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Particle segregation in dense flowing size-disperse granular mixtures is driven by gravity
and shear, but predicting the associated segregation force due to both effects has remained
an unresolved challenge. Here, a model of the combined gravity- and kinematics-induced
segregation force on a single intruder particle is integrated with a model of the con-
centration dependence of the gravity-induced segregation force. The result is a general
model of the net particle segregation force in flowing size-bidisperse granular mixtures.
Using discrete element method simulations for comparison, the model correctly predicts
the segregation force for a variety of mixture concentrations and flow conditions in both
idealized and natural shear flows.

1. Introduction

Particle segregation in flowing granular materials has significant implications for flow
mobility, rheology, and mixing, a fact reflected in the extensive attention given to
this topic in granular flow mechanics, geophysical flows, and chemical engineering pro-
cesses (Ottino & Khakhar 2000; Ottino & Lueptow 2008; Frey & Church 2009; Kamrin
et al. 2024; Cúñez et al. 2024). Recent advances in continuum advection-diffusion-
segregation models allow successful prediction of segregation in canonical granular flow
configurations (Gray 2018; Umbanhowar et al. 2019; Thornton 2021), although this ap-
proach requires building generalized constitutive relations for segregation. Nevertheless,
the basics are straightforward: segregation in dense granular flows is driven by gravity
and shear (Fan & Hill 2011a; Jing et al. 2021; Liu et al. 2023).
Gravity-induced segregation is generated by percolation of small particles through

voids between large particles (Savage & Lun 1988) and buoyancy effects whereby heavier
particles sink relative to lighter particles (Xiao et al. 2016). Shear-induced segregation
can be driven by enhanced percolation due to kinetic sieving (shear opens voids beneath
small particles), a mechanism whose description draws inspiration from the kinetic
theory of dense gases (Jenkins & Mancini 1987; Savage & Lun 1988; Jenkins & Yoon
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2002; Larcher & Jenkins 2015; Berzi et al. 2020), as well as migration of particles
along shear gradients (Fan & Hill 2011a). These mechanisms can cooperate or compete
depending on the forces driving the flow, leading to complex and sometimes seemingly
contradictory phenomena (Guillard et al. 2016; Jing et al. 2021). For example, while large
particles typically rise to the top of gravity-driven free-surface granular flows (Staron
& Phillips 2014), there are also conditions where large particles instead sink to the
bottom of the flow (Thomas 2000; Félix & Thomas 2004) or migrate to high shear rate
regions (Fan & Hill 2011a). There can be a benefit to these effects: size segregation and
density segregation can be used strategically to offset one another to avoid segregation
altogether (Alonso et al. 1991; Duan et al. 2021, 2023). Although these strategies
and observations have advanced our knowledge, much remains to be understood about
segregation in granular flows, particularly with regard to the driving forces at the particle
scale.
Recent detailed characterization of the driving and resisting forces of segregation on

individual particles or collections of particles in granular flows has informed an emerging
bottom-up framework for segregation flux modeling (Tripathi et al. 2021; Rousseau et al.
2021; Duan et al. 2022; Sahu et al. 2023; Yennemadi & Khakhar 2023). The essential
idea is to first ascertain the segregation driving force, Fseg, and the resistive drag force,
Fdrag, at the particle level (Guillard et al. 2016; van der Vaart et al. 2018; Jing et al. 2020,
2021, 2022; Liu & Müller 2021), and then derive the stress gradients between particle
species at the continuum level based on homogenization (Rousseau et al. 2021; Duan
et al. 2022). This approach can form the basis for further derivations of the segregation
flux in a mixture theory framework (Gray & Thornton 2005; Rousseau et al. 2021). In this
process, the key step is determining the functional forms of Fseg and Fdrag, as discussed
extensively in recent literature. Briefly, at the single intruder limit, Fseg consists of a
gravity-induced, buoyancy-like term and a shear-gradient-induced term (Guillard et al.
2016; van der Vaart et al. 2018; Jing et al. 2021; Liu & Müller 2021), whereas Fdrag

can be characterized by a Stokes-like drag (Tripathi & Khakhar 2011; Jing et al. 2022).
However, a complete description of how Fseg and Fdrag depend on particle concentration
remains to be developed (Bancroft & Johnson 2021; Duan et al. 2022). Here we focus
on Fseg and its dependence on particle concentration in flows where both buoyancy and
shear-gradient effects may be present.

The segregation force is defined as the net force on a particle in the segregation
direction resulting from interactions with other flowing particles, that, when combined
with other forces acting on the particle (such as its weight), drives segregation (Guillard
et al. 2016; Jing et al. 2021). Despite its simple definition, measuring Fseg directly is
challenging in physical experiments due to the small magnitude of Fseg relative to the
force fluctuations in rapidly flowing granular materials. Alternatively, although discrete
element method (DEM) or other particle dynamics simulation methods can provide
detailed force information on any particle in a granular mixture, direct calculation of
the net contact force on freely segregating particles fails to accurately characterize Fseg

because a quasi-equilibrium state often occurs in which the measured net contact force
(i.e., a combination of segregation and drag forces) is balanced by the particle weight.
Furthermore, it is difficult to differentiate between segregation forces and drag forces
at the particle level. For example, Staron (2018) examines two-dimensional simulations
with both single free intruders and bidisperse granular mixtures. In both cases, the “lift
force” acting on the larger grains is not measurable because the mean vertical force
exerted on the larger grains exactly balances their weight and is the sum of both the
segregation force and the drag force, which cannot be split a priori. Similarly, Tunuguntla
et al. (2016) computed the species-specific contact stresses for bidisperse mixtures in
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inclined chute flow and found that the gradient of the species-specific contact stress
is effectively balanced by the gravitational force such that no measurable momentum
exchange between the two species can be found for a freely-segregating mixture.
To solve this problem, a “virtual force meter” was proposed by Guillard et al. (2016)

and rapidly adapted to a variety of flows (Guillard et al. 2016; van der Vaart et al. 2018;
Jing et al. 2020, 2021; Liu & Müller 2021). This approach uses DEM simulations to
consider the single intruder limit (i.e., where the volume concentration of species i in
a bidisperse granular mixture approaches zero, ci → 0) in a “bed” of flowing particles,
which are typically smaller than the intruder. The single spherical intruder particle is
attached to a virtual spring that acts only in the segregation direction, typically the z-
direction, which is perpendicular to the flow in the x-direction. The spring constrains the
intruder to remain at an average equilibrium z-position, but does not restrict its other
degrees of freedom. Most importantly, the mean spring extension provides the spring
force from which the segregation force Fseg for a given set of simulation conditions can
be found after accounting for the particle weight (or other forces).
Using the virtual spring approach, we developed a model (Jing et al. 2021) for Fseg

on a single intruder particle of species i, denoted Fi,0 ≡ Fseg

∣∣∣
ci→0

, which has been

validated in various free-surface and wall-confined granular flows at steady state where
the acceleration term is negligible and the flow is assumed incompressible. This single
intruder segregation force model has two terms, one related to gravity and the other
related to flow kinematics:

Fi,0 = −fg(R)
∂p

∂z
Vi + fk(R)

p

γ̇

∂γ̇

∂z
Vi, (1.1)

where superscripts g and k indicate gravity- and kinematics-related mechanisms, re-
spectively, the dimensionless functions fg(R) and fk(R) depend on the intruder-to-bed-
particle size ratio R (expressions are provided later in equation (3.1)), Vi is the intruder
volume, p is the pressure, γ̇ is the local shear rate, and ρ is the density of both the intruder
and the bed particles. Here, “pressure” and vertical “normal stress” are interchangeable
(p ≡ σzz) under the assumptions that granular flows at steady state are incompressible
and the deviatoric stress aligns with the strain rate tensor (Kim & Kamrin 2023). In
dimensionless form, (1.1) can be expressed as:

