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ABSTRACT: The exponential scaling of the quantum degrees of freedom with the size of the system
is one of the biggest challenges in computational chemistry and particularly in quantum dynamics. We
present a tensor network approach for the time-evolution of the nuclear degrees of freedom of
multiconfigurational chemical systems at a reduced storage and computational complexity. We also
present quantum algorithms for the resultant dynamics. To preserve the compression advantage
achieved via tensor network decompositions, we present an adaptive algorithm for the regularization of
nonphysical bond dimensions, preventing the potentially exponential growth of these with time. While
applicable to any quantum dynamical problem, our method is particularly valuable for dynamical
simulations of nuclear chemical systems. Our algorithm is demonstrated using ab initio potentials
obtained for a symmetric hydrogen-bonded system, namely, the protonated 2,2'-bipyridine, and

compared to exact diagonalization numerical results.

I. INTRODUCTION

One of the most computationally challenging obstacles in
simulating quantum many-body systems is the exponential
scaling of the system degrees of freedom with its size."” The
dimension of the corresponding Hilbert space is rendered so
large that a complete description of an arbitrary state becomes
virtually intractable. Thus, several approximation methods,
have been developed that attempt to circumvent this curse of
dimensionality,”~"> with various degrees of success. For
instance, one of the most powerful approaches for molecular
quantum dynamics simulations is the multiconfiguration time-
dependent Hartree (MCTDH) method.>'*™'¢ Nevertheless, it
is still susceptible to the same exponential scaling issue'”'® and
early studies indicate that the multilayer MCTDH (ML-
MCTDH) generalization'”*° may avoid such a scaling issue by
introducing a hierarchical Tucker decomposition”"** ansatz,
which is a particular form of the so-called tensor network
states.” "

In this publication we discuss a computational approach for
quantum dynamics that uses tensor networks and may be
implementable on quantum hardware; indeed we also provide
quantum circuit based algorithms to do the same. Tensor
Networks (TN) are a general framework for data compression
and have proven to be a very effective approach for the efficient
representation of many-body quantum states in strongly
correlated systems (see””> ™" for comprehensive surveys).
These approaches have been demonstrated for quantum
dynamics'®**7*" and for computation of vibrational
states.”” > The tensor network methods have roots in the

© 2024 American Chemical Society

7 ACS Publications

6774

Entanglement control in tensor-
network quantum dynamics

21,22,56
7“=°% and are

tensor decomposition field of multilinear algebra
a central component of the work presented here. Given the
advent of novel quantum computing algorithms in the
literature, tensor networks are also a natural resource for
developing new quantum algorithms.”’~® The approach has
been shown to have applications for low-energy states of local,
gapped Hamiltonians which are characterized by satisfying a
so-called area-law of entanglement.“_68 The introduction of
the density matrix renormalization group (DMRG),*””"* was
perhaps the catalyst for the excitement in the TN method-
ology; proving to be extremely useful for the simulation of one-
dimensional quantum lattices,*®”>"* electronic structure
calculations,””> =" approximations to vibrational states*”"' ~**
and even machine learning applications.*> ™"’

Orthogonally, quantum simulations, which are based on the
realization of the system degrees of freedom in question onto
another quantum system with controllable parameters, are
thought to be the most natural and efficient way to study large
scale quantum phenomena.' Nevertheless, the technological
limitations of current quantum devices, have hindered the
progress in this area. As we enter the era of NISQ
computers,”**” it is crucial to develop novel quantum
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algorithms tailored to overcome setbacks such as, large circuit
depths””" with small number of accessible gubits, poor gate
fidelity, noise reduction, and error correction. 092795 With the
emerging interest in quantum computing, the connections
between TN and quantum information®>~*>**7'% have
reignited the excitement in the field, as they are regarded as
a promising tool in the development of hybrid (quantum-
classical) algorithms for current and future NISQ devi-
ces 358992

This paper is organized as follows. In Section II we briefly
review the TN representation of the wave function as a matrix
product state (MPS), followed by Section III which gives a
detailed exposition of the time-evolution methodology
employed to propagate such states. Connections to previous
work that necessitate the development of such a protocol for,
potentially, fully ab initio quantum nuclear dynamics is
presented in Section III A. In Section III B, we present
quantum algorithms that may be used to implement these
states. The issues arising in the propagation of MPS, i.e., the
exponential growth of the bond dimension, are then discussed
in Section IV. In Section IV A, we introduce in a
comprehensive fashion, a regularization algorithm for the
bond dimension, aimed to optimize dynamical simulations of
MPS. To probe and illustrate the algorithm, in Section V, we
consider a symmetric short-strong hydrogen bonded system:
the protonated 2,2'-bipyridine molecule. Section V A contains
details of the Hamiltonian associated with this system and in
Section V B we present the numerical results for the simulation
of quantum dynamics with bond dimension regularization.
Finally, we address our conclusions and final comments in
Section VL.

II. QUANTUM CHEMICAL DYNAMICS WITH MATRIX
PRODUCT STATES

An arbitrary N-dimensional quantum state [¥) € HEY is
generally written as

D N
W)= 2 Cii 8 i)

Judyrely

(1)
where {|]k>} is a complete orthonormal basis set, one set for

each dimension in HE. The computational complexity of the

full description of the quantum state scales with the number of

coeflicients in the expansion, that is, {ij j } in eq 1. The
V2 "IN

number of elements in {C.. .} scales exponentially, that is
}1}2 ;N

O(D"), which is clearly intractable for even moderate values of
N. Additionally, it is useful to emphasize that eq 1 is also the
starting point for MCTDH formalism.>"*~'® However, one
can also write eq 1 in the position representation where the

basis functions {lj )} above are replaced by the coordinate

representation. Thus,

N
Py = Xy (x
) dxy( )Sl L) @)

where dx = dxdx, ... dxy, and
%) = lx,)lay)ley) = @I ilx;). In the position representa-

tion, {IX)}, the coefficient tensor C,; .
RN

., and each value of IX) within
ity

in eq 1 becomes the
wave function y(X) =y
T

this representation corresponds to a discrete grid point in
spatial dimension. Indeed, this is the basis for grid-based
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quantum nuclear dynamics, that has been pursued by several
110—11S : .

groups and is known to provide very accurate results,
but at steep computational expense.”''®''” Now, by perform-
ing a sequence of singular value decompositions (SVD), the N-
order tensor W(X) can be recast into a family of one-
dimensional functions, resulting in the so-called matrix product
state (MPS),*57118-122

7 N-1
<) — [1]x [jlx; | 4[N«
l//(X) - Z ¢(ll l H qﬁ(zj_l(;t} ¢(1N_1 N
PR = 3)

In eq 3, the functional dependence on the discrete position
basis X = {x,, x,, .., Xy}, is realized as tensor components
labeled xj; hence, the order-2 and order-3 tensors Y
correspond to one-dimensional functions of the coordinate
x; Notice that superscripts in squared brackets [-], are not
tensor indices and are simply labels that distinguish each tensor
core. The sum runs through @ = {a,, @, .., ay_,;} with
respective limits #7 = {n,, #,, ..., y_,}, commonly named
entanglement dimension, bond dimension, or Schmidt rank.
Each 7; is defined as the number of nonzero singular values
resulting from the Schmidt decomposition of each bipartite
subsystem created in the construction of the tensor network.'®
For ease of notation, the resulting left and right singular
vectors of the SVDs, have been rescaled by their neighboring
singular values A as follows:

1]« [1] 1]x
AT = gl

(4a)
G-11 pljlx; 71 [
j'll,,l 45([!/,]1(% /1(!, - qb{)zi_lozJ (4b)
[N] 4[N]x [N]x,
VAay ¢,1N N ¢,1N N (4¢)

The TN methods allow a diagrammatic notation for
complex tensor representations and operations and in Figure
1 we show the corresponding TN diagram of eq 3.

| | |
z T2

Tr] T2 .+ TN oN

Figure 1. TN diagram of the MPS factorization of the wave function
w(X; t). The order-N tensor y, comprised of the coefficients defining
the quantum state ly) in the discrete position basis, is factorized into a
product of N order-3 tensors. By convention, in diagrammatic
notation, TN are represented as graphs where the tensor cores are
depicted as nodes, “free indices” are shown as open edges, while
connected edges correspond to “dummy” or contracted indices.

ol

In addition to storage of the wave function, a key challenge
in quantum dynamics involves the action of the time-evolution
operator on some state vector: UI¥). Toward this, we use a
Matrix Product Operator (MPO)'*’ to propagate the MPS,
that is,

N-1
T T =\ — 1]oe,x, [j]xxf N xp
®10%) = Y U= T Uy U

B j=2 (5)

where, the sum runs through the entanglement variables

B = {B,, B,y - By_,}, and hence,

https://doi.org/10.1021/acs.jpca.4c03407
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Figure 2. Action of the time evolution operator onto the MPS wave function shown in eq 17. Whereas the initial vector is given by entanglement

variables @, the propagator in eq 5 has entanglement variables, B, which combine to determine the index I = {@&, B } for the propagated system;

shown here as a thicker edge to emphasize its larger size.

