‖u− uI‖2∗,h

≤ (ε+ 2h/3)2|u− uI |2 + |PhT (u− uI)|2

where uI is the linear interpolant of u. Using (5.10), we have that

|PhT (u− uI)|2 ≤ ‖u− uI‖2,

which leads to

‖u− uh‖2∗,h ≤ (ε+ 2h/3)2|u− uI |2 + ‖u− uI‖2.

For u ∈ H2(0, 1), we have ‖u− uI‖L2 = O(h2), and |u− uI | = O(h), and
using (ε+ 2h

3 )2 ≤ 2(ε2 + h2), we obtain

(ε+ 2h/3)2|u− uI |2 + ‖u− uI‖2 ≤ 2
(
ε2|u− uI |2 + h2|u− uI |2

)
+O(h4)

≤ ε2O(h2) +O(h4),

which proves the required estimate. �

As a consequence of the theorem, we have

(ε+ 2h/3) |u− uh|+ |PhT (u− uh)| ≤ εO(h) +O(h2).

We can compare this estimate with the error estimate for the SD method,
(4.26) :

(ε+ 2h/3)1/2 |u− uh| ≤ O(h3/2).

Note that for ε << h the PG estimate for |u − uh| is slightly better than
the SD estimate, and for ε ≈ h, both estimates lead to |u− uh| ≤ O(h). In
addition, the PG estimate provides further information about |PhT (u−uh)|
which, due to (5.10), it is slightly weaker than the L2 norm ‖u− uh‖.
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6. Numerical experiments

We compared numerically the standard linear finite element discretization
with the (P 1−P 2)-SPLS formulation, and the Streamline Diffusion method
with the upwinding Petrov-Galerkin discretization using various norms. For
the data tables, we will use the notation Ej,method where j = 0 represents the
L2 error ||u− uh||, and j = 1 represents the H1 error |u− uh|. For method,
we use the following: L for standard piecewise linear approximation; sp for
the SPLS method; and sd for the Streamline Diffusion method, and pg for
the Petrov-Galerkin method.

6.1. Standard linear versus SPLS discretization. For the first test, we
take f = 1−2x which satisfies the condition f = 0. In this case, we compare
the standard linear finite element method and the SPLS formulation for two
values of ε that are at least 2 orders of magnitude smaller than h at the finest
level. Table 1 contains the errors of the two methods over six refinements
where hi = 2−i−5, for i = 1, 2, 3, 4, 5, 6. We can see that for this problem,
both methods perform well, however at all levels, for both values of ε, SPLS
produces smaller errors.

Level/ε
10−6

E1,L E1.sp E0,L E0.sp

1 0.289 0.144 0.046 0.011
2 0.144 0.072 0.011 0.003
3 0.072 0.036 0.003 0.001
4 0.036 0.018 0.001 1.8e-4
5 0.018 0.009 1.7e-4 4.4e-5
6 0.009 0.005 4.4e-5 1.0e-5

Order 1 1 2 2

Level/ε
10−10

E1,L E1.sp E0,L E0.sp

1 0.289 0.144 0.046 0.011
2 0.144 0.072 0.011 0.003
3 0.072 0.036 0.003 0.001
4 0.036 0.018 0.001 1.8e-4
5 0.018 0.009 1.8e-4 4.5e-5
6 0.009 0.005 4.5e-5 1.1e-5

Order 1 1 2 2

Table 1: L vs. SPLS: f(x) = 1− 2x

For the second test we consider f(x) = 2x and compute the H1 and L2

errors for P 1 − P 2-SPLS method, see Table 2. As this choice of right hand
side does not satisfy the condition that f = 0, we can expect the results to
be less impressive than those of Table 1 (see the end of Section 4.2 and Fig.
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Level/ε
10−6

E1,L Order E0,L Order
1 1.81 0.00 0.526 0.00
2 2.63 -0.54 0.515 0.03
3 3.72 -0.50 0.508 0.02
4 5.26 -0.50 0.504 0.01
5 7.44 -0.50 0.502 0.01
6 10.5 -0.50 0.501 0.00

Level/ε
10−10

E1,L Order E0,L Order
1 1.81 0.00 0.526 0.00
2 2.63 -0.54 0.515 0.03
3 3.72 -0.50 0.508 0.02
4 5.26 -0.50 0.504 0.01
5 7.44 -0.50 0.502 0.01
6 10.5 -0.50 0.501 0.00