F̂i,0 = F̂ g
i,0 + F̂ k

i,0, (1.2a)

where the hat diacritic (ˆ) denotes dimensionless forces scaled for reference by particle
weight, mig0, in Earth gravity, g0 = 9.81m/s2. Accordingly, the normalized gravity- and
kinematics-induced segregation forces on a lone intruder particle are

F̂ g
i,0 = −fg(R)

∂p

∂z

1

ρg0
, (1.2b)

F̂ k
i,0 = fk(R)

∂γ̇

∂z

p

γ̇ρg0
. (1.2c)

Note that although here we use g0 for normalization, our models work for arbitrary
values of gravitational acceleration (including g = 0) as shown previously (Jing et al.
2020, 2021). The intruder segregation force model (1.2) is a semi-empirical fit to the
simulation data, with the first term solely associated with gravity and the second term
dependent on the bulk shear rate and its gradient. The shear-rate-gradient term F̂ k

i,0 has a
singularity in the shear rate at γ̇ = 0. This singularity also exists in the viscosity defined
at the continuum level and represented as η = τ/γ̇, where τ is the shear stress (Jing
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et al. 2022). However, when incorporating this segregation force model (1.2) into the
force/momentum balance along with interspecies drag, the singularities are eliminated
as γ̇ → 0, since F̂ k

i,0 and drag dominate, and both scale as 1/γ̇. We have previously
shown (Jing et al. 2021) that if a local rheology is assumed, (1.2a) is equivalent to an
earlier model of similar form in which the shear stress gradient is used instead of the
shear rate gradient (Guillard et al. 2016). Although other intruder segregation force
models exist, including ones related to Saffman lift (van der Vaart et al. 2018), kinetic-
theory (Liu & Müller 2021), and granular temperature gradients (Fan & Hill 2011b;
Hill & Tan 2014), Eq. (1.2) is the only model to be thoroughly validated over a range of
three-dimensional flow configurations including confined wall-driven flows and free surface
gravity-driven flows. While the kinetic theory of granular flow (Jenkins & Mancini 1987)
offers insights into the relationship between the granular temperature and the segregation
force, it is difficult to use as a first-principles approach to modelling the segregation force
in the dense flow regime.

The single intruder limit for the segregation force, Fi,0 = Fseg

∣∣∣
ci→0

, is now relatively

well studied, but Fi = Fseg

∣∣∣
ci∈(0,1)

on a single particle in a mixture of particles with

an arbitrary value of ci between 0 and 1 is much less understood, although linear
and quadratic dependencies of Fi on ci have been previously assumed (Rousseau et al.
2021; Tripathi et al. 2021). To explore the segregation force at finite concentrations, we
extended the virtual spring approach for a single intruder particle (Guillard et al. 2016)
to size-bidisperse mixtures of arbitrary species concentration (Duan et al. 2022) in order
to characterize the dependence of the gravity-induced portion of the segregation force,
F g
i , on ci in a controlled horizontal uniform-shear flow (i.e., ∂γ̇/∂z = 0). An example of

the concentration dependence of F g
i at large-to-small particle size ratio R = dl/ds = 2 is

shown in figure 1 for a DEM simulation of plane shear flow (as described in section 2).
Consistent with previous results (Duan et al. 2022), data points for F̂ g

i = F g
i,0/mig0

approach the single intruder limit, F̂ g
i,0, as ci → 0. For large particles, F̂ g

l,0 > 1 as ci → 0,
indicating that the upward segregation force exceeds the particle weight, resulting in a
tendency for a large particle to rise; for small particles, F̂ g

s,0 < 1 as ci → 0, indicating that
the upward segregation force is less than the particle weight, resulting in a tendency for
a small particle to sink. At ci = 1, F̂ g

i,0 = 1 for both large and small particles, indicating
that the segregation force equals the particle weight such that no segregation occurs as
required for the monodisperse case.
A semi-empirical model (Duan et al. 2022) can be used to express the concentration-

dependent gravity-induced segregation force on particles of species i, F g
i , in terms of the

gravity-induced segregation force on a single intruder particle, F g
i,0, and the small and

large particles concentrations, cs and cl, respectively, such that for a large particle

F̂ g
l = 1 + (F̂ g

l,0 − 1) tanh
(1− F̂ g

s,0

F̂ g
l,0 − 1

cs
cl

)
, (1.3a)

where F̂ g
l,0 and F̂ g

s,0 are the gravity-induced dimensionless segregation forces on a small
or large intruder particle, respectively, and cs + cl = 1. The analogous equation for a
small particle is

F̂ g
s = 1− (F̂ g

l,0 − 1)
cl
cs

tanh
(1− F̂ g

s,0

F̂ g
l,0 − 1

cs
cl

)
. (1.3b)

Equation (1.3) fits the data in figure 1 quite well. The empirically determined (1.3)
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Figure 1. Example of gravity-induced segregation force scaled by particle weight F̂ g
i = F g

i /mig0
vs. species concentration ci for large and small particles with size ratio R = dl/ds = 2 in uniform

shear flow (F̂ k
i = 0) with γ̇ = 100 s−1. Error bars show the standard deviation of depth-averaged

F̂ g
i from DEM simulations (Duan et al. 2022). Solid circles at ci = 0 and curves are predictions

of intruder force model (1.2b) and mixture force model (1.3), respectively.

saturates at the extremes of the domain, as is the case here where F̂ g
i approaches the

single intruder limit as ci → 0 and approaches the monodisperse limit of 1 as ci → 1.
Note that the asymmetry between segregation forces for large and small particles leads to
different expressions for the two species. Furthermore, the two equations in (1.3) depend
only on the segregation force on small and large intruder particles, F̂ g

s,0 and F̂ g
l,0, and the

concentration of small and large particles, cs and cl. No knowledge of the segregation
force for 0 < ci ⩽ 1 is needed. Moreover, the hyperbolic tangent dependence of the
large particle segregation force (1.3a) satisfies the theoretical constraints, namely that
limcl→0 tanh (cs/cl) = 1 and limcl→1 tanh (cs/cl) = 0 such that F̂ g

l = F̂ g
l,0 at cl = 0 and

F̂ g
l = 1 at cl = 1. Likewise for a small particle, (1.3b) satisfies F̂ g

s = F̂ g
s,0 at cs = 0

(since tanh(A) ≈ A for A → 0) and F̂ g
s = 1 at cs = 1. These equations also meet the

requirement that the total segregation force across both species for the entire system
sums to the total particle weight under the assumption of negligible acceleration, which
can be expressed as (Duan et al. 2022)

clF̂
g
l + csF̂

g
s = 1. (1.4)

With the concentration-dependent expression for the gravity-driven segregation force
(1.3) specified, the challenge at this point, and the focus of this paper, is extending the
finite concentration framework to include the single intruder limit kinematics-related
term in (1.2c). To this end, we build upon the models portrayed in (1.2) and (1.3)
to extend this approach to the total segregation force, Fi, on a particle due to both
gravity-induced and kinematics-induced effects for arbitrary concentration size-bidisperse
mixtures. We then validate the predictions of the full model with comparisons to DEM
results from a variety of canonical granular flows. The ultimate goal is a segregation force
model encompassing the full range of flow and particle conditions that can be broadly
applied to a wide variety of situations.