N-1

. » [, 411, Ul gl

Ul¥) — fdx Z (’Llﬂ‘ 1145(11 ) H ((u/f,,,]/f,]qsa/.ﬁi;)
ap =2

Nlxox' 1 [NTx!
X ((L{[/}er':chN¢[ ]xN)

(2N

’ 1) p[1]%]
— Z /dxl((L[[/iI] 1 1¢0[51J 1)
ap

N-1
1 g% T
x 1 / dui(Uy ' 0)
j=2
’ Nlayxy 1[Ny
X[ (U
(6)

as depicted in Figure 2. The result is a family of reduced
dimensional propagated vectors,

1y I10x] g [1x] req g% [l
{/deW/}I 1145(11 1; ) /dxl.(l’l/},.1’/},j¢af—léf,
/ Nlayxn 1[N,
oy [asyigni )

1 Ny
as seen from the bottom (blue colored) tensors in Figure 2:

-1

] - [1]x [jl; [N«
Ul‘{l> - Z q0”‘1!/}11 H (p(l/.p’a,‘//}i_l;/} qole,u;}\]N,l
ap | j=
[ N-1
— [1]x, [jl; [N]xy
Z Py, (pﬂ,,yu, Hyt
i | j=2 (8)

ILA. Current Approaches to Quantum Propagation.
Operator splitting of unitary operators has been well-known in
numerical solutions to differential equations'** and hence also
for the Schrodinger equation.'”™"*” A few powerful

approaches to represent the action UI¥) include: (a) the use
of fast Fourier transforms'*®'**™"** to efficiently compute the
momentum representation of wave functions where the free-
propagator is diagonal, (b) the use of direct® or iterative,
Lanczos'’ based diagonalization of the full Hamiltonian and
subsequent representation of the evolution operator

6776

U(t) = exp[—iI:It/ 7] using critical eigenstates, (c) the use of
Chebychev polynomial approximations®”'**™**° based on the
Jacobi-Anger formula,'”” and (d) the use of Feynman path
integration.**~'*' The list here is not exhaustive and a
detailed discussion on the topic may be found in refs11, 110.
The problem of time-evolving a wave function in MPS form
has led to the development of several other numerical methods
(see®”'*'* for a review), which essentially fall into two main
categories. These include methods based on the approximation

of the unitary operator U(t), followed by its direct application
to the MPS in question (e.g., time-evolving block decimation
(TEBD),'**~"*° Tensor-Train Split-Operator Fourier Trans-
form (TT-SOFT),” or the MPO W™ method'*’). On the
other hand, there are those that approximate the propagated

state itself, that is, without the explicit computation of U(t)
(e.g, Lanczos-based Krylov subspace methods,'**~"*" Cheby-
shev method (FTTC).”'3%!927159 Perhaps one of the most
general approaches for quantum time-evolution utilizes the
Dirac-Frenkel Time-Dependent Variational Principle
(TDVP)*047:156-159),

It is also worth noting the connections and differences
between the tensor-network propagation method and the
previously mentioned MCTDH approaches. First, the wave
function ansatz in both methodologies are similarly expressed
using tensor network decompositions: Tucker format for
MCTDH,”'*™'° hierarchical Tucker format (also known as
tree tensor network) in ML-MCTDH,'”*° and recently an
MPS formulation of MCTDH was developed in ref 160.
Nevertheless, the principal differences between both method-
ologies lies in the mechanisms to simulate quantum dynamics.
MCTDH methods are based on the Dirac-Frenkel time-
dependent variational principle which lead to the nonlinear
equations of motion of the variational coefficients and single-
particle orbitals defined in the ansatz. On the other hand, as it
will be discussed thoroughly in the next section, in the
approach we follow here, the dynamics are carried out by
representing the time-evolution operator in a convenient TN
format, allowing its direct application to the MPS ansatz.
Additionally, the POTFIT method'®'~'** for potential energy
surface representation is a significant step in improving the
computational efficiency for the multilayer form of MCTDH

https://doi.org/10.1021/acs.jpca.4c03407
J. Phys. Chem. A 2024, 128, 6774—6797
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(ML-MCTDH).”"” In POTFIT, the potential energy surface
which determines the unitary in eq 5 is expanded as a sum of
product,'®"'® but the associated expansion'’ retains the
exponential scaling complexity of the problem. The computa-
tional prefactor is reduced in POTFIT by choosing the single-
particle basis functions in a careful manner.'®" Furthermore,
reduced scaling options are also available by carefully choosing
the off-diagonal elements of . in eq 1 as a product of the

s

relevant diagonal terms,® that is W = Hi‘/’j in ref 165.
V2 "IN i

Within this context the POTFIT approach has been further

improved through a multilayer representation'’ where

dimensions are coupled together in a logical fashion to achieve

a tree-like architecture that captures the “local” correlation to

reduce the complexity of storage associated with wave function
and propagation.

lll. GENERAL PRESCRIPTIONS FOR A PARTITIONED
QUANTUM DYNAMICS SCHEME ON AN MPS
STATE

In the discrete coordinate representation, {IX)}, noted in eq 2,
the matrix elements of the nuclear Hamiltonian, with
corresponding time-evolution operator given by eq 6, have
the general form

N
X'AK) = KX, X) + V() H 6;;"

j=1

)

where K is the kinetic energy and V(%) is the multidimensional
potential energy operator that is local in the coordinate
representation. This local, time-independent, effective potential
is obtained from the electronic structure.

There exist several approximations to the time-evolution
operator®”'*"'%¢ and associated Green’s functions,”'** includ-
ing the commonly used Trotter-Suzuki factoriza-
tion, 2>127166716% yohere the latter enables a straightforward
approximation of the operator, with an accuracy dependent on

the time-step size At. The Trotter symmetric split

125,127

operator expansion of U(At), at second order in At, is

given by
e THA _ —iVA/2R ~RA/ R —VA2R | (A3

(10)
It must be noted that electronic structure based potential

surface calculation, V, in itself has exponential scaling
computational complexity. Assuming N nuclear dimensions
to be treated quantum mechanically with D discretizations per
quantum nuclear dimension, leads to a total of DV
discretizations, and hence electronic structure calculations, to
define the entire potential energy surface. We have recently
shown that molecular fragmentation can be used to §enerate a
potential surface propagator in tensor network form®’ for cost
that is much more favorable."’”'”" A brief discussion of this
aspect is presented in Section III A. In this paper though, we

w(x; t+ At) = fdi/<i|e_iﬁm/h|i/>l;/(i/; t)

ap,y

N-1

— 1%, [ 1y 01000y 4 [1]] 1% 1% U1\ [l [Ny [INTeyer JINTxRy 1 [N
Jax X @y TT Vil v/

j=2
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represent the potential energy components of the Trotterized
operator in the discrete position basis as

e—imt/zh _ Z

—
XX

oy ;o
Vb Ny e 2y ) (2] e ]

(11)
where we have tersely assumed a At-dependence to the high-
order tensor V. The MPO representation of the coefficient
tensor V in eq 11, is obtained by the matrix product
expansion,

X1 XN

N-1
[1]x/x [jlxx [Ny
Z (Vﬂl % H (V/’,q}/’,v} (V/}er"’ N
] j=2 (12)

Since the potential energy operator V is local, it is diagonal
when expressed in the position basis. Thus, the functional
representation of the potential propagator, analogous to eq 3,
is reduced to

<i/|e_iVAt/2hli>

N
= o V®AL2R H 5;,-
]

j=1

)

B

[N]xy
Vi

N-1
[1]x [jlx;
Vi lIL vy
j=2 (13)

where repeated indices (such as X0 ;;’ in eq 12) are omitted

for simplicity; leaving the propagator with the same degrees of
freedom as those of an MPS. (Compare eqs 3 and 13.)

On the other hand, because the kinetic energy operator is
separable across each spatial variable in coordinate representa-
tion, the kinetic propagator (X'lexp(—iK At/#)IX), can thus be
exactly factorized into a product of one-dimensional
propagators, of the form

N
<i/|e_iKAt/h|i> — H <x]{|e—iK]At/h|xj>

j=1

al 7]
] 1%

[T

j=1

where the direct product of the lower dimensional free-

(14)

propagators, Wg]x’ = W[j](xj, x7), leads to the full-dimensional
7

free-propagator in orthogonal coordinate systems.'””

Finally, the time-evolution of the MPS nuclear wave function
of eq 3 is obtained by combining eqs 10, 13, and 14. But in
doing so we recognize that this propagation can be divided
into many portions. Specifically, the free-propagator does not
couple dimensions and acts on one dimension at a time.
Additionally, the MPS form of the potential propagator in eq
13, also has a sum of product form, where each product acts in
parallel on each separated dimension. Therefore,

ON-q

(15)

https://doi.org/10.1021/acs.jpca.4c03407
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where we emphasize the partitioned nature of the quantum
propagator, arising from the use of eqs 10, 13, and 14. This

% ---[fdxz/v»l((vw k. lq(lN 1y, I(V[N IJxN 1) N1 1][/dx

N2N1

w(x; t + At)
IN-2IN-1
and finally
V/(X f+ At) _ Z [l]x1 [2]x, [N-1]xy_;, [N]xy
! H /‘1/‘2 T Nt N

(17)

where we have introduced the tensor index, I = {@, ﬂ_ , 7}
which is in turn defined by the “index fusion” operation @Sy,
> p, and so on. The essence of eq 17 is captured in Figure 3.

| N1 | i
yi) 2 e 2 D e 22 i
I I I I
Kl K2l (N-1] KM
I I I I
il o V2l P o pIN-1] P VIV
o | o | vt o |

z1 z2 TN

Figure 3. Figure shows the action of the time evolution operator onto
the MPS wave function shown in eq 17. The one-dimensional unitary
shown in Figure 2 is decomposed here into one-dimensional kinetic
and potential propagators. Here, the initial vector is given by
entanglement variables @ while the Trotterized propagator in eq 17
has two entangled variables, B and 7, which combine to determine

the index I = (&, B, 7) for the propagated system.

Thus, given the “quantum-circuit-like” depiction in Figure 3,
where the individual tensor cores may be interpreted as qudit
states, this formalism allows a natural platform for constructing
effective quantum algorithms.