Table 2: H1 and L2 errors for SPLS and f(x) = 2x

7-Fig 10). Next, for the same problem, we compute optimal norm errors
for standard linear finite elements and the SPLS discretization, see Table 3.
We note that the magnitude of the errors for the two methods is drastically
different as ε decreases. The SPLS method does a better job at capturing
the general behavior of the true solution than standard linear finite elements.
Figure 6.1 shows the plots of the two discrete approximations on sixth level
of refinement with ε = 10−6. Note that the non-physical oscillations of
the standard linear elements is present, whereas the SPLS approximation
captures the behavior of the true solution, with a shift of the discrete solution
by a constant, invisible for the seminorm part of the optimal discrete norm.
Ways on how to modify the discrete spaces in order to eliminate the constant
shift for the SPLS approach, for f 6= 0, remain to be investigated.

6.2. Streamline Diffussion versus PG, versus SPLS discretization.
For the second test, we take f = 2x and compare Streamline Diffusion and
Petrov-Galerkin. In this case, the exact solution will have a boundary layer
at x = 1 of width |ε log(ε)|. We include two tables for this test where
the error is measured only on a subdomain of [0, 1] excluding 1% of the
nodes near the right boundary. Table 4 compares the errors of the SD
approximation uh,sd with the PG approximation uh,pg in the SD norm ||u−
uh||sd. As we can see in Table 4, the expected order for SD is observed.
Further, the same order is attained by PG, with errors of smaller magnitude.

In Table 4 and Table 5, the SD and PG approximations are compared
in the optimal norm ||u− uh||∗,h for f(x) = 2x. The results are interesting
as not only does the PG approximation have significantly smaller errors,
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Level/ε
10−6

||u− uh,L||∗,h Order ||u− uh.sp||∗,h Order
1 3.52e+01 0.00 4.75e-02 0.00
2 8.81e+00 2.00 3.36e-02 0.50
3 2.21e+00 2.00 2.37e-02 0.50
4 5.75e-01 1.94 1.68e-02 0.50
5 2.02e-01 1.51 1.19e-02 0.50
6 9.97e-02 1.02 8.40e-03 0.50

Level/ε
10−10

||u− uh,L||∗,h Order ||u− uh.sp||∗,h Order
1 3.52e+05 0.00 4.75e-02 0.00
2 8.81e+04 2.00 3.36e-02 0.50
3 2.20e+04 2.00 2.37e-02 0.50
4 5.51e+03 2.00 1.68e-02 0.50
5 1.38e+03 2.00 1.19e-02 0.50
6 3.44e+02 2.00 8.40e-03 0.50

Table 3: L vs. SPLS: f(x) = 2x

Figure 6.1. ε = 10−6. Left: Linear, Right: SPLS

but also it attains higher order of approximation. In this case (ε < h), in
accordance with Theorem 5.6, O(h2) is obtained for the PG method. For
the streamline diffusion approximation, the optimal norm only appears to
achieve order one, see Table 5.

As reflected by the numerical result presented in Table 6, the computa-
tions using a mixed balanced norm

(6.1) ‖u‖2B = (ε+ δ)2|u|2 + ‖u‖2,

where δ = 2h
3 is parameter from the optimal norm, show O(h) order of

approximation for the Streamline Diffusion method, and O(h2) for the up-
winding Petrov Galerkin method.
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Level/ε
10−4

||u− uh,sd||sd Order ||u− uh,pg||sd Order
1 1.56e-02 - 1.54e-02 -
2 2.57e-03 2.60 2.51e-03 2.62
3 5.45e-04 2.24 4.92e-04 2.35
4 1.05e-04 2.37 4.21e-05 3.55
5 3.86e-05 1.45 1.54e-05 1.46
6 1.45e-05 1.41 5.78e-06 1.41

Level/ε
10−8

||u− uh,sd||sd Order ||u− uh,pg||sd Order
1 1.46e-02 - 1.45e-02 -
2 2.16e-03 2.76 2.09e-03 2.79
3 3.98e-04 2.44 3.16e-04 2.72
4 1.01e-04 1.97 4.04e-05 2.97
5 3.60e-05 1.50 1.43e-05 1.50
6 1.27e-05 1.50 5.06e-06 1.50

Table 4: SD vs. PG: f(x) = 2x

Level/ε
10−4

||u− uh,sd||∗,h Order ||u− uh,pg||∗,h Order
1 5.47e-03 0.00 2.32e-03 0.00
2 2.75e-03 0.99 2.68e-04 3.11
3 1.42e-03 0.95 3.71e-05 2.85
4 7.19e-04 0.99 1.61e-06 4.53
5 3.62e-04 0.99 4.27e-07 1.92
6 1.82e-04 0.99 1.21e-07 1.82