2. Method

An in-house discrete element method DEM code running on CUDA-enabled NVIDIA
GPUs simulates size-bidisperse particle mixtures with species specific volume concen-
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Figure 2. Large (4mm, blue) and small (2mm, red) particles (cl = cs = 0.5) in a generic
shear flow partitioned into 2.5dl high layers (shading). Within each layer, a vertical spring-like
restoring force measurement approach quantifies the average local segregation force across all
particles of a particular species (small or large) in that layer.

tration ci, diameter di, and density ρi = 1g cm−3 (i = l, s for large or small particles,
respectively). Mixtures are sheared in the streamwise (x) direction. Boundary conditions
are periodic in x and y with length L = 35dl and width W = 10dl, respectively. The
height is H = 25dl to 50dl (varied as needed) in the z-direction, which is normal to the
flow direction. Gravity may be aligned with the z-direction, as shown in figure 2, at an
angle θ with respect to z for inclined chute flow, or parallel to the flow aligned with x
for vertical chute flow. In some cases, gravity is set to zero. The standard linear spring-
dashpot model (Cundall & Strack 1979) is used to resolve particle-particle and particle-
wall contacts of spherical particles using a friction coefficient of µ = 0.5, a restitution
coefficient of 0.9, and a binary collision time of 0.15ms. We have confirmed that our
results are relatively insensitive to these values except for very low friction coefficients
(µ ≲ 0.2) (Duan et al. 2020; Jing et al. 2020), where a decreasing friction coefficient
reduces size-induced segregation fluxes (Jing et al. 2017). Here, we focus on cases where
segregation flux is nearly independent of µ for µ ≳ 0.3 (Duan et al. 2020), noting that
friction coefficients reported in the literature for granular flow simulations typically fall
between 0.3 and 0.6 (Girolami et al. 2012). Large (dl = 4mm) and small (ds varied to
adjust the size ratio, R = dl/ds) particle species have a ±10% uniform size distribution
to minimize layering (Staron & Phillips 2014) (increasing the size variation to ±20% does
not alter the results). From 26000 to 150000 particles are included in each simulation
depending on the value of R. The local inertial number ranges from 0 to 0.4 away from
boundaries depending on the flow conditions. While certain flows may exhibit a quasi-
static regime, our modelling approach is intended for application in the inertial regime.
The modified virtual spring approach used to measure Fi in finite concentration

uniform shear flows (Duan et al. 2022) must be further modified for flows with shear
rate gradients since, as (1.2c) indicates, the kinematic term can be depth dependent
through the pressure (depending on g), the shear rate gradient, or both. For the method
used previously to measure Fi (Duan et al. 2022) in uniform shear flow, a spring-like
vertical restoring force proportional to the relative displacement of the vertical centres of
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mass of the two initially mixed species is applied uniformly to all particles of each species
at each simulation time step. From this restoring force, the average value of Fi for each
species is determined based on the average vertical displacement and the applied spring
constant. Not only does this allow the measurement of Fi, but it also simultaneously
suppresses segregation throughout the flow domain, which otherwise would change the
local species concentration.

In the variation of this approach used here for depth varying segregation forces, the
flow domain is partitioned into layers normal to the segregation direction that are 2.5dl
(1 cm) thick (alternating shaded and unshaded regions in the H = 25dl deep bed in
figure 2). Particles are labeled according to the vertical layer in which they are initially
located and then remain part of that layer’s group regardless of their subsequent vertical
displacement. At each time step a layer-specific vertical restoring force is uniformly
applied to each particle of species i associated with the layer, Fres,i = −k(z̄i − z̄j)/Ni,

where the centre of mass of species i is z̄i =
∑Ni

p∈i zp/N , subscript j indicates the other
species, and Ni and N are the number of particles of species i and the total number
of particles associated with the layer, respectively. In each layer, the applied vertical
restoring forces balance, i.e., Fres,iNi + Fres,jNj = 0, and the bulk flow behavior (e.g.,
shear flow, bulk pressure) is unaltered. The spring constant is typically k = 100N/m,
although results are not sensitive to k (Jing et al. 2021; Duan et al. 2022). As shown in
the free body diagram for a large particle in the lower right of figure 2, the segregation
force, Fi, is determined from the magnitude of the restoring force after accounting for the
weight of the particle due to gravity, g0, or the component of gravity in the z direction,
gz = g0 cos θ. Individual particles otherwise move freely in the streamwise and spanwise
directions.

The advantages of the restoring force measurement approach lie in its ability to
suppress overall particle segregation and characterize depth-varying segregation forces
while simultaneously allowing individual particles to move freely. The effectiveness of
the restoring force in suppressing segregation is demonstrated in a previous study (Duan
et al. 2022), where segregation of uniform shear flows are compared at different times
in scenarios with and without the added restoring force. The restoring force approach is
further validated by converting the measured segregation force into a constant additional
body force equivalent to a fixed density difference between species. The absence of
segregation observed under these conditions confirms that the segregation force measured
using the restoring force approach is indeed representative of the segregation force in the
absence of virtual springs.

For all simulation conditions, collisional diffusion results in some particles dispersing
outside their initial layer, which may corrupt the segregation force measurement when
the segregation force varies with depth. Additionally, species-dependent differences in
diffusion rates can potentially affect the force balance measurement approach for particles
close to boundaries. Consider, for example, a uniform flow with ∂p/∂z = 0 and ∂γ̇/∂z = 0
such that there are no segregation forces. If large particles assigned to a wall-adjacent
layer diffuse away from the wall more rapidly than small particles in the same layer,
the resulting increase in the centre of mass position difference between the two species
will produce an associated restoring force. To quantify the potential effects of diffusion
on the measured segregation forces, results for particles assigned to layers based on
their initial vertical positions are compared to results where the layer assignment occurs
at the start of the measurement averaging interval, which varies from 3 to 30 s after
shear onset for the various flow conditions. The latter approach ensures that diffusion
over a relatively short averaging interval (2 s) is insignificant. The overall differences in
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Figure 3. Schematics of flow configurations studied here (streamwise length shown is 1/5th

the simulated length) with periodic streamwise (x) and spanwise (y) boundaries and vertical
wall boundaries as indicated (no friction/rough, fixed vertical position/pressure P0, streamwise
stationary/moving). Controlled shear flows with prescribed (a) linear velocity profile with
gravity; (b) exponential velocity profile without gravity; (c) parabolic velocity profile without
gravity; (d) exponential velocity profile with gravity. Natural flows: (e) wall-driven without
gravity; (f) wall-driven with gravity; (g) vertical chute with gravity; and (h) inclined chute with
gravity. Walls with hash marks do not move vertically.

these two approaches is less than 5% in all cases, indicating that particle diffusion has
minimal impact on the restoring force measurement approach even near the boundaries.
Nevertheless, to minimize the potential effects of diffusion on force measurement, we
initially assign particles to the vertical layers at shear onset to prevent segregation and
then re-assign particles to their current layers at the start of the measurement averaging
interval.
The force measurement approach illustrated in figure 2 is applied to a variety of flow

configurations, including controlled shear flows and natural uncontrolled flows, each of
which is shown schematically in figure 3. For the controlled shear flows (figure 3(a-d)), a
stabilizing algorithm (explained below) enforces a prescribed velocity profile between the
two geometrically smooth, frictionless horizontal walls. By imposing a specific velocity
profile, we control the shear rate and shear rate gradient, which, according to (1.2c),
play direct roles in determining F̂i,0. The presence of gravity, figure 3(a, d), results in a

pressure gradient in z, which also influences F̂i,0 by virtue of both (1.2b) and (1.2c).
Three controlled-velocity profiles are investigated: u = Uz/H (linear), Uek(z/H−1)