Thus, now, the original multidimensional quantum prop-
agation problem, has been partitioned into N one-dimensional
independent subsystems. Each one corresponding to the terms
in square brackets and defined as

[k]xk
/‘k 1Hye

— [kl kxey plklxg, \ gkl

f dof (VI b0 ) gk
— req flkTxgx; [k]axg
- f dkayk—lﬂk—lykﬂk@lk-lak

(18)

where the operators {(H[k]} are denoted in Figure 2 and

{(V[k], ’K[k]} in Figure 3 as green squares nodes. In some sense,
the entanglement of the system is completely captured by
these operations. Specifically, as laid out in Figure 3, the
potential surface captures the entanglement within the system.

6778

also allows us to construct a family of one-dimensional
quantum propagation steps according to

’ 1 1]x, afy g [1]x 2 2] 2] 2]x
¥ [ / (VU s gl 1][ / ey (Vb ety 3‘22]___
7

(V[NJxN(]([N]xN(v[NJxN)qS[N]xN

ON-2ON- aN-q

(16)

As a result, the action of the time-evolution operator on the
initial MPS, is transformed into a set of parallel streams of one-
dimensional effective quantum propagations. The use of
parallel computational resources, both quantum and classical,
comes together naturally, with a potential reduction in the total
computational cost. In essence, the computational effort is now
reduced:

o(D") - O(ND Iz %) (19)

where ||, = max{y, }, Vk, is the L-norm of jI. It appears

that we have eliminated the exponential scaling complexity of
the dynamics on the left side and in fact the right-hand side has
the appearance of a linear scaling complexity relation in N,
which is certainly the case when log |ffl,, << N. This aspect is

also seen from the quantum circuit depiction of tensor network
propagation discussion in Section III B.

llLA. Further Reduction in Complexity through the
Use of Graph-Theoretic Electronic Structure. In a series
of publications,””’’*'”" we have shown that graph-theory
based molecular fragmentation can be used to further reduce

the complexity of the action of action of e VAR 61 the initial

MPS state. Specifically, when a molecular s.ystem173 is divided
into a set of fragments treated as nodes in a graph, that are
then connected based upon a distance cutoff criterion, to form
edges, one obtains a graph-theory based molecular fragmenta-
tion approach where the energy function for a global potential
surface becomes,

E0(x) + Z( 1) z AE,II(,)(X)Msr

a€V,

Egg(x) =

(20)
Here, the set of nodes is depicted as V,, the set of edges is
depicted as V;, and the set of higher-order simplexes'”*~""*
denoted by the symbol V,. (Simplexes are defined as geometric
objects with an arbitrary number of vertices, where all pairs of
vertices are connected.) The above energy expression has been

rigorously benchmarked for potential surfaces and AIMD over

. 60,90,91,170,171,173,179—188 level,0
a set of publications” "> and here E “*"°(X)

is the energy at some lower-level of electronic structure theory,
represented as level, 0, and this is corrected using graph-
theoretically generated fragments,

AEIO( )_E(Ievell( )_ leveIO( ) (21)

a,r

In eq 20, ER,Q(X) is the energy associated with molecular
geometry X using graphical decomposition G. This expression
has been shown to serve well as an approximation to the
energy at a higher level of electronic structure theory, level, 1.
The quantity, R is the rank of the largest simplex included, and
captures the (R + 1)-body interaction terms between the
nodal fragments.
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As a result of the above, the action of e VA2 1 the initial a1 as as
MPS state is simplified because the propagator, e VAR takes
the following form in the coordinate representation when eq ) ) ; ;
20 is used to compute the potential surface: 1] 2 | 3 T4 |
N B1 B2 B3
(xlexp{—iVt/2h}IT) = exp{—iEgg(X)t/2h} vl 2] yi3] yi3]
< @ | x| x3 | xq |
=exp i EIWEI'O(X) + Z (_1)r
(@
2 AER, WM, /2R
acv, a1 asg as
= exp{—i(E"(x) + AEg({x}))t/2h}
= exp{—iE*""(=)t/2h ) exp{ ~iAEg({x))t/2h) o1 5 | o5 | A I
22
(22) e e Vil Vil
and
| |
exp{ —iAEg({x})t/2h} l l
R V{Z’?’]
g ARLO o
= H H exp{—i{AE, . (X) }t | |
r=0 a€V,
/2h) it pj3:l
= [ exwt-iAE,_(x) t/2h} | | | |
% (b)
ATLO
H exp{—iAE,,_,(X) t/2h} Figure 4. An illustration of the action of the graph theoretic potential

aEV

T ewt-i AR, =) t/2n)

aEVg
(23)

and

~1,0 )
AE,)(R,,) = (1) AE)(R, JM, (24)
which is pictorially represented in Figure 4 for a rank-4 tensor.
In Figure 4(a) we reproduce the action of the potential
propagator on the initial wavepacket. The potential propagator
is a rank-8 tensor written as an MPO. This is then readily
approximated using lower rank tensors eq 22 in Figure 4(b)
where, for simplicity, we only provide the
exp{—i AEg({x})t/2h} portion of the propagator up to
rank R = 1, that is only edges in the graph. We further make
the notational simplification in the figure that,
S =10

Vil = exp(—i AE,,_o(%) t/2h) (25)
where the a-th node propagator is a 2D tensor, or a 1D MPO.
Similarly,

Viwnl = exp{—AE,_ (%) t/2h) (26)
where the a-th edge is made of two nodes and depicted as [a;,
@,]. The most important message from Figure 4 is that while
4(a) will necessitate the creation of an extended chain MPO
propagator, given the potential surfaces from electronic
structure are generally highly correlated, Figure 4(b) allows
for an approximation, where at the most the MPOs may be
rank-2, or some other lower rank tensor. In this manner, the
use of graph-theoretic fragmentation brings down the
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propagator in eq 23 is shown in Figure (b), whereas Figure (a) shows
the standard action of a correlated potential surface from electronic
structure.

complexity of tensor network propagation. The full utility of
the above expressions will be explored in detail in future
publications.

ll.B. Quantum Circuit Representations for Tensor
Network Propagation. The algorithm above has a natural
quantum-classical depiction in that the action of each reduced
tensor core may be constructed on a set of distributed
quantum platforms. A proof of concept quantum implementa-
tion of this idea has been tested on IonQ’s ion-trap systems
and paper is currently being prepared for publication."®” Given
this quantum-classical flavor, we will also discuss here quantum
circuit representations for the tensor network propagation
scheme in eq 6. Our discussion is complemented by Figures 5
to 7. In Figures S and 6, ;) and Ig) represent two different

quantum degrees of freedom. These quantum degrees of
freedom may themselves contain multiple qubits and this
aspect is tersely assumed here. The precise number of qubits
for each dimension depends on the number of basis functions,

ja) = 10) —{ ] [
e ——

U3 (U3)!

|q0)

lq1)

lar) — Uy

Figure 5. A quantum circuit for two dimensions, entangled in two
internal dimensions, U = X2 | UiUi. The complexity of each unitary
is reduced through the tensor network formalism where each unitary
now acts only on one dimension.
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ja) = [o) {H}—

3

1

1

|
-

]

1

2
1
1
1
]
1
]

—UE(Us)' =

) {3 f———

Figure 6. Same as Figure 5 but with individual steps emphasized and
complemented by eqs 27 to 29.

or grid points, needed to represented each degree of freedom.
In Figures S and 6, the ket-la) represents a set of ancilla, and

the entanglement between the {Iqi)} degrees of freedom is

controlled by the unitary operation U = ¥ U/U. Note that
having two terms in the summation allows for entanglement

between Iq;) and Iq ), and is a special case of eq 6. In the circuit

shown in Figure 5, g is first transformed by U}. After the
Hadamard gate, the ancilla la) is in the superposition
(o) + |1>)/\/5 which splits the state in two parts. The state

of the system is referred to as Stage 1 in Figure 6 and is given

by

1
Stage 1:f(|o> +11)) ® U11|q0> ® U21|q1> (27)

In Stages 2 and 3, in one part, corresponding to when the
ancilla is 10), that is, (10)) ® Ull|q0> ® U21|q1>, gy remains
transformed by U}; in the second part, that is,
() ® Ulllqo) ® Uilql) corresponding to when the ancilla is
1), g; becomes transformed by U{. Hence,
1
V2

) @ (LU} 10, © U
——10) ® Ullg,) ® Ullg)
)2 0 1
1

ﬁ“) ® Ullq,) ® Ujlg,)

Stage 2: 0) ® Ulllqo) ® U;Iql)

+

—+

(28)

and similarly

L
2

%u) ® Ullg,) ® [UH(U}) 1U3g,)
1

flo) ® Uilg,) ® Ujlg,)

1
f“) ® Ulg,) ® Uylg,)

and finally a measurement of the ancilla leads to the result

Stage 3: 10) ® Ulllqo) ® U;Iql)

—+

+

(29)

1 il Lyl
E<%|U1 U1|q0)<q1|U2 U2|q1> (30)

when the ancilla is in state 10), and

1 - -

~{9JU Urlg ) U Urlg,) 1)
when the ancilla is in state [1). That is the individual
components of the propagated tensor network are found as
outcomes based on the observation of the ancilla. The circuit
therefore encodes the ability for one degree of freedom to
become entangled with and drive evolution in the other.

Additionally, the operators {U}} are, as we will see later, all

banded-Toeplitz matrices, when the kinetic energy part of the
one-dimensional Hamiltonian is written using “Distributed
Approximating Functionals (DAFs)”.">'?97"

The final state at the end of the circuit depicted in Figure 7
is

1 1
E|oo> ® Ullg) ® Uylq) + E|10> ® Ullg,) ® Uslg) +

1 1
E|01> ® Ullg,)) ® Uslg) + 5|11> ® Ullg,) ® U,lq,)
(32)

and again, as in eqs 30 and 31, the respective components of
the tensor network are measured outcomes from the ancilla.
(The detailed development of eq 32 is given in Appendix A.)