Level/ε
10−8

||u− uh,sd||∗,h Order ||u− uh,pg||∗,h Order
1 5.43e-03 0.00 2.17e-03 0.00
2 2.76e-03 0.98 2.21e-04 3.30
3 1.43e-03 0.95 2.30e-05 3.26
4 7.20e-04 0.99 1.48e-06 3.95
5 3.62e-04 0.99 3.71e-07 2.00
6 1.82e-04 0.99 9.29e-08 2.00

Table 5: SD vs. PG:f(x) = 2x

Remark 6.1. In Table 7, for f(x) = 1−2x, we computed the SD norm and
the balanced (B) norm (6.1) with δ = 2h

3 for the P 1−P 2-SPLS discretization.
We checked how the SPLS method compares with the upwinding PG method
using the two neutral norms. Comparing the right part of Table 6 (where∫ 1
0 f(x) dx 6= 0) and Table 7, we can see that the upwinding PG method
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Level/ε
10−4

‖u− uh,sd‖B Order ‖u− uh,pg‖B Order
1 1.12e-02 - 2.33e-03 0.00
2 5.74e-03 0.96 2.69e-04 3.12
3 2.92e-03 0.97 3.71e-05 2.85
4 1.47e-03 0.99 1.73e-06 4.43
5 7.38e-04 0.99 4.55e-07 1.92
6 3.70e-04 1.00 1.27e-07 1.84

Level/ε
10−8

‖u− uh,sd‖B Order ‖u− uh,pg‖B Order
1 1.12e-02 - 2.18e-03 0.00
2 5.74e-03 0.96 2.21e-04 3.30
3 2.93e-03 0.97 2.30e-05 3.26
4 1.47e-03 0.99 1.61e-06 3.83
5 7.38e-04 0.99 4.04e-07 2.00
6 3.70e-04 1.00 1.01e-07 2.00

Table 6: SD vs. PG:f(x) = 2x

performs better producing higher order and smaller errors, independent of
the average of f .

Level/ε
10−6

||u− uh.sp||sd Order ||u− uh.sp||B Order
1 5.10e-02 0.00 2.13e-02 0.00
2 1.80e-02 1.50 5.34e-03 2.00
3 6.38e-03 1.50 1.33e-03 2.00
4 2.26e-03 1.50 3.33e-04 2.00
5 7.97e-04 1.50 8.29e-05 2.01
6 2.82e-04 1.50 2.04e-05 2.02

Level/ε
10−10

||u− uh.sp||sd Order ||u− uh.sp||B Order
1 5.10e-02 0.00 2.13e-02 0.00
2 1.80e-02 1.50 5.34e-03 2.00
3 6.38e-03 1.50 1.33e-03 2.00
4 2.26e-03 1.50 3.34e-04 2.00
5 7.97e-04 1.50 8.34e-05 2.00
6 2.82e-04 1.50 2.09e-05 2.00

Table 7: SPLS error measured in || · ||sd and || · ||B for f(x) = 1− 2x
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7. Conclusion

We analyzed and compared four discretization methods for a model
convection-diffusion problem. A unified error analysis was possible because
of our representation of the optimal norm on the trial spaces for the stan-
dard P 1 − P 1 discretization. Our finite element analysis for the considered
model problem showed that the best method is the upwinding PG method.
When compared with the standard SUPG or the P 1 − P 2-SPLS method,
we observed that the upwinding PG method can provide higher order of
approximation in the optimal norm. In addition, we proved that, due to
reformulation as a mixed conforming method, the upwinding PG method
leads to stability and good approximability results under less regularity as-
sumptions for the solution.

For the (P 1−P 2)-SPLS method, we proved that the seminorm part of the
optimal trial norm becomes a norm which makes the error analysis much
simpler. In spite of the fact that the test space for the PG method is a
subspspace of C0 − P 2 test space for SPLS, the PG performs better. This
phenomena remains to be investigated in a future work.

Most of the ideas presented for the 1D model problem can be used for
introducing and analyzing new and efficient discretizations for the multi-
dimensional cases of convection dominated problems on uniform or non-
uniform meshes. Results on generalizing the upwinding PG and SPLS dis-
cretizations for singularly perturbed problems on two or more dimensions
are to be discussed in a separate publication.
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