(exponential), and 4U(z/H− z2/H2) (parabolic). The linear velocity profile corresponds
to ideal uniform shear flow driven by a moving wall (figure 3(a)). A confining overburden
pressure, P0, is applied to the upper wall, which is free to move vertically, and g is in
the z-direction. This flow configuration matches the flow field that provided the basis for
the dependence of the gravity-induced segregation force on the mixture concentration,
(1.3), and there is no kinematics-induced segregation, since ∂γ̇/∂z = 0. The exponential
velocity profile is an idealization of free surface flow down a heap (Fan et al. 2013),
except with an upper bounding wall and without gravity (figure 3(b)) in order to focus
on kinematics-induced segregation. Likewise, the parabolic velocity profile (figure 3(c)),
which is an idealization of vertical chute flow, has only kinematics-induced segregation.
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Since gravity does not contribute to the segregation force in a vertical chute, we set g = 0
so the segregation force is a consequence of only the imposed parabolic velocity. We also
consider a second version of an exponential velocity profile, except with a confining
pressure, P0, and a gravitational field in z (figure 3(d)) to examine combined gravity-
induced and kinematics-induced segregation.
In controlled shear flows (figures 3(a-d)), a specified velocity profile, u(z), is achieved

by applying a small streamwise stabilizing force kv[u(z) − up(zp)] to each particle at
each DEM simulation time step to maintain the desired velocity profile, where up and
zp are the instantaneous particle velocity and position, respectively, and kv is a gain
parameter (Lerner et al. 2012; Clark et al. 2018; Fry et al. 2018; Jing et al. 2020, 2021,
2022). For the two controlled-pressure cases with gravity-induced pressure gradients,
figure 3(a, d), and based on a recent analysis (Jing et al. 2022), we vary kv from
0.01 kg/s at the top of the bed to 0.03 kg/s at the bottom to account for the gravitational
pressure gradient while avoiding altering the granular flow rheology and ensuring the
desired velocity profile. For the two fixed-volume cases with g = 0 and uniform pressure
(figure 3(b, c)), the velocity profile is enforced with a constant kv = 0.02 kg/s, no
overburden pressure is applied, and the distance between the two walls, H, is fixed.
Varying kv between 0.0001 and 0.1 indicates that kv ⩾ 0.01 kg/s is necessary to maintain
the imposed velocity profile. Although the walls do not drive the flow, the upper wall
moves with velocity u(H) = U for cases in figure 3(a, b, d) and the lower wall is fixed,
u(0) = 0. Note that in the cases with exponential velocity profiles, figure 3(b, d), the
imposed velocity u does not go to zero at the lower wall, i.e., u(z = 0) ≈ 0.1U ̸= 0.
Because the imposed velocity is relatively small near the lower wall and the wall is
frictionless and smooth, the finite wall-slip does not affect the results.
To confirm that the imposed velocity fields do not unnaturally alter the results, we

also consider four cases where the velocity field is not directly controlled, as shown
in figure 3(e-h). The flow kinematics of these uncontrolled “natural flows” are driven
entirely by the combined effects of gravity and boundary conditions. The walls are rough
in all cases, formed from a 2.5dl thick layer of bonded large and small particles that move
collectively. For the wall-driven flows, figure 3(e, f), an overburden pressure P0 is imposed
on the upper wall, which is otherwise free to move vertically, and which fluctuates by no
more than ±0.05% after an initial rapid dilatation of the particles at flow onset. Gravity
results in a pressure gradient in z for case (f). In both cases, the upper wall moves at
velocity u(H) = U in the x direction and the lower wall at u(0) = −U in the −x direction.
With gravity, (f), the flow velocity changes rapidly with depth near the upper wall and
slowly with depth near the bottom wall, while without gravity, case (e), the velocity
profile varies linearly with depth as expected. Both cases show little to no slip at either
wall. The vertical chute flow, shown in figure 3(g), is driven by gravity aligned parallel
to the rough bounding walls, resulting in a generally uniform velocity at the centre of
the channel that goes to zero at the walls. In this case, there is no pressure gradient
in z to drive segregation, so any segregation in z is driven by shear alone. Finally, the
inclined chute flow has no upper wall (free boundary) so that particles flow due to a
streamwise component of gravity, as shown in figure 3(h). Here the pressure gradient in
the segregation direction is g0 cos θ, where θ is the inclination angle of the base (lower
wall) relative to g⃗.

3. Segregation force model

To predict the segregation force Fi at arbitrary non-zero concentrations, it is useful to
know the segregation force at zero concentration, Fi,0. The challenge in predicting Fi,0
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resides in the dependence of fg and fk on the intruder-to-bed particle size ratio R in the
intruder force model (1.2). Jing et al. (2021) provide empirical fits of fg and fk that are
derived from numerous controlled-shear-flow DEM simulations:

fg(R) =

[
1− cg1 exp

(
− R

Rg
1

)][
1 + cg2 exp

(
− R

Rg
2

)]
, (3.1a)

fk(R) = fk
∞

[
tanh (

R− 1

Rk
1

)

][
1 + ck2 exp

(
− R

Rk
2

)]
, (3.1b)

where Rg
1 = 0.92, Rg

2 = 2.94, cg1 = 1.43, cg2 = 3.55, fk
∞ = 0.19, Rk

1 = 0.59, Rk
2 = 5.48, and

ck2 = 3.63 are fitting parameters for a variety of flow conditions. Note that fk and fg

do not depend systematically on I in the dense granular flow regime (Jing et al. 2021).
In applying these functions over a range of concentrations, we need to consider both
large and small particles as the intruder in the corresponding intruder-to-bed particle
size ratios of dl/ds and ds/dl. Here we restrict our attention to size ratios of 1.5, 2, and
3.†
Since (1.3) was developed for situations where gravity is normal to the flow direction

(gz = g0), the inclined chute configuration studied here makes it necessary to account for
gravity acting at an angle θ with respect to z. Replacing g0 with gz = g0 cos θ, equations
(1.3) are rewritten as

F̂ g
l = cos θ + (F̂ g

l,0 − cos θ)tanh
(cos θ − F̂ g

s,0

F̂ g
l,0 − cos θ

cs
cl

)
, (3.2a)

F̂ g
s = cos θ − (F̂ g

l,0 − cos θ)
cl
cs
tanh

(cos θ − F̂ g
s,0

F̂ g
l,0 − cos θ

cs
cl

)
. (3.2b)

Here we propose and then confirm that the total segregation force at arbitrary mixture
concentration and including both the gravity-induced term and the kinematics-induced
term can be represented in terms of the same hyperbolic tangent relationship. Replacing
F̂ g
i with F̂i = F̂ g

i + F̂ k
i in (3.2a) and (3.2b) yields

F̂l = cos θ + (F̂l,0 − cos θ)tanh
(cos θ − F̂s,0

F̂l,0 − cos θ

cs
cl

)
, (3.3a)

and

F̂s = cos θ − (F̂l,0 − cos θ)
cl
cs
tanh

(cos θ − F̂s,0

F̂l,0 − cos θ

cs
cl

)
. (3.3b)

Analogous to (1.4), the total concentration-weighted segregation force across both species
sums to the total particle weight in the segregation direction, which can be expressed as

clF̂l + csF̂s = cos θ. (3.4)

Thus, the complete model for the concentration dependent particle segregation force in
flows of size-bidisperse mixtures with pressure and shear rate gradients is specified by
(1.2), (3.1), and (3.3).