In Figure 7, the circuit block between barriers 1 and 2 are C
— U circuit blocks. These entangle the ancilla with the system.
The last two gate operations, beyond barrier 2, entangle three
or more sets of dimensions (and multiple qubits therein),
through C — C — Uy circuit blocks, that will need careful
handling and such gates generally yield greater error during
computation. But, all unitary operations remain simplified in
terms of the size of space these act upon, and this process can
be generalized for arbitrary entanglement and for arbitrary
number of quantum degrees of freedom.

For N dimensions, the circuit performs the operation

lao) = [0) —{ ]

-l ] o o D

lar) = [0) —{ ]
lo) —{1 lawh v} vt[uRwiyud)!
o) {03 v s |— B

Figure 7. Similar to Figure 5, but now with four entanglement dimensions, U = X} | UjU}. Clearly the complexity grows with greater

entanglement.
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D 1), ® Ullg) ® Uslg) ® - ® Uyl ) -
i 33

Here we have chosen to use the integer representation for the
ancilla qubits and depict these as li),. Additionally, there is
inherently a map between this integer index and the
entanglement index B in eq 5. That is,

B~ i) (34)
Hence, between eqs 5 and 33
[ i
Uy = Uy (352)
uil - U
BB j (35b)
] i
U, = Un (35¢)

Proceeding along the directions laid out in Figure 7, this will
need [C — Uf],[C -C- Uf],[C -C—-+=C- Uf] circuit
blocks that are extremely difficult to implement on current
quantum hardware and lead to enormous error.'””

As the entanglement increases, the number of ancilla
required increases in a logarithmic fashion (number of ancilla
is the base-2 log of the extent of entanglement), and the
complexity of the circuit, in terms of the necessary number of
entanglement gates, also increases. One way to reduce the
number of such control gates can be achieved by using as many
more ancilla-qubits as the number of terms in the summation,
that is the extent of entanglement. This may eliminate the need
for the higher order entanglement gates [C — C — Uf],

[C-C—--=-C- Uf], etc, but may increase need for

more quantum resources.

It is however crucial to note the exponential scaling of full
quantum propagation with nuclear dimensions, as emphasized
in earlier sections has already been alleviated to a large extent
through the circuits above. For a system with N nuclear
dimensions with D discretizations per dimension, the state
vector’s size grows as DN, leading to a unitary operator size of
D?M that is required to propagate such a state. However,
leveraging Tensor Network techniques, as emphasized in eq
19, each unitary operator’s size in Figure 7 is D? suggesting a
mitigation of the exponential scaling with nuclear dimensions.
Nonetheless, the number of such unitaries would grow as the
extent of entanglement, and this is indicated by the factor
NlzlZ, introduced in eq 19. Consequently, as the entangle-
ment dimensions increase, the parameter |ffl, grows, hence,
the circuit gets more complicated as can be seen from Figure 7.

In a manuscript currently under preparation,189 we alleviate
this problem by constructing a quantum classical scheme, and
in future publications we will discuss new strategies that
combine this approach with the natural tensor network form of
the potential propagator that arises as a result of use of a graph-
theoregiocally generated molecular fragmentation as discussed
above.”

IV. THE EXPONENTIAL GROWTH OF THE BOND
DIMENSIONS IN EQ 17

It is critical to analyze the term j, on the right side of eq 19. In
fact, as already seen before®® (and in Figures 2, 5 and 7), this
term grows exponentially with time and affects the complexity.
In fact, after N, time-steps, i.e. N, actions of eq 16,
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Iz, — lal {11 ™

where l&l, and {|f|,,} are the L, -norms of the entanglement

(36)

variables in eqs 3 and 12. The parameters l&l,, and {|f |} here,
also signifies the upper bound to the MPS and MPO bond-
dimension, respectively. In the discrete position basis {Ix)},
these upper bounds correspond to the number of discretiza-
tions chosen along each dimension, or simply put, the number
of grid points along each spatial dimension. Thus, the right
side of eq 19, which appears to be devoid of the exponential
scaling in N, gathers instead a potentially catastrophic scaling in
time which complicates the quantum circuit description and is
a serious problem as dynamical systems evolve in time. Indeed
this aspect can be seen in Figure 8, which depicts how the

15000 F
At =0.024 fs
i At =0.12 s
At =0.24 fs
— 10000 | :
2 At = 0.48 fs
5 .
=
§° 5000
0 fmees NI | v v‘v = vlvvl
0 100 200 00
time [fS]

Figure 8. Exponential increase in [, (eq 36) as a function of time.

quantity |71, would grow exponentially for a two-dimensional
system, if propagated over time. However, it is important to
note here that the bond-dimension growth is purely a
numerical artifact which arise due to multiplication of bond
indices and does not represent any physical growth in
entanglement of the system. In Section IV A, we provide a
variational algorithm to reduce this complexity in time.

One must also note the following key comments with
respect to analysis in eqs 17 and 18. First, the number of
entanglement variables involved in eq 13 has a key role in the
efficiency of propagation scheme in eq 17. This is also seen
from the discussion in Section III B. Second, as previously
stated, the error in the Trotter approximation is governed by
the time-step size At. In other words, the necessary precision
in the quantum propagation of an arbitrary state, requires a
sufficiently large number of steps N, = t/At. In the TN
framework discussed above, a naive implementation of the
time-evolution procedure involves the direct MPO-MPS
multiplication at each time-step, resulting in a potentially
exponential increase of the entanglement dimension 7 (which
now would be the maximum number of entanglement
dimensions in I = {@&, B, 7}, represented as |l in eq 19
(see also eq 36 and Figure 8).

In order to shed some light into this matter, let us define
w(X; t + At) as the “partially-evolved” wave function
generated by the action of the potential sector of the time-
evolution operator, eqs 11 and 12, on the initial wave function
of eq 3. We may then write the result in MPS form as

https://doi.org/10.1021/acs.jpca.4c03407
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Scheme 1

Algorithm 1 Regularization of the bond dimension (QR-SVD).

Require: N —2 order-3 tensors ¢*) (for k € [2, N—1]) and order-2 tensors ¢!l and ¢!V, obtained from the MPS representation

of the propagated wavefunction ¥, (X;t + At).

QR Decompositions
: Qr(plY) — QU R
for k=2,N —1do
¢} = reshape(s!"), (nj. Di), m})
aR(o") = QW k¥
end for : :
RN - I{T[‘N]‘QT N

B

B

Singular Value Decompositions
7: for k=2, N — 1 do
8 Q™ = reshape(Q™, nj,, Dyrf
9: SVD(R“‘"”Q»H‘E) — yltl k-t ylk-1)

0 Ul gl [k
e W e A

12: end for . o i
13: SYD(RWV-URTINI ) y V-1 ypIN-1] \[N-1)

Recovery of MPS structure
14: for k=2, N — 1 do

15: W = reshape(W! Y, Iy Dy, 7f)
16: GM = w1l glk
17: end for

18: il = QU x pv
19: GINT = ikl o QT[NJ

> QR decomposition of input ¢!} and output QU), R

> Reshape order-3 tensor ¢* into matrix
> QR decomposition of reshaped ¢/* with outputs Q! RII

> Transpose QR decomposition of ¢!V

> Reshape Q) from ri x ri tonj x (Dgrf) (r] = rank QI
> Truncated SVD with e error threshold

> Re-scaling of left and right singular vectors

> Singular vectors are re-scaled as above

> Matrix multiplication

(S5 t+ At = (=le”VAY2p(r))

— e—iV(i)At/Zhw(i; t)

7

ARNERAPAES 7[N-1]xy.q 1 7 [N]x,
Z¢a; Dol veagh /N B
@

20 ayn-y
(37)
where
1%, — [1]x, [1]x
by =V (38)
i _ il il
¢(l/'_1(1/' - (v/j,—lﬂ,(p‘l,‘-lol’,‘ (38]3)
/[Nlxy — eqs[NIxy o [N]x
¢ar,\771 "= (VﬂN—lN(p‘lNJ ) (385)

Notice the product on the right side of (eq 28b) is strictly
speaking an order-S tensor (order-3 for eqs 38a and 39c);
however, in order to keep the MPS structure, each tensor may
be reshaped via the index fusion oyf3, > a, such that the

original double sum over & and f8 is now spanned by the single
sum over @ .

It should be stressed, however, that the enlarged
entanglement dimensions 77, now defined as the upper limits
of &/, no longer depict the actual physical entanglement of the
evolved state, but rather it is merely an algebraic artifact of the
MPO-MPS multiplication. This is best understood by first
recalling that the order-2 and order-3 tensors in the MPS
expansion, by construction, consist of left and right singular
vectors arising from the sequence of SVD’s between multiple
bipartite subsystems. On the contrary, after the MPO-MPS
multiplication yielding eq 37, the resulting MPS structure
comes with a caveat: each tensor in the expansion is not
comprised of singular vectors. The reason being that because
the SVD is a rank-revealing factorization,'”>~ ' the number of
actual singular vectors is bounded from above by the physical
dimensions, namely, the total number of grid points per spatial
dimension. On the other hand, the number of the resulting
“pseudo-singular vectors” in eq 37, ie., the updated bond
dimension 7', is unbounded and can grow exponentially with
the number of time-steps N.

The true entanglement is naturally revealed by computing
the von-Neumann entropy or any alternative entanglement
measure,'”° so to avoid confusion we will address hereafter this
“artificial entanglement” exclusively as bond dimension.
Admittedly, the entanglement entropg could potentially
increase as the state evolves in time; ”'*”'”® however, its
growth rate may be expected to be substantially lower than that
of the bond dimension and is always determined by the “true”
entanglement present in the potential as seen from Figure 3.
The kinetic sector of the time-evolution operator defined in eq
14, which is conveniently factorizable into one-dimensional
free propagators, clearly does not contribute to the bond

dimension increase, since the K terms can be interpreted as
) X

the tensor cores of a trivial MPO, that is, with bond
dimensions equal to one. Therefore, at second order in the
Trotter-Suzuki approximation, eq 10, the bond dimension is
increased quadratically per time-step, which is the reason for
the “2” in the exponent in eq 36.

Additionally, when constructin% fully ab initio potential
surfaces, such as in previous studies' """ and also as described
briefly in Section III A, the resulting potential may exhibit
coupling across dimensions, unlike model-based or fitted
potentials. Ab initio potentials, computed on-the-fly, do not
naturally decompose into many-body interaction terms, posing
challenges in writing the action of the potential propagator on
a state with uncontrollable bond dimensions. However, in
publication60 and as described in Section III A, it has been
demonstrated that graph-theory based molecular fragmenta-
tion methods provide a natural tensor network-type decom-
position of the potential propagator. This approach offers
advantages, including subkcal/mol accuracy in potential
surfaces, especially when coupled cluster accuracy is required.
In future publications we will combine the approach presented
here with that in ref.°" toward a fully ab initio treatment of
quantum nuclear dynamics using tensor networks on both
quantum and classical hardware architectures, with on-the-fly
potentials.

IV.A. A Regularization Algorithm to Control the
Exponential Increase in Bond Dimension. It is clear
from the above discussion, that the regularization of the bond
dimension is a crucial measure for controlled quantum
propagation of tensor networks. If this issue is not handled
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properly, the storage complexity at multiple time-step
calculations becomes rapidly unmanageable. Furthermore, as
seen in Section III B, the quantum circuit complexity increases
with entanglement. A truncation scheme that prevents the loss
of computational tractability is, therefore, undoubtedly
necessary.

Thus, we now introduce an algorithm aimed to regularize
the bond dimension of the MPS representation of wave
functions along its time-evolution. This is a key ste}g in our
algorithm and critical differences from other methods">>'*" a
noted in Supporting Information.

The key objective of the following methodology is to
minimize the subspace spanned by the updated pseudosingular
vectors. We do this by exploiting a gauge invariance embedded
within each bond dimensional subspace. This allows us to
transform each individual stream independently to find the
minimal subspace basis that may correspond to the singular
vectors of the updated MPS. The result is a chain of
orthogonal matrices whose columns span the minimal
orthogonal subspace of smaller size than the updated bond
dimensions 77’.

The bond dimension regularization algorithm has three steps
that are described in the paragraphs below. These are also
succinctly outlined in Algorithm 1 in Scheme 1.

IV.A.1. Rank Determination of {(j)’[k]"k from Eq 38a

[e/tedn

through QR Decomposition. As in ref 199., we begin by
rotating the column and row vectors of each tensor core @'

in the updated wave function eq 37, by means of QR
decomposition of each one of these tensors. The QR
factorization of the first and last tensors, being of order-2,
are straightforward and shown in eqs 39a and 39c. Notice,
however, that the N tensor has the transpose shape of the
first, and so its actual decomposition is rather of the form R'Q.
On the other hand, the order-3 tensors must be reshaped into
order-2 tensors (first row of Figure 9) prior to the QR

/ / &l /
- - = @ -

Tk &k Q)
= " gm 9k | Rk |—

Figure 9. QR decomposition of order-3 tensors. The index fusion
@, % > Gy, depicted as double-line edges, reshapes the order-3

Ky Kol .
tensor ¢'* ™ into a reduced order tensor ¢'F% 1% i a matrix
aio 4 4

which is then factorized via QR decomposition.

decomposition (green boxes in Figure 9); this is achieved by
combining the physical index x; with the left bond index o _,,
namely, with the index fusion a_yx; > @&, ;. These operations
are succinctly summarized in the following equations:

/[1]x _ [1]x [llq
(11 R Z Q 1R 1
q (39a)

>
¢ 1Tkl - 190> 1k
5

;o
4

¢ / [k]ak,»l,k

%

/ [k](lk 1k

— z [k]1 [ hk
( Q k- lkR

/[N]xN _ T [N]qN T [N]xN
‘lN 1 Z R .y

(39¢)

where Q¥ and R are unitary and upper triangular matrices,
respectively. The diagrammatic representation of these two
operations is depicted in Figure 9.

Notice the reshaping direction is arbitrary and can be equally
chosen in the opposite direction, ie., i, > & . This
arbitrariness is not dissimilar to the method of construction
of tensor networks,”> where a chosen network graph, along
with a chosen direction of processing affects the extent of
perceived entanglement. In our case, the goal is to reduce the
degree of arbitrariness as seen from the so-called “artificial
entanglement vectors” above and hence the particular choice of
direction here is not essential.

IV.A.2. Gauging Entanglement across Neighboring
Reduced Rank Tensor Cores through Sequential SVD
Steps. This stage, as we discuss below, involves a critical
difference between our approach and other methods,'” to
reduce the size of the entanglement dimensions. In this stage,
the resulting tensor cores from the previous step are grouped
and reshaped such that the product between neighboring QR-
factorization pairs R“UQW (Lhus. of Figure 10) is defined by

E

- o, - . dr,
qk;lR[k-l] kL Q[k] q_k = qk_lR[k-l] k1 Q[k] —

Q
¥
A
e
2
>
ES

N g
= yle-1] =yl

Figure 10. SVD of adjacent RQ matrices. The reshape operation on
Q™ via the index split g < agpx followed by xq;, > g, |, defines

the matrix product as the index contraction over @ ;. The product
RUQM i then factorized via SVD.

contracting the bond index «, which is the original
entanglement index in eq 37. This is shown on the first row,
rhs., of Figure 10. To achieve these steps, the previously
reshaped index @ _, ; of Q¥, must be split as o < X,
and then fuse the physical index x; with the QR-index g, as
%y > Gy The order-2 tensor resulting from the ¢ ; index

contraction of RQM, is then decomposed via a truncated

SVD (second row of Figure 10), which discards the smallest

singular values according to an assigned tolerance parameter .
The different tensor cores are thus transformed as

Q [k Bk = o klaf
9 xqu>qk,k qk,k
[k g, , ~ [k] & [k-1] [k-1]
-1, oy Z Ulk-Ua,pyrlk-1o,
Z Ay qu k Ok-1 9 ke
@y 0p1=1 (40a)

[N-1]q T[N]‘Z _ [N- l]q [N-1]6
s N-1R N — Z U IN- 1W N-1
on=1 (40b)

The tensor cores U and I/\/{H, which are the left and right-
orthogonal matrices from the SVDs, contain the left and right
singular vectors, respectively, and are also rescaled by its
singular values, as it was done in eqs 4a to 4c. The total
number of singular values retained in the kK™ SVD is denoted
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Figure 11. QR-SVD Regularization. The Matrix Product State (MPS) representation of the time-evolved wave function y(X; t + At). The middle

rank-3 tensors g{)(;l[jixz and ¢(;2[Z]3x3 are first reshaped by the index fusions a/x, > @, and ayx; > @, 5, respectively. A QR decomposition of each of

the ¢’ tensors is applied, followed by an SVD of the product of the tensors enclosed by the purple-dashed square.

by I't. The wave function, whose TN-diagram is shown on the
third row of Figure 11, is thus written as

T
- [11x,7 7[119,14 7110,
=2 2 Q) uptwiln.
q o

[} Ug, . [j
. IW J-

l‘l

w(X; t + At)
1](7

[N-1] [N-1]oy. AT [Nlxy

X Uy W QU (41)

The step above is critical in our algorithm. It differs from
other methods'>>"*” in the following ways. First, we reiterate
that the goal of the algorithm is to find the “true” bond
dimension in a MPS. Ideally, one could achieve this by
essentially reconstructing the whole MPS by doing a sequence
of N — 1 SVDs between each pair of tensor nodes, analogous
to the standard MPS construction. As noted in ref 199., these
are indeed computationally challenging since these matrices
grow in size with dimension. To overcome this issue, the
proposed solution in ref 199. consisted of an algorithm that
similarly involves a series of QR and SVD factorizations, which
must be performed in sequential order (see Supporting
Information for a concise explanation of the algorithm). In
our case, the computational burden of the rank reduction is
greatly alleviated by only considering the neighboring tensor
cores, as outlined in Figure 11, allowing the parallel
construction our SVD bases vectors.

Therefore, by tracing over the {aj'} indices in eq 40a and

then following that with the SVD step in eq 40b, we have
essentially followed the same recipe of the “ideal” sequence of
SVDs, albeit in a numerically efficient fashion. We have thus
arrived at the new family of compressed entanglement indices:
@' — & with regularized bond dimensions T

IV.A.3. Creating the Final MPS State Vectors through
Intermediate Index Contraction. At this stage, it is critical to
take note of the penultimate row in Figure 11. The sequence of

6784

SVD steps above have provided us with the new bond indices,
6. These will become central to our MPS state. However, the
left and right singular vectors can be separately contracted to
their neighboring counterparts as indicated through dashed
rectangles in the penultimate row of Figure 11, which require a
prior reshape via the index split @ < %4y The index

contraction operation are therefore carried out as follows

[epyltlg, — Fn
Z qu IUGI = ¢”1
q (42a)

4, <%q
WLk» 1oy, Rk k W([Tk- Lxq,
Dy k -1

[k-1]xq, 7 7lklq, _ 7Lk
Z W"k—x ‘ kU”k £= ¢”k»16k
(42b)

T [N]?CN ~[Nlxy

=¢

z W[N— l]q
ON-1

ON-1
I

(42¢)

Hence, the evolved state is finally returned into an MPS
structure by contracting the QR index gy, which leaves behind
the real space index x; during every such trace. The partially
updated wave function thus takes the familiar form

Z 1]xl
”1”2 ON-20N-1 ' ON-1

G (43)

which is analogous to eq 37 but with the resulting MPS bond
indices being the now regularized & = {0, ..., oy_}.