† fg = 2.254 and fk = 0.493 for R = 1.5, and fg = 1.176 and fk = −0.410 for R = 1/1.5;
fg = 2.343 and fk = 0.625 for R = 2, and fg = 0.677 and fk = −0.565 for R = 1/2; fg = 2.154
and fk = 0.588 for R = 3, and fg = 0.019 and fk = −0.680 for R = 1/3.
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Figure 4. Scaled flow field profiles for controlled shear flows with different velocity profiles
and R = 2. dl = 4mm, ds = 2mm, ρl = ρs = 1g/cm3, H ≈ 0.2m = 50dl, and U = 20m/s.
g = g0 = 9.81m/s2 in the negative z direction for columns 1 and 4, and g = 0 in columns 2
and 3. Values for P0 are P0 = 0.5ρϕg0H for the applied overburden pressure (columns 1 and 4),
P0 = 0.61ρϕg0H for the exponential profile (column 2), and P0 = 0.73ρϕg0H for the parabolic
profile (column 3). In the bottom row (e), cl is in color, and ϕ is black.
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Finally, we remark that the segregation force can be recast as a species-specific partial
pressure (normal stress) within a continuum model framework (Duan et al. 2022),

∂pi
∂z

= −niFi = −ρϕg0ciF̂i, (3.5)

where ni is the number density of species i and ϕ is the solid volume fraction. For
uniform shear flow with constant segregation force, (3.5) can be written as pi = ciF̂ip,
where p is the bulk pressure. Details of the derivation from the full momentum balance are
provided in the supplementary material. Note that the segregation force is independent
of other terms in the momentum balance, such as interspecies drag or forces related to
diffusion/remixing.

4. Results

4.1. Controlled shear flows

To test the concentration-dependent particle-level segregation force model described
above, i.e., (1.2, 3.1, 3.3), we first examine the controlled shear flows illustrated in
figure 3(a-d), as these artificial velocity profiles allow us to consider the gravity-induced
and kinematics-induced contributions both separately and in combination. We can then
evaluate the accuracy of the mixture segregation force model predictions derived from
equations (3.3a) and (3.3b) by comparing them with DEM measurements in various flow
configurations. For the controlled shear flows we use two size ratios, R = 2 and R = 3,
and an equal volume mixture of large and small particles (cl = cs = 0.5), although other
species volume concentrations are considered in Sec. 4.2.
Flow field details of the four controlled shear flows are shown in figure 4 for R = 2.

Results are similar for R = 3 (see supplementary material). The imposed and measured
streamwise velocity profiles are shown in row (a). The effectiveness of the control scheme
for the velocity is evident in the close match between the DEM data points and the curves
representing the target velocity profile. Rows (b, c) in figure 4 show the dimensionless
shear rate and shear rate gradient, both of which contribute to the kinematics-induced
portion of the segregation force in (1.2b). The DEM results (data points), based on finite
differences for the z-gradients (central difference for the interior data points and single-
sided difference for the edge data points), match the curves from the derivatives of the
imposed velocity profiles except near the walls (z/H = 0 and z/H = 1). In the near-
wall region, the DEM results deviate slightly from the imposed velocity profile, barely
evident in row (a), but amplified by the higher derivatives associated with the shear rate
and shear rate gradient in rows (b) and (c). The velocity profiles in (a) are chosen so
that the shear rate gradients are zero in one case (linear, column 1) and non-zero in
the other cases. The exponential velocity profile (columns 2 and 4) has a non-zero shear
rate and shear rate gradient, and both are nonlinear. For the imposed parabolic velocity
profile (column 3), the shear rate and shear rate gradient measured from DEM simulation
match the targeted linearly varying and constant value, respectively, only in the middle
two-thirds of the channel, and their magnitudes are much larger than the other cases.
The flows in figure 4 also differ in their pressure fields, shown in row (d). It is important

to note that the pressure gradient not only plays the primary role in the gravity-induced
term of the intruder segregation force, (1.2b), but also influences the kinematics-induced
term, (1.2c). The theoretical lithostatic pressure (solid line) is p = P0 + ρϕg0(H − z),
where the solid volume fraction is assumed to be a constant ϕ = 0.55, and the applied
overburden pressure is half of the maximum lithostatic pressure, P0 = 0.5ρϕg0H. The
measured DEM pressures (data points), including both the dynamic, which is negligible,
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and the static components (Luding 2008), match the expected values. For the linear and
exponential velocity profiles (columns 1 and 4), gravity is imposed perpendicular to the
flow direction. As a result, the pressure increases linearly with depth from the imposed
overburden pressure, P0, applied at the top wall, to 3P0 at the bottom wall due to the
added weight of the flowing particles (d1, d4). The resulting pressure gradient, ∂p/∂z, is
constant due to the linear pressure increase with depth. For the two other cases (columns
2 and 3), g = 0 and the flow volume is constant because the walls are constrained to be
H = 0.2m apart. Consequently, the resulting pressures are constant (see caption) and
the pressure gradients in the z-direction are zero (d2, d3). Although g = 0 in these two
cases, P0 is expressed relative to Earth’s gravity, g0 = 9.81m/s2, to allow comparison
with the g ̸= 0 cases and to provide physical context.

The bottom row in figure 4 shows the concentration profile of large particles, cl (color),
and the solid volume fraction profile, ϕ (black). In all cases, cl = 0.5 (vertical colored
line) within the uncertainty except near the walls, where size exclusion effects become
significant. The concentration is nearly constant because segregation is suppressed by the
restoring force, as described earlier in the context of figure 2. The solid volume fraction
shows only minimal variation with depth, and remains near ϕ = 0.55 (vertical black line)
in all cases, which is typical for these flow conditions (Jing et al. 2020).

With the various flow fields characterized, the intruder segregation force, F̂i,0, can
be determined and incorporated into the concentration-dependent form for the local
segregation force on a particle, F̂i. Specifically, F̂i, is calculated from the corresponding
local values of γ̇, ∂γ̇/∂z, p, and ∂p/∂z according to (1.2) with coefficients from (3.1)
and modified per (3.3) to account for the particle concentration. The values of γ̇, ∂γ̇/∂z,
p, and ∂p/∂z can be based on either their imposed values (solid curves in figure 4) or
their measured DEM values (data points in figure 4). Hence, we plot three F̂i results for
R = 2 in figure 5(a,b): a dashed black curve for F̂i based on the imposed values of ∂γ̇/∂z,
p, and ∂p/∂z, a colored solid curve for F̂i based on the DEM measurements of ∂γ̇/∂z,
p, and ∂p/∂z, and data points for the values of F̂i based on direct force measurements
from DEM. Error bars indicate the DEM data standard deviation over the 2 s window,
sampled at 0.01 s intervals (shown only for every fourth data point to avoid obscuring
other data). Shaded error bands represent the uncertainty in force prediction, derived
from the standard deviations of the time-averaged flow fields that propagate through the

force model, σF = F
√
2(

σp

p )2 + (
σcl

cl
)2 + (

σcs

cs
)2 + (

σγ̇

γ̇ )2. Again, we express F̂i = Fi/mig0

values relative to g0 = 9.81m/s2, even when the imposed gravitational field is zero to
allow comparison with the non-zero gravity cases and to provide physical context. The
vertical dotted lines in the first two rows of the figure indicate the value about which F̂l

and F̂s balance according to (3.4), which is cos θ for g ̸= 0 and 0 for g = 0 (zero gravity
component in the segregation direction is equivalent to θ = π/2).