In this fashion, we perform an efficient Schmidt-like
decomposition, potentially every few steps in our quantum
propagation, to compress and probe the degree of accumulated
entanglement during dynamics.

To conclude this section we reiterate, as depicted in Figures
11 and 12, that our approach involves a sequence of QR
decompositions and SVDs that act in parallel on individual

=i

_ 7[21%, [N-1Jxy.y 7[Nlxy

w(X; t + At)
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Figure 12. Diagram above illustrates the process outlined in Figure 11
for the case of three quantum nuclear dimensions. Each tensor ¢’
undergoes a QR decomposition, followed by a singular value
decomposition (SVD) of the resulting product tensors.

cores and on entanglement variables that couple neighboring
cores. This aspect is especially critical as discussed in
Supporting Information.

Discussing briefly the accuracy of the method, which is
elaborated upon in detail in Section V B and in Supporting
Information, we note our simulation begins with a left
canonical MPS initial wavepacket. Subsequently, we exclusively
utilize unitary operations to propagate the MPS initial
wavepacket. Hence, the error in the propagated MPS primarily
arises from truncation via the chosen singular value threshold,
as outlined in the Supporting Information, during a sequence
of QR decompositions and SVDs applied to the individual
cores of the MPS. Additionally, another source of error
affecting the full quantum propagation of the nuclear wave
function is the error resulting from the trotter approximation of
the unitary propagator, as depicted in eq 10.

Furthermore, given that both QR-decomposition and SVD
are composed from unitary transforms that emgloy House-
holder, Givens, and Jacobi primitive operations,1 ® it may be
possible to implement the QR-decomposition and SVD steps
using quantum algorithms in future. For instance, the SVD for
any matrix A can be equivalently approached as the eigenvalue
problem for AA and AA”, which can be mapped to two
parallel quantum algorithms. Furthermore, the algorithm
discussed in this study exclusively considers immediate pairs,
implying that the size of the matrix A would be on the order of
the number of discretizations for each dimension. Thus, it is
conceivable that a phase estimation algorithm applied to a
problem of the order of a 1D system could yield the SVD.
Integration of these quantum algorithms would transition a
significant portion of the operations described in Figure 11 to
quantum operations, thereby enhancing the computational
capability of this approach. However, a critical challenge in
such quantum algorithms would be the elimination of
numerically insignificant singular values, as indicated in steps
two and three of Figure 11. If this step could be performed
using some kind of a quantum annealing step,200 that would
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facilitate the translation of the algorithm to a full quantum
process.

In the next section, we will show how this algorithm is
applied to the correlated time-evolution of the nuclear degrees
of freedom in a symmetric hydrogen-bonded system.

V. QUANTUM DYNAMICS IN A SHORT-STRONG,
SYMMETRIC HYDROGEN-BONDED SYSTEM

Short-strong hydrogen bonds™'™** are abundant in bio-

logical, materials, and atmospheric systems and are charac-
terized by the often highlg anharmonic nature of the potential
energy surfaces (PES)*"**'" that confine the hydrogen
nuclear degrees of freedom. For example, it is well-known™'
that such confining potentials can be at least quartic, and
sometimes sixth order or higher. Thus, the commonly used
harmonic approximation is inadequate to address such
chemical dynamics problems. Such fluctuations are normally
referred to as gating modes in hydrogen transfer reactions.”'”
Furthermore, the anharmonic potential fluctuates and changes
its shape with the donor—acceptor distance. Therefore, a full
quantum dynamical simulation is often required to accurately
predict the chemical properties of such complex sys-
tems,”'"*'¥*'* a5 these involve the correlated interplay
between multiple nuclear degrees of freedom.

To probe and illustrate the accuracy and efficiency of the
TN method introduced in the previous section, we consider
the symmetric short-strong hydrogen-bonded system within
the bidentate-chelating agent, 2,2’-bipyridine. The aromatic
nitrogen-containing heterocycles within this molecule are of
significance in numerous applications in energy storage and
catalytic oxidation.”>™*'" The protonated 2,2-bipyridine
molecule has been widely studied due to its potential
applications as electron carriers and electron acceptors,
whereas the deprotonated form is a strong chelating
agent.”'®*'” As shown in Figure 13, the system contains a

Figure 13. Protonated 2,2’-bipyridine molecule. The shared proton is
shown in a symmetric position between the donor and acceptor
nitrogen atoms at the transition state geometry. The two degrees of
freedom defining the PES, {x, 0}, are also illustrated.

shared proton that is stabilized through a N—H—N hydrogen
bond. The two planar pyridine rings in the ligand are
connected through a carbon—carbon single bond providing a
torsional degree of freedom to the system that acts as a gating
mode and regulates the donor—acceptor hydrogen-bond
distance. The torsional rotation C—C bond, therefore,
influences the basicity or proton affinity of protonated 2,2'-
bipyridine.218 Thus, in this study, the CC torsion angle, 8, and
the associated relative proton position along the donor—
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acceptor axis, x, are both probed using the formalism presented 0.55
above, and depicted in Figure 13. Thus, 095 20 _
L P = 152
A="2% 0 % 4y, 0) &= ! 0%
2m Ox 2m 0(af) (44) —0.25 o=
J
where we have absorbed (af) into the derivative operation to 55

emphasize the Cartesian nature of the cylindrical angle
d(af) = adf. Using the TN framework for time-evolution
coupled with regularization developed above, in this section,
we inspect the quantum dynamics of the shared proton and
organize it as follows. Section V A is dedicated to introduce the
Hamiltonian operator describing the molecular system, and is
complemented by Supporting Information. We first present an
abridged discussion on the two-dimensional potential surface
driving the interactions, the electronic structure methods used
to obtain it, and its corresponding TN decomposition (MPO).
The kinetic energy component of the Hamiltonian is then
described along with the representation used to write the
operator. In Section V B, we present a detailed discussion of
the numerical simulations and the benchmarking methods
used to compare the numerical results.

V.A. The Nuclear Hamiltonian and the Dimensionally
Reduced PES. In a cylindrical coordinate system, the 2,2'-
bipyridine molecule is described by two relevant nuclear
degrees of freedom, which are defined in eq 44. First, the
cylindrical angle 6, (dihedral angle in the molecular frame as
shown in Figure 13) described by the planarity of the two
pyridyl rings around the C—C bond, which modulates the
donor—acceptor distance, i.e., the internuclear separation
between the two nitrogen atoms. Second, the relative position
x of the shared hydrogen nucleus along the NN direction.

The potential energy surface is hence reduced to a two-
dimensional scalar function V(x, 6), and computed through
electronic structure calculations (see Supporting Information
for more details). The details regarding the number of grid
points and the level of theory employed are provided in Table
1. The obtained function V(x, ) is a symmetric, double-well

Table 1. Characteristics of the Grid over Which the 2D
Potential Surface Is Created

parameter value
no. of grid points along the x- S0
dimension
no. of grid points along the 8- 17
dimension
grid size along the x-dimension 1.1
range of angles along the 6- [—40°, 40°]

dimension

B3LYP/6-311++G(d,p)//B3LYP/

level of theory J
6-311++G(d,p

anharmonic potential and it is depicted in Figure 14. In a

89 .
we discuss the tensor

manuscript under preparation,1
network based quantum dynamics of such systems imple-

mented on the IonQ ion-trap quantum computing system.

The kinetic energy is approximated using the distributed
approximating functionals (DAF).'>'”° The result is an
efficient banded Toeplitz structure that takes the following
analytic closed-form expression

fesl

—0.55
—10 =20 0 20 40
6 [deg)

Figure 14. Colormap plot of the PES for the protonated 2,2'-
bipyridine system. The two dimensions, x and 6, correspond to the
vibrational degree of freedom of transferring proton along the
internuclear axis joining the two nitrogen atoms, and the torsional
degree of freedom due to planar rotations of the pyridyl rings about
the C—C bond.

—ne? M 1
ko) = T 3 -1 Haa)
4mog\2m kz:;) k' 4 (45)

where y = (x]- - x]f)/\/fob, with x; and «xj, generically
representing two grid points along the two dimensions referred
to above as x and 6. The quantity, H,;,,(y) are the even-order
Hermite polynomials that uniquely depend on the separation
between grid points along each dimension. The accuracy of the
approximation is tuned via the variational parameters Mp,
and o, The aforementioned banded Toeplitz structure is
critical in computing a direct map to quantum simulators as
discussed in ref 192.

With the PES and kinetic energies defined, the propagators
and hence the Trotterized time-evolution operator of eq 10 are
then straightforward to construct for lower dimensional
quantum problems; especially considering the PES is diagonal
in the position basis.

V.B. Numerical Simulation of Quantum Dynamics. We
choose exact diagonalization of the nuclear Hamiltonian (eq 9)
as our benchmarking method. Error estimates are based on
expressions provided in the Supporting Information, and are
based on the Frobenius norm of the difference between the
MPS approximations and the exact results. The initial quantum
state for the shared proton is chosen in four ways and the
respective parameters are shown in Table 2: (a) A two-
dimensional Gaussian wavepacket positioned at the grid center
with 4 tunable parameters chosen in such a way that the lower
eigenenergies of the Hamiltonian have significant contribu-
tions. (b) A thermal wavepacket with thermal weight for
eigenstates chosen at temperatures T = 300 K and T = 600 K.
(c) A product state with ground eigenstate of one-dimensional
Hamiltonian along x-direction and a constant function along 6-
direction.