Figure 5 shows that, overall, the predicted segregation forces, F̂l in row (a) for large
particles and F̂s in row (b) for small particles, match the DEM data for all cases,
regardless of whether the prediction is based on the imposed velocity profile (dashed black
curves) or the measured profiles (solid color curves). The good match is unsurprising for
the uniform shear flow as this is the gravity-induced segregation case upon which the
concentration dependence in (1.3) is based. However, the strong agreement in the other
three cases demonstrates the validity of our approach.

In detail, first consider the linear velocity profile in column 1 of figure 5. Here the
kinematics-induced segregation is zero and all segregation is due to gravity, for which
∂p/∂z is constant. Hence, the segregation forces, F̂l and F̂s, are constant with depth.
More importantly, F̂i based on the imposed values of ∂p/∂z (dashed black lines), F̂i based
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Figure 5. Segregation force profiles for large, F̂l = Fl/mlg0 (row a), and small, F̂s = Fs/msg0
(row b), particles at R = 2 from the model (3.3) using the imposed velocity profile (dashed
black curves) and the measured profiles (solid color curves) in figure 4 as well as direct DEM
measurements (symbols) from 2 s time averages after the flow reaches steady state. Note the
different horizontal axes limits in rows a and b. Vertical dotted lines indicate the value about
which F̂l and F̂s balance according to (3.4). (row c) Inertial number profiles, I = γ̇d̄/

√
p/ρ (see

text).

on the DEM measurements of ∂p/∂z (solid color curves), and F̂i based on direct force
measurements (data points) match well. Due to the imposed restoring forces (see figure 2),
the initial mixed concentration profile, cl = cs = 0.5 remains uniform throughout the
domain. Also note that the concentration weighted sum of F̂l and F̂s is one. In other
words, the total segregation force across both species for the entire system sums to the
total particle weight, as indicated by (3.4). This is evident in figure 5, column 1, as F̂l

and F̂s being equidistant on either side of the dashed vertical line at F̂i = 1 for both the
DEM measurements and the model predictions.

The match between the model predictions and the DEM data for the exponential
velocity profile in column 2 of figure 5, while imperfect, indicates that kinematics-induced
segregation can be captured by the extension of the intruder particle segregation force
in (1.2) using the concentration dependence described by (3.3). In this case, F̂l and
F̂s depend only on the kinematics-induced term in (1.2c) to which γ̇, ∂γ̇/∂z, and p all
contribute. However, even though γ̇ and ∂γ̇/∂z vary with depth for the exponential profile
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(see figure 4 (b2, c2)), the product (1/γ̇)∂γ̇/∂z is constant, as is p. Hence, the kinematics-
induced segregation force is depth independent. The model predictions based on both
the imposed velocity profile (dashed black line) and the measured velocity (color solid
curve) slightly overestimate the magnitude of F̂l and F̂s. The model’s underestimate of
the segregation forces does not appear to be related to issues with the profiles in figure 4,
for which the measured profiles for γ̇, ∂γ̇/∂z, and p seem to follow the imposed profiles
quite closely. Nevertheless, F̂l > 0, indicating a segregation force due to the shear that is
in the positive z-direction for the large particles, reflecting the tendency of large particles
to segregate toward regions of higher shear rate in dense flows (Fan & Hill 2011b; Jing
et al. 2021). In contrast, F̂s < 0, which reflects the tendency of small particles to segregate
toward low shear regions. Additionally, because g = 0 in this case, the total segregation
force sums to 0 instead of 1 ((3.4) becomes clF̂l + csF̂s = 0), as is evident in figure 5(a2,
b2) and verified mathematically from the data.

Predicting segregation forces for the parabolic velocity profile is more challenging, par-
ticularly near z/H = 0.5 where the flow is quasi-static. Since the pressure gradient is zero,
the segregation force is again entirely kinematics-induced but with two complications at
z/H = 0.5. First, there is a singularity in the kinematics-induced term in (1.2c), because
γ̇ = 0, and, second, the segregation force switches sign. Both effects are evident in the
measured segregation force and the model predictions. It is therefor not surprising that
the model predictions deviate substantially from the measured segregation force around
z/H = 0.5. While the model predicts the strong curvature in the dependence of the
segregation forces on z, it again overpredicts the segregation forces compared to DEM
measurements. The exception is near the walls where the DEM measurements lie between
the model prediction determined using the imposed velocity profile (dashed black curve)
and the model prediction determined using the measured velocity profile (solid color
curve). Clearly, the model captures the qualitative dependence of the segregation force
on the local kinematics, although the quantitative agreement could be better. Again,
since g = 0, clF̂l + csF̂s = 0, as is evident in figure 5(a3, b3) and verified mathematically
from the data.

The last controlled shear flow that we consider combines gravity-induced and
kinematics-induced segregation using an exponential velocity profile with gravity, see
column 4 of figure 5. Here the combined effects of the pressure and shear rate gradients
result in a linear dependence of F̂i on z. The upward segregation force on large particles
increases with depth, while the segregation force on small particles decreases with depth
to the point of changing from positive to negative near z/h ≈ 0.2. Nevertheless, F̂l and
F̂s are equidistant on either side of the dotted vertical line at F̂i = 1, indicating that
(3.4) is satisfied. The match between the model predictions and the DEM measurements
of the segregation force are reasonable. It is also evident that the model predictions
based on the measured velocity profile capture a portion of the impact of the lower wall
on the segregation force.

To further assess the applicability of the segregation force model proposed here, we also
plot profiles of the local inertial number, I = γ̇d̄/

√
p/ρ where d̄ =

∑
cidi, in the bottom

row of figure 5. The large variation in I from nearly zero to 0.4 confirms the insensitivity
of the segregation force to I found in previous studies on the intruder segregation force
(Jing et al. 2021); that is, pre-factors fg(R) and fk(R) of model (3.1) do not depend
systematically on I in the dense flow regime. Note that this does not contradict the
general dependence of the segregation velocity on I, as the inter-species drag force during
segregation is I-dependent (Bancroft & Johnson 2021; Jing et al. 2022).
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Figure 6. Segregation force profiles for F̂l = Fl/mlg0 (blue circles) and F̂s = Fs/msg0 (red
triangles) with R = 2 for the exponential velocity profile with bulk large particle concentrations
(a) cl = 0.2 and (b) cl = 0.8, based on the imposed velocity profiles (dashed lines) and the
measured profiles (solid curves) compared to DEM measurements (symbols) averaged over 2 s in

steady state. Vertical dotted lines indicate the value about which F̂l and F̂s balance according to
(3.4). Error bars indicate DEM data standard deviation. Shaded bands represent the uncertainty
of the segregation force calculated from the measured flow profiles.

4.2. Varying concentration

The previous section considers only uniform mixtures of equal small and large particle
volumes (cs = cl = 0.5). However, the concentration dependence of the segregation
force based on (3.3) should be valid for any concentration, 0 ⩽ cl ⩽ 1 with cs =
1 − cl, and for non-uniform spatial concentration as well. To test this, we consider the
exponential velocity profile case of figure 3(d) because it includes both gravity-induced
and kinematics-induced segregation. Model predictions for F̂i for uniform concentrations
of cl = 0.2 and cl = 0.8 at R = 2 are shown in figure 6. Whether based on imposed
profiles for γ̇, ∂γ̇/∂z, p, and ∂p/∂z or measured profiles of these same quantities, the
model predictions generally coincide with each other as well as with the DEM results,
although the measured F̂i values for the lower concentration species tend to be closer
to zero than the predicted values. This is likely because the segregation forces have
large uncertainty and the fit parameters used in (3.1) have some associated uncertainty.
Although it is not evident from figure 6, the total segregation force for both cl = 0.2 and
cl = 0.8 sums to one as expected from (3.4).
Up to this point and in all cases, we start with a uniform concentration of small

and large particles in the flow domain, apply a spring-like restoring force to the particles
within each layer to maintain the fully mixed condition, and measure the local segregation
force for each particle type, as outlined in the context of figure 2. However, the same
approach can also be applied when the concentration varies with depth. Here, we consider
this situation with controlled linear and exponential velocity profiles with gravity, i.e. the
flows shown in figure 3(a, d).

Three large-particle concentration profiles are considered (with cs = 1−cl), as shown in
the top row of figure 7: increasing cl with depth, decreasing cl with depth, and decreasing
cl in the top half of the flow and increasing cl in the bottom half of the flow. In all three
cases, the solid volume fraction ϕ is nearly constant. Note that the concentration profiles
in the first two cases (a1, a2) are slightly nonlinear due to packing that occurs after
initially filling the system with a linearly varying concentration of particles, and, in all
cases, a slight wall exclusion effect is evident in cl, as expected. Also, as a result of
the non-trivial dependence of cl and cs on z, it is not possible to determine the model-
predicted values of F̂i based on the imposed velocity profiles, which are shown as dashed
black curves in preceding figures.
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Figure 7. Concentration, solid volume fraction, and segregation force profiles for F̂l = Fl/mlg0
(blue) and F̂s = Fs/msg0 (red) at R = 2 for large particle concentrations varying with depth
(row a). Segregation force profiles for large (circles) and small (triangles) particles in a controlled
uniform shear flow with gravity (row b) and an exponential velocity profile with gravity (row c)

with the same conditions as in figure 4. F̂i is based on the measured profiles (solid curves) as well
as DEM measurements (symbols) averaged over 2 s in steady state. Vertical dotted lines indicate

the value about which F̂l and F̂s balance when weighted by the concentration according to (3.4).

Note that the truncated data point in (c3) near z/H = 0 with F̂s = −3.12 nearly matches the
model prediction of -2.72 (red curve) within the range of uncertainty.

When the concentration of large particles increases with depth (column 1), the pre-
dicted segregation forces match the measured forces for both the linear (b1) and expo-
nential (c1) velocity profiles. Specifically, for the linear velocity profile (b1), F̂l remains
slightly above one through the entire depth, but F̂s decreases further below one with
increasing depth, particularly for small z/H. This is consistent with the fact that the
segregation velocity of a species increases as its local concentration decreases for most
segregation velocity models (Jones et al. 2018) and experimental scalings (Trewhela et al.
2021) — as cl increases with depth, the segregation velocity of small particles increases.
However, the segregation force is not restricted to have the same trend as the segregation
velocity because the segregation velocity results from the imbalance of all forces acting
on a particle including the drag force, which we do not consider here. The segregation
forces are larger for the exponential velocity profile (c1). For both velocity profiles, the
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model predictions based on the measured concentration and flow fields match the DEM
measurements of the segregation force. Note that the measured segregation force, F̂i,
has large uncertainty when ci is small due to the small number of associated particles
available for averaging at low concentrations.
When the large particle concentration decreases with depth (column 2), again F̂l > 1

and F̂l increases deeper in the bed where cl is smaller, particularly for the exponential
velocity profile (c2). As in column 1, F̂s < 1. The model prediction matches the
DEM measurement reasonably well for both the linear and exponential velocity profiles.
Similarly for the cl profile with a minimum at z/H = 0.5 (column 3), the model prediction
matches the measured segregation force reasonably well, even with large changes in the
concentration gradient. For all cases in figure 7, (3.4) is satisfied locally.
Unlike flows with uniform particle concentrations, particles in flows with depth-varying

concentration profiles tend to diffuse toward a uniform concentration state in the absence
of segregation forces. In this case, the force-measurement-imposed restoring forces balance
not only the segregation forces but also the remixing/diffusive forces, consequently influ-
encing the measurement of the segregation force. However, the fact that the segregation
force model (3.3) still predicts the measured segregation force reasonably well for cases in
figure 7 indicates that the concentration gradients have negligible impact for these cases.
The possible effects of diffusion on the restoring force approach are further discussed in
the supplementary material.

Overall, it is evident that the concentration dependent segregation force model (3.3),
which relies on the intruder segregation force based model (1.2), can estimate segregation
even when the concentration fields are spatially varying. Additionally, this prediction
capability implies that the segregation force is relatively insensitive to concentration
gradients.

4.3. Natural shear flows

As demonstrated above, the intruder segregation force model (1.2) with gravity- and
kinematics-driven terms can be extended to apparently arbitrary concentrations and
concentration fields via (3.3) in a variety of flows where the velocity field is artificially
controlled. We now examine four uncontrolled wall- or gravity-driven flows illustrated in
figure 3(e-h) in which the velocity field develops naturally via the boundary conditions
and gravity-induced body forces. Of note in the three examples with gravity (f-h) is the
direction of gravity with respect to the flow, which is characterized by the angle of the
bottom wall with respect to horizontal, θ. For wall-driven flow, g is perpendicular to the
flow direction (in z), such that θ = 0; for inclined chute flow, θ is greater or equal to the
critical angle for flow to occur; and for vertical chute flow g is parallel to z, such that
θ = π/2 and ∂P/∂z = 0.
As in the analysis of the controlled-velocity flow fields in the previous sections, we

first plot dimensionless depth profiles of u, γ̇, ∂γ̇/∂z, p, cl, and ϕ with cl = cs = 0.5 for
the natural flows, as shown in figure 8. The kinematic-terms are scaled with g0 and H,
since there is no intrinsic velocity scale for the vertical- or inclined-chute cases. We use
R = 1.5 here to test a third size ratio (similar results for these natural flows are achieved
for other size ratios).

Consider first the wall-driven flow without gravity (column 1). The velocity profile
is nearly linear with depth, except for a slight deviation near the lower wall which is
amplified for γ̇ and ∂γ̇/∂z. The slightly asymmetric velocity profile near the top and
bottom walls is due to the top wall being able to move vertically to accommodate
dilation during flow, while the bottom wall is fixed vertically. The profiles of pressure
and solid volume fraction, ϕ, are nearly constant, while the concentration profile shows
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Figure 8. Scaled flow fields of natural shear flows with R = 1.5, dl = 4mm, ds = 8/3mm,
ρl = ρs = 1g/cm3. Left to right: plane shear without and with gravity, vertical chute, and
inclined chute. H ≈ 0.2m = 50dl for wall-bounded cases and fixed H = 0.2 m for vertical chute
case, g = g0 = 9.81m/s2, and θ = 28◦ for the inclined chute. Applied overburden pressure
P0 = ρϕg0H (columns 1 and 2). Depth-averaged pressure for the vertical chute P0 = 0.89ρϕg0H
(column 3). (row e) cl data symbols are colored, and ϕ data symbols are black.
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small deviations from its mean value near the walls. With gravity (column 2), the wall-
driven flow velocity profile is steep near the upper moving wall at z/H = 1 but flattens
in the bottom half of the flow where the pressure is higher. This results in γ̇ and ∂γ̇/∂z
decreasing near the bottom of the flow. At the same time the pressure increases linearly
with depth, and the pressure gradient is nearly constant. There is a small increase in ϕ
with depth as particles near the bottom wall dilate less due to the larger local overburden
pressure.