V.B.1. Error Analysis for Tensor Network Factorization of
the Potential Propagator. The first step toward performing
quantum nuclear dynamics with tensor networks involves the
creation of the various tensor cores in eq 13. However, note
that in Eq. 13, as in eqs 4a to 4c, for ease of notation, the
tensor cores have been rescaled as

[11%, | 511 [1]x
Vi As = Vi (46a)

70-10 4,k 70 [,
\/A/’,-,l Vits = Vi (46b)

7 [NT 4 ,[N]x [N]x
VA Vi = Vi (46¢)
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Table 2. Initial Wavefunction Characteristics

GS
population SVR
1y 2 threshold
initial wavepacket (t = 0) y(X; 0) Golw) Esm
1 (x=n) (0-p)
% 0) = - — - 91.2% -
WG( ) 271'0';(702 20';' 20'(3' 0
vy (%; 0) = 3 expl—E/KT1y (x, 0) oLe% 107
j
vy (%; 0) = 3 expl=E/KT1y (x, 0) 766% 107
j
W(%; 0) = g, (x, 0 =0°) X C 68.2% -

truncated bond average energy

dimension I’ parameters [kcal/mol]
7 T = 300K 3.952
7 T = 600K 4.067
1 C=1/J17 9.339

In addition, the set of singular values above serve as an
indicator of the entanglement between the physical dimen-
sions. As a result, f, may not encompass the full range of
available singular values but rather includes states that are most
significant to the creation of the original function, w(X; t).
This sets the limit on the bond dimension, 7, and is
determined here using a singular value ratio (SVR) truncation
method,"®**° briefly described in Supporting Information. The
error associated with such a truncation is proportional to the
sum of the squares of the discarded singular values (See
Supporting Information and refs 18, 220. for a detailed
discussion). Due to its diagonal form, the error in the MPO
approximation to the potential propagator is the L,-norm of
the difference vector between the MPO version of the
potential propagator and the full-grid (exponential scaling)
potential energy propagator, and given in Supporting
Information.

In Figure 15(a), we show that the bond dimension increases
as the SVR cutoff is varied. The associated error with the TN

O At =0.021fs

(a)

Figure 1S5. Figure (a): Number of singular values retained for
different threshold parameters ey (see Supporting Information) at
different time-steps At. Figure (b): Error in the TN approximation of
the potential propagator exp[—iV(X)At/2#], see Supporting In-
formation, as a function of the threshold parameter egyy at different
time-steps At.

approximation of the potential propagator exp[—iV(X)At/#]
(see eq 13), is computed according to eq (SI-10) in
Supporting Information and illustrated in Figure 15(b) as a
function of &gyy, which as noted above, yields a user defined
tolerance parameter that determines the number of singular
values retained in the SVD, namely, the bond dimension I'. (see
eq 41 and associated discussion). Additionally, since the time-
step At is a key parameter in the time-evolution operator, and
a source of error due to Trotter, we present all our results at
four different time-steps At = 0.024, 0.12, 0.24, and 0.48 fs.
Since typical hydrogen bond vibrational frequencies have a
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time-period in the few femtoseconds range, these time-steps
provide an adequate set of benchmarks for our algorithm.
From Figures 15(a) and 15(b), we see that the optimal bond
dimension of the potential propagator will depend on the time-
step chosen; small At will allow a higher compression rate with
an acceptable approximation error, that is, the bond dimension
I' is significantly smaller for small time-steps. Moreover, as the

error associated with the Trotter approximation is O(At?),
small At is also favorable for precision. The downside,
however, comes from the multiple intermediate steps needed
to propagate the wave function at a finite time t = N,At. Since
the bond dimension must be regularized at some frequency for
large N, this is computationally challenging, especially for large
dimensional systems. Therefore, the choice of At must be a
suitable compromise between the initial compression, the
Trotter error, and the number of time-steps required.

V.B.2. Regularized Tensor Network Propagation. The
effectiveness of the tensor-network rank-reduction algorithm
presented here is seen from Figure 16. The exponential growth

11 FTT % iyi,\. BB --m

10F Akhkdkdkddddkdr
o At =0.024 fs

L‘ =

9 At =012 fs

sk At =0.24 fs
e At =048 1s

7 ; s utubebuded g ?

d o0 il
100 200 300

time [fs]

0

Figure 16. Regularized bond dimension I' as a function of
propagation time. Results corresponding to the propagated thermal
wavepacket at T = 300 K with a threshold parameter of &gz = 107".

of the unregularized bond dimension in Figure 8, explicitly
illustrates how the naive implementation of the time-evolution
of TN states, may quickly render the computation unmanage-
able. Using a fixed threshold &gyg, our QR-SVD regularization
scheme (Figure 16) effectively maintains a consistent bond
dimension for the propagated state throughout the entire time
evolution.

In Figure 17, we show the population exchange between
different eigenstates as a function of time by projecting the
time-evolved wavepackets (tensor network and direct diago-
nalization) onto the eigenstates of the system. The oscillations
in Figure 17 is of course an expected result with frequencies
that are determined by the respective eigenenergies of the
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Figure 17. Time-evolution of the eigenstate population. Projection of
the time-dependent MPS-wavepacket with QR-SVD regularization,
onto the first three eigenstates of the nuclear Hamiltonian. Exact
diagonalization (ED) results are shown for comparison. The Gaussian
wavepacket was used as initial wave function in (a) and the T = 300 K
thermal wavepacket in (b). The time-step size in both figures is At =
0.24 fs.

states onto which the time-dependent wavepackets are
projected; but Figure 17 portrays the agreement with the
tensor network and exact diagonalization results.

In Figure 18, we present the wavepacket survival amplitude,
(P(0)I¥(t)). Here once more, the QR-SVD regularization

L.OF o 1.0FT |
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Figure 18. Survival amplitudes of the time-dependent wavepacket
evolving on a two-dimensional potential energy surface as obtained
from the TN propagation with QR-SVD regularization algorithm
(green line) and its comparison with exact diagonalization (ED) of
nuclear Hamiltonian (black dots), including the real (a) and
imaginary parts (b). The initial wavepacket chosen is
(X5 0)lp_300x and time-step size is At = 0.24 fs.

algorithm completely captures the wavepacket oscillations with

an error, defined as |[{(P(0)I¥(£))gp — (F(0)I¥(¢))ppslls of
the order of 107>,

The time-averaged error AW, s in the regularized TN
approximation, given by the expression

— 1 7. 1
W= 1 [ [ 0 e OF
(47)
where y is the benchmark time-evolved state, g the
propagated MPS wave function, and 7 is the total time of
propagation, is mentioned in Table 3 as a function of time-step
At. The most important feature of Table 3 is the fact that all
differences between ygp and yyps, are very close to each other
at each time-step. This shows that the initial truncation in the
TN decomposition of both, the potential propagators and the
initial wave functions, are good approximations; and that the
regularization has successfully pruned the artificial entangle-
ment introduced by the time-evolution, resulting in numerical
precision close to the exact diagonalization results. However, it
is crucial to note that each SVD truncation introduces
additional errors, and these errors typically accumulate over
time. Additionally, mitigating such errors necessitates higher
ranks in bond dimensions, which inevitably increase over time.
Our goal here is to find a good compromise between accuracy
and efficiency to allow stable longer-term dynamics.

In Table 3, we also show the extent to which the total energy
is conserved for long time dynamics of the order of several
femtoseconds. For different time-step At, the energy
conservation is probed by computing the absolute difference
between the time-averaged energies and the energy at each
time-step. The root-mean square error for different propagat-
ing time-steps At is shown in Table 3. These results reside well
within the subkcal/mol range needed for accurate dynamics. It
must be noted that for large dimensional systems, dynamics at
these time scales, would be impossible to do without the
regularization scheme presented here, even though the TN
approach reduces the exponential complexity of quantum
dynamics.

V.B.3. Vibrational Spectral Behavior from Time-Evolution
of Any Initial State. The computation of the shared-proton
wavepacket dynamics provides a means to accurately
determine its vibrational frequencies and is given by the
Fourier transform of the density—density time autocorrelation

function, Tr[p(0)p(t)] as

Table 3. Root Mean Square Error in Wavepacket Energy, AE [kcal/mol], and Time Averaged Error between the TN
Propagated Wavefunction with QR-SVD Regularization and with Propagation via Exact Diagonalization of the Nuclear

Hamiltonian, A%, for Different Propagating Time-Steps At and Different Initial Wavefunction Chosen

AE [kcal/mol]

AW, s

At [fs] WG(i5 0) Wr(ii )] [— l//T(ii 0)lr_g00x ‘//G(i; 0) l//T(ii 0)lr_300x U/T(i; 0) 7= go0x
0.024 5.42 % 1076 470 x 107% 320 x 1077 322 %1076 2.67 X 107¢ 2.83 X 107°
0.12 1.39 x 107* 451 x 1077 7.94 x 1076 8.08 X 1075 6.72 X 107° 7.11 X 107°
0.24 1.53 x 1073 2.52 x 1078 4.54 x 1075 327 x 1074 2.70 x 107* 2.86 x 1074
0.48 3.18 X 1073 7.31 x 107* 9.18 x 107* 1.35 x 1073 1.09 x 1073 1.15 X 1073
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One may rewrite this using the convolution theorem®*" as
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+o0 . .
f dx f dte” Y c(0)c () EE M) () | | +
oo ”
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+o0 . .
dxdx’ f dte™ Z ci(O)c;k(O)e’(E"_Ef)’/"(/)_(x)c/).(x')
x#x' —o0 o ! /
1)
(49)

While standard approaches may compute the results from eq
49, a quantum computer, such as that utilized in ref 61., has the
ability to obtain information at a finer resolution and compute
the individual terms inside the integral above as, for example,

I(w) _ /+00 dte,‘mt Z Ci(O)C;k(O)ei(E‘_E])t/h(ﬁi(x)(ﬁj(x)

— ¥

= D 3w = (B = E))c(0)(0)¢h(x)h(x)
i’j

(50)
separately. By measuring eq S0 on an ion-trap quantum
computer in ref 61, we have provided a new approach to
determine spectroscopic features in complex systems using
quantum computing platforms. Here, we use eq 50 to compute

vibrational properties.
In Figure 19, we show the vibrational frequencies obtained
from the Fourier transform of the time-evolution of the initial
wavepackets as mentioned in Table 2. The vibrational energies

1 A T T

5 ol 2 o [
=
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Figure 19. Frequency spectra of a shared-proton in 2,2'-bipyridine.
(a)-(c) The time evolution wavepacket obtained from the TN
propagation with QR-SVD regularization algorithm (empty circles)
and its comparison with exact diagonalization (ED) of nuclear
Hamiltonian (filled circles) are Fourier-transformed to reveal
frequency spectra of the shared-proton oscillation. Each peak
corresponds to a frequency splitting between eigenstates of the
discrete nuclear Hamiltonian. Dashed gray lines and labels show
predicted frequencies from exact diagonalization of the nuclear
Hamiltonian. The initial wavepackets chosen in (a)-(c) are y,(X; 0),

I//T(i; 0)lr_300x and l//T(i; 0)lr_goox respectively as mentioned in
Table 2.

6789

(48)

obtained from the time dynamics are compared to the exact
diagonalization results (dashed gray lines). The TN
propagation with QR-SVD regularization algorithm captures
the vibrational spectra of the protonated 2,2'-bipyridine
molecule within an uncertainty of 3 cm™ wavenumbers
which is well within the range of spectroscopic accuracy for
such molecular vibration problems.

V.B.4. Numerically Controlling the Entanglement Across
Quantum Dimensions through Tensor Network Form of the
Potential Propagator. The construction of a tensor network
approximation for the potential for systems with arbitrary
number of degrees of freedom, such as that discussed above,
may, in general, be an exponential scaling task. In this respect,
in ref 60., the authors introduce an approach to directly obtain
a TN form of the post-Hartree—Fock potential surface and
associated potential propagator from a graph-theoretically
generated molecular fragmentation and many-body scheme for
post-Hartree—Fock electronic structure potential surfaces.
Such approaches can be naturally integrated with the approach
here to reduce the computational cost arising from the creation
of the various tensor cores in eqs 11 and 12.

Correspondingly, the first two surviving singular vectors for
the matrix product decomposition of the potential propagator
are shown in Figure 20 as a function of its respective physical
dimensions x and 6. As can be seen from eqs 11 and 12, the
probabilistic contribution of each product state within the
tensor network,

[11x'xq 2100 o' 50"
2 ViV
2

X0 _
x0 —

(s1)

toward quantum propagation may be seen as arising from the
respective norms with respect of x and 6,

IVE L IVEEIL (52)
That is, eq 52 depicts the contribution from a specific product
state in the tensor network decomposition, eqs 11, 12, and 51,
toward quantum propagation, and this modulates the degree of
correlation that is present within the quantum system. This is
because, the weights afforded to quantum propagation by each
product state, as given by eq 52, results in correlations across
dimensions. A critical hallmark of the approach here is that
such entanglement or correlation is discovered through first-
principles electronic structure and not predetermined by
choice of model potential used. Consequently, it may be
noted from Figure 20 that it appears that the contribution
toward quantum propagation from the second product state is
approximately three-orders of magnitude smaller as compared
to the first product state. Thus the degree of entanglement
between these dimensions is limited, and in an accompanying
set of papers, we describe experimental and theoretical
evidence where this system is simulated on an ion-trap
quantum computer, and molecular vibrations are captured in
an extremely accurate manner by the quantum simulation.
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Figure 20. TN decomposition of the potential propagator. Real and imaginary parts of the first two singular vectors (V%k] as a function of the

physical dimensions x (represented as superscript' in the vertical axes) and 6 (represented as superscript” in the vertical axes). The time-step length
is taken as At = 0.024 fs. (The Re((VEIJx) values are shifted by 0.763 while Re((VEZJH) values are shifted by 1.3095).

Viewed in this manner, there is an exchange of population
between the family of states,

[1]x'x 4 [1]x
/ de Y Vgl
a

B (83)

and

[2100 ,[2]0
[a0 3 V3
a

B, (54)

as per eq 37 at every step of quantum propagation, and this
exchange of population entangles the two dimensions, if this
population exchange arises from the multiconfigurational,
nonproduct, nature of the potential indicated by eqs 12 and
13. For example, the norms in eq 52 are responsible for
reducing or raising the relative probabilities within the states in
eqs 53 and 54 thus yielding an exchange in population. In fact,
this can be seen in Figure 21, where the initial wave function is

1.0 LOp
% 0.5 ;: 0.5F N
S S 00
= =
205 E —05
I I —1.0= L | B
0 50 100 0 50 100
time [fs] time [fs]
(a) (b)

Figure 21. Survival amplitudes of the time-dependent wavepacket
evolving on a two-dimensional potential energy surface as obtained
from the TN propagation with QR-SVD regularization algorithm
(green line) and its comparison with exact diagonalization (ED) of
nuclear Hamiltonian (black dots), including the real (a) and
imaginary parts (b). As the initial wavepacket chosen is the product
state l//C(i; 0) mentioned in Table 2, the figure depicts the exchange
of population between the two-dimensions. The time-step size is At =
0.24 fs.
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a product state l//c(i; 0) mentioned in Table 2. The wave

function along x-direction is a ground state of the one-
dimensional Hamiltonian along x-direction at @ = 0°, while the
wave function is chosen to be constant along € direction.
Hence its time-evolution with time allows us to gauge the
extent to which the potential couples the dimensions which
will result in population exchange and entanglement across
dimensions, the latter being manifested through the change in
I'. It must be noted that such an exchange in population only
arises due to the entanglement as captured within the
potential.

VI. CONCLUSIONS

In this paper, we introduce (a) an efficient method for the
simulation of multidimensional quantum nuclear dynamics
based on the TN representation of the wave function and the
unitary time-evolution operator, and (b) a general quantum
circuit approach for tensor network based quantum nuclear
dynamics. Using the proposed regularization algorithm of the
bond dimension, which is the core of this work, we are able to
reconstruct an efficient MPS representation of the propagated
wave function, by removing numerical redundancies that
otherwise will grow exponentially with time, therefore gauging
the true entanglement dimension on the fly. One advantage of
our approach is that all matrix operations can be executed in
parallel, reducing significantly the computational time and
making the algorithm amenable to quantum-classical imple-
mentations. Additionally, the quantum circuit version also
allows the algorithm to be implemented on quantum hardware
systems. The accuracy of our approach is probed using a
protonated 2,2'-bipyridine molecule with two physical degrees
of freedom. This low-dimensional system, allows to use time
propagation via exact diagonalization of the Hamiltonian as
benchmark tool. By computing different quantities such as
eigenstate populations, survival amplitudes, energy conserva-
tion, and error measures, we show that our TN method of
propagation is a powerful and accurate approach.

As TN methods become more useful to simulate quantum
circuits and as key components of hybrid algorithms suitable
for NISQ hardware, in future publications, we will incorporate

https://doi.org/10.1021/acs.jpca.4c03407
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Figure 22. Same as Figure 7 but with individual steps emphasized and complemented by eqs 27 to 29.

a quantum simulation technique in order to build a hybrid
approach to quantum simulation that could combine the
dimensional reduction of TN with the computational

advantages of quantum algorithms.

B APPENDIX A: ELABORATING THE VARIOUS
STAGES INVOLVED IN FIGURE 7

As noted in Figure 7, as the entanglement dimensions grow,

the circuit gets more complicated. While the number of ancilla

needed grow, the complexity of the circuit, in terms of

conditionality, also grows resulting in the final state at the end

of the circuit in Figure 7. The detailed development of eq 32

and Figure 7 are given below as per Figure 22:

Stage 1:
1 1

N3 72

= %(loo) +101) +110) + 1)) ® Ulg,) ® Uslg,)

(I0) +11)) ® —=(10) + 1)) ® Ullg,) ® Ujlq,)

(A1)

Stage 2:
1
- (100) ® Uilg)) ® Ujla,) + 101) ® Uilg,) @ Uilg)) +

110) ® Uflg,) ® Ujlg,) + 1) ® Uflq)) ® Uslg,)) (A2)

Stage 3:
1
ﬁ@@@@@@@HM®ww®w@+

110) ® Ulg,) ® Uylg) + 111) ® Uflg,) ® Uslg,)) (A3)

Stage 4:

1

5 (100) ® Uilg)) ® Ujla) + 101) @ Uflg,) @ Ujla,) +
110) ® Uflg,) ® Uylg,) +

1) ® U] Uflg,) ® Uslg,)) (A4)

Stage S:

1
ﬂw®wW®@@HM®WW®@W+
110) ® Uflg,) ® Uslg) +

1) ® U U2lg,) ® U3UL U2 ))
(a5)
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Stage 6:
1
ﬁw®WW®w@Hw®WW®@w+
110) ® Uflq,) ® Uylg)) +

.
1) ® Uflg,)) ® B0, Uslg))

(A6)
and finally
1
7 (100) ® Ullg,) ® Ujlg,) + 101) @ Uflg,) ® Uslg,) +
110) ® Uflq,) ® Uslg) + 111) ® Ulq) ® Ujlg)) (A7)

which is the result in eq 32. As in eqgs 30 and 31, the respective
components of the tensor network as measured outcomes from
the ancilla.

B ASSOCIATED CONTENT

© Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jpca.4c03407.

We analytically compare our regularization method with
that described in ref 199, we discuss the potential energy
surface obtained for protonated 2,2'-bipyridine which
was studied using the tensor network algorithm
described here, and we provide expressions for error
estimates for the tensor network form of the potential
propagator and the wavepacket that are used in the
paper (PDF)
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