The vertical chute flow (column 3) has a plug-like velocity profile, resulting in γ̇ varying
from negative to positive with depth, while ∂γ̇/∂z ⩽ 0 with widely varying values. The
pressure remains nearly constant at P0 ≈ 0.89ρϕg0H, while the solid volume fraction
decreases near the walls compared to the centre of the chute, as observed previously (Fan
& Hill 2011b). Despite the restoring force to prevent segregation, cl varies somewhat in the
region where γ̇ is nonzero. Finally, the curvature of the velocity profile for the inclined
chute with θ = 28◦ (column 4) is opposite that of the wall-driven flow with gravity
(column 2). Consequently, γ̇ increases with depth, while ∂γ̇/∂z is negative, except near
the bottom wall, and relatively small through most of the depth compared to the other
two flows with gravity. Like the wall-driven case with gravity, p increases with depth,
but is zero at the free surface, and ρgH cos θ < ρgH at the base of the flow. The solid
volume fraction is independent of depth.

Model predictions of F̂i for the four natural shear flows are shown in figure 9. Unlike the
flows with controlled velocity profiles, these predictions are based only on flow profiles
calculated from the DEM simulations (solid color curves), since there is no imposed
velocity profile to consider. For the wall-driven shear flow without gravity (column 1), the
DEM measured forces match the nominal value of zero and the model predictions, except
near the bottom wall where F̂l is negative and F̂s is positive for the DEM measurements
due to wall effects evident in column 1 of figure 8. However, it is notable that the model
reflects the measured nonzero forces at the bottom wall reasonably well. For the wall-
driven shear flow with gravity (column 2), the DEM measured forces and the model
prediction show the same trends—increasing with depth in the upper portion of the flow
and then decreasing, changing sign, and reaching a relatively larger amplitude near the
lower wall. The match is not as good in the lower portion of the flow as in the upper
portion.

For the vertical chute flow (column 3), the model-predicted forces match the DEM
measurements near the walls (within 0.2H), which is where the shear rate is non-zero
and the inertial number is not too small (c3). In the central portion of the chute where
the flow is plug-like, γ̇ ≈ 0, ∂γ̇/∂z ≈ 0, and I ≈ 0, the model correctly predicts the
change in the direction of the segregation force from z/H ≈ 0.3 to z/H ≈ 0.7, but with
extremely large uncertainty between these two heights and with much larger predicted
forces than the DEM measurements. This large deviation is likely due to a breakdown
of the model validity due to the corresponding very low inertial number (c3) and the
singularity in the kinematics term in (1.2c) associated with γ̇ → 0. Lastly, the model
prediction show the same trends as the DEM measurements for the inclined chute flow
(column 4). The model underestimates the measured segregation forces for z/H > 0.2
where the measured segregation forces are small and noisy, but matches the data well
near the bottom wall (z/H < 0.2) where F̂l and F̂s are largest. In all cases, the sum of
the segregation force across the two species is satisfied per (3.4).

While the correspondence between the model predictions and DEM measurements
of the segregation forces in these four natural flows is less satisfying than that for the
controlled flows, these results nevertheless demonstrate that the intruder force model of
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Figure 9. Segregation force profiles for F̂l = Fl/mlg0 (row a) and F̂s = Fl/msg0 (row b) in
natural shear flows for cl = cs = 0.5 and R = 1.5 based on model predictions using measured
flow fields in figure 8 (solid color curves) and DEM measurements (symbols) time averaged over
2 s after the flows reach steady state. Note the different horizontal axes limits in rows 1 and
2. Error bars indicate the standard deviation. Shaded bands represent the uncertainty of the
segregation force calculated from the measured profiles. (row c) Inertial number profiles, I.

(1.2) can be applied to bidisperse mixtures with reasonable accuracy using (3.1) and
(3.3), except in regions where γ̇ ≈ 0.

5. Conclusions

Predicting the segregation force on single intruder particles, not to mention the more
difficult problem of particles in mixtures, in granular flows confounded researchers for
decades until the virtual spring approach pioneered by Guillard et al. (2016) allowed
it to be directly measured. Using that method, we established the dependence of the
segregation force on gravity and local kinematics for an intruder particle in three-
dimensional granular flow of spherical particles via (1.2) and (3.1) (Jing et al. 2021).
We then extended the virtual spring measurement method to allow measurement of
segregation forces in finite-concentration size-bidisperse mixtures with pressure gradients
via (1.3) (Duan et al. 2022). Here, we further extend the model for the combined gravity-
and kinematics-induced segregation force on an intruder particle (1.2) to arbitrary
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concentrations of size-bidisperse particle mixtures, (3.3), by applying the concentration
dependence described by (1.3) to both gravity- and kinematics-induced components of
the segregation force. We use an extensive set of DEM simulations to show that the
approach can estimate the segregation force in four idealized flows with an artificially
controlled velocity profile as well as four natural shear- and gravity-driven flows (subject
to minor deviations near walls for wall-driven flows and for very small inertial numbers).
Considering the dependence of the segregation force on the particle size ratio, the

velocity field and its gradients, the pressure field and its gradients, and the relative
concentrations of the two particle species, the performance of the model, i.e., (1.2), (3.1),
and (3.3), is remarkable. In all the situations that we consider, it is possible to estimate the
local spatial- and concentration-dependent segregation force on small and large particles
starting only with a knowledge of particle size ratio and the flow conditions, of which the
latter can be based on theory or measurement.
Given the broad range of conditions considered here, this approach is likely generally

applicable to a wide range of size-bidisperse granular flows at inertial numbers typical of
dense flows, although kinetic-theory based approaches for segregation may be appropriate
where granular temperature gradients play a significant role (Larcher & Jenkins 2015;
Neveu et al. 2022). In fact, the success of the combined models of (1.2), (3.1), and
(3.3) demonstrated here for size-bidisperse flows suggests that it is possible to extend
the approach to polydisperse and density disperse flows, as well as combined size and
density segregation, particularly since the effects of both particle size and density are
accounted for by the intruder segregation force (Jing et al. 2020, 2021). For example,
density differences can be considered in (1.1) through the pressure term, which is an
integral over species concentration and density i.e., p =

∫ z

0
ϕ(clρl + csρs)g(H − z) +

P0. This would allow the prediction of combined size and density segregation, although
further validation work is necessary. Furthermore, friction coefficients measured from
experiments can be notably low compared to DEM simulations, i.e. µ ≈ 0.1 for soda-
lime glass (Foerster et al. 1994). More research is needed under even more widely varying
conditions to refine the segregation force model, particularly with respect to low friction
coefficients (µ < 0.2).
The accurate predictions of the segregation force model detailed in this paper are an

important piece in the puzzle of predicting segregation in size-disperse granular flows.
Although the overall segregation fluxes under many conditions can be predicted via
continuum models (Schlick et al. 2016; Xiao et al. 2016; Duan et al. 2021), accuracy is
predicated on knowledge of the dependence of the segregation velocity for each species
as a function of relative size or density (Umbanhowar et al. 2019). In addition to the
segregation force considered here, another important piece needed for predicting the
segregation velocity is the drag force on an intruder particle moving through sheared
granular beds, which was recently shown to be Stokes-like across a wide range of
conditions (Jing et al. 2022). A simple force balance on an intruder particle incorporating
both the segregation force and the drag force allows prediction of the segregation velocity,
which is a crucial element in continuum models for predicting overall segregation in
granular flows (Umbanhowar et al. 2019). This is clearly an appropriate direction for
further research.
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